
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations - UTB/UTPA 

8-2013 

Algorithms in Abstract DNA Self Assembly Algorithms in Abstract DNA Self Assembly 

Xingsi Zhong 
University of Texas-Pan American 

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Zhong, Xingsi, "Algorithms in Abstract DNA Self Assembly" (2013). Theses and Dissertations - UTB/UTPA. 
871. 
https://scholarworks.utrgv.edu/leg_etd/871 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For 
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/871?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F871&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


ALGORITHMS IN ABSTRACT DNA SELF ASSEMBLY 

 

 

 

 

 

 

 

 

A Thesis 

by 

XINGSI ZHONG 

 

 

 

 

 

 

 

 

Submitted to the Graduate School of  

The University of Texas-Pan American 

In partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

 

 

 

 

 

 

 

August 2013 

 

 

 

 

Major Subject: Computer Science 



  



ALGORITHMS IN ABSTRACT DNA SELF ASSEMBLY 

A Thesis 

by 

XINGSI ZHONG 

 

 

 

 

COMMITTEE MEMBERS 

 

 

 

 

Dr. Robert Schweller 

Chair of Committee 

 

 

 

 

Dr. Zhixiang Chen 

Committee Member 

 

 

 

 

Dr. Bin Fu 

Committee Member 

 

 

 

 

August 2013 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Copyright 2013 Xingsi Zhong 

All Rights Reserved 

 

 

 

 

 

  



 

  



iii 
 

ABSTRACT 

 

 

Zhong, Xingsi, ALGORITHMS IN ABSTRACT DNA SELF ASSEMBLY. Master of Science 

(MS), August, 2013, 59 pp., 1 table, 45 figures, references, 18 titles. 

For the past two years, I have always been working on the topic of Abstract DNA Tiles 

Self-Assembly. This is a very new area, driven by the interest of DNA molecules. The feature 

that the system composed by DNA molecules can be a highly parallelized system, make it much 

more powerful when comparing with the traditional methods. This thesis will introduce the 

concept of abstract DNA self-assembly models as well as some interesting problems and their 

solutions. 

 



 



iv 
 

DEDICATION 

 

 

Thank my family for supporting me all my life, especially during my two years’ study on 

the other side of the earth. 

 



 

 
  



v 
 

ACKNOWLEDGMENTS 

 

I will always be grateful to Dr. Robert Schweller, chair of my thesis committee, for all his 

mentoring and advice. As well as Dr. Matthew Pattiz. 

I would also like to thank my colleagues at the UTPA computer science department. 



 



vi 
 

TABLE OF CONTENTS 

 

                                                                                                                                         Page 

ABSTRACT………………………………………………………………………………      iii 

DEDICATION…………………………………………………………….……………...    iv 

ACKNOWLEDGEMENTS………………………………………………………………    v 

TABLE OF CONTENTS…………………………………………………………………    vi  

LIST OF TABLES………………………………………………………………………..    viii 

LIST OF FIGURES………………………………………………………………………..    ix 

CHAPTER I. INTRODUCTION…………………………………………………………    1  

CHAPTER II. PHYSICAL BASIS AND ABSTRACTED MODELS……………..……..    3 

 Abstracted DNA Tiles Self-Assembly Model…………….……………………….    4 

 Signal Tiles Self-Assembly……………………….………………………………    9 

CHAPTER III. FAST ARITHMETIC……………………………..……………………..    14 

 Problem Description……………………………..………………....……………..    15 

 Addition In Average Case Logarithmic Time…………………………………….    17 

 Optimal 𝑂(√𝑛)Addition …………..………………………………………………    23 

 𝑂(log 𝑛)Average Case, 𝑂(√𝑛)Worst Case Addition…………….………………..    27  

 Sub liner Multiplication…………..………………………..………………………    34 

CHAPTER IV. PATTERNS REPLICATION……………….……..……………………..    42 

 Exponential Replication of 2D Patterns in 2D Space…………….……………….    42 



vii 
 

REFERENCES……………….…………………………………………………………...    47 

APPENDIX...……………………………………………………………………………...    49 

BIOGRAPHICAL SKETCH……………………………………………………………...    59



viii 
 

LIST OF TABLES 

 

                                                                                                                                         Page 

Table 1: Summary of results of fast arithmetic……………………………………………..    14



 



ix 
 

LIST OF FIGURES 

 

                                                                                                                                         Page 

Figure 1: Holliday junction and DNA origami ……………………………………………    3 

Figure 2: A mesh created by Holliday Junction ………….……………….……………...    4  

Figure 3: Abstract from the Holliday Junction to an abstracted square tile …..….………    5 

Figure 4: Example of cooperative tile binding.………………..………….………………    6 

Figure 5: Tile system for two numbers adding………………..……………..……………    8 

Figure 6: The three stages of the glue of signal tiles………..……………..………………    9 

Figure 7: The DNA walker…………………………………………….......….…..………    10 

Figure 8: The DNA walker is walking on the track……………..………...………………    11 

Figure 9: A glue been turned on by the walker…….…………..…………………………    11 

Figure 10: An example sequence of reactions.…………………..……………..…………    13 

Figure 11: Run time simulate results comparisons.……………………………….….……    16 

Figure 12: The input and output template……………………..…………..………………    16 

Figure 13: Tile set for implement the average case (𝑙𝑜𝑔𝑛) runtime and worst case (𝑛) runtime 

addition………………………………………………………….………………...………    16 

Figure 14: Example of (𝑙𝑜𝑔𝑛) average case and (𝑛) worst case addition…………..…..…    18 

Figure 15: Two cases of (𝑙𝑜𝑔𝑛) average case and (𝑛) worst case addition……………..…    21 

Figure 16: Tile set for 𝑂(√𝑛) addition………………………….…………………………    23 

Figure 17: The Input and output template……………………...…………………………    24 



x 
 

Figure 18: Example of 𝑂(√𝑛) addition 1st step………………..…………………………    25 

Figure 19: Example of 𝑂(√𝑛) addition 2nd step……………….…………………………    25 

Figure 20: Example of 𝑂(√𝑛) addition 3rd step………………..…………………………    26 

Figure 21: Input and output template for the combined addition………..…….….………    28 

Figure 22: Combined addition TAC abstract diagram ……........…………………………    29 

Figure 23: Combined addition in 3D …………..……................…………………………    29 

Figure 24: Abstract figure for two numbers multiplication......……………………………    35  

Figure 25: An example of vector labels …...................……………………………………    36 

Figure 26: Input and output template for two numbers multiplication............……………    36 

Figure 27: First three steps for multiplication….……................…………………………    37 

Figure 28: Tile set for copy the seed to two directions.........………………………...……    38 

Figure 29: Two examples of shifting………... ……...................…………………………    38 

Figure 30: Multiplication ………... ……...................………………………………….…    40 

Figure 31: Multiplication ………... ……...................………………………………….…    40 

Figure 32: Multiplication ………... ……...................………………………………….…    40 

Figure 33: Examples of Multiplication ……... ……...................…………………………    41 

Figure 34: Over view of exponential 2D pattern replication.……. ………………………    43 

Figure 35: Tiles set for the replication system……...................………………..…………    44 

Figure 36: Detailed process of replication……...................………………………………    46 

 



 

1 
 

CHAPTER I 

 

 

INTRODUCTION 

 

 

Self-assembly is a process that a set of relatively simple components automatically attach 

to an assembly, which start from an initial assembly, under local interactions and eventually 

become a large, complex, ordered structure. The process is highly automated and a system 

usually contains a set of very few rules. The process of self-assembly can be easily found 

throughout the world, such as the grown of crystals, the biological growth and replication. 

