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ABSTRACT

Yuan Xue, Probabilistic Model and Algorithms Design For Motif Detection. Master of

Science (MS), Aug, 2013, 89pp., 5 tables, 1 figure, references 22 titles.

In this thesis, a natural probabilistic model has been used to test the quality of motif discovery

programs. In this model, there are k background sequences, in which each character is a random

character from Σ. Motif is a string G = g1g2 . . . gm. Each background sequence is implanted a

probabilistically generated approximate copy ofG. For each copy b1b2 . . . bm ofG, every character

bi is probabilistically generated such that the probability for bi 6= gi is at most α. Based on this

model, two randomized algorithms ,one deterministic algorithm and one enumerative algorithm

are designed, which can handle any motif patterns, and run much faster than those before, one can

even run in sublinear time. These methods have been implemented in software.
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CHAPTER I

INTRODUCTION

Motif discovery is an important problem in computational biology and computer science. For

instance, it has applications in coding theory [3, 6], locating binding sites and conserved regions

in unaligned sequences [8, 12, 20, 21], genetic drug target identification [11], designing genetic

probes [11], and universal PCR primer design [2, 11, 16, 19].

This thesis focuses on the application of motif discovery to find conserved regions in a set of

given DNA, RNA, or protein sequences. Such conserved regions may represent common biologi-

cal functions or structures. Many performance measures have been proposed for motif discovery.

Let C be a subset of 0-1 sequences of length n. The covering radius of C is the smallest inte-

ger r such that each vector in {0, 1}n is at a distance at most r from a string in C. The decision

problem associated with the covering radius for a set of binary sequences is NP-complete [3]. The

similar closest string and substring problems were proved to be NP-hard [3, 11]. Some approxi-

mation algorithms have been proposed. Li et al. [14] gave an approximation scheme for the closest

string and substring problems. The related consensus patterns problem is that given n sequences

s1, · · · , sn, find a region of length L in each si, and a string s of length L so that the total Ham-

ming distance from s to these regions is minimized. Approximation algorithms for the consensus

patterns problem were reported in [13]. Furthermore, a number of heuristics and programs have

been developed [1, 9, 10, 18, 22].
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In many applications, motifs are faint and may not be apparent when two sequences alone

are compared but may become clearer when more sequences are compared together [7]. For this

reason, it has been conjectured that comparing more sequences together can help with identifying

faint motifs. This thesis gives a theoretical approach with a rigorous probabilistic analysis.

We study a natural probabilistic model for motif discovery. In this model, there are k back-

ground sequences and each character in the background sequence is a random character from an

alphabet Σ. A motif G = g1g2 . . . gm is a string of m characters. Each background sequence is

implanted a probabilistically generated approximate copy of G. For a probabilistically generated

approximate copy b1b2 . . . bm of G, every character bi is probabilistically generated such that the

probability for bi 6= gi, which is called a mutation, is at most α. This model was first proposed in

[18] and has been widely used in experimentally testing motif discovery programs [1, 9, 10, 22].

We note that a mutation in our model converts a character gi in the motif into a different character

bi without probability restriction. This means that a character gi in the motif may not become any

character bi in Σ− {gi} with equal probability.

We develop four algorithms that under the probabilistic model, one can find the implanted

motif with high probability via a tradeoff between computational time and the probability of mu-

tation. For the first three algorithms, each algorithm has a preprocessing phase and the voting

phase. We use a pair of functions (t1(n, k), t2(n, k)) to describe the computational complexity of

motif detection algorithm, where n is the largest length of input sequence, and k is the number of

sequences. Function t1(n, k) is the time complexity for the part for preprocessing, and t2(n, k) is

the time complexity for recovering one character for motif after preprocessing. The total time is

O(t1(n, k) + t2(n, k)|G|).

(1) There exists a randomized algorithm such that there are positive constants c0 and c1
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that if the alphabet size is at least 4, the number of sequences is at least c1 log n, the motif

length is at least c0 log n, and each character in motif region has probability at most 1
(logn)2+µ

of mutation for some fixed µ > 0, then motif can be recovered with probability at least 3
4

in

(O( n√
h
(log n)

7
2 + h2 log2 n), O(log n)) time, where n is the longest length of any input sequences,

and h = min(|G|, n 2
5 ). The algorithm total time is sublinear if the motif length |G| is in the

range [(log n)7+µ, n
(logn)1+µ ]. This is the first sublinear time algorithm with rigorous analysis in this

model.

(2) There exists a randomized algorithm such that there are positive constants c0, c1, and α that

if the alphabet size is at least 4, the number of sequences is at least c1 log n, the motif length is at

least c0 log n, and each character in motif region has probability at most α of mutation, then motif

can be recovered with probability at least 3
4

in (O( n
2

|G|(log n)O(1)), O(log n)) time.

(3) There exists a deterministic algorithm such that there are positive constants c0, c1, and α

that if the alphabet size is at least 4, the number of sequences is at least c1 log n, the motif length

is at least c0 log n, and each character in motif region has probability at most α of mutation, then

motif can be recovered with probability at least 3
4

in (O(n2(log n)O(1)), O(log n)) time.

(4) We also design an enumerative algorithm for motif detection. There exists constants

σ1, δ1, δ2, ε > 0 such that given an input of Θα(n,G)-sequences S1, · · · , Sk, if the alphabet size

is at least 2, and each character in motif region has probability at most α of mutation, our enumer-

ative algorithm satisfies

i. If G ∈ Σρ − Ψρ,h,d(Σ) and ρ ≥ h + l0 = O(log n), then with probability at most e−Ω(h) +

e−Ω(k), it fails to return a unique G′ with |G| = |G′|, and G and G′ are very similar.

ii. For every G, with probability at most 2ck3 + δ1, it fails to return at most 2O(k) sequences

3



G′1, · · · , G′m such that at least one G′i is similar to G.

iii. The algorithm takes O(kn2(log n)2) time.

The research in this model has been reported in [4, 5, 15]. In [4], Fu et al. developed an

algorithm that needs the alphabet size to be a constant that is much larger than 4. In [5], our

algorithm cannot handle all possible motif patterns. In [15], Liu et al. designed an algorithm that

runs in O(n3) time and is lack of rigorous analysis about its performance. The motif recovery in

this natural and simple model has not been fully understood and seems a complicated problem.

This thesis presents two new randomized algorithms, one new deterministic algorithm and one

new enumerative algorithm. They make advancements in the following aspects: 1. The algorithms

are much faster than those before. Our algorithms can even run in sublinear time. 2. They can

handle any motif pattern. 3. The restriction for the alphabet size is small, giving them potential

applications in practical problems since gene sequences have an alphabet size 4. 4. All algorithms

have rigorous proofs about their performances.

The randomized algorithm for motif detection is named to be Recover-Motif(.). The entire

Recover-Motif(.) is described and analyzed in CHAPTER III. The entire enumerative algorithm

for motif detection is described and analyzed in CHAPTER IV. Experiments and results are given

in CHAPTER V. CHAPTER VI includes conclusions and future works.
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CHAPTER II

NOTATIONS AND THE MODEL OF SEQUENCE GENERATION

For a set A, ||A|| denotes the number of elements in A. Σ is an alphabet with ||Σ|| = t ≥ 2.

For an integer n ≥ 0, Σn is the set of sequences of length n with characters from Σ. For a

sequence S = a1a2 · · · an, S[i] denotes the character ai, and S[i, j] denotes the substring ai · · · aj

for 1 ≤ i ≤ j ≤ n. |S| denotes the length of the sequence S. We use ∅ to represent the empty

sequence, which has length 0.

Let G = g1g2 · · · gm be a fixed sequence of m characters. G is the motif to be discovered by

our algorithm. A Θ(n,G, α)-sequence has the form S = a1 · · · an1b1 · · · bman1+1 · · · an2 , where

n2 + m ≤ n, each ai has probability 1
t

to be equal to π for each π ∈ Σ, and bi has probability at

most α not equal to gi for 1 ≤ i ≤ m, where m = |G|. ℵ(S) denotes the motif region b1 · · · bm of

S. A mutation converts a character gi in the motif into an arbitrary different character bi without

probability restriction. This allows a character gi in the motif to change into any character bi in

Σ − {gi} with even different probability. The motif region of S may start at an arbitrary position

in S. Also, a mutation may convert a character gi in the motif into an arbitrary different character

bi only subject to the restriction that gi will mutate with probability at most α.

A Ψ(n,G)-sequence has the form S = a1 · · · an1b1 · · · bman1+1 · · · an2 , where n2 + m ≤ n,

each ai has probability 1
t

to be equal to π for each π ∈ Σ, and there are at most O(1) characters bi

not equal to gi for 1 ≤ i ≤ m and each mutation occurs at a random position ofG, wherem = |G|.

5



ℵ(S) denotes the motif region b1 · · · bm of S.

For two sequences S1 = a1 · · · am and S2 = b1 · · · bm of the same length, let the relative

Hamming distance diff(S1, S2) = |{i|ai 6=bi(i=1,···,m)}|
m

.

Definition 1. For two intervals [i1, j1] and [i2, j2], define shift([i1, j1], [i2, j2]) = min(|i1−i2|, |j1−

j2|).

6



CHAPTER III

RANDOMIZED ALGORITHMS FOR MOTIF DETECTION

Brief Introduction to Algorithms

Every detection algorithm in this thesis has two phases. The first phase is preprocessing so

that the motif regions from multiple sequences can be aligned in the same column region. The

second phase is to recover the motif via voting. We use a pair of functions (t1(n, k), t2(n, k))

to describe the computational complexity of motif detection algorithm. Function t1(n, k) is the

time complexity for the preprocessing phase and t2(n, k) is the time complexity for outputting one

character for motif in the voting phase.

The motif G is a pattern unknown to algorithm Recover-Motif, and algorithm Recover-

Motif will attempt to recover G from a series of Θ(n,G, α)-sequences generated by the proba-

bilistic model.

Algorithm

The algorithm first detects a position that is close to the left motif boundary in a sequence.

It finds such a position via sampling and collision between two sequences. After the rough left

boundary of a sequence is found, it is used to find the rough boundaries of the rest of the sequences.

Similarly, we find those right boundaries of motif among the input sequences. The exact left

boundary of each motif region will be detected in the next phase via voting. Each character of the

motif is recovered by voting among all the characters at the same positions in the motif regions of
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input sequences. For a sequence S, a sample point is a random position i in S. For two sequences

S and S ′ with two sample points i, and j, respectively, a rough motif boundary is detected by the

similarity of S[i, i+ l] and S ′[j, j + l] for some reasonably large parameter l.

Descriptions of Algorithm

Input: Z = Z1∪Z2, where Z1 = {S ′1, · · · , S ′2k1
} and Z2 = {S ′′1 , · · · , S ′′k2

} are two sets of input

sequences.

Output:Planted motif in each sequence and consensus string

Start:

Randomly select sample points from each sequence both in Z1 and Z2

For each pair of sequences selected from Z1 and Z2,

Find the rough left and rough right boundaries via the matching at sample points.

Improve rough boundaries.

If motif boundaries of each sequence in Z2 are not empty,

Use Voting to get the planted motifs.

End of Algorithm

An Example

We provide the following example for the brief idea of our algorithm. Let the following input

strings be defined as below. We assume that the original motif is TTTTTAACGATTAGCS. The

motif part is displayed with bold font, and the mutated characters in the motif region have been

marked by ∗ in their feet.

1. Input Sequences

It contains two groups Z1 = {S ′1, S ′2} and Z2 = {S ′′1 , S ′′2 , S ′′3 , S ′′4 , S ′′5}.
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Z1 :

S ′1 = GTACCATGGATTA∗TTAACGATTAGCSTAGAGGACCTA.

S ′2 = AATCCTTAC∗TTTTAACGATTAGCSGTC.

The above two strings are used to detect the initial motif region and use them to deal with the

motif in the second group below.

Z2 :

S ′′1 = ATTCGATCCAGTTTTTAACGG∗TTAGCSCAATTACTTAG.

S ′′2 = GCATTGCATTTTTTAACGATTAC∗CSGTACTTAGCTAGATC.

S ′′3 = TCAGGGCATCGAGACTTTTTAG∗CGATTAGCSCTAGAATCAGACCT.

S ′′4 = GTACCTGGCATTGAACGTTTTTAACGATTAGCA∗TGCAGATGGACCTTTA.

S ′′5 = AATGGATCAGATTTTTAACGATTC∗GCSCTAGATTCAG.

2. Select Sample Points

Some sample points of two sequences in Z1 are selected randomly and marked with the little

dots on the top.

S ′1 = GTȦCCȦTGĠATṪA∗TTAȦCGAṪTȦGCṠTAĠAGĠACCṪA.

S ′2 = ȦATĊCTTȦC∗ṪTTTȦACĠAṪTAĠCSĠTC.
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3. Collision Detection

In this step, the left and right rough boundaries of two sequences will be marked. The following

shows the left collision, which happens nearby the left motif boundary and are marked by two

overline TATT and TTTT subsequences.

S ′1 = GTȦCCȦTGĠATṪA∗TTAȦCGAṪTȦGCṠTAĠAGĠACCṪA.

S ′2 = ȦATĊC∗TTȦC∗ṪTTTȦACĠAṪTAĠCSĠTC.

The following shows the right collision, which happens nearby the right motif boundary and is

marked by two overline TTAG subsequences.

S ′1 = GTȦCCȦ∗TGĠATṪA∗TTAȦCGAṪTȦGCṠTAĠAGĠACCṪA.

S ′2 = ȦATĊC∗TTȦC∗ṪTTTȦACĠAṪTAĠCSĠTC.

4. Improving the Boundaries

In the early phase of the algorithm, we first detect a small piece of motif in S ′1 by comparing

S ′1 and S ′2. Assume “TA∗TT” and “TTAG” are found in the left and right motif region of S ′1

respectively. The rough motif length will be calculated via the difference of the location of the

first character ‘T’ of the first subsequence and the location of the last character ‘G’ of the second

subsequence. The position marked by “A” is the rough left boundary of motif and the position

marked by “T” is the rough right boundary of motif in S ′1 below.

S ′1 = GTACCATGGATTA∗TTAACGATTAGCSTAGAGGACCTA.

10



S ′2 = AATCCTTAC∗TTTTAACGATTAGCSGTC.

5. Sample Points for the Sequences in Z2

Some sample points near the motif boundaries of S ′1 are selected.

S ′1 = GTACCATGĠATṪA∗ṪTAACGATTȦGĊSTȦGAGGACCTA.

Sample points are selected in each sequence in Z2.

S ′′1 = AṪTCĠATCCȦGTṪTṪTAACGG∗TTAGĊSCȦAT ṪACTTȦG.

S ′′2 = GĊATTĠCATTṪTTTAACGATTAC∗ĊSGTȦCTTȦGCTȦGAṪC.

S ′′3 = ṪCAĠGGCAṪCGAĠACTTTṪTAG∗CGATTAGĊSCTAĠAATCȦGACĊT.

S ′′4 = GTȦCCTĠGCATṪGAACGTṪTTTAACGATTȦGCA∗TGCȦGATĠGACCTṪTA.

S ′′5 = AAṪGGAṪCAGATṪTTTAACGATTC∗GĊSCTAĠATTĊAG.

6. Collision Detection Between S ′1 with the Sequences in Z2

Some sample points near the motif boundaries of S ′1 are selected.

S ′1 = GTACCATGĠATṪA∗ṪTAACGATTȦGĊSTȦGAGGACCTA.

Sample points are selected in each sequence in Z2.

S ′′1 = AṪTCĠATCCȦGTṪTṪTAACGG∗TTAGĊSCȦAT ṪACTTȦG.

S ′′2 = GĊATTĠCATTṪTTTAACGATTAC∗ĊSGTȦCTTȦGCTȦGAṪC.

S ′′3 = ṪCAĠGGCAṪCGAĠACTTTṪTAG∗CGATTAGĊSCTAĠAATCȦGACĊT.
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S ′′4 = GTȦCCTĠGCATṪGAACGTṪTTTAACGATTȦGCA∗TGCȦGATĠGACCTṪTA.

S ′′5 = AAṪGGAṪCAGATṪTTTAACGATTC∗GĊSCTAĠATTĊAG.

7. Improving the Motif Boundaries for the Sequences in Z2

After the collision with the sequences in Z2, we obtain the rough location of motifs of the

sequences in Z2. Their motif boundaries for the sequences in Z2 are improved.

S ′1 = GTACCATGGATTA∗TTAACGATTAGCSTAGAGGACCTA.

The improved motif boundaries of the sequences in Z2 are marked below.

S ′′1 = ATTCGATCCAGTTTTTAACGG∗TTAGCSCAATTACTTAG.

S ′′2 = GCATTGCATTTTTTAACGATTAC∗CSGTACTTAGCTAGATC.

S ′′3 = TCAGGGCATCGAGACTTTTTAG∗CGATTAGCSCTAGAATCAGACCT.

S ′′4 = GTACCTGGCATTGAACGTTTTTAACGATTAGCA∗TGCAGATGGACCTTTA.

S ′′5 = AATGGATCAGATTTTTAACGATTC∗GCSCTAGATTCAG.

