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ABSTRACT

Hight, Elijah L., Empirical Bayes Estimates for the Reproduction Number of Epidemics. Master

of Science (MS), August, 2021, 45 pp., 5 tables, 4 figures, 49 references, 22 titles.

Epidemic outbreaks can be modelled as a branching process in which the total progeny or

outbreak size, follows a Borel-Tanner (BT) distribution. Following a procedure described by Liang

[13], we construct empirical Bayes estimates for when the initial number of infected is a specified

value r. Following the construction, we then simulate data and perform a numerical study, assuming

BT distribution for the parameter θ , the reproduction number, with an initial outbreak size of three.

Simulation results indicate that the empirical estimator suffers from “jumpiness.” We then proceed

to monotonize the empirical estimate via a method outlined by Houwelingen [8]. We then compared

the regret risks of each of the estimators and found that the monotonized estimate is the superior

estimator for θ . Testing for different values of b under the linex loss function seems to indicate

negative b values produce better monotonized estimates. Lastly, we constructed an empirical Bayes

estimate for the case when the initial number of infected is a Poisson random variable.
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CHAPTER I

INTRODUCTION

1.1 Borel–Tanner Distribution

In 1942, French mathematician Emile Borel derived the first distribution that described the

number of customers served in a single queue with constant service and an initial customer of one.

Approximately eleven years later in 1953, Tanner generalized this to any positive integer r.

Definition 1. For r P N and 0ă θ ă 1, the Borel–Tanner distribution is defined as

prpx | θ q “ crpxqθ x´re´θx; x“ r,r`1,r`2, . . . , (1.1)

where is given by crpxq “ rxx´r´1

px´rq! .

Notably, the BT distribution has mean r
1´θ

and variance rθ

p1´θq3
.

The BT distribution has applications in various areas of science and real-world phenomena.

In the original application of queuing theory, (1.1) is the probability that exactly x customers in a

queue will be served before the first queue vanishes, assuming we start with r initial customers,

a traffic rate θ , Poisson arrivals and constant service time [7]. This model has also arisen in

coalescence models [3], self propagating internet viruses called worms, traffic flow [16], etc (for

other applications, see [14],[9],[12],[6]). The motivation for this paper stems from the role of BT

distribution in modeling epidemics.
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Figure 1.1: Borel–Tanner pmf with r “ 3.

1.2 Total Progeny of Branching Processes

Sometime during the 19th century, the aristocratic families of Victorian England posed a

question to mathematician Sir Francis Galton:

How many male children (on average) must each generation of a family have in order

for the family name to continue in perpetuity? [2]

The answer to this question became the oldest, and simplest branching process know as the Galton–

Watson (GW) process. Additionally it is called the Bienayme–Galton–Watson process dating as far

back as 1845 to the the work of statistician Bienayme. By definition, a system in which particles

live for a random time and produce a random number of progenies is called a branching process.
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Branching processes are useful in many applications, such as gene propagation, neutron chain

reactions in nuclear fusion, biological cells, and epidemiology ([11], [21], [2], [10]). In this paper

we consider its application to epidemiology by highlighting how the progeny, or total number of

infected individuals of a communicable disease, is a BT random variable.

Definition 2. For i “ 1,2, . . . and n “ 0,1,2, . . ., the Galton-Watson process is defined by the

recurrence formula

Zn`1 “

Zn
ÿ

i“1

Xi,n, Z0 “ 1,

where Xi,n are independent and identically distributed (iid) random variables (rv) such that Xi,n PZ`.

When looking at a branching process, there are two basic assumptions: (e.g. [21])

(i) The number of offspring Xi,n produced by a single parent particle is independent of the history

of the process, and of other particles existing at the present.

(ii) The offspring distribution is the same for all particles in all generations of the process.

Denote by Z0,Z1, . . . ,Zn the sizes of the first n generations in a simple branching process and let

Yn :“ Z0`Z1` . . .`Zn.

Proposition 1. If the offspring variable X follows Poipθ q and assuming Y “ Yn´1 “ Yn is the total

progeny of a GW process, then the total progeny is a BT r.v. with pmf

PpY “ yq “
y0yy´y0´1

py´ y0q!
θ

y´y0e´θy, y“ y0,y0`1, . . .

Proof.

PpZ1 “ z|Z0 “ yq “
ÿ

x1`...`xy“z

θ x1e´θ

x1

θ x2e´θ

x2
¨ ¨ ¨

θ xye´θ

xy

“ θ
ze´θy

ÿ

x1`...`xy“z

1
x1x2 ¨ ¨ ¨xy

.
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Therefore,

PpZ0 “ z0,Z1 “ z1, . . . ,Zn “ zn | θ q “

n
ź

k“1

PpZk “ zk|Zk´1 “ zk´1q “

n
ź

k“1

PpZ1 “ zk|Z0 “ zk´1q

“Cpz0, . . . ,znqθ
z1`...`zne´θpz0`...`zn´1q

“Cpz0, . . . ,znqθ
yn´y0e´θyn´1 .

By assuming that Y “ Yn´1 “ Yn is the total progeny of the process, we recognize the kernel of

Borel-Tanner distribution. The coefficient C does not depend on θ and so must be equivalent to the

normalization constant of the Borel-Tanner pmf. Hence,

PpY “ yq “
y0yy´y0´1

py´ y0q!
θ

y´y0e´θy, y“ y0,y0`1, . . .

More importantly, we are concerned with the variable θ which characterizes the offspring

distribution. We call this θ the reproduction number, or number of secondary infections caused by a

parent (infected individual). In the sections that follow, we will provide several Bayesian estimators

for the value of θ , perform a numerical study, and give a rough assessment of their admissibility.

4



CHAPTER II

BAYES ESTIMATORS

Bayesian statistics is a branch of statistics for making an inference on a parameter θ . The

process starts by first formulating a prior distribution Gpθ q based on a belief or knowledge of

an observer. This distribution describes the variation in θ . After conducting an experiment, we

observe data x, indexed by θ , taken from the population. The resulting sample distribution ppx | θ q

illustrates the observer’s belief of x given θ is true. Using the experimental data, we then update the

prior and create a posterior distribution Gpθ | xq. The following result is known as the Bayes Rule:

Gpθ | xq “
ppx | θ qGpθ q

mpxq
θ PΩ, (2.1)

where mpxq is the marginal distribution of X (mpxq “
ż

Ω

ppx,θ qdθ ) and ppx,θ q is the joint proba-

bility mass function. The posterior distribution is now used to make inferences about θ .

2.1 Loss Functions–LINEX Loss

In the Bayesian framework, the unknown parameter θ , a r.v. with posterior distribution G,

is a value drawn from Gpθ | xq, the posterior distribution, and is a possible realization of the true

parameter. It is thus important to consider how accurate the estimation is by computing the expected

loss of the given estimate. To do this, we use a loss function.

A loss function Lpθ , θ̂ q, is defined as the difference between the estimated and true value of

a parameter. This function represents the "cost" associated with some random event. In most cases,

errors are minimized and do not consider the loss associated with the error. And so there is a level

of ignorance in one’s sureness of the parameter. Bayesian estimation however, minimizes posterior

5



loss and so if one is to be unsure or wrong in their estimation, then it is best to ere on the side of

least wrong. In this paper, we introduce the following Linear Exponential (LINEX) loss function

defined as follows:

Definition 3. Let θ be an unknown r.v. with posterior distribution Gpθ q. Then for any estimate θ̂

for θ we have

Lpθ , θ̂ q “ ebpθ̂´θq
´bpθ̂ ´θ q´1, b‰ 0 (2.2)

(2.2) was first defined by financial economist Varian in 1975 and is an asymmetric loss

function originally derived to determine the cost of a house depending on if you were either a buyer

or seller [20]. The asymmetry is determined strictly by the value of b. When bă 0, underestimation

is penalized more severely than overestimation. Conversely, when bą 0 overestimation is penalized

more severely than underestimation. A visual depiction of this asymmetry is given in Figure 2.1b.