People are now attempt to create artificial self-assembling systems by learning from the nature. 

One of the goal in this research area is to perform atomically large scale precise manufacturing 

desired nanoscale products. This research area is very new and promising, successes examples 

such as using self-assembly techniques to produce processors, and using self-assembly 

techniques to create drug containers that can accurate deliver drugs to the targets inside the body. 

Pioneers in the area also realized the capacity of the compute power of this system, the system 

can be guided by predesigned rules to perform algorithms and programs, and the feature that 

self-assembly actions are driven by local interactions make the system highly parallelism. There 

for, the study of how to design an efficiently self-assembly systems can be essential to the future 

study and engineering of nanotechnology.  

The process of assembly and its final product present execute and output of a predesigned 

self-assembly system. A tile assembly system can take full advantage of its feature of parallelism 

and preforming parallel algorithms that usually difficult to achieve in traditional architectures 



 

2 
 

and computational models. For example, the parallel adding and parallel sorting, which the run 

times are always limited by the hardware, but there is literally no limit by using a tile assembly 

system, because the computing unites in this system are simply DNA molecules and the supply 

for computation can always be more than enough. However, the process of self-assembly will 

use time and geometric space, and the communication between two distant tiles will take large 

amount of time. So, how to design self-assembly systems to perform programs quickly, which 

means to design a system that contain only constant tile types and execute the program in a 

relatively short amount of time, is one of the most interesting direction in this area. 

In this thesis, I will mainly talking about two type of self-assembly systems that I mostly 

focused on during my previous two years working, which are Abstract Tile Assembly Model 

(ATAM), and Signal Tile Assembly Model (STAM). In the second chapter, I will talk about the 

physical basis of each model, and the definition of their abstract models. In the third chapter and 

fourth chapter, I will introduce several interesting problems and their solutions by using these 

two models, talking about structures and the time complexity. I will also give a brief review of 

some other works I have done during the past two years in the appendix. 

 



 

3 
 

CHAPTER II 

 

 

PHYSICAL BASIS AND ABSTRACTED MODELS 

 

 

The general basic rules for DNA self-assembly is based on the DNA base pairing. A pair 

of DNA base can attach to each other as long as they are match, however, one pair of connected 

DNA pair may not strong enough to keep two strand hold together, but with more pairs match, 

two DNA strands can easily attach and strong enough to stay connected. By carefully design 

DNA strands, people can create desired shapes not only just double strands DNA. One example 

is the “Holliday Junctions”, shown as figure 1 a), by properly design four DNA strands, the first 

half of each strand will match the second half of another strand. Holliday Junctions can be 

created by put these four type of strands into the same test-tube, every four strands will connect 

together and create a Holliday junctions. Other examples like shapes or maps using the technique 

called DNA origami, shown as figure 1 b). This two structures are also the basic module used in 

the ATAM, which we will talk about later. 

a) 

Figure 1 a) Holliday junction b) DNA origami 

b) 



 

4 
 

By carefully design the DNA strands, people can create all kinds of structures with 

interesting features. In this chapter, I will introduce the two widely used techniques, the 

Abstracted DNA Tiles Self-Assembly Model and Signal Tiles Model. I will introduce the basic 

ideas and physical foundations of each model as well as their abstracted model. 

 

Abstracted DNA Tiles Self-Assembly Model 

Abstracted DNA Tiles Self-Assembly Model (ATAM) is one of the earliest and widely 

used abstracted models in this area, it offers a defined process that an initial structure can get 

attached by predesigned monomers and grow into a target structure.  

Physical Basis 

DNA Tiles. DNA tiles or Monomers are the most basic individual components of self-

assembly. In DNA self-assembly, a tile is an abstracted module of molecules constructed from 

DNA strands. In 2D, a tile can be created by slightly modify a Holliday Junctions. Shown as 

figure 1 a), by design four DNA strands, and the first half of each strand will match the second 

half of previous strand, four strands can connected and create a Holliday junction. Similarly, we 

can design a set of DNA strands that match each other but also leave a few unmatched fragments 

Figure 2 A mesh created by Holliday Junction 



 

5 
 

at the end of each strands, then the DNA strands can still stick to each other and also leave a 

short fragments exposed at the end of each strand shows as the left figure in figure 3. Then, the 

structure can potentially connect to another structure with the corresponding fragments exposed. 

Shown as figure 2, a mesh can be created by DNA Holliday Junction. We abstract this structures 

as a tile, shown as figure 3, and each end of the strand presents a side of the tile. The exposed 

fragments on each side can only attach to the corresponding sequence, so we call the fragments 

on each side of the tile as glue, and the type of sequence of the fragments called the glue type, so 

the glue can bound to another tile with corresponding glue type. The length of exposed sequence 

will determine the ease of attach, so we also abstract the length of an exposed sequence to an 

integer value called glue strength. The value of a glue strength is usually less than 4, and equal or 

less than the value of temperature, which I will introduce later. With the same principle, by using 

six DNA strands, we can easily build a three dimensional cube tile, which will further contains 

the Up and Down side. When designing the DNA strings used in tiles, it is easy to insert a piece 

of florescence label in the tile, thus, people can easily distinguish the tiles under the electron 

microscopy. Also, it can be used as the label of each tile, so we can give the tiles a meaningful 

tag, for example 0, 1 or empty. 

 

Figure 3  Abstract from the Holliday Junction to an abstracted square tile 



 

6 
 

Seed. Seed is a fundamental structure in a DNA tiles self-assembly system, which can 

allow other monomers in the self-assembly system initially attached with, just like the dust 

played as the core in the snow flake. There is only one seed in a self-assembly system. A seed in 

DNA tile self-assembly system is usually created by using the technique called DNA origami. 