8. Motif Boundaries for the Sequences in Z2

S ′1 = GTACCATGGATTA∗TTAACGATTAGCSTAGAGGACCTA.

Use the pair (GL, GR) with GL = TTAT and GR = AGCS to find the motif boundaries in

the sequences of Z2. The rough boundaries of the second group are marked below with underlines.

S ′′1 = ATTCGATCCAGTTTTTAACGG∗TTAGCSCAATTACTTAG.
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S ′′2 = GCATTGCATTTTTTAACGATTAC∗CSGTACTTAGCTAGATC.

S ′′3 = TCAGGGCATCGAGACTTTTTAG∗CGATTAGCSCTAGAATCAGACCT.

S ′′4 = GTACCTGGCATTGAACGTTTTTAACGATTAGCA∗TGCAGATGGACCTTTA.

S ′′5 = AATGGATCAGATTTTTAACGATTC∗GCSCTAGATTCAG.

9. Extracting the Motif Regions

The motif regions of the second group will be extracted. The original motif is recovered via

voting at each column.

G′′1 = TTTTTAACGG∗TTAGCS

G′′2 = TTTTTAACGATTAC∗CS

G′′3 = TTTTTAG∗CGATTAGCS

G′′4 = TTTTTAACGATTAGCA∗

G′′5 = TTTTTAACGATTC∗GCS

10. Recovering Motif via Voting

The original motif TTTTTAACGATTAGCS is recovered via voting at all columns. For ex-

ample, the last S in the motif is recovered via voting among the characters S, S, S, A, S in the last

column.

Our Results

We give an algorithm for the case with at most 1
(logn)2+µ mutation rate. The performance of the

algorithm is stated in Theorem 2. Theorem 2 implies Corollary 3 by selecting k = c1 log n with
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some constant c1 large enough.

Theorem 2. Assume that µ is a fixed number in (0, 1) and the alphabet size t is at least 4. There

exists a randomized algorithm and a constant c0 such that if the length of the motif G is at least

c0 log n, then given k independent Θ(n,G, 1
(logn)2+µ )-sequences, the algorithm outputsG′ such that

1) with probability at most e−Ω(k), |G′| 6= |G|, and

2) for each 1 ≤ i ≤ |G|, with probability at most e−Ω(k), G′[i] 6= G[i], and

3) with probability at most k
n3 , the algorithm Recover-Motif does not stop in (O(k( n√

h
(log n)

5
2 +

h2 log n)), O(k)) time,

where n is the longest length of any input sequences, and h = min(|G|, n 2
5 ).

Corollary 3. There exists a randomized algorithm, and positive constants c0, c1 and µ such that

if the alphabet size is at least 4, the number of sequences is at least c1 log n, the motif length is

at least c0 log n, and each character in motif region has probability at most 1
(logn)2+µ of mutation,

then motif can be recovered with probability at least 3
4

in (O( n√
h
(log n)

7
2 + h2 log2 n), O(log n))

time, where n is the longest length of any input sequences, and h = min(|G|, n 2
5 ).

We give a randomized algorithm for the case with Ω(1) mutation rate. The performance of the

algorithm is stated in Theorem 4. Theorem 4 implies Corollary 5 by selecting k = c1 log n with

some constant c1 large enough..

Theorem 4. Assume that the alphabet size t is at least 4. There exists a randomized algorithm and

a constant c0 such that if the length of the motif G is at least c0 log n, then given k independent

Θ(n,G, µ))-sequences, the algorithm outputs G′ such that

1) with probability at most e−Ω(k), |G′| 6= |G|, and
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2) for each 1 ≤ i ≤ |G|, with probability at most e−Ω(k), G′[i] 6= G[i],

3) with probability at most k
n3 , the algorithm Recover-Motif does not stop in (O(k( n

2

|G|(log n)O(1)+

h2)), O(k)),

where n is the longest length of any input sequences, and h = min(|G|, n 2
5 ).

Corollary 5. There exists a randomized algorithm, and positive constants c0, c1, and α such that

if the alphabet size is at least 4, the number of sequences is at least c1 log n, the motif length is at

least c0 log n, and each character in motif region has probability at most α of mutation, then motif

can be recovered with probability at least 3
4

in (O( n
2

|G|(log n)O(1)), O(log n)) time.

We give a deterministic algorithm for the case with Ω(1) mutation rate. The performance of

the algorithm is stated in Theorem 6. Theorem 6 implies Corollary 7 by selecting k = c1 log n

with some constant c1 large enough.

Theorem 6. Assume that the alphabet size t is at least 4. There exists a deterministic algorithm

and a constant c0 such that if the length of the motif G is at least c0 log n, then given k independent

Θ(n,G, µ))-sequences, the algorithm runs in (O(n2(log n)O(1) +h2k), O(k)), and outputsG′ such

that

1) with probability at most e−Ω(k), |G′| 6= |G|, and

2) for each 1 ≤ i ≤ |G|, with probability at most e−Ω(k), G′[i] 6= G[i],

3) with probability at most k
n3 , the algorithm Recover-Motif does not stop in (O(k(n2(log n)O(1)+

h2)), O(k)) time,

where n is the longest length of any input sequences, and h = min(|G|, n 2
5 ).
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Corollary 7. There exists a deterministic algorithm, and positive constants c0, c1, and α such that

if the alphabet size is at least 4, the number of sequences is at least c1 log n, the motif length is at

least c0 log n, and each character in motif region has probability at most α of mutation, then motif

can be recovered with probability at least 3
4

in (O(n2(log n)O(1)), O(log n)) time.

Algorithm Recover-Motif

In this section, we give a unified approach to describe three algorithms. The performance of

the algorithms is stated in the Theorems 2, 4, and 6.

Some Parameters

Definition 8.

i. Parameter x is selected to be 10. This parameter controls the failure probability of our

algorithms to be at most 1
2x

.

ii. The size of alphabet is t ≥ 4.

iii. Select a constant ρ0 ∈ (0, 1) to have inequality (1)

ρ0 <
t− 1

2t
. (1)

iv. The constant ε ∈ (0, 1) is selected to satisfy

ε < min((
t− 1

t
− (2ρ0 + 2ε)),

1

5
(1− 2

t− 1
− 4

2x
),

1

3
). (2)

The existence of ε follows from inequality (1). The constant ε is used to control the mutation

in the motif area. It is a part of parameter β defined in item (xiv) of this definition.
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v. Let c = e−
ε2

3 . The constant c is used to simplify probabilistic bounds which are derived from

the applications of Chernoff bounds (See Corollary 18).

vi. Define r(y) = ( 1
t−1

+ cy

1−c).

vii. Define u1 to be a large constant that for all v ≥ 0,

2(v + u1)cv+u1

(1− c)2
≤ 1

5 · 2x
. (3)

viii. Select constant ρ1 ∈ (0, 1) such that

2

t− 1
+

4

2x
+ 5ε+ ρ1 < 1. (4)

The existence of ρ1 follows from ε < 1
5
(1− 2

t−1
− 4

2x
), which is implied by inequality (2).

ix. Select constant ρ2 ∈ (0, 1) and constant positive integer v large enough such that

6(v + u1)cv

1− c
+ ρ2 < ρ1, and (5)

(
1

2x
+ (v + u1)

cv

1− c
+

cv

1− c
+

1

5 · 2x
) ≤ 1/2. (6)

x. Define ς0 = 1
2x

, and ϕ(v) = (v + u1) cv

1−c + cv

1−c).

xi. Select constant α0 such that

4(v − 1)α0 + α0 < ρ2, and (7)

α0 < ρ0. (8)
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Adding inequalities (4), (5), and (7), we have inequality (9)

(
2

t− 1
+

4

2x
+ 5ε) +

6(v + u1)cv

1− c
+ (4(v − 1)α0 + α0) < 1. (9)

By arranging the terms in inequality (9) and the definitions of r(v) and ϕ(v), we have in-

equality (10)

2((2(v − 1)α0 +
cv

1− c
) + r(v) + 2(ς0 + ϕ(v)) + 2ε) + (α0 + ε) < 1. (10)

xii. The maximal mutation rate α for the second algorithm (Theorem 4) and third algorithm

(Theorem 6) are selected as α0. Since the mutation rate of our sublinear time algorithm is

bounded by 1
(logn)2+µ , the maximal mutation rate α for the first algorithm (Theorem 2) is less

than α0 when n is large enough. We always assume that all mutation rates α in our three

algorithms are in the range (0, α0].

xiii. Define q(y) = 2(v − 1)α + 2cy

1−c . By inequality (10), the definition of q(y), and the fact

α ∈ (0, α0), we have

2(q(v) + r(v) + 2(ς0 + ϕ(v)) + 2ε) + (α0 + ε) < 1. (11)
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Inequality (11) implies q(v) ≤ 1
2
. By inequality (6), we have that

(
1

2x
+ (v + u1)

cv

1− c
+

cv

1− c
+

1

5 · 2x
) + q(v) ≤ 3/4 (12)

xiv. Let β = 2α + 2ε. The parameter β controls the similarity of ℵ(S) and the original motif G

(see Lemma 27).

xv. Define R = r(v).

xvi. We define the following Q0.

Q0 = q(v). (13)

The parameter Q0 used in Lemma 27 gives an upper bound of the probability that a

Θ(n,G, α)-sequence S whose ℵ(S) will not be similar enough to the original motif G ac-

cording to the conditions in Lemma 27.

xvii. Select constant d0 such that

n3cd0 logn <
1

5 · 2x
. (14)

xviii. Select constant d1 such that (v + u1)cd1 logn < 1
5·2x .

xix. Select number u2 such that

(d1 log n)(v + u1)
cv+u2

1− c
≤ 1

5 · 2x
. and (15)
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(v + u1)
cv+u2

1− c
<

1

5 · 2x
(16)

Since only n is variable, we can make u2 = O(log log n).

xx. For a fixed c ∈ (0, 1), define δc =
ln 1

c

2
.

Description of Algorithm Recover-Motif

The algorithms are described in this section. The description combines three algorithms to-

gether. Before presenting the algorithm, we define some notions.

Definition 9.

• Two sequences X1 and X2 are weakly left matched if (1) both |X1| and |X2| are at least

d0 log n, (2) diff(X1[1, i], X2[1, i]) ≤ β for all integers i, v ≤ i ≤ d0 log n.

• Two sequences X1 and X2 are left matched if (1) d0 log n ≤ |X1|, |X2|, (2) X1[i] = X2[i]

for i = 1, · · · , v − 1, and (3) diff(X1[1, i], X2[1, i]) ≤ β for all integers i, v ≤ i ≤ d0 log n.

• Two sequences X1 and X2 are weakly right matched if XR
1 and XR

2 are weakly left matched,

where XR = an · · · a1 is the inverse sequence of X = a1 · · · an.

• Two sequences X1 and X2 are right matched if XR
1 and XR

2 are left matched, where XR =

an · · · a1 is the inverse sequence of X = a1 · · · an.

• Two sequences X1 and X2 are matched if X1 and X2 are both left and right matched.

Variable L will be controlled in the range L ∈ [(log n)3+ε1 , n
2
5
−ε2 ] in our algorithm with high

probability. We define the following functions that depend on L.
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Definition 10. Define M(L) =

√
3 logn+x√

1−γ

√
L log n. Define M1(L) =

δc0M(L)

logn
(see Definition 8

for δc), where c0 = 1
4
.

We would like to minimize the function (n
L
M + L2) log n. This selection can make the total

time complexity sublinear.

Definition 11. For a Θ(n,G, α) sequence S, define LB(S) to be the left boundary l of the motif

region ℵ(S) in S, and RB(S) to be the right boundary r of the motif region ℵ(S) in S such that

ℵ(S) = S[l, r].

Boundary-Phase of Algorithm Recover-Motif

The first phase of Algorithm Recover-Motif finds the rough motif boundaries of all input

sequences. It first detects the rough motif boundaries of one sequence via comparing two input se-

quences. Then the rough boundaries of the first sequence is used to find the rough motif boundaries

of other input sequences.

Three algorithms share most of the functions. We have a unified approach to describe them. A

special variable “algorithm-type” selects one of the three algorithms, respectively.

Definition 12. Let algorithm-type represent one of the three algorithm types, “RANDOMIZED-

SUBLINEAR”, ”RANDOMIZED-SUBQUADRATIC”, and ”DETERMINISTIC-SUPERQUADRATIC”.

Definition 13. Assume that A1 is a set of positions in a Θ(n,G, α) sequence S1 and A2 is a set of

positions in a Θ(n,G, α) sequence S2. If there are positions a1 ∈ A1 and a2 ∈ A2 such that for

some position j with 1 ≤ j ≤ |G|, a1 is the position of ℵ(S1)[j] in S1 and a2 is the position of

ℵ(S2)[j] in S2, then A1 and A2 have a collision at (a1, a2).
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In the following function Collision-Detection, the parameter ω ≤ β is defined below in the

three algorithms.

ωalgorithm-type =



0 if algorithm-type=RANDOMIZED-SUBLINEAR;

β if algorithm-type=RANDOMIZED-SUBQUADRATIC;

β if algorithm-type=DETERMINISTIC-SUPERQUADRATIC.

(17)

Function Collision-Detection(S1, U1, S2, U2) is used to detect a point a1 ∈ U1 in the motif area

in S1 and another a′1 ∈ U1 point in the motif area of S1. The two points a1 and a′1 are close to the

left and right motif boundaries of S1, respectively. A similar pair of points e1 and e′1 in U2 is also

derived for S2.

Collision-Detection(S1, U1, S2, U2)

Input: a pair of Θ(n,G, α)-sequences S1 and S2, Ui is a set of locations in Si for i = 1, 2.

Output: the left and right rough boundaries of two sequences.

Let D1 be all subsequences S1[a, a+ d0 log n− 1] of S1 of length d0 log n with a ∈ U1.

Let D2 be all subsequences S2[b, b+ d0 log n− 1] of S2 of length d0 log n with b ∈ U2.

Find two subsequences X1 = S1[a1, a1 + d0 log n− 1] ∈ D1 and

X2 = S2[b1, b1 + d0 log n − 1] ∈ D2 such that a1 is the least and diff(X1, X2) ≤

ωalgorithm−type.

Find two subsequences X ′1 = S1[a′1, a
′
1 + d0 log n− 1] ∈ D1 and

X ′2 = S2[b′1, b
′
1 + d0 log n− 1] ∈ D2 such that a′1 is the largest and

diff(X ′1, X
′
2) ≤ ωalgorithm−type.
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Find two subsequences Y1 = S1[f1, f1 + d0 log n− 1] ∈ D1 and

Y2 = S2[e1, e1 + d0 log n− 1] ∈ D2 such that e1 is the least and

diff(Y1, Y2) ≤ ωalgorithm−type.

Find two subsequences Y ′1 = S1[f ′1, f
′
1 + d0 log n− 1] ∈ D1 and

Y ′2 = S2[e′1, e
′
1 + d0 log n− 1] ∈ D2 such that e′1 is the largest and

diff(Y ′1 , Y
′

2) ≤ ωalgorithm−type.

Return (a, a′, e1, e
′
1).

End of Collision-Detection

Definition 14. Let [a, b] be an interval with two integers boundaries a and b, and l be a posi-

tive integer parameter. Define l-partition of [a, b] to be l − P ([a, b]) that contains the interval-

s [a1, b1], [a2, b2], · · · , [ar, br] such that a1 = a, br = b, ai+1 = bi + 1, bi = ai + l − 1 for

i = 1, 2, · · · , r − 1, and ar ≤ br ≤ ai + l − 1.

For example, the 3-partition of the interval [1, 10] is 3-P ([1, 10]) = {[1, 3], [4, 6], [7, 9], [10, 10]}.

Function Point-Selection(S, L, I) will be defined differently in three different algorithms, where

I is an interval of positions in sequence S, and L is an positive integer parameter. For randomized

algorithms, some random points are selected in L-P (I). For deterministic algorithm, all points in

I are selected.

Point-Selection(S, L, I)

Input: a pair of Θ(n,G, α)-sequences S, a size parameter L of partition, and an interval of

positions I in S.

Output: a set U of positions from S respectively.
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Steps:

Let U = ∅.

If algorithm-type=RANDOMIZED-SUBLINEAR or RANDOMIZED-SUBQUADRATIC

If (L ≥ (logn)3+τ

100
)

For each interval I ′ in I , obtain L-partition of I ′ L-P (I).

Sample M(L) (see Definition 10) random positions at every

interval J in L-P (I ′), and put them into U .

Else

Put every position of I into U1.

If algorithm-type=DETERMINISTIC-SUPERQUADRATIC

Put every position of I into U .

Return U .

End of Point-Selection

The function Improve-Boundaries(S1, al, ar, S2, fl, fr, L) is used to improve the existing

rough left and right boundaries al and ar of S1 respectively, and improve the existing rough left

and right boundaries fl and fr of S2 respectively. We assume al ∈ [LB(S1)−L,LB(S1)+L], ar ∈

[RB(S1)−L,LB(S1) +L], fl ∈ [LB(S2)−L,LB(S2) +L], and fr ∈ [RB(S2)−L,RB(S2) +L].

After calling this function, more accurate approximate boundaries will be derived. From the prob-

abilistic analysis, we have good chance to get the exact motif boundaries for both S1 and S2.