(a) b ă 0 (b) b ą 0

Figure 2.1: Note how in (a), when θ ´aă 0, the function is approximately exponential while when
θ ´aą 0 the function is approximately linear. The converse is true for (b)

We chose the linex loss function particularly for its asymmetry. In an epidemiological

model, estimates of the reproduction number are often used to advise public health officials on

the possible severity of an outbreak. For example, if we underestimate the true parameter, we are

underestimating the spread of the disease and the public may not be adequately prepared if public

health officials use our estimate to make policy. This particular situation can be disastrous. Thus we

want a loss function that allows us how to determine how severely we want to penalize our given

estimate.
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2.2 Classical Bayes Estimation

A more detailed Bayes mathematical framework consists of the following elements (e.g.

Stijnen [19]). We shall instead summarize some important terms pertaining to Bayesian estimation.

(i) A sample space S of observations,with a σ´algebra on S.

(ii) A collection P of probability measures on the space pS,Sq. Usually, P is parametrized by

some set suitable parameters P “ tPθ ,θ PΩu.

(iii) A set A of possible actions which can be taken by the statistician upon observing some x P S.

The set A, called the action space, is equipped with a σ´algebra on A.

(iv) A collection D of decision rules. A decision rule is defined to be a S´A measurable map

from S into A. A decision rule is defined to be a S´A measurable map from S into A When

using the decision rule d P D, the statistician will take action dpxq P A upon observing x P S.

(v) A loss function L : ΩˆAÝÑR. For each θ PΩ, the function Lpθ , ¨q must be A measurable

and bounded from below on A. When taking dpxq P A, if θ is the true parameter value, the

statistician will incur a loss function Lpθ ,dpxqq.

(vi) A probability measure G (called the prior distribution) on Ω, which is equipped with the

σ´ algebra W .

Consider a random variable or vector X , with distribution θ which is unknown. What is the

correct decision to take concerning the true value of θ? To answer this question, we will adopt the

Bayesian model; we define the following Bayes estimator θG. Suppose θ PΩ is a realization of a rv

Θ. Under the linex loss function, with prior distribution G and Borel-Tanner pmf (1.1), it is well

known [13] that the Bayes estimator θG for θ is

θGpxq “ ´
1
b

lnE
”

e´bΘ
|X “ x

ı

.
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E
”

e´bΘ|X “ x
ı

is the posterior expectation of e´bΘ given X “ x. Further it can be shown

E
”

e´bΘ
|X “ x

ı

“

ş1
0 e´bθ θ x´re´xθ dGpθ q
ş1

0 θ x´re´xθ dGpθ q
“

ψGpx,bq
qGpxq

.

Example 2.2.1. Let G be Unipc1,c2q for θ ; we can then reduce the above equation to the following

θUnipxq “ ´
1
b

ln
ψGpx,bq

qGpxq
“ ´

1
b

ln

şn
m e´bθ θ x´re´xθ dθ
şn

m θ x´re´xθ dθ
. (2.3)

In the context of a possible pandemic, the parameter Θ represents the reproduction number

of a current outbreak of a disease modeled by a Galton-Watson process. It is our goal to construct a

quality estimator θ̂ to inform health officials to take appropriate measures in controlling the spread

of the disease. If θ̂ is close to 0, public intervention may not be necessary as the outbreak will

eventually go to extinction. If θ̂ is close to 1, then health measures must be taken to curb the

spread of a disease. For this reason, we shall construct a series of quality estimates to make reliable

inferences about the population parameter.

2.3 Empirical Bayes Estimation

In order to properly make an inference on the population, we need prior knowledge of

the distribution. However in most cases, it is reasonable to assume that this prior distribution

exists but is unknown. The empirical Bayes approach offers a solution when the experiment under

the investigation has been preceded by a series of comparable experiments. Using these past

observations, we can formulate information about the prior distribution. Consider a series of n

independent copies of the random pair pX ,Θq, where Θ has a (prior) distribution G, i.e.

pX1,Θ1q,pX2,Θ2q, ¨,pXn,Θnq.

Let’s assume

(i) Xi, i“ 1,2, . . . ,n`1 are observable and parametrized by θi, i“ 1,2, . . . ,n`1.

8



(ii) Each θi is not observable and has unknown prior G.

(iii) Let Xn`1 stand for the present observation and Xpnq :“ pX1, . . . ,Xnq denote the n past observa-

tions. And X1,X2, . . . ,Xn,Xn`1 ” X

The question then becomes whether it is possible to infer from the set of values X1,X2, . . . ,Xn the

approximate form of the unknown G, or directly of the Bayes estimator θGpxq [15]. And the answer

is yes.

In what follows, we will adopt the empirical Bayes method of estimation [4], which relies

on the assumption for the existence of a prior that is unspecified except that it is also i.i.d. from an

unknown distribution, with cumulative distribution function G. Since the prior is not known, the

Bayes estimator (2.3) cannot be calculated directly. Suppose then that our estimation problem is

one in a sequence of similar problems with the same prior distribution. Our goal is to construct a

point estimate for θ given the sequence of past data. Such an estimator is called empirical Bayes

(EB) estimator. We will seek a direct (independent of G) estimate of the Bayes estimator θG, i.e.,

the posterior mean. In case of BT distribution, Liang [13] proposed such an EB estimator, which

we will present and use below.

Following Robbins, we consider the case where X1,X2, . . . ,Xn is a sequence of independent

random variables, independent from pX ,Θq and with the same BT marginal distribution as X .

Consider past observed data Xpnq :“ tX1,X2, . . . ,Xnu generated by an unobserved set of parameter

values tΘ1,Θ2, . . . ,Θnu according to the BT p.m.f. prpx;θ q given in (1.1). Let x be the present

observation and θ be the present parameter value of Θ. An EB estimator θnpXpnq;xq “: θnpxq

for the parameter θ is a function of the currently observed x and the past data Xpnq. Define for

x“ r,r`1, . . ., k “ 1,2, . . ., and each j “ 1, . . . ,n [13]

ψn j0pxq “ qn jpxq “
ItX j “ xu

crpX jq
,

ψn jkpxq “ ckpX j´ xq
ItX j ě x` ku

crpX jq
,and

9



ψn jpx,bq “
8
ÿ

k“0

p´bqk

k!
ψn jkpxq.

It¨u denotes an indicator function that returns a Boolean value, 1 if true and 0 if false. Thus for

ψGpx,bq and qGpxq we can define their empirical equivalents as

ψnpx,bq :“
1
n

n
ÿ

j“1

ψn jpx,bq and qnpxq :“
1
n

n
ÿ

j“1

qn jpxq.

Definition 4. Following Liang (2009) [13], consider the EB estimator θn given by

θnpxq :“´
1
b

ln

«

ˆ

a1_
ψnpx,bq

qnpxq

˙

^a2

ff

, qnpxq ‰ 0, x“ r,r`1, . . . (2.4)

where a1 “minpe´b,1q and a2 “maxpe´b,1q.

For BT distribution there is an additional estimator. When r is fixed the maximum likelihood

estimator (MLE) for the parameter θ is given by the method of moments estimator, i.e for xą 0

θmlepxq “
x´ r

x
.