Shown as figure 2 b), a string of DNA can be folded at specified positions by pre design the 

sequence that part of the sequence can match another part of sequence on the same strand 

nearby. Also, we could insert some unmatched strings in the origami, so that the unmatched 

string will not bound any part of the origami but exposed to outside. Then, these exposed strings 

will allow the corresponding matched strings on other monomers in the system to attach. The 

format of the seed can be used as the input of the system. With different seed, the output can be 

different, even with the same tile set. 

 

Temperatures. Temperature  is an environment variable. It describe the minimum 

strength with which glues must bind for a tile to attach. It is an integer value equals to 1 or 2 or 3 

and usually no larger than 4. For example, if in an abstract DNA tile self-assembly system with 

=2, then only the tiles that the total matched glue strength is equal or larger than 2 can attach to 

the assembly, if the total band strength is less than 2, the tile cannot band. Figure 4 shows an 

example of the cooperative binding. The tile can attach to the system only when the total 

matched glue strength is equal or large than the temperature. 

Figure 4 Example of cooperative tile binding 



 

7 
 

Abstracted Definition of the Model 

Tiles. A tile is a square (with four directions N, S, E, W) or cube (with two additional 

directions U and D) with each side of the shape could be assigned with some glue types. The 

glue type has some non-negative integer strength. The tile can also been tagged with some label 

for identification. Once a tile is attached to an assembly, the location of the tile will be get by 

using integers coordinate. A tile cannot be rotated. 

 

Assemblies. An assembly is a finite set of tiles connected by matched glues and do not 

overlap with each other, and assign the center of each tile with and integer coordinate or triplet. 

In other words, each tile in the assembly has a unique coordinate. Glues between two adjacent 

tiles will be bound and contribute a positive weight only if the two glues have the same glue 

type. Define the bond graph to be the weighted graph, each element in the graph is a vertex. The 

weight of and edge between two neighboring tiles is the strength of the matched glues. An 

assembly is τ-stable, where τ is the temperature value, only if the total weight on the minimum 

cut of the weighted graph is larger than τ. 

 

Tile Attachment. Given an integer τ as the temperature, a tile 𝑡, and a τ-stable assembly 

A’. Then, tile 𝑡 may attach to A’ if A = A’ ⋃ 𝑡 and A is τ-stable. 

 

Tile Systems. A tile system Γ = (T, S, τ), where T is the tile set of the system, S is the 

seed assembly, and τ is a positive integer as the system’s temperature.  

 

 



 

8 
 

Examples 

Two number addition. Here is a very simple example of adding two numbers together 

using the traditional method. The figure below shows the input seed 0101 and 0001, and the tile 

set on its left. The system temperature is 3. .Figure 5 shows the 4 steps to adding these two 

numbers. In chapter 3, I will introduce a much more powerful algorithm of adding two numbers 

in a much faster speed 

 

 

 

       1)     2)               3)            4) 

Figure 5 Four steps of adding two numbers. This example shows 101+1=110 



 

9 
 

Signal Tiles Self-Assembly 

Signal tiles has all the physical basis that basic DNA tiles has. The different is, more than 

all the features that DNA tiles already have, signal tiles can sending signals between each tiles 

through the bounds. After the input side of a signal tile attached with a correspondence glue, the 

output glue can be turned on from latent, or turned off from either on or latent, and the process is 

irreversible. This feature makes the Signal tiles self-assembly system much powerful than the 

basic DNA tiles system. The seed and temperature of a signal tiles self-assembly system has 

exactly the same features with the DNA tiles self-assembly system, so here I only introduce the 

signal passing functions in this system.  

DNA Walker 

DNA walker is the physical technique used in the signal tiles. Today, there are several 

type of techniques can perform the DNA walker technique, but they are all follows the same 

idea, here I introduce one of the most easy to understand technique. Instead of using simple 

single strand DNA sequences, the signal tiles use the strands of DNA structures that attached 

with an array of comb teeth liked structures, so we can imagine that the signal tile is not 

assembled by few DNA strands, but a few DNA structure bands. On the input side of this band, a 

short piece of DNA strand half attached at the glue, and half attached at one comb teeth, and this 

Figure 6 The three stages of the glue of signal tiles 



 

10 
 

short piece of DNA strand is called the DNA walker. The input glue of this band is half attached 

with the walker and half exposed, shown as figure 7 a). When a correspondence glue that 

matches the input side glue, it will first attach the exposed half part of glue on the input side, 

shown as figure 7 b), and compete with the DNA walker until fully attached on the input side 

glue and push the walker away, shown as figure 7 c). During the competition, the half part that 

used to connect with the walker will be attached by either part of the walker or part of the 

correspondence glue and their chance to attach are equal, so they will move back and forth just 

like a seesaw. However the rest part of the input glue is always connect with the input glue, so 

the input glue will never fail in the competition, but it is possible for the walker to be fully 

detached. After the walker detached from the input glue, same principle will be used on the comb 

tooth track. Two type of hairpin structures will be used as fuel to push the walker all the way to 

the other side of the track. Eventually, on the other side of the track, by using the same idea, the 

output glue can be turned off, if the walker fully matches the output glue, or turn the output glue 

Figure 7 The DNA walker (shows as the strand with sequence 

of a, b and y) is been pushed up by the attached input glue on 

the left (shows as the strand with sequence a, b and c). 



 

11 
 

on. The using of the fuel and irreversible features makes the signal tiles can send any signals 

only once, and never been reused.  

Figure 9 Example of a glue been turned on by the walker 

shows as the strand with sequence z, b and c 

Figure 8 A schematic diagram to show how the walker is walking on the track 



 

12 
 

Signal Tiles Model  

Here we describe the signal tile assembly model (STAM) by define the concepts of a 

signal tile, glue slots, as well as three stages of a glue slot. The definition of assembly is same 

with the ATAM, so we do not discuss it again. 

 

Glue Slots. Glue slots are similar with the definition of glue in the ATAM, but more than 

a single glue with glue type and strength, the glue slots is always in one of the three states, which 

are on, off, or latent.   

 

Active Tiles. Active tile is also have the similar definition with the tiles in ATAM. Only 

the glue slots in the on state on an active tile will be used for the attachment. In the section using 

STAM, we will use the term tile and active tile interchangeably. 

 

Reactions. More than just have tiles attached in ATAM, STAM can change the state of 

the glue to transform to another stage.  

 

Break reaction. A assembly will perform a break reaction if the bond graph of the 

assembly has a cut with the combined strength less than temperature τ, then the current assembly 

a will be separate follows the cut into assemblies b1 and b2. 

 

Glue-flip reaction. A reaction if assembly b can be achieved from changing the 

state of any glue form on or latent to off, or from latent to on. 

 



 

13 
 

Batches. A batch is a set of assemblies. A batch B can be transform to batch B’ if one of 

the reactions can be applied at temperature τ to get B’ from B. A batch sequence at temperature τ 

is any sequence of batched from a 1to  a 𝑟 such that  a 𝑖is transformed from a 𝑖−1, where 𝑖 is a 

positive integer less than r. 