Improve-Boundaries(S1, al, ar, S2, fl, fr, L)

Input: a Θ(n,G, α)-sequence S1 with rough left and right boundaries al and ar, a Θ(n,G, α)-

sequences S2 with rough left and right boundaries fl and fr, and an approximate distance L to the
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nearest motif boundary from those rough boundaries (The parameter L usually has the properties

that LB(S1) ∈ [al−L, al], RB(S1) ∈ [ar, ar+L], LB(S2) ∈ [fl−L, fl], and RB(S2) ∈ [fr, fr+L]).

Output: improved rough left and right boundaries for both S1 and S2.

Steps:

Find two subsequences X1 = S1[a1, a1 + d0 log n− 1] and X2 = S2[b2, b2 + d0 log n− 1]

with a1 ∈ [al − L, al + L] and b2 ∈ [fl − L, fl + L] such that diff(X1, X2) ≤ β and a1 is

the least.

Find two subsequences X ′1 = S1[a′1, a
′
1 + d0 log n− 1] and X ′2 = S2[b′2, b

′
2 + d0 log n− 1]

with a′1 ∈ [ar −L, ar +L] and b2 ∈ [fr −L, fr +L] such that diff(X ′1, X
′
2) ≤ β and a′1 is

the largest.

Find two subsequences Y1 = S1[e1, e1 + d0 log n− 1] and Y2 = S2[f2, f2 + d0 log n− 1]

with e1 ∈ [al − L, al + L] and f2 ∈ [fl − L, fl + L] such that diff(Y1, Y2) ≤ β and f2 is

the least.

Find two subsequences Y ′1 = S1[e′1, e
′
1 + d0 log n− 1] and Y ′2 = S2[f ′2, f

′
2 + d0 log n− 1]

with e′1 ∈ [ar − L, ar + L] and f ′2 ∈ [fr − L, fr + L] such that diff(Y ′1 , Y
′

2) ≤ β and f ′2 is

the largest.

Return (a1, a
′
1, f2, f

′
2).

End of Improve-Boundaries

The function Initial-Boundaries(S1, S2) detects the motif boundaries for two sequences S1

and S2. It first detect rough motif boundaries that is controlled by parameter L. The rough bound-

aries will be improved to exact motif boundaries via calling Improve-Boundaries(.).

Initial-Boundaries(S1, S2)
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Input: a pair of Θ(n,G, α)-sequences S1 and S2

Output: rough left boundary roughLeftS1
of S1, right boundary roughRightS1

of S1, rough

left boundary roughLeftS2
of S2, and right boundary roughRightS2

of S2.

Steps:

Let U1 = U2 = ∅.

Let L = n2/5.

Repeat

Let U1 =Point-Selection(S1, L, [1, |S1|]).

Let U2 =Point-Selection(S2, L, [1, |S2|]).

Let (LS1 , RS1 , LS2 , RS2) =Collision-Detection(S1, U1, S2, U2).

If (LS1 6= ∅ and RS1 6= ∅)

Then Goto H.

Else L = L/2.

Until (L < 1
2

(logn)3+τ

100
)

H: Return Improve-Boundaries(S1, LSl , RS1 , S2, LS2 , RS2 , 2L).

End of Initial-Boundaries

If LS and RS are the left and right motif boundaries of a sequence S, then the motif length is

RS − LS + 1. When we have the exact motif boundaries L′Si and R′Si for most sequences Si, their

motif length can be derived via the median in ∪i{R′Si −L
′
Si

+ 1}. Therefore, we have the function

Motif-Length-And-Boundaries(Z1) to compute the length of motif region.

Motif-Length-And-Boundaries(Z1)

Input: Z1 = {S ′1, · · · , S ′2k1
} is a set of independent Θ(n,G, α) sequences.
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Steps:

For i = 1 to k1

let (roughLeftS′2i−1
, roughRightS′2i)=Initial-Boundaries(S ′2i−1, S

′
2i).

Let L1 be the median of ∪k1
i=1{(roughRightS′2i−1

− roughLeftS′2i−1
+ 1)}.

Return L1.

End of Motif-Length-And-Boundaries

Extract-Phase of Algorithm Recover-Motif

After a set of motif candidates W is produced from Boundary-Phase of algorithm Recover-

Motif, we use this set to match with another set of input sequences to recover the hidden motif by

voting.

Match(Gl, Gr, Si)

Input: a motif left part Gl (which can be derived from the rough left boundary of an input

sequence S), a motif right part Gr, a sequence S ′′i from the group Z2, with known rough left and

right boundaries.

Output: either a rough motif region of S ′′i , or an empty sequence which means the failure in

extracting the motif region ℵ(S ′′i ) of S ′′i .

Steps:

Find a position a in S ′′i with roughLeftS′′i ≤ a ≤ roughLeftS′′i + (v + u2).

such that Gl and S ′′i [a, a+ |Gl| − 1] are left matched (see Definition 9).

Find a position b in S ′′i with roughRightS′′i − (v + u2),≤ b ≤ roughRightS′′i

such that Gr and S ′′i [b− |Gr|+ 1, b] are right matched (see Definition 9).
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If both a and b are found

Then output S ′′i [a, b]

Else output ∅ (empty string).

End of Match

If the left Gl and right Gr motif parts are known, we extract all the motif regions for all se-

quences in the set Z2 by the function Extract(Gl, Gr, Z2).

Extract(Gl, Gr, Z2)

Input Z2 = {S ′′1 , S ′′2 , · · · , S ′′k2
} and left and right motif parts Gl and Gr (see function

Match(Gl, Gr, Si)).

Steps:

For each S ′′i with i = 1, 2, · · · , k2,

let G′′i = Match(Gl, Gr, S
′′
i ).

Return (G′′1, G
′′
2, · · · , G′′k2

).

End of Extract

The following is Extract-Phase of algorithm Recover-Motif. It extracts the motif regions

of another set Z2 of input sequences. The function is based on the condition that exact motif

boundaries can be derived for most sequences.

Extract-Phase(S ′, Z2):

Input S ′ is an input sequence with known roughLeftS′ and roughRightS′ for its rough left and

right boundaries respectively, and Z2 = {S ′′1 , · · · , S ′′k2
} is a set of input sequences.

Steps:
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For each subsequence Gl = S ′[a, a+ d0 log n− 1] with a ∈ [roughLeftS′ , roughLeftS′ +

(v + u1)]

and Gr = S ′[b− d0 log n+ 1, b] with b ∈ [roughRightS′ − (v + u1), roughRightS′ ]

let (G′′1, G
′′
2, · · · , G′′k2

) be the output from Extract(Gl, Gr, Z2).

If the number of empty sequences in G′′1, · · · , G′′k2
is at most (Q0 + (R + 2ε))k2

Then return (G′′1, G
′′
2, · · · , G′′k2

).

Return ∅ (empty set).

End of Extract-Phase

Voting-Phase

The function Vote(G′′1, G
′′
2, · · · , G′′k2

) is to generate another sequence G′ by voting, where G′[i]

is the most frequent character among G′′1[i], G′′2[i], · · · , G′′k2
[i].

Voting-Phase(G′′1, G
′′
2, · · · , G′′k2

)

Input: Θ(n,G, α) sequences G′′1, G
′′
2, · · · , G′′k2

of the same length m.

Output: a sequence G′, which is derived by voting on every position of the input sequences.

Steps:

For each j = 1, · · · ,m

let aj be the most frequent character among G′′1[j], · · · , G′′k2
[j].

Return G′ = a1 · · · am.

End of Vote
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Entire Algorithm Recover-Motif

The entire algorithm is described below. The input has two sets of sequences Z1 and Z2.

It detects the motif boundaries for the sequences in Z1 via pair wise comparisons, and also the

motif length. The motif regions of the sequences in Z2 are detected in the next phase, and will

be extracted. The original motif is recovered via voting for each column of characters among the

extracted motif regions.

We maintain the sizes of Z1 and Z2 to be roughly equal, which implies

|Z1| = Θ(|Z2|) (18)

Algorithm Recover-Motif (Z)

Input: Z = Z1 ∪Z2, where Z1 = {S ′1, · · · , S ′2k1
} and Z2 = {S ′′1 , · · · , S ′′k2

} are two sets of input

sequences.

Steps:

Preprocessing Part:

For each S ∈ Z1 ∪Z2, let roughLeftS = roughRightS = 0 (the two boundaries are unknown).

lmotif =MotifLengthAndBoundaries(Z1).

Let L = lmotif/4.

For i = 1 to k1,

let US′2i−1
=Point-Selection(S ′2i−1, L, [roughLeftS′2i−1

− 2L, roughLeftS′2i−1
+ 2L])∪

Point-Selection(S ′2i−1, L, [roughRightS′2i−1
− 2L, roughRightS′2i−1

+ 2L]).

For j = 1 to k2

let US′′j =Point-Selection(S ′′j , L, [1, |S ′′j |]).
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For i = 1 to k1

For each S ′′j ∈ Z2

Let (LS′2i−1
, RS′2i−1

, LS′′j , RS′′j
) =Collision-Detection(S ′2i−1, US′2i−1

, S ′′j , US′′j ).

Let (LS′2i−1
, RS′2i−1

, roughLeftS′′j , roughRightS′′j )=

Improve-Boundaries(S ′2i−1, LS′2i−1
, RS′2i−1

, S ′′j , LS′′j , RS′′j
, 2L).

Let (G′′1, G
′′
2, · · · , G′′k2

) be the output from Extract-Phase(S ′2i−1, Z2).

If (G′′1, G
′′
2, · · · , G′′k2

) is not empty

Then go to Voting Part.

Voting Part:

Return Voting-Phase(G′′1, G
′′
2, · · · , G′′k2

).

End of Algorithm Recover-Motif

Deterministic Algorithm

In this section, we give a deterministic algorithm, which is a simplified version of the unified

algorithm described before. It is simpler than the randomized versions. The first phase of Algo-

rithm Recover-Motif (.) finds the rough motif boundaries of all input sequences. It first detects

the rough motif boundaries of one sequence via comparing two input sequences. Then the rough

boundaries of the first sequence is used to find the rough motif boundaries of other input sequences.

We still let

ωDETERMINISTIC-SUPERQUADRATIC = β. (19)

Collision-Detection(S1, S2)
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Input: a pair of Θ(n,G, α)-sequences S1 and S2, Ui is a set of locations in Si for i = 1, 2.

Output: the left and right rough boundaries of two sequences.

LetD1 be all subsequences S1[a, a+d0 log n−1] of S1 of length d0 log nwith a ∈ [1, |S1|].

LetD2 be all subsequences S2[b, b+d0 log n−1] of S2 of length d0 log nwith b ∈ [1, |S2|].

Find two subsequences X1 = S1[a1, a1 + d0 log n− 1] ∈ D1 and

X2 = S2[b1, b1 + d0 log n − 1] ∈ D2 such that a1 is the least and diff(X1, X2) ≤

ωDETERMINISTIC−SUPERQUADRATIC.

Find two subsequences X ′1 = S1[a′1, a
′
1 + d0 log n− 1] ∈ D1 and

X ′2 = S2[b′1, b
′
1 + d0 log n− 1] ∈ D2 such that a′1 is the largest and

diff(X ′1, X
′
2) ≤ ωDETERMINISTIC−SUPERQUADRATIC.

Find two subsequences Y1 = S1[f1, f1 + d0 log n− 1] ∈ D1 and

Y2 = S2[e1, e1 + d0 log n− 1] ∈ D2 such that e1 is the least and

diff(Y1, Y2) ≤ ωDETERMINISTIC−SUPERQUADRATIC.

Find two subsequences Y ′1 = S1[f ′1, f
′
1 + d0 log n− 1] ∈ D1 and

Y ′2 = S2[e′1, e
′
1 + d0 log n− 1] ∈ D2 such that e′1 is the largest and

diff(Y ′1 , Y
′

2) ≤ ωDETERMINISTIC−SUPERQUADRATIC.

Return (a, a′, e1, e
′
1).

End of Collision-Detection

Function Point-Selection(S1, S2, L) is not used in the deterministic algorithm.

Improve-Boundaries(S1, al, ar, S2, fl, fr, L) is the same as that in the randomized algorithms.

Initial-Boundaries(S1, S2)
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Input: a pair of Θ(n,G, α)-sequences S1 and S2

Output: rough left boundary roughLeftS1
of S1, right boundary roughRightS1

of S1, rough

left boundary roughLeftS2
of S2, and right boundary roughRightS2

of S2.

Steps:

Let U1 = U2 = ∅.

Let L = n2/5.

Repeat

Let (LS1 , RS1 , LS2 , RS2) =Collision-Detection(S1, S2).

If (LS1 6= ∅ and RS1 6= ∅)

Then Goto H.

Else L = L/2.

Until (L < 1
2

(logn)3+τ

100
)

H: Return Improve-Boundaries(S1, LSl , RS1 , S2, LS2 , RS2 , 2L).

End of Initial-Boundaries

Motif-Length-And-Boundaries(Z1) is the same as that before.

Match(Gl, Gr, Si) is the same as that for the randomized algorithm.

Extract(Gl, Gr, Z2) is the same as that for the randomized algorithm.

The following is Extract-Phase of algorithm Recover-Motif. It extracts the motif regions of

another set Z2 of input sequences.

Extract-Phase(S ′, Z2) is the same as that for the randomized algorithm.

Voting-Phase(G′′1, G
′′
2, · · · , G′′k2

) is the same as that for the randomized algorithm.

The entire deterministic algorithm is described below. We maintain the sizes of Z1 and Z2 to
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be roughly equal.

Algorithm Recover-Motif (Z)

Input: Z = Z1 ∪Z2, where Z1 = {S ′1, · · · , S ′2k1
} and Z2 = {S ′′1 , · · · , S ′′k2

} are two sets of input

sequences.

Steps:

Preprocessing Part:

For each S ∈ Z1 ∪Z2, let roughLeftS = roughRightS = 0 (the two boundaries are unknown).

lmotif =MotifLengthAndBoundaries(Z1).

Let L = lmotif/4.

For i = 1 to k1

For each S ′′j ∈ Z2

Let (LS′2i−1
, RS′2i−1

, LS′′j , RS′′j
) =Collision-Detection(S ′2i−1, S

′′
j ).

Let (LS′2i−1
, RS′2i−1

, roughLeftS′′j , roughRightS′′j )=

Improve-Boundaries(S ′2i−1, LS′2i−1
, RS′2i−1

, S ′′j , LS′′j , RS′′j
, 2L).

Let (G′′1, G
′′
2, · · · , G′′k2

) be the output from Extract-Phase(S ′2i−1, Z2).

If (G′′1, G
′′
2, · · · , G′′k2

) is not empty

Then go to Voting Part.

Voting Part:

Return Voting-Phase(G′′1, G
′′
2, · · · , G′′k2

).

End of Algorithm Recover-Motif

Analysis of Algorithms

Review of Some Classical Results in Probability

Some well known results in classical probability theory are listed. The readers can skip this
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section if they understand them well. The inclusion of these results make the thesis self-contained.

• For a list of events A1, · · · , Am, Pr[A1 ∪A2 ∪ · · · ∪Am] ≤ Pr[A1] + Pr[A2] + · · ·+ Pr[Am].

• For two independent events A and B, Pr[A ∩B] = Pr[A]Pr[B].

• For a random variable Y , Pr[Y ≥ t] ≤ E[Y ]
t

for all positive real number t. This is called

Markov inequality.

The analysis of our algorithm employs the Chernoff bound [17] and Corollary 18 below, which

can be derived from it (see [14]).

Theorem 15 ([17]). Let X1, · · · , Xn be n independent random 0-1 variables, where Xi takes 1

with probability pi. Let X =
∑n
i=1 Xi, and µ = E[X]. Then for any δ > 0,

i. Pr(X < (1− δ)µ) < e−
1
2
µδ2

, and

ii. Pr(X > (1 + δ)µ) <
[

eδ

(1+δ)(1+δ)

]µ
.

We follow the proof of Theorem 15 to make the following version of Chernoff bound so that it

can be used in our algorithm analysis.

Theorem 16. Let X1, · · · , Xn be n independent random 0-1 variables, where Xi takes 1 with

probability at most p. Let X =
∑n
i=1Xi. Then for any δ > 0, Pr(X > (1 + δ)pn) <

[
eδ

(1+δ)(1+δ)

]pn
.

Define g(δ) = eδ

(1+δ)(1+δ) . We note that g(δ) is always strictly less than 1 for all δ > 0, and g(δ)

is fixed if δ is a constant. This can be verified by checking that the function f(x) = ln ex

(1+x)(1+x) =

x− (1 + x) ln(1 + x) is decreasing and f(0) = 0. This is because f ′(x) = − ln(1 + x), which is

less than 0 for all x > 0.

35



Theorem 17. Let X1, · · · , Xn be n independent random 0-1 variables, where Xi takes 1 with

probability at most p. Let X =
∑n
i=1 Xi. Then for any δ > 0, Pr(X < (1− δ)pn) < e−

1
2

pn
δ2

.