2.4 Bayes Risk and Regret

The Bayes risk of an estimator θ̂ under linex loss Lpθ , θ̂ pxqq “ ebpθ̂pxq´θq´bpθ̂ pxq´θ q´1

is defined as

Rpθ , θ̂ q “ E
“

Lpθ , θ̂ q
‰

, (2.5)

where the expectation is taken with respect to both x and θ . Then it follows that the minimum Bayes

Risk is given by:

Rpθ ,θGq “ E
“

Lpθ ,θGq
‰

“ E
“

ebpθGpxq´θq
´bpθGpxq´θ q´1

‰

.
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By equation (2.3) and as shown in [13], we see E
“

ebpθGpxq´θq´1
‰

“EX

”

E
“

e´bpθGpXq´θq´1|x
‰

ı

“ 0

so the minimum Bayes Risk becomes

Rpθ ,θGq “ E
“

bpθ ´θGpxq
‰

.

By definition the Bayes estimator θG for θ minimizes the risk (2.5) over the set of all estimators θ̂ .

Consider the EB estimator θn in (2.4). For fixed X1,X2, . . . ,Xn the risk of θnpX1, . . . ,Xn;Xq, denoted

by R̃pG,θnq, is given by

R̃pθ ,θnq “ EnEpXn`1,Θn`1q

”

ebpθnpX1,...,Xn;Xq´θq
´bpθnpX1, . . . ,Xn;Xq´θ q´1 | X1, . . . ,Xn

ı

.

Note that R̃pθ ,θnq, which is called the conditional Bayes risk of θn, is a random variable. Then the

overall Bayes risk of the EB estimator θn is defined by

Rpθ ,θnq :“ ER̃pθ ,θnq “ En

”

ebpθnpx1,...,xn;xq´θq
´bpθnpx1, . . . ,xn;xq´θ q´1

ı

,

where the expectation Enr¨s is taken with respect to px1, . . . ,xnq.

In practice, various criteria are used to select estimators, which are optimal in some sense.

For our study, we apply the concept of regret risk.

Definition 5. The non-negative difference

Spθnq :“ Rpθ ,θnq´Rpθ ,θGq ě 0,

called regret risk of θn, is a standard measure of the quality (optimality) of an EB estimator.

In particular, a sequence tθnu
8
n“1 of EB estimators is called asymptotically optimal for G if

limnÑ8 Spθnq “ 0. It is proved in [13] that, under certain conditions, θn given by (2.4) is asymptoti-

cally optimal with rate of convergence O
´

n´λ{2
¯

for some λ P p0,2q. We will use this measure of

estimator quality to determine the best estimator for θ

11



CHAPTER III

MONOTONIZING THE EMPIRICAL BAYES ESTIMATOR

3.1 Randomized Testing

In statistics, randomization is essential to the experimental process. Arbitrarily choosing

samples from a population may seem "random" but this method is prone to hidden biases. For

example, if I were to select a sample of student names from a class roster, I might be more inclined

to choose names that are familiar to me or perhaps my friends or colleagues. Because these biases

are often overlooked, it is important to incorporate randomization into the experimental design

which serve to "control" or reduce bias by all means. Such considerations provide legitimacy to

both the researchers and the study. For more of a basic introduction to randomization, see „[1].

Example 3.1.1 (Randomized Test). Let X1,X2,X3 be a sample from Bernoullip1, pqwhere 0ď pď 1

and p is unknown. Let x be the number of successes in 3 independent trials. Consider the null

hypothesis that H0 : p“ 1
3 and the alternative that H1 : p“ 2

3 set at a significance level of α “ 0.05.

The probabilities are shown in the table below: Clearly PpX “ 3q fully falls in the rejection region

Table 3.1: Probability values for tX1,X2,X3u „ Bernoullip1, pq

x PpX “ xq

0
3!

3!0!

ˆ

1
3

˙0ˆ2
3

˙3

“
8

27
« 0.296

1
3!

2!1!

ˆ

1
3

˙1ˆ2
3

˙2

“
4
9
« 0.444

2
3!

1!2!

ˆ

1
3

˙2ˆ2
3

˙1

“
2
9
« 0.222

3
3!

0!3!

ˆ

1
3

˙3ˆ2
3

˙0

“
1

27
« 0.037
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and PpX “ 2q,PpX “ 1q,PpX “ 0q do not. The issue is that we are not using α “ 0.05 as our exact

critical value; this leads us to establishing a bias for certiain vlaues of x in the decision process. A

way to fix this is to randomize the test. In this case we will add a weight c to X “ 2, that is, we

partially include the point X “ 2 so that we obtain the exact critical value α “ 0.05,

PpX “ 3q` cPpX “ 2q “ 0.05

1
27
` c

2
9
“ 0.05

c “
7

120

Thus, the optimal test of size α “ 0.05 is given by

Φθ pxq :“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if xă 2

7
120

if x“ 2

1 if x“ 3.

As you can see, this type of randomization procedure assigns values by chance not by choice.

In the above example the weight c is used to obtain the exact α value and eliminate bias. There

are other ways to randomize an experiment; in the section that follows we use a function, namely

Dpa | xq, to randomize the EB estimator θn as seen in [20].

3.2 Van-Houwilengen’s Monotonization Procedure

The EB estimator is not monotone with respect to x. We provide an illustration of θn in the

Chapter IV numerical study. This is unwanted behavior for an estimator following BT distribution.

Proposition 2. The BT distribution, (1.1) has monotone likelihood ratio (MLR), i.e.,

qpxq “
prpx | θ2q

prpx | θ1q
(3.1)

is increasing with respect to x whenever 0ă θ1 ă θ2 ă 1.

13



The above proposition is proved in Soltero [18] but we will prove it here for easy reference.

Proof. Let g be the natural logarithm of the likelihood ratio q. 0ă θ1 ă θ2 ă 1 and r P N. Then,

qpxq “
prpx;θ2q

prpx;θ1q
“

ˆ

θ2

θ1

˙x´r

e´pθ2´θ1q

is an increasing function of x for 0ă θ1 ă θ2 ă 1. Indeed,

gpxq “ log
prpx;θ2q

prpx;θ1q
“ log

«

ˆ

θ2

θ1

˙x´r

e´xpθ2´θ1q

ff

“ px´ rqplogθ2´ logθ1q´ xpθ2´θ1q.

Thus, for 0ă θ1 ă θ2 ă 1

g1pxq “
d
dx

log
prpx;θ2q

prpx;θ1q
“ log

´

θ2e´θ2
¯

´ log
´

θ1e´θ1
¯

ą 0,

because log
´

θe´θ

¯

is an increasing function for 0ă θ ă 1. This completes the proof.

Seeing as how the monotonicity property of the BT distribution is desirable, it is also

desirable in the estimates we compute for θ ; however as Houwalingen [20] points out, this is not

the case for the EB estimator; for this reason, he outlined a classical approach for monotonizing the

EB estimator. In addition to monotonizing the θn, Houwalingen also shows that the monotonized

EB estimator, θ˚n has a smaller Regret risk than the EB estimator θn, i.e., θ˚n is a "better" estimator

than θn. A procedure for constructing a monotone estimator that dominates an EB estimator for

distributions with MLR is given. In his paper, Houwalingen also provides examples of this estimator

for the Geometric and Poisson distributions. In Chapter IV, we discuss yet another example to this

classical construction by monotonizing the EB estimator for BT distribution.

Estimators for discrete distributions with MLR can be made monotone applying a procedure

developed in [20] (see also [22]). Consider a simple randomized version of the estimator θnpxq

14



represented by the following function Dpa | xq for a P p0,1q:

Dpa | xq :“

$

’

&

’

%

0 if θnpxq ą a,

1 if θnpxq ď a.