 

Signal Tile System. A Signal Tile System is an ordered pair (B, τ) where B is the initial 

batch or seed, and τ is the temperature. For any batch B’, it is producible by (B, τ) only if there is 

a batch sequence from B 1to  B 𝑟 such that B’ =  B 𝑟. 

Figure 10 An example sequence of reactions. 



 

14 
 

CHAPTER III 

 

 

FAST ARITHMETIC 

 

 

The solution for the most fundamental problems can always be tricky. An efficient 

solution for the fundamental problems is not easy for traditional algorithms and hardware. In this 

chapter, I will focus on the complexity of arithmetic primitives using the Abstracted Tile Self-

Assembly Model (ATAM). By using this model, we study the time complexity of adding two n-

bit numbers, and achieved a runtime with lower bound of Ω(√𝑛) in 2D assembly and Ω(√𝑛
3

) in 

3D assembly. I will also show that we further designed algorithms to achieve an O(log 𝑛) 

average case time, and a combined algorithm to achieve an O(log 𝑛) average Ω(√𝑛) worst case 

addition in 2D. Then, we further designed a multiplication algorithm using those results and 

achieve a runtime of 𝑂(𝑛
5

6). The results here are dramatically faster than any previous result and 

almost unbeatable in this area. The results table for chapter Fast Arithmetic as well as the 

previous best known result is shown as Table 1. In addition to this analytical results, the data 

analysis of the result of ATAM simulations were shown to visualize the fast algorithms 

presented in this chapter, as well as the comparison with previous results. 

 Worst Case Average Case 

Addition(2D) O(√𝑛) O(log 𝑛) 

Addition(3D) O(√𝑛
3

) O(log 𝑛) 

Multiplication(3D) 
O(𝑛

5
6) 

 

Previous Best Addition(2D) 

Previous Best Multiplication (2D) 
O(𝑛) 

O(𝑛) 

 

Table 1 Summary of results of fast arithmetic.



 

15 
 

Problem Description 

Here we will use the notion of Tile Assembly Computer (TAC) to present a tile set, 

temperature and the input and output templates. The input template will be serves as a seed with 

an arrangement of “*” to present the locations of input bits, which could be one of “0” or “1”, 

and will be used in the seed. The output templates an arrangement of locations that present the 

positions for the TAC grown from a fully filled template, and will be replaced with tiles tagged 

as “0” or “1” that shows the output bit string. We denote that a TAC will compute a function 𝑓 

when the seed is arranged with a bit string b, the terminal assembly will encode the value of 𝑓(𝑏) 

on the locations of the output bits in the output template. Please note that it is possible that when 

mapping the input string to desired locations, it could involve part of the function 𝑓 and served as 

a pre computation of the function, and that is what we are trying to prevent from in this research, 

but sometimes it is hard to notice. 

Run Time Models 

Figure 11 shows the run time simulate results comparisons by using two well established 

run time model for ATAM, Parallel Time Model, and the Continuous Time Model. The parallel 

time model, in short, simply count the parallel steps. Start from the seed, attach all attachable 

tiles to the current assembly, count as one parallel step, and repeat the process on the newly 

created assembly according to the previous step, keep counting until the terminate assembly is 

got. The continuous time model, very different from parallel time, will accumulate the time for 

each tile to attach. Start from the seed, a location is randomly selected from all attachable 

locations for the current assembly, then calculate the time for the appropriate tile to attach. The 

time for one tile to attach to an assembly is the expected time for the randomly selected location 

with the appropriate tile attach, which would be an exponentially distributed random variable, 



 

16 
 

which the rate is relative to the number of attachable locations and the type of tiles. It would be 

easy to understand that with more available positions on an assembly, the time for one tile to 

attach will be shorter, however, when the TAC contains more tile types, the chance for the right 

tile to attach would be smaller and the time would be longer. After the appropriate tile attached, 

repeat the process for the newly created assembly, and accumulate the time until the last tile 

attached and the assembly become the terminate assembly.  

Comparing this two runtime models, the parallel timing model is simple and 

straightforward and can clearly shows “how many steps” it take for the assembly to terminate; 

the continues timing model, on the other hand, more complicate but more realistic for 

considering the time instead of steps. 

 

 

 

 

Figure 11 Run time simulate results comparisons of Addition TACs by using 

Parallel Timing Model and Continues Timing Model 



 

17 
 

Addition In Average Case Logarithmic Time 

In this section, I will introduce an adder TAC algorithm that could reach an average 

 O(log 𝑛) runtime to compute the addition of two n-bit numbers. When adding two binary 

numbers, the tradition algorithm is to start adding the bits pair from the least significant bit of 

two addends, calculate the result of current bit and the carry for next bit’s computation, repeat 

the process in the next bit’s calculation, until the most significant bit of the result is got. 

Obviously the tradition algorithm will achieve a runtime of O(n). The reason we usually 

calculate from the last bit to the first bit is that we need to send the carry to the next bit and get 

the result. However, not all the carries for next bit’s calculation is depend on the previous carry, 

more specifically, in some digit of the two addends, the two bits could be 1 and 1, the carry for 

next bit’s calculation is always 1, and it is also true for bits combinations of 0 and 0, the carry for 

next bit’s calculation is always 0. So, it is possible to get part of the results without looking all 

the way back to the first bit’s calculation. If the bits combination are 1 and 0, or 0 and 1, then the 

carry for next bit’s calculation will be rely on the previous carry. So, it is also possible that the 

result for a bit could have to wait until all the results before it is get. So the algorithm will 

perform an average case  O(log 𝑛) runtime and worst case O(𝑛) runtime. 

Construction 

Input And Output Template. The input template, or seed, for the average case 

 O(log 𝑛) runtime and worst case O(𝑛) runtime TAC is shown as figure 12. The input template is 

assembled by arranging n chunks, each chunk contains three tiles, which are the corresponding 

bit of A and B, and a function initializing tile. The input numbers are arranged in the way that the 

same bits of each numbers are allocated in same chunk and became a bits pair, the bits pairs are 

arranged in sequence from small to large from east to west, the least significant bits is on the 



 

18 
 

easternmost chunk and the most significant bit is on the westernmost chunk. The easternmost 

and the westernmost input tiles in the seed are different from the one in others chunks, the 

easternmost input is the least significant bits pair, no previous carry will be get, so it will send a 

fake “0” carry signal to the current result position. And similar with the last significant bits pair, 

there doesn’t exist a higher bits pair to accept the carry it send out, so the last tile will send a 

signal to accept the carry from the most significant bits pair as the last bit of the result. 