Corollary 18 ([14]). Let X1, · · · , Xn be n independent random 0-1 variables and X =
∑n
i=1 Xi.

i. If Xi takes 1 with probability at most p, then for any 1
3
> ε > 0, Pr(X > pn+ εn) < e−

1
3
nε2 .

ii. If Xi takes 1 with probability at least p, then for any ε > 0, Pr(X < pn− εn) < e−
1
2
nε2 .

Analysis of Boundary-Phase of Algorithm Recover-Motif

Lemma 55 shows that with only small probability, a sequence can match a random sequence. It

will be used to prove that when two substrings in two different Θ(n,G, α)-sequences are similar,

they are unlikely not to coincide with the motif regions in the two Θ(n,G, α)-sequences, respec-

tively.

Lemma 19. Assume that X1 and X2 are two independent sequences of the same length and that

every character of X2 is a random character from Σ. Then

i. if 1 ≤ |X1| = |X2| < v, then the probability that X1 and X2 are matched is ≤ 1
t|X1|

(t = ||Σ||); and

ii. the probability for diff(X1, X2) ≤ β is at most e−
ε2|X1|

3 .

Proof: The two statements are proved as follows.

Statement i: For every character X2[j] with 1 ≤ j < v, the probability is 1
t

that X2[j] = X1[j].

Statement ii: For every character X2[j] with 1 ≤ j ≤ |X2|, the probability is 1
t

for

X2[j] to equal X1[j]. If diff(X1, X2) ≤ β, the two sequences X1 and X2 are identical in at least

(1−β)|X1| positions, but the expected number of positions where the two sequences are identical is
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1
t
|X1|. The probability for diff(X1, X2) ≤ β is at most e−

(1−β− 1
t )2

3
|X1| ≤ e−

ε2

3
|X1| by Corollary 18,

and Definitions 8 and 9.

Lemma 20 shows that with small probability, an input Θ(n,G, α) sequence contains motif

region that has many mutations.

Lemma 20. With probability at most cy

1−c , a Θ(n,G, α) sequence S changes more than β
2
t charac-

ters in its first left t motif region ℵ(S) for some t with y ≤ t ≤ |G|, where c = e−
ε2

3 .

Proof: Every character in the ℵ(S) region has probability at most α to mutate. We know that

|ℵ(S)| = |G| ≥ d. By Corollary 18, with probability at most e−
ε2

3
t, a sequence S in Z1 has more

than (α + ε)t mutations (recall the setting for β at Definition 9) among the first left t characters.

The total is
∑∞
t=y e

− ε
2

3
t = cy

1−c .

Lemma 21 shows that Improve-Boundaries() has good chance to improve the accuracy of rough

motif boundaries. Note that LB(S) and RB(S) are the left and right motif boundaries of S respec-

tively (see Definition 11).

Lemma 21. Assume that Θ(n,G, α) sequence Si has LSi ∈ [LB(Si) − L,LB(Si) + L] and

RSi ∈ [RB(Si)−L,RB(Si)+L] for i = 1, 2. Then for (roughLeftS1
, roughRightS1

, roughLeftS2
,

roughRightS2
)=Improve-Boundaries(S1, LS1 , RS1 , S2, LS2 , RS2 , L), we have the following two

facts:

i. With probablity at most 2cv

1−c + 2(v+u)cv+u

(1−c)2 + 1
5·2xn , roughLeftSi is not in [LB(Si) − (v +

u),LB(Si)] for i = 1, 2.

ii. With probablity at most 2cv

1−c + 2(v+u)cv+u

(1−c)2 + 1
5·2xn , roughRightSi is not in [RB(Si),RB(Si) +

(v + u)] for i = 1, 2.
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iii. Improve-Boundaries(S1, LS1 , RS1 , S2, LS2 , RS2 , L) runs in O(L2 log n) time.

Proof: We need a bound for the following inequality:

∞∑
i=j

iai <
jaj

(1− a)2
. (20)

Let f(x) =
∑∞
i=j e

θix. Compute the derivative f ′(x) = θ
∑∞
i=j ie

θix. We also have the closed form

for the function f(x) = eθjx

1−eθx , which implies

f ′(x) =
θjeθjx(1− eθx)− eθjx(−θeθx)

(1− eθx)2
(21)

=
θjeθjx − θ(j − 1)eθ(j+1)x

(1− eθx)2
. (22)

Let θ = ln a and x = 1. We have
∑∞
i=j ia

i = jaj−(j−1)aj+1

(1−a)2 < jaj

(1−a)2 .

Statement i. By Lemma 20, with probability at most 2 cv

1−c , one of the left motif first y char-

acters region of Si will change β
2
y characters. Therefore, with probability at most P1 = 2 cv

1−c ,

roughLeftSi > LB(Si).

For a pair of positions p in S1 and q in S2, without loss generality, assume that p has larger

distance to the left boundary LB(S1) of S1 than q to the left boundary LB(S2) of S2. Let v + y be

the distance from p to the left boundary LB(S1) of S1.

By Lemma 55, the probability is at most cv+y that there will be a match. There are at most

(v + y) cases for q. With probability at most P2 = 2
∑∞
y=u(v + y)cv+y < 2(v+u)cv+u

(1−c)2 by inequality

(20), roughLeftS1
< LB(S1)− (v + u).

For the cases that one position is in random region and has distance more than d0 log n from

the left boundary, the probability is at most P3 = n2cd0 logn < 1
5·2xn by inequality (14).
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Therefore, we have total probability at most P1 +P2 +P3 that roughLeftS1
is not in [LB(S1)−

(v + u),LB(S1)].

Statement ii. One can also provide a symmetric analogous proof for this statement.

Statement iii. The computation time easily follows from the implementation of Improve-

Boundaries(S1, LS1 , RS1 , S2, LS2 , RS2).

Lemma 22. Assume that for each L with 0 < L ≤ |G|
2

, with probability at most ς(n), LSi 6∈

[LBSi−L,LBSi+L] for i = 1, 2, where (LS1 , RS1 , LS2 , RS2) =Collision-Detection(S1, U1, S2, U2),

U1 =Point-Selection(S1, L), and U2 =Point-Selection(S2, L). Then with probability at most

ς(n) + 2(v+u1)cv+u1

(1−c)2 + cv

1−c + 1
5·2xn , Initial-Boundary(S1, S2) returns (LS1 , RS1 , LS2 , RS2) with

LSi 6∈ [LB(Si)− (v + u1),LB(Si)] or RSi 6∈ [RB(Si),RB(Si) + (v + u1))] for i = 1, 2;

Proof: It follows from Lemma 21.

Lemma 23. Assume that with probability p < 0.5, each S ′2i−1 has its rough boundaries

roughLeftS′2i−1
6∈ [LB(S ′2i−1)− u,LB(S ′2i−1)] or roughRightS′2i−1

6∈ [RB(S ′2i−1),RB(S ′2i−1) + u],

then with probability at most e−(0.5−p−ε)2k1/3, lmotif is not in [|G| − 2u, |G| + 2u], where lmotif is

selected as median of ∪k1
i=1{(roughRightS′2i−1

− roughLeftS′2i−1
)}.

Proof: If both roughLeftS′2i−1
∈ [LB(S ′2i−1) − u,LB(S ′2i−1)] and roughRightS′2i−1

∈

[RB(S ′2i−1),RB(S ′2i−1) + u], then (roughRightS′2i−1
− roughLeftS′2i−1

) is in [|G| − 2u, |G|+ 2u].

If the median of ∪k1
i=1{(roughRightS′2i−1

− roughLeftS′2i−1
)} is not in [|G| − 2u, |G| + 2u],

then there are at least bk1c numbers i to have roughLeftS′2i−1
6∈ [LB(S ′2i−1) − u,LB(S ′2i−1)] or

roughRightS′2i−1
6∈ [RB(S ′2i−1),RB(S ′2i−1) + u].
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On the other hand, the probability is at most p, roughLeftS′2i−1
6∈ [LB(S ′2i−1) − u,LB(S ′2i−1)]

or roughRightS′2i−1
6∈ [RB(S ′2i−1),RB(S ′2i−1) + u]. So, this lemma follows from Corollary 18.

For a Θ(n,G, α)-sequence S, we often obtain its left rough boundary with roughLeftS ≤

LB(S). Some times its exact left boundary may be missed in the algorithm.

Definition 24.

• A Θ(n,G, α)-sequence S misses its left boundary if roughLeftS > LB(S).

• A Θ(n,G, α)-sequence S misses its right boundary if roughRightS < RB(S).

Definition 25.

• A Θ(n,G, α)-sequence S contains a left half stable motif region ℵ(S) if diff(G′[1, h], G[1, h]) ≤

β
2

for all h = v, v + 1, · · · ,m, where G′ = ℵ(S), c = e−
ε2

3 and m = |G| as defined in Defi-

nition 8 .

• A Θ(n,G, α)-sequence S contains a right half stable motif region ℵ(S) if diff(G′[m −

h,m], G[m− h,m]) ≤ β
2

for h = v − 1, v + 1, · · · ,m− 1, where G′ = ℵ(S) and m = |G|.

• A Θ(n,G, α)-sequence S contains a stable motif region ℵ(S) satisfying the following con-

ditions: (1) G′[i] = G[i] for i = 1, · · · , v − 1; (2) G′[m − i + 1] = G[m − i + 1] for

i = 1, · · · , v − 1; (3) S motif region is both left and right half stable, where G′ = ℵ(S) and

m = |G|.

Lemma 26. Assume that
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• lmotif ∈ [|G| − 2(v + u1), |G|+ 2(v + u1)];

• S contains a both left half and right half stable motif region and roughLeftS ∈ [LB(S) −

(v + u1),LB(S)] and roughRightS ∈ [RB(S),RB(S) + (v + u1)] (see Definition 8 for u1

and v); and

• for each L with (v + u1) < L ≤ |G|
2

, if S1 has roughLeftS1
6∈ [LBS1 − L,LBS1 +

L] and roughRightS1
6∈ [RBS1 − L,RBS1 + L], then with probability at most ς(n),

LS′′i 6∈ [LBS′′i
− 2L,LBS′′i

+ 2L] for i = 1, 2, where (LS1 , RS1 , LS′′i , RS′′i
) =Collision-

Detection(S1, U1, S
′′
i , U2), U1 =Point-Selection(S1, L, [roughLeftS1

− 2L, roughLeftS1
+

2L])∪ Point-Selection(S1, L, [roughRightS1
− 2L, roughRightS1

+ 2L]), and U2 =Point-

Selection(S ′′i , L, [1, |S ′′i |]).

• The rough boundaries for all sequences S ′′i ∈ Z2 are computed via (LS, RS, LS′′i , RS′′i
) =Collision-

Detection(S, US, S
′′
i , US′′i ),

and (LS, RS, roughLeftS′′i , roughRightS′′i )=Improve-Boundaries(S, LS, RS, S
′′
i , LS′′i , RS′′i

, 2L).

Then with probability at most e−
ε2k2

3 , there are more than (2(ς(n) + (v + u1) c
v+u

1−c + cv

1−c) +

ε)k2 sequences S ′′i in {S ′′1 , · · · , S ′′k2
} with roughLeft(S ′′i ) 6∈ [LB(S ′′i ) − (v + u),LB(S ′′i )] or

roughRight(S ′′i ) 6∈ [RB(S ′′i ),RB(S ′′i ) + (v + u)].

Proof: According to the condition of this lemma, with probability at most P1 = ς(n),

LS′′i 6∈ [LBS′′i
− 2L,LBS′′i

+ 2L], where (LS, RS, LS′′i , RS′′i
) =Collision-Detection(S, U1, S

′′
i , U2)

and (U1, U2) =Point-Selection(S, S ′′i , L).

For a fixed pattern from S, by Lemma 55, with probability at most
∑∞
y=v+u c

y = cv+u

1−c , it has

distance more than v+u to the true left boundary. As we need to deal with v+u1 possible patterns
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Figure 1: G′′ and M

from S, with probability at most P2,l = (v + u1) c
v+u

1−c , roughLeftS′′i < LB(S ′′i )− (v + u).

Similarly, with probability at most P2,r = (v + u1) c
v+u

1−c , roughRightS′′i < RB(S ′′i ) + (v + u).

Let P2 = P2,l + P2,r.

With probability at most P3,l = cv

1−c , S
′′
i does not contain a left half stable motif region by

Lemma 20. Similarly, with probability at most P3,r = cv

1−c , S
′′
i does not contain a right half stable

motif region. Let P3 = P3,l + P3,r.

Although S is involved to search the left boundary with all other sequences. The non-missing

condition is to let each sequence do not change too many characters in the motif region. Therefore,

this is an independent event for each sequence. It is safe to use Chernoff bound to deal with it.

With probability at most P = e−
ε2k2

3 , the are more than (P1 + P2 + P3 + ε)k2 sequences

S ′′i in {S ′′1 , · · · , S ′′k2
} with roughLeft(S ′′i ) 6∈ [LB(S ′′i ) − (v + u),LB(S ′′i )] or roughRight(S ′′i ) 6∈

[RB(S ′′i ),RB(S ′′i ) + (v + u)].

Analysis of Extract-Phase and Voting-Phase of Algorithm Recover-Motif

Lemma 27 shows that with high probability, the left and last parts of the motif region in a

Θ(n,G, α)-sequence do not change much.

Lemma 27. With probability at most Q0, a Θ(n,G, α)-sequence S does not contain a stable motif
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region.

Proof: The probability is V1 = 2(v − 1)α not to satisfy conditions (1) and (2) of Definition 25.

Consider condition (3). Since every character of ℵ(S)[1,m] (notice that m = |G|) has probability

at most α to mutate, by Corollary 18, the probability is at most e−
1
3
ε2r that diff(G[1, h], G′[1, h]) >

β
2

= α + ε. Let V3 =
∑∞
r=v e

− 1
3
ε2r = cv

1−c , where c = e−
1
3
ε2 as defined in Definition 8. Therefore,

the probability is at most V3 that diff(G[1, h], G′[1, h]) > β
2

= α + ε for some h ∈ {v, v +

1, · · · ,m}. Similarly we define V4 =
∑∞
r=v e

− 1
3
ε2r ≤ cv

1−c for the probability on the right-hand

side. The probability is at most V4 that diff(G[m − h,m], G′[m − h,m]) > β
2

= α + ε for some

h ∈ {v, v + 1, · · · ,m}. The probability that S does not contain a stable motif region is at most

V1 + V3 + V4 = Q0.

Definition 28. Assume that Z1 = {S ′1, · · · , S2k1} contains S ′2i−1 that contains a stable motif re-

gion. We fix such a S ′2i−1.

• Define GL = ℵ(S ′2i−1)[1, d0 log n− 1] to be the left part of the motif region ℵ(S ′2i−1).

• Define GR = ℵ(S ′2i−1)[|G| − (d0 log n) + 1, |G|] to be the right part of the motif region

ℵ(S ′2i−1).

Lemma 29 shows that with high probability, Extract-Phase of algorithm Recover-Motif ex-

tracts the correct motif regions from the sequences in Z1. It uses G′′ to match ℵ(S) in another

sequences S. The parameter R gives a small probability that the matched region between G′′ and

S is not in ℵ(S).

Lemma 29.
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i. Assume that Gl and Gr are fixed sequences of length d0 log n. Let S be a Θ(n,G, α)-

sequence with M ∈ Match(Gl, Gr, S) and let w0 be the number of characters of M that

are not in the region of ℵ(S). Then the probability is at most R that w0 ≥ 1, where R is

defined in Definition 8.

ii. The probability is at most Q0 that given a Θ(n,G, α)-sequence S, Match(GL, GR, S) = ∅.

Proof: Assume that w0 ≥ 1. Let w be the number of characters outside of ℵ(S) on the left of

M , and let w′ be the number of characters outside of ℵ(S) on the right ofM . Clearly, w0 = w+w′.

Since w0 ≥ 1, either w ≥ 1 or w′ ≥ 1. See Figure 1. Without loss of generality, we assume w ≥ 1.

Statement i: There are two cases.

Case (a): 1 ≤ w < v. By Lemma 55, the probability for this case is at most 1
t

for a fixed w.

The total probability for this case for 1 ≤ w < v is at most
∑v−1
i=1

1
ti
≤ ∑∞i=1

1
ti

= 1
t−1

.

Case (b): v ≤ w. By Lemma 55, the probability is at most e−
ε2

3
w for a fixed w. The total

probability for v ≤ w is at most
∑∞
w=v e

− ε
2

3
w = cv

1−c .

The probability analysis is similar when w′ ≥ 1. Therefore, the probability for this case is at

most R = ( 1
t−1

+ cv

1−c) for w0 ≥ 1.

Statement ii: By Lemma 27, with probability at most Q0, S does not contain a stable motif

region. Therefore, we have probability at most Q0 that given a random Θ(n,G, α)-sequence S,

Match(GL, GR, S) = ∅.

Lemma 30 shows that we can use Gl and Gr to extract most of the motif regions for the

sequences in Z2 if G′ = GL (recall that GL is defined right after Lemma 27).