The number Dpa | xq is the probability that an estimate θnpxq less than or equal to a is selected given

X “ x. In other words, Dpa | xq is a cdf on the action space p0,1q for every X “ x. Then define for

a P p0,1q

αpaq :“ EpDpa | Xqq “
ÿ

tx: θnpxqďau

prpx | aq. (3.2)

Denote Fpx | θ q :“
x
ÿ

k“r

prpk | θ q for x ě r and assume Fpr´1 | θ q “ 0. Now, we can construct a

randomized estimator with D˚pa | xq as follows

D˚pa | xq :“

$

’

’

’

’

’

&

’

’

’

’

’

%

0 if αpaq ă Fpx´1 | aq
αpaq´Fpx´1 | aq

Fpx | aq´Fpx´1 | aq if Fpx´1 | aq ď αpaq ď Fpx | aq

1 if Fpx | aq ă αpaq,

(3.3)

with D˚p1 | xq “ 1, and D˚p0 | xq “ limaÓ0 D˚pa | xq. Let a P pθ0,θ1q be fixed. It follows from the

construction of D˚, that EaD˚pa | Xq “ EaDpa | Xq.

The next proposition shows that, using the monotone estimator D˚, one can construct another

(non-random) monotone estimator θ˚n , say, with risk less than or equal to the risk of the θn.

Proposition 3. Let D˚pa | xq be the monotone estimator constructed in (3.3).Define

θ
˚
n pxq :“

ż 1

0
adD˚pa | xq. (3.4)

Then the monotone non-random estimator θ˚n pxq dominates D˚pa | xq, which itself dominates the

15



initial estimator Dpa | xq, i.e.,

Rpθ ,θ˚n q ď Rpθ ,D˚q ď Rpθ ,Dq. (3.5)

Proof. The proposition follows from the theorem in [20]. It suffices to verify that BT distribution

satisfies all assumptions of the theorem. In particular, it has a monotone likelihood ratio as it was

shown in (3.1). Therefore, the second inequality in (3.5) follows as in [20]. That is D˚ represents a

monotone estimator, which dominates the initial estimator represented by D for all θ P p0,1q. It

is not difficult to see that, under the linex loss function, D˚ itself is dominated by the non-random

monotone estimator θ˚n . Indeed, using Jensen’s inequality, we have

Rpθ ,θ˚n pXqq “ ErLpθ ´θ
˚
n pXqqs

“ E
”

ebpθ˚n pXq´θq
´bpθ˚n ´θ q´1

ı

“ E

»

–´b

˜

ż 1

0
adD˚pa,Xq´θ

¸

fi

fl

ď E

˜

ż 1

0
´bpa´θ qdD˚pa,Xq

¸

“ Rpθ ,D˚pa,Xqq.
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CHAPTER IV

NUMERICAL STUDY

In this section, using simulations, we compare the performance of the monotone EB estimator

θ˚n with the initial EB estimator θn and the maximum likelihood estimator θmle. We also consider

the effect that the value of b has on the performance of each of the estimates. The algorithm for the

simulations is provided in Appendix A. In applications, there is a compelling argument [13] for θ

to take on values in a sub-interval of p0,1q. Additionally, we want to consider the values of r which

represents some real quantity. Let’s consider r then to be the initial number of infected individuals

coming into a country with a communicable disease. Lastly, we consider values of b ă 0 which

penalizes underestimation more severely, because in an epidemiological framework, estimates that

are smaller than the parameter can lead to health officials being under prepared for a potential

outbreak. To carry out the simulation, we assume Unip0.5,0.8q prior. We choose this range of values

because at the low end, a reproductive number of θ “ 0.5 is indicative of a healthy epidemic that

should die out on its own. On the high end, a reproductive number of θ “ 0.8 is indicative of a viral

outbreak that could become epidemic. Setting r “ 3 and b“´1, we evaluate θGpxq and calculate

the minimum Bayes risk Rpθ ,θGq “ ErLpθGpxq´θ qs “ 0.003299071. The maximum likelihood

estimator θmlepxq “ px´3q{x has regret risk Rpθmleq “ Rpθ ,θMLEq´Rpθ ,θGq “ 0.05529896.
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4.1 The Effect of n in the Empirical Bayes Scheme

Within the empirical Bayes framework, consider n“ 80 independent copies

pX1,Θ1q,pX2,Θ2q, . . . ,pX80,Θ80q (4.1)

of the random pair pX ,Θq, where Θ is Unip0.5,0,8q variable and, given Θ, X follows the BT

distribution (2.3). Assume that Xi are observable, but Θi are not. For our simulation study, we

simulate 80 pairs like in (4.1). For the jth pair 1ď j ď 80, we calculate the EB estimate θ
p jq
80 pxq. We

estimate Spθ80q by the average (for the 80 pairs) Ŝpθ80q :“
1

80

80
ÿ

j“1

Spθ p jq
80 q and calculate the standard

error. Next, we monotonise the EB estimator and compute the estimate θ
˚pkq
80 pxq. Similarly to Spθ80q,

we estimate Spθ˚80q by the average Ŝpθ˚80q. We repeat the entire procedure for n“ 20, 40, and 60 as

well. Once complete, we report the numerical results for the regret risks ratios w.r.t θmle in Table

4.1 below. The improvement of θ˚n over θn and θmle is quite substantial.

Table 4.1: Estimates for the Regret Risk Ratios of θn, and θ˚n w.r.t θmle

n Ŝpθmleq Ŝpθnq Ŝpθ˚n q

20 0.05529896 Ĳ 31.6% İ -77.3%
40 0.05529896 İ -12.4% İ -82.0%
60 0.05529896 İ -39.0% İ -85.6%
80 0.05529896 İ -52.4% İ -86.5%

All standard errors are less than 10´4; b“´1 and r “ 3 .

Notice that the monotonized estimator outperforms the other estimators, especially as sample

size increases, indicated by the larger decrease in the regret risk ratios in Table 4.1. In other words,

the monotone empirical estimate is closest to the minimum Bayes Risk and is better estimate in

comparison to the maximum likelihood and Empirical Bayes estimates. Additionally we present

the complete results – we average the monotone estimate and empirical estimate across all 10

realizations of size n“ 80 – and compare them to the maximum likelihood and Bayes estimate in

Figure 4.1 to illustrate the estimators’ behaviour.
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Figure 4.1: Average estimations given n“ 80, r “ 3, b“´1, and prior Up0.5,0.8q.

4.2 Investigating the Effect of the Penalization Weight b

Next we investigated the effects of changing the penalization weight b. As discussed

previously, it is more likely that the consequences of underestimating the reproduction number θ

are more severe than overestimating. If public health officials use underestimated reproduction

numbers to establish and drive health mandates, then the community may be under preparing for a

potentially more infectious disease. Hence we prefer to consider values of bă 0. However, we want

to verify whether this is supported by our numerical study. Essentially, we are curious to see if the

estimates perform better when bă 0. To test this, we computed the regret risk ratios for each of the

three estimates θMLE , θn and θ˚n , for a simulation where we consider n“ 20 independent copies,

with r “ 3 and b“ t´2,´1.5,´1,´.5, .5,1,1.5,2u. The following results were organized in Table

4.2 below.
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Table 4.2: Regret Ratios of θn, and θ˚n w.r.t θmle

b Ŝpθmleq Ŝpθnq Ŝpθ˚n q

-2 0.27568647 Ĳ 21.7% İ -85.6%
-1.5 0.13844631 Ĳ 25.6% İ -82.1%
-1 0.05529896 Ĳ 31.6% İ -77.3%
-.5 0.01250272 Ĳ 39.6% İ -71.7%
.5 0.01040670 Ĳ 6.00% İ -39.2%
1 0.03828749 Ĳ 32.5% İ -25.3%
1.5 0.07963463 Ĳ 66.7% İ -7.69%
2 0.13149226 Ĳ 107.3% Ĳ 15.7%

Note for bă 0, the monotonized EB has lower regret than when
bą 0.