 

 

 

 

 

 

Figure 12 The input and output template for the average case 

 O(log 𝑛) and worst case O(𝑛) runtime adder TAC 



 

19 
 

Computing Carry Out Bits. The tricky part to apply the algorithm is to send out the 

carry to next bits pair immediately if the current bits pair’s carry does not depends on the 

previous bits pair. There are totally 4 combinations of the bits pairs can exist in the input, which 

are (0 0), (0 1), (1 0), and (1 1). The carry to send to the next bits pair is already known for the 

combinations (0 0) and (1 1), and the carry of the combinations (0 1) and (1 0) will be depend on 

previous pairs. An example listed all four combinations is shown as Figure 14. In each chunks,  

Figure 13  Tile set for implement the average case  𝑂(𝑙𝑜𝑔 𝑛) runtime and worst case 𝑂(𝑛) 

runtime addition 



 

20 
 

 

 

 

Figure 14 Example of  𝑂(𝑙𝑜𝑔 𝑛) average case addition 1001+1010=10011 

 



 

21 
 

 

Figure 15 The figures on the left side shows the case that a carry could be generated 

before the addend-pair has received a carry in. The figures on the right side shows 

the case that a carry out is dependent upon a carry in having been received by the 

addend-pair. 



 

22 
 

the TAC start to grow from the right most initial tile. Then after 4 parallel stapes, the assembly 

will looks like Figure 14 f). Now, the very top of the tile in each chunk will now contains both 

input bits and decide to send the carry to next bits pair if it can, or simply grows to east and 

waiting for the income carry from previous bits pair. As mentioned before, the first chunk 

doesn’t have previous chunk, so the first tile will send a “fake” 0 carry, to the first chunk of bits 

pair. Similarly, the carry send out from the last chunk will be catch by the tiles growing from the 

last tile because there is no further bits pair chunks. 

 

Computing the Sum. A carry out bit tile has been computed and send from the lower 

bits pair chunk to the neighbored higher bits pair chunk. Also the result of the summation of 

current bits pair without the carry coming in, by simply add the carry from the previous bits pair, 

TAC can now get the current bit of result, and then send out the carry to next chunk if the carry 

form current pair is relied on previous chunk. 

 

Time Complexity-Parallel Time 

Worst Case. First we show the worst case O(n) runtime. Consider a binary sequence 

with length 2n presenting two n-bit binary numbers A and B. Denote thatAk 𝐵𝑘 presents the k-th 

bits of A and B. Then, assume for any k from 0 to n, Ak  ≠ 𝐵𝑘, which means Ak = 0 𝐵𝑘 =

1 or Ak = 1 𝐵𝑘 = 0. So, the carry of any bits pair will not be get until the previous bits pair send 

out the carry. For any chunk, after 5 parallel steps, the result will be get after the previous chunk 

get the result and send out the carry, which will take 3 parallel steps. So, for the last chunk, the n-

1 bit will get the result after 3n+5 step, and for the last bit, 3 more step which is 3n+8. So the 

total parallel worst case time is O(n). 



 

23 
 

 Average Case. Similar with previous section, consider a binary sequence with length 2n 

presenting two n-bit binary numbers A and B. Then, given randomly give 0 or 1 to Ak 𝑎𝑛𝑑 𝐵𝑘 

for any k from 0 to n. Then, the for any pairs that contains both 0 or both 1, it can send out the 

carries immediately. However, the total run time for the TAC is based on the longest sequence of 

the chunks that cannot send the carry until received from the previous chunk. The chance of the 

combinations will lead to a carry dependency is ½, just like the chance to flip coins, it is been 

proved that the expected longest run of heads up in n coin tosses is O(log n). So, the expected 

length of the longest sequence as well as the average case runtime is O(log n). 

 

Optimal 𝑶(√𝒏)Addition 

In this section I will introduce a adder TAC that achieves a run time of  𝑂(√𝑛). The idea 

is to distribut the input n bit numbers in to a √𝑛 matrix, with √𝑛 rows and √𝑛 columns. The 

original number will be divide in to √𝑛 sections and each contains √𝑛 bits. The TAC will first 

compute the sumation of √𝑛 bits chunks in each section in parallel. Because the current section 

Figure 16 Tile set for𝑂√𝑛 addition 



 

24 
 

doesn’t know what is the value of the carry come from the previous section, so the result will 

now contain both the result with the carry 0 or carry 1, and also the coresponding carry will be 

send to next section. After the first section finished runing, it will send the carry to the next 

secton, and the next section will directly send the correct carry to the next section and select the 

coresponding result as the output in current section. 

Construction 

Input And Output Template. An example of the input and output template shown as 

figure 18. The least significant bit of A is shown as the A0, and the least significant bit of B is 

shown as the B0. Relatively, the most significant bit of A is shown as the A8, and the most 

significant bit of B is shown as the B8. C is the result which has 10 bits, and the most significant 

bit of C is shown as the C9. 

Figure 17 The Input template on the left and Output template on the right 



 

25 
 

Step One: Addition.  Step one is pretty straightforward. Start from the lowest bit in each 

column, perform the addition of each sections with the predicted carry 0. First, start from the 

lowest bit a tile will copy the first bit input, then, the second tile will calculate the result and the 

carry and send it to the next pair. Then, the second pair will receive the carry, as well as copy the 

first bit in this pair to the next bit. Then repeat the process and get the first layer of result. 

Figure 19 Step one, addition. 

Figure 18 Step two, increment 



 

26 
 

Step Two: Increment. Then, start from the lowest bit of the second layer in each 

column. The result is now pretend the previous carry is 0, so by simply add 1 to the lowest bit, 

we then get the predicted result with a 1 coming in, as well as the corresponding output carry. 

 

Step Three: Carry Propagation and Output. Start from the end of the bottom column, 

a set of propagation tiles will send the carry up. When a column received the carry from previous 

column, it will send the corrected output carry form current column to next column and update 

the result in the current column. 

Figure 20 Step three, propagation 



 

27 
 

Time Complexity-Parallel Time 

The First step, perform addition without the carry, each column happened independently, 

which will take 𝑂√𝑛 parallel steps to finish. The second step, similar with the first step, each 

column will grow independently, so the run time is also 𝑂√𝑛. Third step, the propagation will 

grow up and presumably waiting for each column finished, however, because each column will 

finish in parallel, so it doesn’t have to take more than 𝑂√𝑛 .time to reach the last bit. At the same 

time, the correction tiles will update the final results once the end of each column was reached by 

the propagation tiles, and the running time is also 𝑂√𝑛. So, the total parallel runtime for this 

TAC is 𝑂√𝑛. 

 

𝑶(𝐥𝐨𝐠 𝒏)Average Case,𝑶√𝒏 Worst Case Addition 

This TAC combines the previous two TACs and reaches a result that consolidated both 

advantages. The idea is to preform 𝑂(log 𝑛)average case addition under the frame of 𝑂√𝑛 worst 

case addition, thus, the combined TAC will perform the 𝑂(log 𝑛)average case addition, once any 

of the longest run of the carry decency is longer than 𝑂√𝑛, the structure of 𝑂√𝑛 worst case 

addition will ensure that the carry won’t have to wait all the bits pairs but send the previous carry 

directly to next column. 