Lemma 30. Assume that Gl and Gr are two sequences of length d0 log n, and Gi =
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Match(Gl, Gr, S
′′
i ) for S ′′i ∈ Z2 = {S ′′1 , · · · , S ′′k2

} and i = 1, · · · , k2 (recall that each sequence

Gi is either an empty sequence or a sequence of the length |Gl|).

i. If Gl = GL, Gr = GR, and there are no more than yk2 (y ∈ [0, 1]) sequences S ′′i with

roughLeftS′′i 6∈ [LB(S ′′i )− (v + u2),LB(S ′′i )] or roughRightS′′i 6∈ [RB(S ′′i ),RB(S ′′i ) + (v +

u2)], then the probability is at most e−
ε2k2

3 that there are more than (Q0 +y+ ε)k2 sequences

Gi with Gi = ∅.

ii. For arbitrary Gl and Gr, with probability at most e−
ε2k2

3 , |{i|Gi 6= ∅ and Gi 6= ℵ(S ′′i ), i =

1, · · · , k2}| > (R + ε)k2, where R is defined in Definition 8.

Proof: Recall that sequence G1L is selected right after Lemma 27.

Statement i: By Lemma 29, for every S ′′i ∈ Z2, the probability is at most Q0 that S ′′i does not

contain a stable motif region ℵ(S ′′i ). By Corollary 18, we have probability at most e−
ε2k2

3 that there

are more than (Q0 + y + ε)k2 sequences Gi with Gi = ∅.

Statement ii: By Lemma 29, the probability is at most R that Gi 6= ℵ(S ′′i ). By Corollary 18,

with probability at most e−
ε2k2

3 , |{i|Gi 6= ℵ(S ′′i ), i = 1, · · · , k2}| > (R + ε)k2.

Definition 31.

• Given two sequences Gr and Gr, define

M(Gr, Gr) = {G′′i : G′′i =Match(Gl, Gr, roughLeftS′′i , roughRightS′′i , S
′′
i ) i = 1, · · · , k2}.

• For a Θ(n,G, α) sequence S, define GS,L to be the ℵ(S)[1, d0 log n], which is the leftmost

subsequence of length d0 log n in the motif region of S.

• For a Θ(n,G, α) sequence S, define GS,R to be the ℵ(S)[m− d0 log n+ 1,m], which is the

rightmost subsequence of length d0 log n in the motif region of S, where m = |G| = |ℵ(S)|.
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the condition iv of Lemma 32

Lemma 32. Assume that we have the following conditions:

i. For each L with 0 < L ≤ |G|
2

, with probability at most ς1(n), LSi 6∈ [LBSi − 2L,LBSi + 2L]

and RSi 6∈ [RBSi − 2L,RBSi + 2L] for i = 1, 2, where (LS1 , RS1 , LS2 , RS2) =Collision-

Detection(S1, U1, S2, U2), U1 =Point-Selection(S1, L, [1, |S1|]), andU2 =Point-Selection(S2, L, [1, |S2|]).

ii. For each L with 0 < L ≤ |G|
2

, if S1 has roughLeftS1
6∈ [LBS1 − L,LBS1 + L]

and roughRightS1
6∈ [RBS1 − L,RBS1 + L], then with probability at most ς2(n),

LS′′i 6∈ [LBS′′i
− 2L,LBS′′i

+ 2L] for i = 1, 2, where (LS1 , RS1 , LS′′i , RS′′i
) =Collision-

Detection(S1, U1, S
′′
i , U2), U1 =Point-Selection(S1, L, [roughLeftS1

− 2L, roughLeftS1
+

2L])∪ Point-Selection(S1, L, [roughRightS1
− 2L, roughRightS1

+ 2L]), and U2 =Point-

Selection(S ′′i , L, [1, |S ′′i |]).

iii. The inequality (P0 + Q0) < c0 holds for some constant c0 < 1, where Q0 is defined at

equation (13) and P0 = ς1(n) + 2(v+u1)cv+u1

(1−c)2 + cv

1−c + 1
5·2xn .

iv. The inequality 1− 2(Q0 + V0 + (R+ 2ε))− (α+ ε) > 0 holds, where V0 = (2(ς2(n) + (v+

u1) c
v+u2

1−c + cv

1−c) + ε).

Then the algorithm generates a set of at most k2 subsequences for voting and votes a sequence

G′ such that

(1) with probability at most e−Ω(k1) + e−Ω(k2), |G′| 6= |G|, and

(2) for each 1 ≤ i ≤ |G|, with probability at most e−Ω(k1) + e−Ω(k2), G′[i] 6= G[i].

Before proving Lemma 29, we note that both ς1(n) and ς2(n) are at most 1
2xn3 for

all of the three algorithms. They will be proved by Lemma 41 and Lemma 42 for
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the case algorithm-type=RANDOMIZED-SUBLINEAR, Lemma 44 and Lemma 45 for the

case algorithm-type=RANDOMIZED-SUBQUADRATIC, and Lemma 48 for the case algorithm-

type=DETERMINISTIC-SUPERQUADRATIC.

Proof:

By Lemmas 22, with probability at most P0 = ς1(n) + 2(v+u1)cv+u1

(1−c)2 + cv

1−c + 1
5·2xn ,

roughLeftS′2i−1
6∈ [LB(S ′2i−1)−(v+u1),LB(S ′2i−1)] or roughRightS′2i−1

6∈ [RB(S ′2i−1),RB(S ′2i−1)+

(v + u1)].

By Lemma 23, with probability at most Pa = e−(0.5−P0−ε)2k1/3 = eΩ(k1), the approximate motif

length lmotif is not in the range [|G| − 2(v + u1), |G|+ 2(v + u1)].

By Lemma 27, with probability at most Q0, a Θ(n,G, α) sequence does not contain a stable

motif region. Therefore, with probability at most P1 = (P0 + Q0)k1 , the following statement is

false.

(i) One of S ′2i−1 for i = 1, · · · , k1 has roughLeftS′2i−1
∈ [LB(S ′2i−1) − (v + u1),LB(S ′2i−1)],

roughRightS′2i−1
∈ [RB(S ′2i−1),RB(S ′2i−1) + (v + u1)], and has a stable motif region.

By Lemma 26, with probability at most P2 = e−
ε2k2

3 , there are more than (2(ς2(n) + (v +

u1) c
v+u2

1−c + cv

1−c) + ε)k2 sequences S ′′i with roughLeftS′′i 6∈ [LB(S ′′i ) − (v + u2),LB(S ′′i )] or

roughRightS′′i 6∈ [RB(S ′′i ),LB(S ′′i ) + (v + u2)]. In other words, with probability at most P2,

the following statement is false:

(ii) There are no more than V0k2 sequences S ′′i with roughLeftS′′i 6∈ [LB(S ′′i )−(v+u2),LB(S ′′i )]

or roughRightS′′i 6∈ [RB(S ′′i ),RB(S ′′i )+(v+u2)], where V0 = (2(ς2(n)+(v+u1) c
v+u2

1−c + cv

1−c)+ε).

Assume that Statement (ii) is true. By Lemma 30, with probability at most P3 = ck2 , the

following statement is false.

(iii) M(GL, GR) contains at most (Q0 + V0 + ε)k2 empty sequences.
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We start from the rough left boundary roughLeft1 of S1 to match the other left boundaries of

S ′′i for i = 1, · · · , k2. There are totally at most 2(v + u1) candidates to consider.

By Lemma 30, if M(Gl, Gr), which consists k2 matched regions, has at most (Q0 + V0 + ε)k2

empty sequences, then it has more than (R+ ε)k2 from non-motif regions with probability at most

P4 = 2(v + u1)e−
ε2k2

3 . After the pattern is fixed, those events in the matching are considered to be

independent to each other. This is why we can apply the Chernoff bound to deal with them. So,

the probability is at most P4, the following statement is false.

(iv). IfM(Gl, Gr) contains at most (Q0 +V0 +ε)k2 empty sequences, thenM(Gl, Gr) contains

at most (Q0 + V0 + ε + (R + ε))k2 = (Q0 + V0 + (R + 2ε))k2 elements not from motif regions

{ℵ(S ′′i ) : 1 ≤ i ≤ k2}.

Therefore, with probability at most P1 + P2 + P3 + P4 = e−Ω(k1) + e−Ω(k2), the sequences are

not ready for voting in the next phase, which means the following two conditions are satisfied:

(a). There exists Gl and Gr generated by the algorithm such that M(Gl, Gr) contains at most

(Q0 + V0 + (R + 2ε))k2 elements not from motif regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}.

(b). For every Gl and Gr that M(Gl, Gr) contains at most (Q0 + V0 + ε)k2 empty sequences

generated by the algorithm, M(Gl, Gr) contains at most (Q0 + V0 + ε+ (R+ ε))k2 = (Q0 + V0 +

(R + 2ε))k2 elements not from motif regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}.

Statement (1): For a M(Gl, Gr) with at most (Q0 + V0 + (R + 2ε))k2 elements not from

motif regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}, we still have k2 − (Q0 + V0 + (R + 2ε))k2 elements in

M(Gl, Gr) from motif regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}. By the condition (iv) in this lemma, we

have k2− (Q0 + V0 + (R+ 2ε))k2 > (Q0 + V0 + (R+ 2ε))k2. Therefore, |G′| is selected to be the

length of G in the Voting-Phase().

Statement (2): For aM(Gl, Gr) = {G′′1, · · · , G′′k2
}with at most (Q0+V0+(R+2ε))k2 elements
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not from motif regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}, we still have k2− (Q0 + V0 + (R+ 2ε))k2 elements

in M(Gl, Gr) from motif regions {ℵ(S ′′i ) : 1 ≤ i ≤ k2}. By Corollary 18, with probability at most

e−
ε2k2

3 there are more than (α + ε)k2 characters that are mutated in the same position among all

k2 the motif regions for the sequences in Z2. We have that k2 − (Q0 + V0 + (R + 2ε))k2 − (α +

ε)k2 > (Q0 + V0 + (R + 2ε))k2 by the condition (iv) in this lemma. We let G′[j] be the most

frequent character among G′′1[j], · · · , G′′k2
[j] in Voting-Phase. Therefore, with probability at most

e−Ω(k1) + e−Ω(k2), G′[j] 6= G[j].

We will use multiple variable functions to characterize the computational time for three algo-

rithms. In order to unify the complexity analysis of three algorithms, we introduce the following

notation.

Definition 33. A function T (x, y) : N×N → N is monotonic if it is monotonic on both variables.

If for arbitrary positive constants c1 and c2, T (c1x, c2y) ≤ cT (x, y) for some positive constant c,

then T (x, y) is slow.

Lemma 34. Assume that T (x, y), s(n, L) and g(n, l) are monotonic slow functions. Assume that

Collision-Detection(S1, U1, S2, U2) returns the result in t(n, ||U1|| + ||U2||) time and the Point-

Selection(S1, S2, L)) selects s(n, L) positions in g(n, L) time. Assume that with probability at most

ϕ(n), the function Initial-Boundaries() does not stop when L ≤ |G|/4, and ||US′2i−1
|| + ||US′′j || in

the algorithm Recover-Motif is no more than f(n, |G|).

Then with probability at most k1ϕ(n), the entire algorithm Recover-Motif does not stop in the

time complexity (O(k1(
∑i0
i=1(T (n, s(n, n

2in2/5 ))+g(n, n
2i0n2/5 )))+k1h

2 log n+k1k2t(n, f(n, |G|))+
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h2 log n) + k1k2(log n)(log log n)), O(k2)), where i0 is the largest j such that n
2jn2/5 ≤

min(n2/5, |G|) and h = min(n2/5, |G|).

Proof: The function Initial-Boundaries()is executed k1 times. According to the condition that

with probability at most ϕ(n), the function Initial-Boundaries(.) does not stop whenL ≤ |G|/4, we

have the fact that with probability at most k1ϕ(n), one of those executions of Initial-Boundaries(.)

does not stop when L ≤ |G|/4.

In the rest of the proof, we assume that all executions of Initial-Boundaries(.) stops when

L ≤ |G|/4.

When L = O(h), we detect rough left and right motif boundaries and run Improve-

Boundaries(), which takes O(h2 log n) time. It takes O(
∑i0
i=1(T (n, s(n, n

2in2/5 )) + g(n, n
2in2/5 ) +

h2 log n) time to run Initial-Boundaries(S ′2i−1, S
′
2i) one time for one pair (S ′2i−1, S

′
2i) in Z1. It takes

O(k1(
∑i0
i=1(t(n, s(n, n

2in2/5 )) + g(n, n
2in2/5 ) +k1h

2 log n) time to run Initial-Boundaries(S ′2i−1, S
′
2i)

one time for all pairs (S ′2i−1, S
′
2i) in Z1.

It takes k2(t(n, f(n, |G|)) + h2 log n) time to find the rough boundaries for all sequences in Z2

with a fixed sequence S from Z1 by executing the for loop “For each S ′′j ∈ Z2” in the algorithm

Recover-Motif. It takes k1k2(t(n, f(n, |G|)) + h2 log n) time to find the rough boundaries for all

sequences in Z2 via all sequences S ′2i−1 from Z1 through for loop “For each S ′′j ∈ Z2” in the

algorithm Recover-Motif.

Recall that parameters v and u1 are constants, and u2 isO(log log n). Calling Match(Gl, Gr, S
′′
i )

takes O((v + u2) log n) time for each S ′′i ∈ Z2. The total times for calling Match(Gl, Gr, S
′′
i ) is

O(k1k2(v + u1)(v + u2) log n) = O(k1k2(log n)(log log n)).

The voting part takes O(k2) time for executing voting for recovering one character in motif.
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Randomized Algorithms for Motif Detection

In this section, we present two randomized algorithms for motif detection. The first one is a

sublinear time algorithm that can handle 1
(logn)2+µ mutation, and the second one is a super-linear

time algorithm that can handle Ω(1) mutation. They also share some common functions.

Lemma 35. Let c be a constant in (0, 1). Assume m and n are two non-negative integers with

m ≤ n. Then for every integer m1 with 0 ≤ m1 ≤ δcm
lnn

,
(
n
m1

)
cm ≤ e(m ln c)/2, where constant

δc = − ln c
2

as defined in Definition 8.

Proof: We have the inequalities

(
n

m1

)
cm ≤ nm1cm (23)

= em1 lnncm (24)

≤ e
δcm
lnn

lnncm (25)

= eδcmem ln c (26)

= e(m ln c)/2 (27)

Lemma 36. Let S = U ∪ V be a set of n elements with U ∩ V = ∅. Assume that x1, · · · , xm

are m random elements in S. Then with probability at most
(
||U ||
m1

)
( ||V ||+m1

n
)m, the list x1, · · · , xm

contains at most m1 different elements from U (in other words, ||{ x1, · · · , xm} ∩ U || ≤ m1).
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Proof: For a subset S ′ ⊆ S with |S ′| = m1, the probability is at most (m1

n
)m that all elements

x1, · · · , xm are in S ′. For every subset X ⊆ S with |X| ≤ m1, there exists another subset S ′ ⊆ S

such that |S ′| = m1. We have that Pr[||{ x1, · · · , xm} ∩ U || ≤ m1] ≤ Pr[{x1, · · · , xm} ∩ U ⊆

U ′ for some U ′ ⊆ U with ||U ′|| = m1]. There are
(
||U ||
m1

)
subsets of U with size m1. We have the

probability at most
(
||U ||
m1

)
( ||V ||+m1

n
)m that x1, · · · , xm contains at most m1 different elements in U .

Lemma 37. Let δ be the same as that in Lemma 35. Let β be a constant in (0, 1) and c = 1 − β
2
.

Let m1 ≤ δcm
lnβn

and m ≤ n1−ε for some fixed ε > 0. Let S1 and S2 be two sets of n elements with

|S1 ∩ S2| ≥ βn and C be a set of size |C| ≤ γm1 for some constant γ ∈ (0, 1). Then for all large

n, with probability at most 2e−
(1−γ)m1m

n , we have (A−C)∩(B−C) = ∅, whereA = {x1, · · · , xm}

and B = {y1, · · · , ym} are two sets, which may have multiplicities, of m random elements from S1

and S2, respectively.

Proof: In the entire proof of this lemma, we always assume that n is sufficiently large. We are

going to give an upper bound about the probability that B does not contain any element in A−C.

For each element yi ∈ B, with probability at most 1− m1

n
, yi is not in A. Therefore, the probability

is at most (1− ||A||−||C||
n

)m that B does not contain any element in A− C.

By Lemma 36, the probability is at most
(
βn
m1

)
( (1−β)n+m1

n
)m that ||A ∩ (S1 ∩ S2)|| ≤ m1. We

have the inequalities

Pr[(A− C) ∩ (B − C) = ∅] (28)

= Pr[(A− C) ∩ (B − C) = ∅| ||A ∩ (S1 ∩ S2)|| ≥ m1] · Pr[||A ∩ (S1 ∩ S2)|| ≥ m1] +(29)
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Pr[(A− C) ∩ (B − C) = ∅| ||A ∩ (S1 ∩ S2)|| < m1] · Pr[|A ∩ (S1 ∩ S2)| < m1] (30)

≤ Pr[(A− C) ∩ (B − C) = ∅| ||A ∩ (S1 ∩ S2)|| ≥ m1] + Pr[||A ∩ (S1 ∩ S2)|| < m1](31)

≤ (1− ||(A ∩ S1 ∩ S2)|| − ||C||
n

)m +

(
βn

m1

)
(
(1− β)n+m1

n
)m (32)

≤ (1− (1− γ)m1

n
)m +

(
βn

m1

)
(
(1− β)n+m1

n
)m (33)

≤ e−
(1−γ)m1m

n +

(
βn

m1

)
(
(1− β)n+m1

n
)m (34)

≤ e−
(1−γ)m1m

n +

(
βn

m1

)
(1− β

2
)m (35)

≤ e−
(1−γ)m1m

n + e(m ln c)/2 (36)

≤ 2e−
(1−γ)m1m

n . (37)

The inequality (1− (1−γ)m1

n
)m ≤ e−

(1−γ)m1m

n , which is used from (33) to (34), follows from the fact

that 1− x ≤ e−x. The transition from (34) to (35) follows from the fact m1

n
≤ β

2
since m1 = o(n)

according to the conditions of the lemma.