As suspected, the regret risk ratios are lower when b takes on negative values. Indeed, the

harsher we penalize underestimation, the lower the regret risk is in comparison to θmle, indicating

that the best estimator from the group is the monotone empirical estimate θ˚n .

When looking at Figure 4.1, we observed that although the monotone estimate has a lower

regret risk ratio than the maximum likelihood estimator, the MLE followed more closely the

behavior of the Bayes estimate than the monotone estimate. In an attempt to "correct" the behavior

of the empirical estimates to follow more closely that of the Bayes estimate θG, we take the average

between θn and θ˚n for each simulation, and then average across the 10 simulations. The result is an

estimate, denoted θ ave
n . Most notably, this new estimate, much like the empirical Bayes estimate θn,

is not monotone, however its behavior heavily resembles that of the Bayes estimate. This should

indicate a very small regret risk. We compared θ ave
n to the MLE and Bayes estimate graphically in

Figure 4.2. Additionally, for n “ 20,40,60,80 we computed the regret risk ratios w.r.t the MLE,

with r “ 3, b“´1, and prior Up0.5,0.8q. The results were compiled in Table 4.3 below.
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Figure 4.2: Comparison between θG, θmle and θ ave
n given n “ 80, r “ 3, b “ ´1, and prior

Up0.5,0.8q.

Table 4.3: Regret Risk Ratios of θn, θ˚n , and θ ave
n w.r.t θmle

n Ŝpθmleq Ŝpθnq Ŝpθ˚n q Ŝpθ ave
n q

20 0.05529896 Ĳ 31.6% İ -77.3% İ -81.3%
40 0.05529896 İ -12.4% İ -82.0% İ -94.7%
60 0.05529896 İ -39.0% İ -85.6% İ -97.7%
80 0.05529896 İ -52.4% İ -86.5% İ -97.3%

All standard errors are less than 10´4; b“´1 and r “ 3 .
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CHAPTER V

GENERALIZED POISSON DISTRIBUTION

The Poisson distribution has commonly been used to describe the behavior of living beings

and other phenomena over a period of time and is dependent on a constant rate λ ; however, the

randomness of the Poisson distribution, while ideal, is not always practical even in "natural" events.

For example, consider the number of automobile accidents that occur with constant rate λ . Factors

such as experience, road condition, weather, etc. "effect the personal liability of an individual" [5]

which lead to different rates in accidents among drivers. Moreover, this can result in unequal mean

and variance in the numerical data,

Out of all the power series distributions, the Poisson distribution is uniquely characterized

as having equal mean and variance [5]; however, in populations that are supposed to be Poissonian,

researchers have observed that this is not always the case. In addressing these particular issues,

Consul and Jain, in 1970 [5], introduced a generalized Poisson distribution (GPD) which has two

parameters, say λ and τ . Let X be a discrete r.v. and let PXpτ,λ q denote the probability that X “ x

such that xě 0. The GPD has pmf:

Definition 6.

PXpτ,λ q “

#

τ

x!pτ`λxqx´1e´pτ`λxq, x“ 0,1,2, . . .

0, xąM, λ ă 0

where τ ą 0, maxp1,´τ{Mq ă λ ď 1 and Mpě 4q is the largest positive integer for which τ`Mλ ą

0 when λ is negative. [5]
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5.1 One Subfamily of Generalized Poisson Distribution

Let’s now consider a particular subfamily of the generalized Poisson distribution (PGPD)

as it pertains to Borel-Tanner distribution. Assume that the number of ancestors Z0 “ r follows

Poispτq for τ ą 0, that is

PpZ0 “ rq “
τre´τ

r!
, r “ 0,1, . . .

As it was shown in Section 1.2, if Z0 “ r and the offspring distribution is Poispλ q with 0ă λ ă 1,

then the total progeny Y follows BT distribution

PpY “ y | Z0 “ rq “
ryy´r´1

py´ rq!
λ

y´re´λy, y“ r,r`1, . . .

Therefore, since 0ď r ď y we can obtain

PpY “ yq “
y
ÿ

r“0

PpY “ y | Z0 “ rqPpZ0 “ rq (5.1)

“

y
ÿ

r“0

ryy´r´1

py´ rq!
λ

y´re´λy τre´τ

r!

“
e´pτ`λyq

y!

y
ÿ

r“1

py´1q!
py´ rq!pr´1q!

pλyqy´r
τ

r
pset k “ r´1q

“
τe´pτ`λyq

y!

y´1
ÿ

k“0

py´1q!
py´1´ kq!k!

pλyqy´1´k
τ

k

“
τpτ`λyqy´1

y!
e´pτ`λyq.

Next we further look at a subfamily of the PGPD discussed in ([5] pg44). Let the ancestors

follow Poipτq with probability generating function (pgf) f ptq “ exptτpt´ 1qu for τ ą 0 and the

offspring distribution is Poipλ q with pgf gptq “ exptλ pt´1qu for 0ă λ ă 1. Lastly we assume that

there exists a ϕ such that

τ “ ϕλ , ϕ ě 1. (5.2)
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It follows then from (5.1) and (5.2), changing Y to X for 0ă λ ă 1 and ϕ ě 1 that

PpX “ xq “ aϕpxqλ xe´λ pϕ`xq, x“ 0,1, . . . (5.3)

where aϕpxq “ 1
x!ϕpϕ` xqx´1.

The mean and variance of (5.3) ([5] pg.13) is

ErXs “
ϕλ

p1´λ q
and VarrXs “

ϕλ

p1´λ q2
.

5.2 Bayesian Estimators for λ

In this section we will estimate λ using the the empirical Bayes approach as seen in

Chapter II, under squared error loss function. Squared error loss for a parameter λ is defined as

Lpλ , λ̂ q “ pλ ´ λ̂ q2. The Bayes estimator for λ , under squared error loss and assuming that ϕ is

known, equals the posterior mean:

λGpxq “

ş1
0 aϕpxqλ x`1e´λ pϕ`xqdGpλ q
ş1

0 aϕpxqλ xe´λ pϕ`xqdGpλ q
“

ş1
0 λ x`1e´λ pϕ`xqdGpλ q
ş1

0 λ xe´λ pϕ`xqdGpλ q
“

ψGpxq
qGpxq

. (5.4)

Note that since 0ă λ ă 1, we have 0ď ψGpxq{qGpxq ď 1. Next we construct an empirical Bayes

estimate by modifying the procedure in Section (2.3), in Chapter II. Define for j “ 1,2, . . . ,n and

ϕ ě 1

ψn jpxq “
a1pX j´ x´1q

aϕpX jq
IpX j ě x`1q and ψnpxq “

1
n

n
ÿ

j“1

ψn jpxq.

Define also for j “ 1,2, . . . ,n and ϕ ě 1,

qn jpxq “
1

aϕpxq
IpX j “ xq and qnpxq “

1
n

n
ÿ

j“1

qn jpxq.