Construction 

In order to perform the 𝑂(Log 𝑛)average case addition, any logistically neighboring bits 

pair need to stay close, which means we cannot simply use the arrangement used by 𝑂√𝑛 worst 

case addition, because the distance between the highest bits pair in previous row and the lowest 

bits pair in current row is 𝑂√𝑛. So, based on the structure of 𝑂√𝑛 worst case addition, we fold 

the higher half of the bits pairs in each column back, so that any neighboring bits pair have a 



 

28 
 

constant distance. Figure 22 a) shows an abstract diagram of 𝑂√𝑛 worst case addition and Figure 

22 b) shows the abstract diagram of 𝑂(𝑙𝑜𝑔 𝑛) worst case addition, and Figure 22 c) shows the 

abstract diagram of the combined addition.  

 

 

 

 

Figure 21 Left shows input template for the combined addition , right 

shows output template for the combined addition 



 

29 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22.By using the 3D space, stack several layer of combined adding in 2D, to 

achieve the worst case 𝑂(√𝑛
3

) and 𝑂(𝑙𝑜𝑔 𝑛) in average case adding 

c) Combined TAC abstract diagram 
b) 𝑂(𝑙𝑜𝑔 𝑛)average case addition 

abstract diagram 

Figure 23 Arrows shows the computing directions 

a) 𝑂√𝑛 worst case addition 

abstract diagram 



 

30 
 

 

The fowling two pages shows the tile set for the combined addition TAC 

 

 

 



 

31 
 

 

 



 

32 
 

The fowling two and half pages shows an example of combined addition TAC 



 

33 
 

 



 

34 
 

Figure b) Shows the final output 

 

Time Complexity 

By using the same principle of the 𝑂(𝑙𝑜𝑔 𝑛)average case addition to analyze the average 

case and using the principle of 𝑂√𝑛 addition for the worst case, the time complexity is O(log n) 

in average case and O√n  in worst case. 

Sub liner Multiplication 

The two n-bits number multiplication is basically apply n times n-bits number addition, it 

is possible to recursively using the faster addition algorithm we just discussed and design a 

multiplication algorithm that could achieves a sub liner runtime. So, here we introduce a 

multiplication algorithm using ATAM model that achieves a O(𝑛
5

6) runtime for multiply two n-

bits numbers. Here is the basic idea, first, we put two n-bits numbers as input into an n by 2n 



 

35 
 

square in the seed, the TAC will deploy the numbers to a cube. The cube has √𝑛
3

 layers, each 

layer has √𝑛
3

 columns, and each column contains √𝑛
3

 numbers. After deploy the two n-bits 

numbers into this cube, the TAC will then perform the summation. First, all the numbers in each 

column will add together, and then summing of all columns in the same layer, finally, summing 

all three layers’ results together. According to the result that the addition of two numbers could 

be expected as 𝑂√𝑛  runtime in worst case, the running time of this √𝑛
3

 by √𝑛
3

 by √𝑛
3

 cube could 

be expected as O(𝑛
5

6). 

Construction 

To describe this construction, I will use an example of multiplying two 64-bit numbers.  

 

Vector Labeled Tile Types. For easily perform the description of this multiplication 

TAC, we use Vector Label to describe the binding process between tiles. Without showing the 

detailed glue types, we describe the TAC rules by showing the group of tiles that contains a 

certain element in the vector could attach to a certain assembly. The amount of tile types present 

Figure 24 abstract figure for two numbers multiplication. The 

arrows shows the direction of computations 



 

36 
 

by a Vector Labeled TAC is at most O(ld), which would be considered as a constant, where 𝑙 is 

the number of label types and 𝑑 is the vectors dimension.  

Input and Output Template. The result of two n bit numbers multiplication will have at 

most 2n-bits, so we put extra n-bits space in the left side of the seed. The right side of the seed 

shows the vector labeled input, A and B. Each bit of A and B shows as the first and second 

element in the vector in the same tile. The output of the algorithm is on the southernmost top 

surface, marked as Output.  

Step One: Deployment. The multiplication involves n numbers summation, for any 

number ki within this n numbers ki = A bi2
i, 𝑖 ∈ 𝑛. According to orders of i from 0 to n, we 

Figure 25 An example of vector labels 

Figure  26  

a)  Input template 

 

b) Output template 

 



 

37 
 

divide every O(√𝑛
3

) adjacent numbers into the same column, then we have every O(𝑛
2

3).adjacent 

numbers in the same layer. So when we deploy the numbers, for any number in the same column, 

we simply copy both A and B from its previous neighbor and attach one more 0 after the lowest 

bit of A, and remove the lowest bit of B. For the first number in each column, we copy both A 

and B from its neighbor in the previous column, which is the first number of previous column, 

and attach or remove √𝑛
3

 (in this case 4) bits relatively. This procedure is also similar with copy 

numbers to next layer, add or remove 𝑛
2

3.(in this case 16)bits relatively. 

The orientation and seed is shown as figure 27 a).  First step is to deploy the numbers in 

the seed to up and south. Figure 28 shows that for any input, it is possible to create a tile set to 

send the input information into two directions, top and side, within an n by n area in 2D. With 

same principle, a 2D shape can be copied to both up and side in 3D, and in our example to both 

up and south shown as figure 27 b)  

Denote p is the function of attach one 0 after the input, q is the function that remove the 

last bit of input. The copy on the Up will then apply function of attach 16 bits of 0 after the 

lowest bit of A and remove 16 bits from B from the lowest bit (Figure 27 c)). Here p(x) = x ∗ 2, 

c) The copy to the south 

become the first block of the 

first column in the first layer. 

The copy to the up performs 

the shifting 

a) Seed of multiplication. 

Figure 27 

b) The first copy block copy 

the seed input to both top and 

south 



 

38 
 

q(x) = [
x

2
]. We add or remove those bits by shifting the numbers. Figure 29 shows that for any 

input, it is possible to create a tile set to shift the input.  

The copy on the south side (Figure 27 b) will then be copy to south and east (Figure 27 

c). The south will be the head of next column and the east will be the first number in the first 

column. Then, similar to move the numbers to the next layer, the numbers moved to the next 

column will apply p(A)4, and q(B)4, shown as figure 30 c). 

At the time we deploy the numbers in each column, we designed the TAC to perform the 

addition. The addition algorithm here is based on 𝑂√𝑛 worst case addition. An example of two 

numbers multiplication, deploy as well as summation, shown as Figure35. The five elements in 

Figure 29 Tile set for copy the seed to two directions 

Figure 28 These two examples shows the way to shift the input to left 



 

39 
 

the vector Label are the current bit of A, the current bit of B, predicted result without previous 

carry, predicted result with previous carry equals to 1, and the current bit result. Same as the seed 

of Multiplication, the numbers are arranged in zigzag way. 