It is easy to see that 2(1−γ)m1m
−m ln c

= 2(1−γ)m1

− ln c
≤ n for all large n. Thus, (1−γ)m1m

n
≥ (m ln c)/2

(note that ln c < 0 as c ∈ (0, 1)). Thus, by Lemma 35,
(
βn
m1

)
(1 − β

2
)m ≤ em ln c/2 ≤ e−

(1−γ)m1m

n .

This is why we have the transition from (36) to (37). Therefore, Pr[(A − C) ∩ (B − C) = ∅] ≤

2e−
(1−γ)m1m

n .

Sublinear Time Algorithm for 1
(logn)2+µ Mutation Rate

In this section, we give an algorithm for the case with at most 1
(logn)2+µ mutation rate. The

performance of the algorithm is stated in Theorem 2.

Definition 38. A position p in the motif region ℵ(S) of an input sequence S is damaged if there

exists at least one mutation in S[p, p+ d0 log n− 1].
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Lemma 39. Assume that αL = (log n)1+Ω(1). With probability at most e−(logn)1+Ω(1)
, there are

more than M1

(logn)Ω(1) positions that are from the M sampled positions in an interval of length L and

are damaged.

Proof: By Theorem 17, with probability at most P1 = 2−αL (let δ = 2), there are more than

3αL mutation in an interval of length L. Therefore, with probability at most 2−αL = e−(logn)1+Ω(1) ,

there are more than 3αL log n positions that are damaged. Therefore, each random position in an

interval of length L has at most probability 3αL logn
L

= 3α log n to be damaged.

Since α = ( 1
(logn)2+Ω(1) ) andM positions are sampled, by Theorem 17, with probability at most

P2 = 2−(3α logn)M = e−(logn)1+Ω(1) (let δ = 2), the number of damaged positions sampled in an

interval of length L is more than (1 + δ)3α log n)M = (9α log n)M = M1

(logn)Ω(1) . Thus, with total

probability at most P1 + P2 = e−(logn)1+Ω(1) , there are more than M1

(logn)Ω(1) damaged positions that

are from the M sampled positions in an interval of length L.

Definition 40. Let A be a set of positions in an input sequence S with ℵ(S) = [i, j]. Let

A(S,ℵ(S)) = A ∩ [i, j].

Lemma 41. Assume that |G| ≥ (logn)3+τ

100
and d0 log n ≤ L ≤ |G|/2. Let I1 be a union of intervals

that include [LB(S1) − 2L,LB(S1) + 2L] and [RB(S1) − 2L,RB(S1) + 2L]. Let U1 =Point-

Selection(S1, L, I1), U2 =Point-Selection(S2, L, [1, |S2|]), and (LS1 , RS1 , LS2 , RS2) =Collision-

Detection(S1, U1, S2, , U2). Then

i. With probability at most 1
2xn3 , the left rough boundary ŁS1 has at most 2L distance from

LB(S1) and the left rough boundary LS2 has at most 2L distance from LB(S2).

54



ii. With probability at most 1
2xn3 , the right rough boundary RS1 has at most 2L distance from

RB(S1); and the right boundary of RS2 has at most 2L distance from RB(S2).

Proof: We prove the following two statements which imply the lemma.

i. With probability at most 1
2xn3 , there is no intervals Ai from S1 and Bj from S2 such that

(1) |Ai(S1,ℵ(S1)) ∩ Bj(S2,ℵ(S2))| is at least L
2

; (2) the left boundary of S1 has at most 2L

distance from Ai; (3) the left boundary of S2 has at most 2L distance from Bj; and (4) there

is collision between the sampled positions in Ai and Bj .

ii. With probability at most 1
2xn3 , there are no intervals Ai from S1 and Bj from S2 such that

(1) |Ai(S1,ℵ(S1)) ∩ Bj(S2,ℵ(S2))| is at least L
2

; (2) the right boundary of S1 has at most

2L distance from Ai; (3) the right boundary of S2 has at most 2L distance from Bj; and (4)

there is collision between the sampled positions in Ai and Bj .

We only prove the statement i. The proof for statement ii is similar to that for statement i. Note

that L goes down by half each cycle in the algorithm. Assume that L satisfies the condition of this

lemma.

Select Ai from S1 and Bj from S2 to be the first pair of intervals with ||Ai(S1,ℵ(S1)) ∩

Bj(S2,ℵ(S2))|| ≥ L
2

. It is easy to see that such a pair exists and both have distance from the

left boundary with distance at most 2L. This is because when an leftmost interval of length L is

fully inside the motif region of the first sequence, we can always find the second interval from the

second sequence with intersection of length at least L
2

.

Replace m by M(L), m1 by M1(L) (see Definition 10), and n by L to apply Lemma 37. We

also let C be the set of damaged positions affected by the mutated positions. With probability at
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most o( 1
2xn3 ), C has size more than Ω(M1(L)) by Lemma 39. With probability at most o( 1

2xn3 ),

there is no intersection Ai from S1 and Bj from S2.

Lemma 42. Assume that |G| < (logn)3+τ

100
and L is an integer with d0 log n ≤ L ≤ |G|/2.

Let I1 be a union of intervals that include [LB(S1) − 2L,LB(S1) + 2L] and [RB(S1) −

2L,RB(S1) + 2L]. Let U1 =Point-Selection(S1, L, I1), U2 =Point-Selection(S2, L, [1, |S2|]), and

(LS1 , RS1 , LS2 , RS2) =Collision-Detection(S1, U1, S2, , U2). Then

i. With probability at most 1
2xn3 , the left rough boundary ŁS1 has at most |G|/4 distance from

LB(S1) and the left rough boundary LS2 has at most |G|/4 distance from LB(S2).

ii. With probability at most 1
2xn3 , the right rough boundary RS1 has at most |G|/4 distance from

RB(S1); and the right boundary of RS2 has at most |G|/4 distance from RB(S2).

Proof: For two sequences S1 and S2, it is easy to see that there is a common position in both

motif regions of the two sequences such that there is no mutation in the next d0 log n characters

with high probability. This is because that mutation probability is small.

By Theorem 17, with probability at most Pl,1 = 2−α|G|/4 (let δ = 2), there are more than

3α |G|
4

mutated characters in the interval ℵ(Si)[1,
|G|
4

] for i = 1, 2. Therefore, with probability

at most 2−α|G|/4 = e−(logn)1+Ω(1) , there are more than 3α |G|
4

log n positions that are damaged in

ℵ(Si)[1,
|G|
4

].

Since the mutation probability is α = ( 1
(logn)2+Ω(1) ) and M(L) positions are sampled, with

probability at most Pl,2 = 2−(3αd0 logn)
|G|
4 = e−(logn)1+Ω(1) (with δ = 2), the number of damaged

positions is more than ((5αd0 log n) |G|
4

) = |G|
(logn)Ω(1) by Theorem 17. The probability is Pl =

Pl,1 + Pl,2 = e−(logn)1+Ω(1) that left side has more than ((5αd0 log n) |G|
4

) = |G|
(logn)Ω(1) damaged

positions.
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We have similar Pr = Pr,1 + Pr,2 = e−(logn)1+Ω(1) probability for the right side for more than

((5αd0 log n) |G|
4

) = |G|
(logn)Ω(1) damaged positions in ℵ(Si)[

3|G|
4
− 1, |G|].

Now we assume that left side has more than ((5αd0 log n) |G|
4

) = |G|
(logn)Ω(1) damaged positions

and the right side for more than ((5αd0 log n) |G|
4

) = |G|
(logn)Ω(1) damaged positions in ℵ(Si)[

3|G|
4
−

1, |G|]. Since each position in each interval of length L is selected in Point-Selection(S1, S2, L), it

is easy to verify the conclusions of this lemma.

Lemma 43. For the case algorithm-type=RANDOMIZED-SUBLINEAR, we have

i. CollisionDetection(S1, U1, S2, U2) takes t(n, ||U1||+||U2||) = O((||U1||+||U2||) log n) time.

ii. Point-Selection(S1, L, [1, |S1|]) selects s(n, L) = O((n
L

)M(L)) positions in g(n, L) =

O(s(n, L)) time if L ≥ (logn)3+τ

100
.

iii. Point-Selection(S1, L, [1, |S1|]) selects s(n, L) = O(n) positions in g(n, L) = O(n) time if

L < (logn)3+τ

100
.

iv. ||US′2i−1
||+ ||US′′j || in the algorithm Recover-Motif is no more than f(n, |G|) = O(M(|G|)+

n
|G|M(|G|)).

v. With probability at most k
2xn3 , the algorithm Recover-Motif does not stop in (O(k( n√

h
(log n)

5
2 +

h2 log n)), O(k)) time.

Proof: Statement i. The parameter ωRANDOMIZED−SUBLINEAR is set to be 0 in the Collision-

Detection. It follows from the time complexity of bucket sorting, which is described in standard

algorithm textbooks.

Statements ii and iii. They follows from the implementation of Point-Selection().
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Statement iv. It follows from the choice of Point-Selection(.) for the sublinear time algorithm

at Recover-Motif(.).

Statement v. It follows from Lemma 42, Lemma 41, Lemma 34 and Statements i, ii, and iii,

and iv.

We give the proof for Theorem 2.

Proof: [Theorem 2] The computational time part of this theorem follows from Lemma 43.

By Lemma 41, Lemma 42, we can let ς1(n) = 1
2xn3 ≤ ς0 for the probability bound ς1(n) in the

condition (i) of Lemma 32.

By Lemma 41, Lemma 42, we can let ς2(n) = 1
2xn3 ≤ ς0 for the probability bound ς1(n) in the

condition (ii) of Lemma 32.

By inequality (12), the condition (iii) of Lemma 32 is satisfied.

By inequality (11), we know that the condition (iv) of Lemma 32 can be satisfied.

The failure probability part of this theorem follows from Lemma 21, and Lemma 32 by using

the fact that k1, k2, and k are of the same order (see equation (18)).

Randomized Algorithm for Ω(1) Mutation Rate

In this section, we give an algorithm for the case with Ω(1) mutation rate. The performance of

the algorithm is stated in Theorem 4.

Lemma 44. Assume that d0 log n ≤ L ≤ |G|/2 and |G| ≥ (logn)3+τ

100
. Let I1 be a union of intervals

that include [LB(S1) − 2L,LB(S1) + 2L] and [RB(S1) − 2L,RB(S1) + 2L]. Let U1 =Point-

Selection(S1, L, I1), U2 =Point-Selection(S2, L, [1, |S2|]), and (LS1 , RS1 , LS2 , RS2) =Collision-

Detection(S1, U1, S2, , U2). Then
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i. With probability at most 1
2xn3 , the left rough boundary ŁS1 has at most 2L distance from

LB(S1) and the left rough boundary LS2 has at most 2L distance from LB(S2).

ii. With probability at most 1
2xn3 , the right rough boundary RS1 has at most 2L distance from

RB(S1); and the right boundary of RS2 has at most 2L distance from RB(S2).

Proof: We prove the following two statements which imply the lemma.

i. With probability at most 1
2xn3 , there are no intervals Ai from S1 and Bj from S2 such that

(1) ||Ai(S1,ℵ(S1)) ∩ Bj(S2,ℵ(S2))|| is at least L
2

; (2) The left boundary of S1 has at most

2L distance from Ai; (3) The left boundary of S2 has at most 2L distance from Bj; and (4)

There is collision between the sampled positions in Ai and Bj .

ii. With probability at most 1
2xn3 , there are no intervals Ai from S1 and Bj from S2 such that

(1) ||Ai(S1,ℵ(S1)) ∩ Bj(S2,ℵ(S2))|| is at least L
2

; (2) The right boundary of S1 has at most

2L distance from Ai; (3) The right boundary of S2 has at most 2L distance from Bj; and (4)

There is collision between the sampled positions in Ai and Bj .

We only prove the statement i. The proof for statement ii is similar. Note that L goes down

by half each cycle in the algorithm. Assume that L0 satisfies the condition of this lemma, and let

L = L0 happen in the algorithm.

Select Ai from S1 and Bj from S2 to be the first pair of intervals with ||Ai(S1,ℵ(S1)) ∩

Bj(S2,ℵ(S2))|| ≥ L
2

. It is easy to see that such a pair exists and both have distance from the

left boundary with distance at most 2L. This is because when a leftmost interval of length L is

fully inside the motif region of the first sequence, we can always find the second interval from the

second sequence with intersection of length at least L
2

.
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Replacem byM(L), m1 byM1(L) (see Definition 10), and n by L to apply Lemma 37. We do

not consider any damaged position in this algorithm, therefore, let C be empty. With probability

at most o( 1
2xn3 ), there is no intersection Ai from S1 and Bj from S2.

Lemma 45. Let U1 and U2 contain all positions of the input sequences S1 and S2, respectively.

Assume (LS1 , RS1 , LS2 , RS2) =Collision-Detection(S1, U1, S2, , U2). Then

i. With probability at most 1
2xn3 , the left rough boundary LS1 has at most d0 log n distance from

LB(S1) and the left rough boundary LS2 has at most d0 log n distance from LB(S2).

ii. With probability at most 1
2xn3 , the right rough boundary RS1 has at most d0 log n distance

from RB(S1); and the right boundary of RS2 has at most d0 log n distance from RB(S2).

Proof: For two sequences S1 and S2, let ℵ(Sa) be the subsequence Sa[ia, ja] for a = 1, 2. By

Corollary 18, with probability at most Pl = 2cd0 logn ≤ 2
5·2xn3 (see inequality 8 at Definition 14),

there are more than (α + ε)d0 log n mutations in Sa[ia, ia + d0 log n− 1] for a = 1, 2.

In this case, every position in the two sequences S1 and S2 is selected by Point-

Selection(S1, S2). With probability at most Pl, the left boundary position is missed during the

matching. We have similar Pr to miss the right boundary.

Assume that p1 and p2 are two positions of S1 and S2 respectively. If one of two positions is

outside the motif region and has more than d0 log n distance to the motif boundary, with proba-

bility at most c−d0 logn ≤ 1
5·2xn3 (see inequality 8 at Definition 14) for them to match that requires

diff(Y1, Y2) ≤ β by Lemma 55, where Ya is a subsequence Sa[pa, pa + d0 log n − 1] for a = 1, 2.
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Lemma 46. Assume that d0 log n ≤ L ≤ |G|/2 and c0 log n ≤ |G| < (logn)3+τ

100
.

Let I1 be a union of intervals that include [LB(S1) − 2L,LB(S1) + 2L] and [RB(S1) −

2L,RB(S1) + 2L]. Let U1 =Point-Selection(S1, L, I1), U2 =Point-Selection(S2, L, [1, |S2|]), and

(LS1 , RS1 , LS2 , RS2) =Collision-Detection(S1, U1, S2, , U2). Then

i. With probability at most 1
2xn3 , the left rough boundary LS1 has at most d0 log n distance from

LB(S1) and the left rough boundary LS2 has at most d0 log n distance from LB(S2).

ii. With probability at most 1
2xn3 , the right rough boundary RS1 has at most d0 log n distance

from RB(S1); and the right boundary of RS2 has at most d0 log n distance from RB(S2).

Proof: In this case, every position in the two sequences S1 and S2 is selected by Point-

Selection(S1, S2). It follows from Lemma 45.

Lemma 47. For the case algorithm-type=RANDOMIZED-SUBQUADRATIC, we have

i. CollisionDetection(S1, U1, S2, U2) takes t(n, ||U1|| + ||U2||) = O((||U1|| + ||U2||)2 log n)

time.

ii. Point-Selection(S1, L, [1, |S1|]) selects s(n, L) = O((n
L

)M(L)) positions in g(n, L) =

O(s(n, L)) time if L ≥ (logn)3+τ

100
.

iii. Point-Selection(S1, L, [1, |S1|]) selects s(n, L) = O(n) positions in g(n, L) = O(n) time if

L < (logn)3+τ

100
.

iv. ||US′2i−1
||+ ||US′′j || in the algorithm Recover-Motif is no more than f(n, |G|) = O(M(|G|)+

n
|G|M(|G|)).

61



v. With probability at most k
2xn3 , the algorithm Recover-Motif does not stop in (O(k( n

2

|G|(log n)O(1)+

h2 log n)), O(k)) time.

Proof: Statement i. The parameter ωRANDOMIZED−SUBLINEAR is set to be β in the Collision-

Detection. It follows from the time complexity of brute force method.