Motivated by [13], we will prove the following proposition. Recall the assumptions in 2.3 and that

the expectation En is taken with respect to X1,X2, . . . ,Xn.
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Proposition 4.

piq Enrψnpxqs “ ψGpxq and Enrqnpxqs “ qGpxq.

piiq Varnrψnpxqs ď
ψGpxq

n
and Varnrqnpxqs ď

qGpxq
aϕpxq

1
n
.

Proof. We begin by looking at the first moment of ψnpxq. Making the index change y“ t´ x´1

Enrψn jpxqs “
8
ÿ

t“x`1

a1pt´ x´1q
aϕptq

ż 1

0
aϕptqλ te´λ pt`ϕq dGpλ q

“

8
ÿ

y“0

a1pyq
ż 1

0
λ

y`x`1e´λ py`x`1`ϕq dGpλ q

“

ż 1

0
λ

x`1e´λ px`ϕq

8
ÿ

y“0

a1pyqλ ye´λ py`1q dGpλ q

“ ψGpxq.

Since
ř

yě0
a1pyqλ ye´λ py`1q “ 1, therefore

Enrψnpxqs “ En

»

–

1
n

n
ÿ

j“1

ψn jpxq

fi

fl“ ψGpxq.

Next, we look at the first moment of qnpxq. We have

En
“

qn jpxq
‰

“
1

aϕpxq

ż 1

0
aϕpxqλ xe´λ px`ϕq dGpλ q

“

ż 1

0
λ

xe´λ px`ϕq dGpλ q

“ qGpxq.

Thus,

Enrqnpxqs “ En

»

–

1
n

n
ÿ

j“1

qn jpxq

fi

fl“ qGpxq.
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This proves part (i) of Proposition 4. Let us turn to the variances of qnpxq and ψnpxq. We have

Varn

”

qn jpxq
ı

“Varn

«

1
aϕpxq

IpX j “ xq

ff

“
1

a2
ϕpxq

Varn
“

IpX j “ xq
‰

“
1

a2
ϕpxq

PpX j “ xqp1´PpX j “ xqq

ď
1

a2
ϕpxq

ż 1

0
aϕpxqλ xe´λ pϕ`xq

“
qGpxq
aϕpxq

.

Therefore,

Varn

”

qnpxq
ı

“Varn

»

–n´1
n
ÿ

j“1

qn jpxq

fi

flď
qGpxq
aϕpxq

1
n
.

Let us prove that for j “ 1,2, . . . ,n, ϕ ě 1 and xě 0

0ď ψn jpxq “
a1pX j´ x´1q

aϕpX jq
IpX j ě x`1q ď 1,

where, as before, atpxq “ tpt` xqx´1{x!. Denoting z :“ x j´ x´1, we obtain

a1pzq
aϕpz` x`1q

“
p1` zqz´1

z!
pz` x`1q!

ϕpϕ` z` x`1qz`x

“
p1` zqz´1pz` x`1qpz` xq . . .pz`2qpz`1q

ϕpϕ` z` x`1qz`x

“
1
ϕ

p1` zqz

p1` z` x`ϕqz
pz` x`1qpz` xq . . .pz`2q

pz` x`1`ϕqx

ď 1,

since all three factors are less than one. Thus,

Varn
“

ψn jpxq
‰

ď En
“

ψ
2
n jpxq

‰

´
`

En
“

ψn jpxq
‰˘2
ď En

“

ψ
2
n jpxq

‰

ď En
“

ψn jpxq
‰

“ ψGpxq.
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Thus,

Varn

”

ψnpxq
ı

“Varn

«

1
n

n
ÿ

j“1

ψn jpxq

ff

ď
1
n

ψGpxq

This proves part (ii). Hence the proof of Proposition 4 is complete.

Notably Proposition 4 implies ψnpxq and qnpxq are both unbiased and consistent estimators

for ψGpxq and qGpxq respectively. Following similar constructions in Singh and Wei [17] and Liang

[13], we define the EB estimator λ̃n for λ as

Definition 7.

λ̃npxq “
ψnpxq
qnpxq

^1

where a^b“ minta,bu.

Note that for fixed X “ x

0ď
ψnpxq
qnpxq

^1,
ψGpxq
qGpxq

ď 1.

Under the squared error loss function, the Bayes risk of the EB estimator λ̃n is given by

RpG, λ̃nq “ EnEpX ,Λqrλ̃npxq´Λs
2,

where Λ is the r.v. with value λ . Therefore the regret risk of λ̃n can be written as

Spλ̃n,λGq “ RpG, λ̃nq´RpG,λGq “ EnEpX ,Λqrλ̃npxq´λGpxqs2.

Indeed,

RpG, λ̃nq “ EnEpX ,Λqrλ̃npxq´Λs
2

“ EnEpX ,Λqrλ̃npxq´λGpxq`λGpxq´Λs
2

“ EnEpX ,Λqrλ̃npxq´λGpxqs2`EnEpX ,ΛqrλGpxq´Λs
2
´2EnEpX ,Λqrpλ̃npxq´λGpxqqpλGpxq´Λqs

“ EnEpX ,Λqrλ̃npxq´λGpxqs2`RpG,λGq.
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Next we consider if the EB estimator λ̃n is asymptotically optimal for every prior G and at

what rate.

Theorem 1. For each prior distribution G, the EB estimator λ̃n is asymptotically optimal.

Proof. Let X “ x be fixed. Then

Spλ̃npxq,λGpxqq “
8
ÿ

x“0

Enrλ̃npxq´λGpxqs2 pGpxq,

where
8
ř

x“0
pGpxq “ 1. Following Robbins [15], it is sufficient to show that:

lim
nÑ8

Enrλ̃npxq´λGpxqs2 “ 0. (5.5)

Recall that the second moment of a non negative r.v. Z is given by

ErZ2
s “

ż 8

0
2tp1´PpZ ď tqqdt.

It follows then

Enrλ̃npxq´λGpxqs2 “
ż 8

0
2tP

`

∣∣∣λ̃npxq´λGpxq
∣∣∣ą t

˘

dt,

“

ż

λGpxq

0
2tPpλ̃npxq´λGpxq ă ´tqdt`

ż 1´λGpxq

0
2tPpλ̃npxq´λGpxq ą tqdt.

It suffices then, in order to prove (5.5), to show that @ t ą 0 both

lim
nÑ8

Ppλ̃npxq´λGpxq ă ´tq “ 0 and lim
nÑ8

Ppλ̃npxq´λGpxq ą tq “ 0.

Without loss of generality, let’s consider the limit of the right tail probability. For t ą 0, we rearrange

the terms to get

Ppλ̃npxq´λGpxq ą tq “ P
´

ψnpxq
qnpxq

^1´
ψGpxq
qGpxq

ą t
˘

ď P
´

ψnpxq
qnpxq

´
ψGpxq
qGpxq

ą t
¯

“ P
´

ψnpxq´
´

t`
ψGpxq
qGpxq

¯

qnpxq ą 0
¯
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“ P

˜

rψnpxq´ψGpxqs´
´

t`
ψGpxq
qGpxq

¯

rqnpxq´qGpxqs ą tqGpxq

¸

. (5.6)

Next we use the following inequality. For any r.v. V and W , and cą 0, then

PpV ´W ą cq ď P
´

V ą
c
2

¯

`P
´

W ă´
c
2

¯

. (5.7)

Indeed, for cą 0

PpV ´W ą cq “ P
´

V ´W ą c,V ą
c
2

¯

`P
´

V ´W ą c,V ď
c
2

¯

ď P
´

V ą
c
2

¯

`P
´

V ´W ą c,V ď
c
2
,W ă´

c
2

¯

`P
´

V ´W ą c,V ď
c
2
,W ě´

c
2

¯

.