After we got the result of each column, shown as Figure 36 a), we copy the result of first 

column and rotate to south and send it to its neighbor Figure 36 b). Note that we don't need A 

and B anymore, so we only copy the result without A and B. Using the reversed design of the 

rotate and copy box Figure 30, we merge the two input from two sides into one single output, 

and then using the same principle to sum all results in each columns together, figure 36 d). Same 

with the addition of each columns in same layer, the final results will be get by perform the 

summation of the result of each layer, shown as figure 37. 

 

 

 

 

 



 

40 
 

 

Figure 31 

Figure 30 

Figure 32  

a) c) b) 



 

41 
 

 

Figure 33 



 

42 
 

CHAPTER IV 

 

 

PATTERNS REPLICATION 

 

 

The automated replication process in DNA Self-Assembly is a very interesting topic. It is 

the simulation of self-replication in the nature world, and also be interested by manufactures. In 

this chapter, I will introduce the problems of patterns self-replication by using the Signal Tiles 

Self-Assembly Model (STAM). By solving this problem, we provide theoretical support of using 

signal tiles to replicate a patterned rectangle with a fast replication speed. The solution we come 

up is a template-directed fast growing replicated system, in particular, the algorithm we 

performed is by using a rectangular template with arbitrarily 0 and 1 patterns on it, and the 

system will create copies of template with an exponential growth. When describe this algorithm, 

I will mostly focus on the high-level sketch of the processes of how the system is work by 

showing the stages of the signal tiles perform. 

Exponential Replication of 2D Patterns in 2D Space 

First, let me introduce the replication of 2D patterns in the 2D space. The reason I 

introduce this problem first is because the problem of replicate 2D patterns in 3D space is 

relatively straightforward, intuitively we can simply create copies upon the 2D input template 

and get job done, also, the algorithms of 3D patterns replication in 3D space can be extended 

from the algorithm we described in 2D space.

 

 



 

43 
 

Definitions 

Patterns. Let l be a set of labels. A pattern is the mapping of the coordinates in a shape to 

the set l. 

 

Exponential Replication. A replication system is an exponential replication system, if 

the system can replicate a patterned shape such that the patterned shape can then generating a 

final product as well as itself. 

Before formally describe the system, here is a brief introduce of how the mechanism for 

2D patterns replication works. Figure 34 shows the three phases overview of the replication 

system. The input shows as the patterned rectangle shape in the left of phase 1. In phase 1, an 

inverted staircase (shown as the green tiles) cooperatively grows along the west edge of the input 

Figure 34 Over view of exponential 2D pattern replication. 



 

44 
 

patterned shape. Then, the assembly dissembled into single tile width rows. In second phase, 

each rows became a template for the production of a non-terminal replicates (ntr), shows as the 

white patterned tiles. In the third phase, those ntr become the template and produce the ntr and 

terminal replicates (tr), shows as orange tiles. The tr will then attached to each other and create a 

copy of the original input pattered assembly and the ntr will keep on creating copes of tr and ntr. 

 

First Step, Template Disassembly. In order to let dissembled fragment to connect 

together under the original order, we firstly let the template grow a stairs structure on the side of 

the template. The function of a stairs structure is for later reassemble of the fragment in the 

correct order; the fragment can reattach to another one only if the gap between two glues is 

Figure 35 Tiles set for the replication system 



 

45 
 

match, otherwise, at most only 1 glue can overlap each other, but under the environment 

temperature of 2, they cannot attach. In each rows, after the leftmost tile on the end of stares 

attached, it will send a signal r to its right. The tiles received the r signal will pass it through, and 

check if the next tile can receive this r signal. Once the r signal is been received by next tile, the 

current tile will deactivate the glue x on its bottom, which is used to connect the previous row. 

This signal keep on sending until accepted by the tile attached on the rightmost of the row, to 

show that this signal has reached the end, thus, all the glue x on the bottom of each tile will 

receive a deactivate signal and then detach the row on its bottom. 

 

First Generation of Replicates. After a row detached from the original assembly, a 

labeled glue on the north of each tiles in the row now been exposed. Then the tiles involved ntr 

(tiles in white) start to attach the template (yellow) rows. After the left most ntr tile attached the 

template row, it send a signal to its right. Similar with the process of template detachment, the 

ntr tiles will detached from the template after the right most tile received the signal, which also 

means all ntr tiles in the same row are connected. 

 

Exponential Replication and Reassembly. In this step, the north side of the ntr tiles will 

perform exactly the same process during the First Generation of Replicates, and create copies of 

ntr. On the south side, similar process is performed and terminal replicate (yellow) row is 

created. After the tr rows detached from ntr, tr rows will attach to other tr rows that the gap 

between two glues on the stare structures are match. tr rows 

,



 

46 
 

Figure 36 Detailed process of replication 



 

47 
 

REFERENCES 

 

Erik Winfree, Algorithmic self-assembly of DNA, Ph.D. thesis, California Institute of 

Technology, June 1998. 

David Yu Zhang Georg Seelig Dynamic DNA nanotechnology using strand-displacement 

reactions, Nature Chemistry 3, 103–113 (2011) doi:10.1038/nchem.957 

Jennifer E. Padilla, Matthew J. Patitz, Raul Pena, Robert T. Schweller, Nadrian C. Seeman, 

Robert Sheline, Scott M. Summers, Xingsi Zhong: Asynchronous Signal Passing for 

Tile Self-assembly: Fuel Efficient Computation and Efficient Assembly of Shapes. 

UCNC 2013: 174-185 

Zachary Abel, Nadia Benbernou, Mirela Damian, Erik Demaine, Martin Demaine,Robin 

Flatland, Scott Kominers, and Robert Schweller, Shape replication through self-

assembly and RNase enzymes, SODA 2010: Proceedings of the Twentyrst Annual 

ACM-SIAM Symposium on Discrete Algorithms (Austin, Texas), Society for 

Industrial and Applied Mathematics, 2010. 

Yuriy Brun, Arithmetic computation in the tile assembly model: Addition and mul-tiplication, 

Theoretical Computer Science 378 (2007), 17-31. 

Nathaniel Bryans, Ehsan Chiniforooshan, David Doty, Lila Kari, and ShinnosukeSeki, The 

power of nondeterminism in self-assembly, SODA 2011: Proceedings ofthe 22nd 

Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, 2011,pp. 590{602. 

Harish Chandran, Nikhil Gopalkri shnan, and John H. Reif, The tile complexityof linear 

assemblies, 36th International Colloquium on Automata, Languages and 

Programming, vol. 5555, 2009. 