Statements ii and iii. They follow from the implementation of Point-Selection().

Statement iv. It follows from the choice of Point-Selection(.) for the sublinear time algorithm

at Recover-Motif(.).

Statement iv. It follows from Lemma 45, Lemma 46, Lemma 34, and Statements i, ii, and iii.

We give the proof for Theorem 6.

Proof: [Theorem 4] The computational time part of this theorem follows from Lemma 47.

By Lemma 44, Lemma 45, we can let ς1(n) = 1
2xn3 ≤ ς0 for the probability bound ς1(n) in the

condition (i) of Lemma 32.

By Lemma 44, Lemma 45, we can let ς2(n) = 1
2xn3 ≤ ς0 for the probability bound ς2(n) in the

condition (i) of Lemma 32.

By inequality (12), the condition (iii) of Lemma 32 is satisfied.

By inequality (11), we know that the condition (iv) of Lemma 32 can be satisfied.

The failure probability part of this theorem follows from Lemma 21, and Lemma 32 by using

the fact that k1, k2, and k are of the same order (see equation (18)).

Deterministic Algorithm for Ω(1) Mutation Rate

In this section, we give a deterministic algorithm for the case with Ω(1) mutation rate. The

performance of the algorithm is stated in Theorem 6.
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Lemma 48. Assume that d0 log n ≤ L ≤ |G|/2 and c0 log n ≤ |G|. Let I1 be a union of intervals

that include [LB(S1) − 2L,LB(S1) + 2L] and [RB(S1) − 2L,RB(S1) + 2L]. Let U1 =Point-

Selection(S1, L, I1), U2 =Point-Selection(S2, L, [1, |S2|]), and (LS1 , RS1 , LS2 , RS2) =Collision-

Detection(S1, U1, S2, , U2). Then

i. With probability at most 1
2xn3 , the left rough boundary LS1 has at most d0 log n distance from

LB(S1) and the left rough boundary LS2 has at most d0 log n distance from LB(S2).

ii. With probability at most 1
2xn3 , the right rough boundary RS1 has at most d0 log n distance

from RB(S1); and the right boundary of RS2 has at most d0 log n distance from RB(S2).

Proof: In this case, every position in the two sequences S1 and S2 is selected by Point-

Selection(S1, S2). It follows from Lemma 45.

Lemma 49. For the case algorithm-type=DETERMINISTIC-SUPERQUADRATIC, we have

i. CollisionDetection(S1, U1, S2, U2) takes t(n, ||U1|| + ||U2||) = O((||U1|| + ||U2||)2 log n)

time.

ii. Point-Selection(S1, L, [1, |S1|]) selects s(n, L) = O(n) positions in g(n, L) = O(n) time.

iii. ||US′2i−1
||+ ||US′′j || in the algorithm Recover-Motif is no more than f(n, |G|) = O(|G|+n).

iv. With probability at most k
2xn3 , the algorithm Recover-Motif does not run in computational

complexity (O(k(n2(log n)O(1) + h2 log n)), O(k)).

Proof: Statement i. The parameter ωDETERMINISTIC−SUPERQUADRATIC is set to be β in the

Collision-Detection. It follows from the time complexity of brute force method.
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Statement ii. They follows from the implementation of Point-Selection().

Statement iii. It follows from the choice of Point-Selection(.) for the sublinear time algorithm

at Recover-Motif(.).

Statement iv. It follows from Lemma 48, Lemma 34 and Statements i, ii, and iii.

We give the proof for Theorem 6.

Proof: [Theorem 6] The computational time part of this theorem follows from Lemma 49.

By Lemma 48, we let ς1(n) = 1
2xn3 ≤ ς0 for the probability bound ς1(n) in the condition (i) of

Lemma 32.

By Lemma 48, we can let ς2(n) = 1
2xn3 ≤ ς0 for the probability bound ς2(n) in the condition (i)

of Lemma 32.

By inequality (12), the condition (iii) of Lemma 32 is satisfied.

By inequality (11), we know that the condition (iv) of Lemma 32 can be satisfied.

The failure probability part of this theorem follows from Lemma 21, and Lemma 32 by using

the fact that k1, k2, and k are of the same order (see equation (18)).

Summary

In this chapter, we develop two randomized algorithms and one deterministic algorithm under

the probabilistic model. One of them finds the implanted motif with high probability if the alphabet

size is at least 4, the motif length is in [(log n)7+µ, n
(logn)1+µ ] and each character in motif region has

probability at most 1
(logn)2+µ of mutation. The motif region can be detected and each motif character

can be recovered in sublinear time. A sub-quadratic randomized algorithm is developed to recover

the motif with Ω(1) mutation rate. A quadratic deterministic algorithm is developed to recover the

motif with Ω(1) mutation rate.
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CHAPTER IV

ENUMERATIVE ALGORITHMS FOR MOTIF DETECTION

An Overview of Enumerative Algorithm

In the following, Definition 50 characterizes the motifs which are difficult for our algorithm

to discover. Lemma 51 shows that such difficult motifs are relatively few. Lemma 51 is based on

the fact that for a random sequence, two equal length subsequences are not similar to each other if

they are long enough.

Definition 50. Let Σ to be alphabet with at least 2 characters. Let h andm be integers with x ≤ m.

• Define Φm,x,d(Σ) be the set of all sequences S in Σm such that diff(S[i, i + x− 1], S[j, j +

x− 1]) ≤ d for some two i 6= j with 1 ≤ i < j ≤ m− x+ 1.

• Define Ψm,x,d(Σ) = ∪mu=xΦm,u,d(Σ).

We have the following lemma that slightly improves the analysis at [5] for |Σ| > 4.

Lemma 51. For every constant ε ∈ (0, 1),
|Ψ
ρ,x, 23 ((1− 1

|Σ| )
2−ε)(Σ)|

|Σρ| ≤ 2ρ2 · cx/12

1−c for all large x, where c = e−
ε2

3 < 1.

Proof: Assume that S is a random sequence of Σρ. Let u ≥ x. We consider S[i, i+ u− 1] and

S[j, j+u−1]. The probability that the a-th characters of these two subsequences are not the same

is 1− 1
|Σ| .
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For two triples (S[i+r], S[j+r], S[j+(j−i)+r]) and (S[i+r′], S[j+r′], S[j+(j−i)+r′]) of

characters in S, they are independent if {i+r, j+r, j+(j−i)+r}∩{i+r′, j+r′, j+(j−i)+r′} = ∅.

We can pick up
⌊
u
3

⌋
independent pairs (S[i+ r], S[j + r], S[j + (j − i) + r]) for i = 1, · · · , bu/3c.

For each triple, we can get an two different positions with probability at least (1− 1
|Σ|)

2.

Let H be the set of those independent pairs. Set H contains at least u
3

independent pairs. By

Corollary 18, with probability at most

e−
( ε2 )2bu3c

3 ≤ e−
( ε2 )2(u3−1)

3

≤ e
ε2

12 · e−
ε2u
36

≤ 2e−
ε2u
36 ,

H contains at most ((1 − 1
|Σ|)

2 − ε/2)|H| triples (S[i + r], S[j + r], S[j + (j − i) + r]) with

S[i + r] 6= S[j + r] and S[j + r] = S[i + (j − i) + r] 6= S[j + (j − i) + r]. For all large

u, ((1 − 1
|Σ|)

2 − ε/2)|H| ≥ ((1 − 1
|Σ|)

2 − ε/2)
⌊
u
3

⌋
≥ 1

3
((1 − 1

|Σ|)
2 − ε)u. For all large u, with

probability at most 2e−
ε2u
36 , diff(S[i, i+ u− 1], S[j, j + u− 1]) ≤ 2

3
((1− 1

|Σ|)
2 − ε). For all large

u, with probability at most 2ρ2e−
ε2u
36 , there exist i and j with 1 ≤ i < j ≤ ρ − u + 1 such that

diff(S[i, i+ u− 1], S[j, j + u− 1]) ≤ 2
3
((1− 1

|Σ|)
2 − ε).

For all large x, with probability at most
∑ρ
u=x 2ρ2e−

ε2x
36 ≤ 2ρ2 · cx/12

1−c , there are integers i, j, and

u with 1 ≤ i < j ≤ ρ − u + 1 and x ≤ u ≤ ρ such that diff(S[i, i + u − 1], S[j, j + u − 1]) ≤

2
3
((1− 1

|Σ|)
2 − ε).

For an intuitive understanding of Lemma 51, note that Ψρ,x,ε(Σ) is a subset of Σρ. If y and ε are

constants, we can select constant c such that 2ρ2 · cx/12

1−c <
1
2y

with x ≥ c log ρ. Therefore, Ψρ,x,ε(Σ)

is a small portion of sequences in Σρ when, for example, y ≥ 10.
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Enumerative Algorithm

Parameters Setting

In this section, we set up some parameters that are used in the algorithm.

We first set up some constants and parameters as follows.

We have a signal Detect-Non-Ψm,x,d-Motif to indicate that a motif is in Σm −Ψm,x,d if it is set

to be true.

Let

t = |Σ|. (38)

Select constants (as large as possible) σ2 > 0, and σ1 > 0 such that

2(α + σ2) <
t− 1

t
− σ1, and (39)

(40)

If Detect-Non-Ψm,x,d-Motif, and α < 1
2
((1 − 1

|Σ|) − d) for positive constants α and d, then

select constant ε > 0 such that

2α + 3ε < ((1− 1

|Σ|
)− d). (41)

It used to control the boundary minimal aligned length.

We define

c1 = e
−σ2

1
3 , (42)
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c2 = e
−σ2

2
3 , and (43)

c3 = e
−ε2

3 . (44)

Select a positive constant δ1 such that

1− α− 5δ1 − 2ε >
1

2
. (45)

Select a parameter δ3 and such that

(1− (δ3 + ε+ α + ε)) >
1

2
(46)

Let l0 be a parameter and is set to be max(
c
l0
1

1−c1 ,
c
l0
2

1−c2 , nc
h
1) ≤ δ1.

Let h = O(log n) such that

max(
2l0c

h
3

1− c3

,
nch3

1− c3

) ≤ δ3. (47)

Initial Motif Region

In this section, we detect the initial motif region via comparing two sequences.

Initial-Motif(Sa, Sb, pa, pb, r)

Input: two sequences Sa and Sb, a position pa in Sa, a position pb in Sb, and an integer r for

predicting the length of the motif;

Steps:

Let p′a = pa + r − 1 and p′b = pb + r − 1;
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(L1) diff(Sa[pa, pa + i], Sb[pb, pb + i]) ≤ 2α + 2σ2 for all l0 ≤ i ≤ h;

(R1) diff(Sa[p
′
a, p
′
a − i], Sb[p′b, p′b − i]) ≤ 2α + 2σ2 for all l0 ≤ i ≤ h; and

If both conditions are satified, then return true; else return false

End of function Initial-Motif

Recover-Motif(A) recovers the motif by voting on the character in each column of A in the

motif region, which is between the boundaries returned from the function Detect-Motif-Boundary.

Exact Boundaries and Voting

Let Maj(A, j) denote the character that appears the largest number of times in the column j of

A. For a character a ∈ Σ, Occur(a, j, A) denotes the number of times that a appears in the column

j of A.

We will show that if the alignment has a suitably small error, then Detect-Motif-Boundary re-

turns the boundaries of the motif region with high probability if the number of the input sequences

is reasonably large.

Detect-Motif-Boundary(A)

Input: a k × 3n matrix A that holds k aligned sequences S1, · · · , Sk; and two rough boundary

positions (pL, pR).

Steps:

Select the leftmost column jL ∈ [pL − l0, pL + l0] in A such that Occur(Maj(A, jL +

1), jL + 1, A) ≥ µ0k.

Select the rightmost column jR ∈ [pR − l0, pR + l0] in A such that Occur(Maj(A, jR −

1), jR − 1, A) ≥ µ0k.

return (jL, jR);
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End of function Detect-Motif-Boundary

Recover-Motif will detect the columns that contain the motif from a σ1-error alignment. Each

character of the motif is recovered by voting on the characters in the same column. Each column

that does not contain motif character does not have a character that appears as frequently as in the

motif region. The subroutine Recover-Motif uses a subroutine called Detect-Motif-Boundary(A)

that finds a pair of column indices jL and jR such that most copies of the motif in the input se-

quences will be located from column jL + 1 to column jR − 1.

Recover-Motif(A) recovers the motif by voting on the character in each column of A in the

motif region, which is between the boundaries returned from the function Detect-Motif-Boundary.

Recover-Motif(A)

Input: k × 3n matrix A that holds k aligned sequences S1, · · · , Sk;

let (jL, jR) = Detect-Motif-Boundary(A);

let g′s be the character that appears the largest number of times in column jL + s of A for

0 < s < jR − jL;

return g′1 · · · g′h as the motif G;

End of function Recover-Motif

Combining Them Together

Motif-Detection(S1, · · · , Sk)

i. Set up the parameters according to previous Section.

ii. Find the least p∗1, some p2 and the largest r such that Initial-Motif(S1, S2, p
∗
1, p2, r) returns

nonempty (p2, p
′
2);

70



iii. For each p1 ∈ [p∗1 − l0, p∗1 + l0]

iv. For each 2 ≤ i ≤ k, Initial-Motif(S1, Si, p1, pi, r)

for all possible position pi in Si;

v. Remove those sequences Si that have more than

4l0 matched positions with S1;

vi. If there are more than (1− ε− 4δ1)k sequences left

then

vii. Put the sequences S1, S2, · · · , Sk into an k×

3n array A.

viii. Recover-Motif(A);

End of Motif-Detection

Analysis of Algorithm

Definition 52. Assume σ1 > 0. Given k Θα(n,G)-seque-

nces S1, · · · , Sk, an alignment puts them into k rows such that each sequence Si is arranged in

|Si| consecutive positions at row i for the |Si| characters of Si. An alignment for S1, · · · , Sk is

a σ1-error alignment for S1, · · · , Sk if at least (1 − σ1)k sequences have their ℵ(Si) in the same

columns. We often use an array A of k rows to hold an alignment of k sequences.

Our main algorithm Algorithm-One consists two sub-routines. The first sub-routine Align-

Sequences aligns the input sequences so that most copies of the motif are in the same column
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regions. The second sub-routine Recover-Motif recovers the motif based on the output of the

first sub-routine. The performance of Discover-Motif, Align-Sequences, and Recover-Motif is

described in the following theorem.

Theorem 53. Assume that α with α < 1
2
((1− 1

|Σ|)− d) and x are positive constants. Then, there

exist constants σ1, δ1, δ2, ε > 0 such that given an input of Θα(n,G)-sequences S1, · · · , Sk, the

algorithm satisfies the following two conditions for all sufficiently large n (the maximum length of

the input sequences).

i. If G ∈ Σρ − Ψρ,h,d(Σ) and ρ ≥ h + l0 = O(log n), then with probability at most e−Ω(h) +

e−Ω(k), it fails to return a unique G′ with |G| = |G′|, and G and G′ are very similar.

ii. For every G, with probability at most 2ck3 + δ1, it fails to return at most 2O(k) sequences

G′1, · · · , G′m such that at least one G′i is similar to G.

iii. The algorithm takes O(kn2(log n)2) time.

Lemma 54 shows that each input sequence has the property that with small probability, its

subsequence in its motif region is not similar to the original motif G. The similarity is measured at

every subsequence of parameter length s in the motif region.

Lemma 54. Assume that S is a random Θα(n,G)-sequence. Then we have

i. With probability at most e
−ε2z

3

1−e
−ε2

3

, diff(ℵ(S)[i, i+ s− 1], G[i, i+ s− 1]) > (α+ ε) for fixed i

and s with z ≤ s ≤ |G| and 1 ≤ i ≤ |ℵ(S)| − s+ 1.

ii. With probability at most ne
−ε2z

3

1−e
−ε2

3

, diff(ℵ(S)[i, i+ s− 1], G[i, i+ s− 1]) > (α+ ε) for some

i and s with z ≤ s ≤ |G| and 1 ≤ i ≤ |ℵ(S)| − s+ 1.
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Proof: Each character in the motif region has probability at most α to mutate. By Corollary 18,

for each s ≥ z and a fixed i, the probability is at most e
−ε2s

3 that diff(ℵ(S)[i, i+ s− 1], G[i, i+ s−

1]) > (α + ε). For a fixed S, the probability for some s ≥ z and i ≤ |S| − s with diff(ℵ(S)[i, i +

s− 1], G[i, i+ s− 1]) > (α + ε) is at most n
∑∞
s=z e

−ε2s
3 ≤ ne

−ε2z
3

1−e
−ε2

3

.

Lemma 55. Assume that X1 and X2 are two independent sequences of the same length and that

every character of X2 is a random character from Σ. Then the probability for diff(X1, X2) ≤

t−1
t
− ε is at most e−

ε2|X1|
3 .

Proof: For every character X2[j] with 1 ≤ j ≤ |X2|, the probability is 1
t

for X2[j] = X1[j].

The expected number of positions where the two sequences X1 and X2 differ is t−1
t
|X1|. The

probability for diff(X1, X2) ≤ t−1
t
− ε is at most e−

ε2

3
|X1| by Corollary 18.