But P
´

V ´W ą c,V ď c
2 ,W ě´ c

2

¯

“ 0 so we see

PpV ´W ą cq ď P
´

V ą
c
2

¯

`P
´

W ă´
c
2

¯

.

Applying equation (5.7) to equation (5.6), we obtain

Ppλ̃npxq´λGpxq ą tq ď P
´

ψnpxq´ψGpxq ą
tqGpxq

2

¯

`P

˜

qnpxq´qGpxq ă
´tqGpxq

2pt` ψGpxq
qGpxq

q

¸

. (5.8)

Now by Proposition 4, we have Erψnpxqs “ ψGpxq and Erqnpxq “ qGpxqs; applying Chebysher

inequality and Proposition 4(ii), we have for t ą 0

Ppψnpxq´ψGpxqq ą
tqGpxq

2
ď

Varrψnpxqs
tqGpxq{2

2

ď
4

t2q2
Gpxq

ψGpxq
n

Ñ 0 as nÑ8. (5.9)

Similarly,

Ppqnpxq´qGpxqq ď
´tqGpxq

2
´

t` ψGpxq
qGpxq

¯ ď

4
´

t` ψGpxq
qGpxq

¯2

t2q2
Gpxq

Var
”

qnpxq
ı
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ď

4
´

t` ψGpxq
qGpxq

¯2

t2q2
Gpxq

qGpxq
aϕpxq

1
n
Ñ 0 as nÑ8. (5.10)

Therefore by (5.6)-(5.10), for any t ą 0 we conclude

lim
nÑ8

Ppλ̃npxq´λGpxq ą tq “ 0.

Following a similar process, one can show that for any t ą 0

lim
nÑ8

Ppλ̃npxq´λGpxq ă ´tq “ 0,

the details of which are left to the reader. Hence the proof is complete.

Theorem 2. Given 0ď ψnpxq
qnpxq

^1, ψGpxq
qGpxq

ď 1, suppose 0ă µ ă 2. If the prior distribution G satisfies:

8
ÿ

x“0

aϕpxqrqGpxqs1´µ{2
ă8,

then the EB estimator λ̃npxq is asymptotically optimal at a rate Opn´µ{2q.

Proof. Recall that

0ď
ψnpxq
qnpxq

^1,
ψGpxq
qGpxq

ď 1.

Next, let 0ă µ ă 2. Then,

En

«

´

ψnpxq
qnpxq

^1
¯

´
ψGpxq
qGpxq

ff2

ď En

«∣∣∣∣ψnpxq
qnpxq

´
ψGpxq
qGpxq

∣∣∣∣^1

ff2

ď En

«∣∣∣∣ψnpxq
qnpxq

´
ψGpxq
qGpxq

∣∣∣∣^1

ffµ

. (5.11)

Using Lemma 3.1 of Singh and Wei [17], we obtain

ď En

«∣∣∣∣ψnpxq
qnpxq

´
ψGpxq
qGpxq

∣∣∣∣^1

ffµ
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ď 2rqGpxqs´µ

˜

En

”∣∣ψnpxq´ψGpxq
∣∣ıµ

`

∣∣∣∣ψGpxq
qGpxq

`1
∣∣∣∣µ En

”∣∣qnpxq´qGpxq
∣∣ıµ

¸

ď
2

qµ

Gpxq
En

”∣∣ψnpxq´ψGpxq
∣∣µ ı` 2µ`1

qµ

Gpxq
En

”∣∣qnpxq´qGpxq
∣∣µ ı. (5.12)

Applying Proposition 4 we have for 0ă µ ă 2

2
qµ

Gpxq
En

”∣∣ψnpxq´ψGpxq
∣∣µ ıď 2

qµ

Gpxq
En

”´

ψnpxq´ψGpxq
¯2 µ

2
ı

ď
2

qµ

Gpxq

˜

En

”

`

ψnpxq´ψGpxq
˘2
ı

¸

µ

2

[by Jensen’s inequality]

“
2

qµ

Gpxq

´

Varn
“

ψnpxq
‰

¯

µ

2
ď

2
qµ

Gpxq

´

ψGpxq
n

¯

µ

2
„ n´

µ

2 as nÑ8.

(5.13)

Similarly we have for 0ă µ ă 2

2µ`1

qµ

Gpxq
En

”∣∣qnpxq´qGpxq
∣∣µ ıď 2µ`1

qµ

Gpxq
En

”

`

qnpxq´qGpxq
˘2
ı

µ

2

“
2µ`1

qµ

Gpxq

´

Varn
“

qnpxq
‰

¯

µ

2
ď

2µ`1

qµ

Gpxq

˜

qGpxq
aϕpxqn

¸

µ

2

„ n´
µ

2 as nÑ8.

(5.14)

Substituting the inequalities (5.13) and (5.14) into (5.12), we obtain

En

«˜

ψnpxq
ψGpxq

^1

¸

´
ψGpxq
qGpxq

ff2

ď
2pψGpxqqµ{2

qµ

Gpxq
1

nµ{2 `
2µ`1

pqGpxqqµ{2paϕpxqqµ{2
1

nµ{2

ď
cpϕ,µq

nµ{2

`

qGpxq
˘´µ{2

, (5.15)

where cpϕ,µq “ 2
´

1` 2µ

paϕ pxqqµ{2

¯

. Recall that for X “ x,

Spλ̃npxq´λGpxqq “
8
ÿ

x“0

En

”

λ̃npxq´λGpxq
ı2

pGpxq,
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where pGpxq “ aϕpxqqGpxq. Substituting the inequality (5.15) into the above, we see that

Spλ̃npxq´λGpxqq ď
cpϕ,µq

nµ{2

8
ÿ

x“0

aϕpxqqGpxqpqGpxqqµ{2

“
cpϕ,µq

nµ{2

8
ÿ

x“0

aϕpxqpqGpxqq1´µ{2
“ Opn´µ{2

q, (5.16)

by our initial assumption that
ř8

x“0 aϕpxqrqGpxqs1´µ{2 ă 8. Thus the proof of Theorem 2 is

complete.

Example 5.2.1. Epidemics can me modelled as a branching process as seen in Chapter I where

the total progeny of the process is a Borel-Tanner r.v. Indeed, a viral outbreak starts with an initial

number of infected, each of which go on to possibly spread the disease. This generates the process

and the secondary infections become the new generation for the next branch of the process. In

some case the number of initial infected is a known constant. Let’s consider the case where the

original number of infected is a random variable with distribution Poissonpτq. Then let the offspring

(secondary infections) distribution be Poissonpλ q.

In most cases, the rate of secondary infections λ , is proportional to τ [5]. Hence we can

reasonably assume that

τ “ λϕ , for some ϕ ě 0 (5.17)

This results in a restricted generalized Poisson distribution with p.m.f. (5.3), which represents

the probability that the total progeny of the branching process is equal to x infected individuals.

It should be noted that when ϕ “ 0 or τ “ 0, the restricted gpd becomes the standard Poisson

distribution [5]. As λ Ñ 1, the disease is likely to become pandemic; otherwise the disease will

die out. Let’s consider then the sub-critical process where λ ă 1. That is the total progeny of the

process is finite with probability 1. It is therefore reasonable to also assume that D δ0, λ0 such that

0 ă δ0 ď λ ď λ0 ă 1 and a prior distribution G such that Gpλ0q “ 1. We will now show that the

empirical Bayes estimate λ̃npxq of λ in this case is asymptotically optimal, converging at a rate

Opn´µ{2q, as defined in Theorem 2.
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We need to show that
8
ř

x“0
aϕpxq

“

qGpxq
‰2´ µ

2 ă8. Recall that

aϕpxq “
ϕpx`ϕqx´1

x!
.