Matthew Cook, Yunhui Fu, and Robert T. Schweller, Temperature 1 self-assembly:Deterministic 

assembly in 3d and probabilistic assembly in 2d, Proceedings of theTwenty-Second 

Annual ACM-SIAM Symposium on Discrete Algorithms, SODA2011 (Dana 

Randall, ed.), SIAM, 2011, pp. 570{589. 

David Doty, Randomized self-assembly for exact shapes, SIAM Journal on Com-puting 39 

(2010), no. 8, 3521{3552.

 



 

48 
 

David Doty, Jack H. Lutz, Matthew J. Patitz, Robert Schweller, Scott M. Summers,and Damien 

Woods, The tile assembly model is intrinsically universal, FOCS 2012:Proceedings 

of the 53rd IEEE Conference on Foundations of Computer Science,2012. 

David Doty, Matthew J. Patitz, Dustin Reishus, Robert T. Schweller, and Scott M.Summers, 

Strong fault-tolerance for self-assembly with fuzzy temperature, Proceed-ings of the 

51st Annual IEEE Symposium on Foundations of Computer Science(FOCS 2010), 

2010, pp. 417{426. 

Bin Fu, Matthew J. Patitz, Robert Schweller, and Robert Sheline, Self-assembly with geometric 

tiles, ICALP 2012: Proceedings of the 39th International Collo-quium on Automata, 

Languages and Programming (Warwick, UK), 2012. 

Ming-Yang Kao and Robert T. Schweller, Randomized self-assembly for approxi- mate 

shapes, International Colloqium on Automata, Languages, and Programming, 

Lecture Notes in Computer Science, vol. 5125, Springer, 2008, pp. 370{384. 

Mark Schilling, The longest run of heads, The College Mathematics Journal 21(1990), no. 3, 

196{207. 

Robert Schweller and Michael Sherman, Fuel ecient computation in passive self-assembly, 

Proceedings of the Annual ACM-SIAM Symposium on Discrete Algo-rithms, 2013. 

ISAAC D. Scherson, and Sandeep Sen: Parallel Sorting in Two-Dimensional VLSI Models of 

Computation. IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 2, 

FEBRUARY 1989. 

Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin, 

Efficient active self-assembly of shapes, Manuscript (2012). 

Alexandra Keenan, Robert Schweller, Xingsi Zhong, Exponential Replication of Patterns in the 

Signal Tile Assembly Model, DNA Computing (DNA19). 

 

 

 

 



 

49 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX A 

 

 

 



 

50 
 

APPENDIX A 

 

PARALLEL SORTING 

 

The tile assembly model is particularly suited to a comparison network model of 

computation because many comparison operations may be performed simultaneously. The 

comparison network model is an method that relies on comparison elements, two-input two-

output devices which the computes the minimum and the maximum of the two inputs The input 

of a sorting network is a bunch of numbers arranged in vertical on its left. Right next to the 

numbers, the sorting network use horizontal lines to track each numbers and use vertical lines to 

represent each comparison. And the output of a sorting network is on its right. In this paper, the 

algorithms we are using is bubble sorting algorithm. 

 

Comparator. Comparator is the basic unit in a sorting network. A comparison network 

contains two lines and a comparator. Two lines on the left of the comparator represent the two 

input numbers, and the two lines on the right represent the output. 

 

Comparison Networks And Sorting Networks. Comparison Networks is a set of 

comparators connected by wires. Sorting Networks is a comparison network that the output 

numbers of that comparison network is in sorted order.  

 

 



 

51 
 

 

 

 

Black Box Model. The Black Box Model can be used to hide the details of the individual tiles 

but only focus on the functions of each black box. By using this model, we will have more time 

to focus on the design of complex algorithms ignoring the design of every tile upfront. The Black 

Box Model has a consistent format with some input and outputs sides. The general shape of a 

single black box unit is shown in Figure 38(a). Each black box unit has a central processing core 

called a computing box. Between every two computing box units there is some space in which 

the output from the previous computing box becomes formated to the input of the next 

computing box. These black box units also need a way to ensure the start and the end of a 

computation, the input and output stages respectively. This i/o stage information is held in the 

Figure 37 A sorting network 



 

52 
 

corners of each black box unit. The input stage of some black box may rely on one or more 

output stages allowing for cooperative growth. 

 

 

Figure 38 Examples of black boxes. 

Figure 39 The high level design of a compare box. 



 

53 
 

 

 

 

 

 

 

Figure 40 Design and example of Rotate And Switch Box. 



 

54 
 

 

 

 

 

 

 

 

 

 

Figure 41 Design and example of Small Compare Box. 



 

55 
 

 

 

 

 

Note: 

If a1*=a0* in input, then output S=CompareR; Keep the value of a1* and a0* 

If a1*>a0* in input, then output S=Keep; Keep the value of a1* and a0* 

If a1*<a0* in input, then output S=Switch;Switch the value of a1* and a0* 

If S=CompareR in input,{ 

if a1*=a0* in input, then output S=CompareR; Keep the value of a1* and a0*; 

if a1*>a0* in input, then output S=Keep; Keep the value of a1* and a0*; 

if a1*<a0* in input, then output S=Switch; Switch the value of a1* and a0*.} 

If S=Keep in input, then output S=Keep; Keep the value of a1* and a0*. 

If S=Switch in input, then output S=Switch; Switch the value of a1* and a0*. 

If S=CompareR in input,{ 

if a1*=a0* in input, then output Keep the value of a1* and a0*; 

if a1*>a0* in input, then output Keep the value of a1* and a0*; 

if a1*<a0* in input, then switch the value of a1* and a0*.} 

If S=Keep in input, then Keep the value of a1* and a0* 

If S=Switch in input, then Switch the value of a1* and a0* 
 

 

 

Figure 42 Tile types for Small Compare Box 



 

56 
 

 

 

 

 

 

 

 

 

 

Figure 43 Design and example of Split Box. 



 

57 
 

 

 

 

 

 

 

Figure 44 Design and example of Rotate Box. 



 

58 
 

 

 

 

Figure 45 The seed is the one tile width tiles tape on the left most of this box. Then the structurer 

next to the seed is the preformatting tiles, and then the boxes preform the bubble sorting. The 

output is the glues on the right of this box. 



 

59 
 

BIOGRAPHICAL SKETCH 

 

 

In 2013, Xingsi Zhong received his Master Of Science Degree from University of Texas 

Pan-American, majored in Computer Science. In 2010, he received his Bachelor Of Science 

Degree from Jilin University, majored in Math. His mailing address is 1607 W Schunior St Apt 

515, Edinburg, Tx, 78541.  

 


	Algorithms in Abstract DNA Self Assembly
	Recommended Citation

	tmp.1684161544.pdf.R4vOY