Definition 56. For each sequence S, let L(S) be the left boundary position of the motif in S.

Definition 57. For two sequences Sa and Sb, let pa and pb be two positions in them respectively. If

the two sequences can be aligned via Initial-Motif(Sa, Sb, pa, pb, r) at pa and pb with pb 6∈ [L(Sb)−

l, L(Sb) + l] for some r ≥ m, then such an alignment is called l-shift alignment.

Lemma 58. Let pa be a position in Sa.

i. If r ≥ m, with probability at most 2(
c
l0
1

1−c1 + nch1) ≤ 4δ1, there is a l0-shift via Initial-

Motif(Sa, Sb, pa, pb, r).

ii. For all i > 1, statements i are independent.
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Proof: Statement i. We prove this statement by considering two cases. Each of them needs the

condition r ≥ m.

According to our setting in inequality (39), we have 2(α + σ2) < t−1
t
− σ1.

Assume that pb = L(Sb)− x and h ≥ x ≥ l0. By Lemma 55, we have

Probability(x ≥ l0) ≤
+∞∑
x=l0

e−
σ2

1x

3 (48)

≤ cl01
1− c1

(49)

≤ δ1. (50)

Consider the case that x > h, the probability is at most nch1 by Lemma 55.

Similaryly, assume that pb = L(Sb) + y and y ≥ l0. As r ≥ m, there are at least x random

characters on the right side of Sb. By Lemma 55, we have

Probability(y ≥ l0) ≤
+∞∑
y=l0

e−
σ2

1y

3 (51)

≤ cl01
1− c1

(52)

≤ δ1. (53)

Consider the case that y > h, the probability is at most nch1 by Lemma 55.

Statement ii. When S1 is fixed, Si’s background is random, and independent each other.

Lemma 59. Let pa be a position in Sa. If r ≥ m + 2l0, then with probability at most 2c
l0
1

1−c1 ≤ δ1,

Initial-Motif(Sa, Sb, pa, pb, r) returns true.
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Proof: If r ≥ m+ 2l0, then one of the two sides of have at least l0 random characters in Sb.

According to our setting in inequality (39), we have 2(α + σ2) < t−1
t
− σ1.

Probability(r ≥ m+ 2l0) ≤ 2
+∞∑
x=l0

e−
σ2

1x

3 (54)

≤ 2cl01
1− c1

(55)

≤ δ1. (56)

Lemma 60.

i. For each sequence Sa, with probability at most 2c
l0
2

1−c2 ≤ δ1, diff[G[1, i],ℵ(Sa)[1, i]) ≥ α+ σ1

for some l0 ≤ i ≤ m.

ii. Assume that pa = L(Sa) and pb = L(Sb). Then with probability at most c
l0
2

1−c2 , pb does not

satisfies the condition in Initial-Motif(Sa, Sb, pa,m), where m is the length of the motif as it

is defined before.

iii. Assume that diff[G[1, i],ℵ(S1)[1, i]) ≤ α + σ1 for some l0 ≤ i ≤ m. Then with probability

at most e
−ε2k

3 = ck3, there are more than (δ1 + ε)k sequences Si do not satisfy the condition

in Initial-Motif(S1, Si, pa, pb,m).

Proof: By Lemma 54, with probability at most c
l0
2

1−c2 , diff(ℵ(S)[i, i + s− 1], G[i, i + s− 1]) >

(σ2 + ε) for some i and s with l0 ≤ s ≤ |G| and 1 ≤ i ≤ |ℵ(S)| − s + 1. Thus, we have proved

Statements i and ii.
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Statement iii follows from Statement i and Corollary 18.

Lemma 61. With probability at most ck3, there are more than k(4δ1+ε) sequences that are removed

in line v in Motif-Detection(.).

Proof: It follows from Lemma 58 and Corollary 18.

Definition 62. Two sequences are well aligned if their motif region are in the same column region.

Lemma 63. The output of the algorithm has the following two properties:

i. The algorithm outputs at most (2l0)k possible candidates G1, · · · , Gy for the motif.

ii. With probability at most 2ck3 +δ1, there is no case such that at least (1−5δ1−2ε)k sequences

are well aligned with S1.

iii. At least one of them has length equal to m, and for each i, with probability at most ck3,

Gj[i] 6= G[i].

Proof: Statement i. By Lemma 58, each Si has at most 2l0 possible matched positions.

Statement ii. By Lemma 60, S1 and Si align well in the motif region. We have that S1 and most

Sis align well in the motif region.

Let τ1 = (4δ1 + ε), and τ2 = δ1 + ε. By Lemma 61 and (iii) of Lemma 60, with a small

probability at most 2ck3 + δ1, S1 does not align well in the motif region with at least (1− τ1− τ2)k.

Statement iii. It follows from the voting method. We consider the voting at each column. By

Corollary 18, with probability at most e−
ε2k
3 = ck3, there are fewer than (1 − α − ε)k characters

unequal to G[j′]. Thus, with probability at most e−
ε2k
3 = ck3, there are fewer than (1 − α − ε −
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τ1 − τ2)k = (1− α− 5δ1 − 2ε)k > k
2

(by inequality (45)) characters unequal to G[j′] in the same

column. It is easy to see that with probability at most e−
ε2k
3 , G[j

′]′ 6= G[j′].

We put an additional restriction for checking the alignment between S1 and Si in Initial-

Motif(S1, Si, p1, pi, r). It requires than diff(S1[p1, p1 + h− 1], Si[p1, p1 + h− 1]) ≤ P0− 2α− 3ε,

and l0 ≤ εh, where P0 = d.

Definition 64. Define P3 = 2l0 × e
−ε2h

3

1−e
−ε2

3

.

Lemma 65. Assume that G is in Σm − Φm,h,d(Σ). Then with probability at most e
−ε2k

3 , there are

more than (1− (P3 + ε))k sequences Si that are not well aligned with S1.

Proof: By Lemma 54, we have that with probability at most e
−ε2h

3

1−e
−ε2

3

, diff(ℵ(S)[i, i + h −

1], G[i, i+ h− 1]) > (α + ε).

Thus, with probability at most 2l0× e
−ε2h

3

1−e
−ε2

3

, diff(ℵ(S1)[i, i+ h− 1], G[i, i+ h− 1]) > (α+ ε)

for some i ≤ l0.

Thus, with probability at most 2l0× e
−ε2h

3

1−e
−ε2

3

, diff(ℵ(Sj)[i, i+ h− 1], G[i, i+ h− 1]) > (α+ ε)

for some i ≤ l0.

Assume that S1 and Si are aligned at the positions p1 and pi, respectively, i.e., diff(S1[p1, p1 +

h−1], Si[pi, pi+h−1]) ≤ P0−2α−3ε. Let S1[p1, p1+h−1] = S1[p1, p1+l−1]S1[p1+l, p1+h−1]

such that S1[p1 + l, p1 + h− 1] is in the motif region of S1. Let Si[pi, pi + h− 1] = Si[pi, pi + l−

1]Si[pi + l, pi + h − 1] such that Si[pi + l, pi + h − 1] is in the motif region of S1. We note that

0 ≤ l ≤ l0. Let S1[p1 +l, p1 +h−1] = ℵ(S1)[j1, j1 +j], and Si[pi+l, pi+h−1] = ℵ(Si)[ji, ji+j],

where j = h− l − 2.
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We have diff(S1[p1, p1 + h − 1], Si[pi, pi + h − 1]) = diff(S1[p1, p1 + l − 1], Si[pi, pi + l −

1]) + diff(ℵ(S1)[j1, j1 + j],ℵ(Si)[ji, ji + j]) ≥ diff(ℵ(S1)[j1, j1 + j],ℵ(Si)[ji, ji + j]). Thus,

diff(ℵ(S1)[j1, j1 + j],ℵ(Si)[ji, ji + j]) ≤ P0 − 2(α + ε). The diff(.) function follows the triangle

inequality

diff(G[j1, j1 + h− 1], G[ji, ji + h− 1]) (57)

≤ diff(G[j1, j1 + j], G[ji, ji + j]) + l0/h (58)

≤ diff(G[j1, j1 + j],ℵ(S1)[j1, j1 + j]) + (59)

diff(ℵ(S1)[j1, j1 + j],ℵ(Si)[ji, ji + j]) + (60)

diff(ℵ(Si)[ji, ji + j], G[ji, ji + j], ) + l0/h (61)

≤ α + ε+ P0 − 2(α + ε) + α + ε+ l0/h (62)

< P0. (63)

As those events are independent when S1 is fixed. By Corollary 18, with probability at most

e
−ε2k

3 , there are more than (P3 +ε)k ≤ (δ3 +ε)k (by inequality (47)) sequences are not well aligned

with S1.

With probability at most ck3, there are at most (α + ε)k mutations in each motif column. By

inequality 46, we have (1 − (δ3 + ε + α + ε)) > 1
2
. This makes the voting at the corresponding

column to fail with a small probability.

Lemma 66. Assume that A is a σ1-error alignment for S1, · · · , Sk. Then with probability at

most 2l0e
−Ω(k) and there are at most l0 shift to the real boundary, the algorithm Detect-Motif-
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Boundary(A) fails to return (bL, bR), where bL and bR are the left and the right boundaries of the

motif, respectively.

Proof: Let bL be the left motif boundary of A and bR be the right motif boundary of A. We only

prove in detail below that with probability at most e−Ω(k), index jL computed by the algorithm

Detect-Motif-Boundary(A) is not equal to bL. One can also provide a symmetric analogous proof

that with probability at most e−Ω(k), jR 6= bR.

Each character in the motif region of each sequence has probability at most α to mutate, and A

is a σ1-error alignment for S1, · · · , Sk. By Corollary 18, we have the following two facts:

Fact 1. For j with bL < j < bR, if column j of A contains ℵ(S1)[j′] with j′ = j− bL, then with

probability at most e−
1
3
σ2

2k, the character G[j′] appears fewer than (1 − (α + σ1 + σ2))k = µ0k

times in the column j of A.

Fact 2. For j with j ≤ bL, with probability at most e−
1
3
σ2

2k, each character of Σ appears more

than ( 1
|Σ| + (σ1 + σ2))k < µ0k times in column j of A (by inequality (39)).

There are l0 possible shift positions. Thus, with probability at most 2l0e
−Ω(k), the algorithm

Detect-Motif-Boundary(A) fails to return (bL, bR), where bL and bR are the left and the right bound-

aries of the motif, respectively.

Lemma 67. The he algorithm takes O(kn2(log n)2) time.

Proof: It takes O(n2(log n)2) time to compare two sequences. It takes O(kn) time for voting.

Therefore, the total time is still O(kn2(log n)2).

Proof: [Theorem 53] Part i of Theorem 53 follows from Lemma 65 and Lemma 66. The voting

part is similar to Statement iii of Lemma 63.
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Part ii of Theorem 53 follows from Lemma 63.

Part iii of Theorem 53 follows from Lemma 67.

Summary

In this chapter, we develop one enumerative algorithm under the same probabilistic model.

which can discover a hidden motif from a set of sequences for any alphabet Σ with |Σ| ≥ 2 in

O(kn2(log n)2) time, where k is the number of sequences and n is the maximal sequence length.

Since the alphabet size is at least 2, thus our algorithm is applicable to both DNA motif discovery

and other potential applications.
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CHAPTER V

EXPERIMENTS AND RESULTS

Aiming at solving the motif discovery problem, we implemented our randomized and enumer-

ative algorithms in Java separately. Our tests were all done on a laptop with a 1.5 Ghz CPU and 3.0

GB Memory. In the following parts, we will test our algorithms on simulated data and biological

data separately. In the first experiment, we tested our algorithms on simulated data sets, which are

generated by using our probability model with a small mutation rate. Each input set contains 15 or

20 sequences, and each sequence contains 500 or 600 base pairs. Each base pair of the simulated

gene sequences was generated independently with the same occurrence probability. A motif with

a fixed length was randomly planted to each input sequence. The minimum Hamming distances

between the outputs and original consensus are counted.

Experiments on Simulated Data Sets

Table 1 shows the results of randomized algorithm on simulated data sets. In the table, N is the

number of sequences in a set, M is the length of sequences, L is the length of planted motif and

R is the number of test repetitions. From the table, we could find that the results of our algorithm

for finding motif on simulated data sets are satisfied. Our algorithm could find all the motifs from

each sequence and get the consensus with the accuracy rate of 100%. If the data set has a high

mutation rate, we could increase the number of repetitions so that the result on the data sets will

be improved.
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Table 1: Results of Randomized Algorithm on Simulated data
N M L R Accuracy Rate

Set 1 20 600 15 60 100
Set 2 15 600 15 10 100
Set 3 20 600 12 15 100
Set 4 20 500 15 40 100

For the enumerative algorithm, we designed two programs by using JAVA and C# separately,

the main difference between the two programs is that the program written in C# was added a

vector function to calculate the score of each consensus, so that making it better for dealing with

high mutation rates.

Table 2: Results of Enumerative Algorithm on Simulated data
N M L R Program 1 Program 2

Set 1 20 600 15 60 100 87
Set 2 15 600 15 10 100 80
Set 3 20 600 12 15 100 74
Set 4 20 500 15 40 100 78

Table 2 shows the experimental results of the two programs on simulated data sets. From the

table, we could find that the results of our two programs on simulated data sets are encouraging.

Program 1 could find all the motifs and consensus from each sequence sets, so the accuracy rates

are 100%. Program 2(vector) missed motifs in some specific sequences, therefore its accuracy

rates are around 80%.

Experiments on Biological Data Sets

In the second experiment, we tested our algorithms on real sequence sets, which are down-

loaded from SCPD. SCPD contains a large number of gene data and transcription factors of yeast.

Sequences in the same set are all regulated by a common motif. We chose 1000bp as the length of

input sequences. In order to show the advantages of our algorithm, we also compared the result of
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our algorithm with the results of several other existing motif finding methods on the same data set,

such as Gibbs, MEME, Info-Gibbs and Consensus. Table 3 shows the details of the data sets we

used in the following experiments.

Table 3: Number of sequences and Motif length
Bas1 GCN4 GCR1 Rap1Ebf1 HSE-HTSF

N 6 9 6 15 5
L 10 10 10 15 10

Table 4 and 5 show the results of our algorithms on all biological data sets. We also choose

some well-known motif-detecting softwares to make comparisons. From the two tables, we see

that the average mismatch numbers of program 1 on bas1, GCN4 and GCR1 are greatly lower than

other four existed methods. While only on the datasets Rap1Ebf1 and HSE-HTSF, the average

mismatch numbers of program 1 is a little higher than MEME. Program 2(vector) also shows good

performance in some tests. The accuracy rates of program 2(vector) on some specified data sets are

higher than program 1’s results, and the accuracy rates of program 2 on all data sets are higher than

the average accuracy rates of all other the algorithms. The performance of randomized algorithm

is similar to Program 1, but Program 1 has better performance on some specific data sets.

In addition, our algorithms also show their high speeds in computations compared to other

four motif finding methods. Because the starting pattern of algorithms are represented by a string,

so our algorithm could avoid some extra time consuming computations unlike Gibbs sampling

and EM methods, such as computations of likelihoods. According to this feature, we use the

consensus string of the voting operation obtained from the last iteration as a new starting pattern in

program, and continue doing voting operations repeatedly until there is no further improvement.

Experimental results show that if we set the number of iterations to be a large integer, the programs
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could give more accurate results within a reasonable time.

Table 4: Total number of Mismatch Positions
Bas1 GCN4 GCR1 Rap1Ebf1 HSE-HTSF

Randomized Algorithm 10 8 4 45 5
Program 1 6 9 4 42 4
Program 2 38 6 18 37 6

Gibbs 8 51 5 202 7
MEME 8 15 10 32 3

InfoGibbs 9 21 5 46 9
Consensus 8 9 5 42 7

Table 5: Average Mismatch Numbers per Sequence
Bas1 GCN4 GCR1 Rap1Ebf1 HSE-HTSF

Randomized Algorithm 1.67 0.89 0.67 3 1
Program 1 1 1 0.67 2.8 0.8
Program 2 6.3 0.6 3 2.46 1.2

Gibbs 1.33 5.6 0.83 13.46 1.4
MEME 1.33 1.67 1.67 2.13 0.6

InfoGibbs 1.5 2.33 0.83 3.06 1.8
Consensus 1.33 1 0.83 2.8 1.4
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CHAPTER VI

CONCLUSIONS AND FUTURE WORKS

Our algorithms have advantages in some aspects compared to other popular motif finding meth-

ods, the experimental results are significant. However, there are still some improvements could be

done on this algorithm. As we know, though a set of sequences have the consensus, each se-

quence’s motif may have mutations, and the length of each motif could also be different. So the

two factors increase the difficulties in finding unknown motifs. In addition, an interesting open

problem is whether there exists an efficient algorithm to recover all the motifs for an alphabet with

four characters when the parameter α has a similar bound. In the future, we plan to give some

approximation measures to solve above problems and improve the efficiency of our algorithms, so

that to make our algorithms working better on discovering unknown motifs.

It is an interesting problem if there is an algorithm to handle the case for the alphabet of size 3.

A more interesting problem is to extend the algorithm to handle larger mutation probability.
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