By our assumption in 5.17, D M P Z such that 0ď ϕ ďM. Then,

aϕpxq “
ϕpx`ϕqx´1

x!
ď

Mpx`Mqx´1

x!
.

Letting y“ x`M ñ x“ y´M, we see that,

aϕpxq ď
Mpx`Mqx´1

x!

“
Myy´M´1

py´Mq!

“
Myy

yM`1 ¨
ypy´1q ¨ ¨ ¨ py´M`1q

y!
. (5.18)

Next, recall the Stirling Formula:

x!“ xx`1{2e´x`εx
?

2π,

where 1
12x`1 ă εx ă

1
12x . Using the above formula, we can see that (5.18) becomes

aϕpxq “
M

yM`1 ¨
ypy´1q ¨ ¨ ¨ py´M`1q

y1{2e´y`εy
?

2π

“
Mey

y3{2 ¨
ypy´1q ¨ ¨ ¨ py´M`1q

yMeεy
?

2π

“
Mey´M`M

y3{2 ¨
ypy´1q ¨ ¨ ¨ py´M`1q

yMeεy
?

2π

“
Mey´M`M

y3{2 ¨
ypy´1q ¨ ¨ ¨ py´M`1q

yMeεy
?

2π

ď
MeM

y3{2eεy
?

2π
ey´M. (5.19)
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Additionally, note that λe´λ is an increasing function for 0ď λ ď λ0 ă 1. Indeed,

d
dλ
rλe´λ

s “ e´λ
p1´λ

2
q ą 0 iff 0ă λ ă 1.

Since λ ď λ0 by our initial assumption, then

λe´λ
ď λ0e´λ0

ď e2{p2´µq
λe´λ

ď e2{p2´µq
λ0e´λ0

“ 1. (5.20)

Note that the identity presented in (5.20) is true for µ “ 2
“

1´1{pλ0´ lnλ0q
‰

.Indeed,

e2{p2´µq
“

eλ
0

λ0

ñ lne2{p2´µq
“ ln

eλ
0

λ0

ñ
2

2´µ
“ lneλ

´ lnλ0

ñ µ “ 2
“

1´1{pλ0´ lnλ0q
‰

.

Suppose 0ă µ ă 2. It follows that

raϕpxqs2{p2´µq
pλe´λ

q
x
ď

«

MeM

y3{2eεx
?

2π

ff2{p2´µq

pλe´λ
q

x by (5.19)

ď

«

MeM

y3{2eεx
?

2π

ff2{p2´µq

pe2{p2´µq
λe´λ

q
x by (5.20)

ď

«

MeM

y3{2eεx
?

2π

ff2{p2´µq

(5.21)

34



Lastly, recalling that the support of G is rδ0,λ0s such that 0ď δ0 ď λ ď λ0 ă 1, we obtain

8
ÿ

x“0

aϕpxqrqGpxqs1´µ{2
“

8
ÿ

x“0

aϕpxq

«

ż

λ0

δ0

λ
xe´λ pϕ`xqdGpλ q

ff1´µ{2

“

8
ÿ

x“0

aϕpxq

«

ż

λ0

δ0

pλe´λ
q

xe´λϕdGpλ q

ff1´µ{2

ď

8
ÿ

x“0

aϕpxq

«

ż

λ0

δ0

pλe´λ
q

xdGpλ q

ff1´µ{2

ď

8
ÿ

x“0

«

ż

λ0

δ0

raϕpxqs2{p2´µq
pλe´λ

q
xdGpλ q

ff1´µ{2

ď

8
ÿ

x“0

«

ż

λ0

δ0

«

MeM

y3{2eεx
?

2π

ff2{p2´µq

dGpλ q

ff1´µ{2

by (5.20)

ď

8
ÿ

y“M

MeM

y3{2eεx
?

2π

˜

ż

λ0

δ0

λ
´ϕdGpλ q

¸p2´µq{2

where the integral is ă că8

ď
cMeM
?

2π

8
ÿ

y“M

1
y3{2 ă8 by p-series test. (5.22)

Hence, we that Theorem 2 is satisfied. Therefore we conclude that the EB estimator λ̃n is asymptot-

ically optimal at a rate of Opn´µ{2q, where 0ă µ “ 2r1´1{pλ0´ lnλ0qs ă 2.
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CHAPTER VI

CLOSING REMARKS

In this paper, we were able to successfully develop Empirical Bayes estimates for the

reproduction parameter θ with Borel-Tanner distribution. Our interest stemmed from applying

branching processes as models of epidemic outbreaks where θ equals the average number of

secondary infections caused by a host. More importantly, our Empirical Bayes estimate are useful

in that they bypass the knowledge of an existing prior. This aligns with real life circumstances since

due to the random nature of disease spread and the many variables that contribute to a pandemic, it

is often difficult or impossible to ascertain a prior. In addition, our we were able to improve upon

the empirical Bayes estimates by monotonizing; indeed the monotone the new monotone estimator

is strictly better than the original empirical estimation, as evident by the smaller regret risk as seen

in Chapter IV. The non-monotone empirical Bayes estimator θn turns out to be quite jumpy (see

Figure 4.1) and does not having good small sample properties (see Table 4.1). Simulation results

show that θ˚n performs much better than θn, especially when the number of past observations and/or

the epidemic size are small. This confirms the major positive effect of the monotonization procedure.

One should also note that the choice of loss function, specifically linex loss, is incredibly powerful

for epidemic analysis. Due to its asymmetric nature, we can choose how severely we penalize

our estimation, especially when considering a framework where underestimating could have dire

consequences. This is again supported in Chapter IV, Table 4.2, where the regret risk is improved

upon for values of bă 0. This corresponds to penalizing underestimation more which in the context

of a pandemic is where we want to be with the estimates.

But this was just the case where the initial number of infected, r, was known.To go one

step further, we also consider the case where the initial number of infected was random. One
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could relate such a situation to infected individuals entering a country with a communicable disease

from different places. In such a case, it is quite difficult to determine the number of progenitors.

When the initial number of ancestors is a Poisson r.v. and the offspring distribution is Poissonpλ q,

then we end up with a restricted general Poisson distribution (GDP) as introduced in V. We then

constructed an empirical Bayes estimate λ̃n for λ , using square error loss this time around for

its simplicity. Additionally, we were able to show that ψnpxq and qnpxq were both unbiased and

consistent estimators for ψGpxq and qGpxq respectively. Lastly we proved that the empirical Bayes

estimate, λ̃n, is asymptotically optimal at a rate Opn´µ{2q (see example at end of Chapter V).
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Table 1.1: References on notation

Notation Description

Θ unknown rv parametrizing X ; the reproduction number
θ a realization of the reproduction parameter Θ

θ̂ refers to any estimator
θmle Maximum likelihood estimator for BT distribution
θn Empirical Bayes estimator for BT based on the procedure found in [13]
θ˚n Monotonized EB estimator for BT based on the procedure found in [20]
X the set of n observations X1,X2, . . . ,Xn
Poipλ q Poisson distribution with parameter λ

ϕ a weight ě 1 of the Poissonian parameter λ

RpG, θ̂ q Bayes risk for estimator θ̂ under G´prior
Rpθ̂ q Regret risk for estimator θ̂

Ŝpθ̂ q Average regret risk for estimator θ̂

Unipa,bq Uniform distribution with parameters pa,bq
BT Borel–Tanner distribution
cdf cummulative distribution function
EB Empirical Bayes
GW Galton–Watson also known as Bienaymé–Galton–Watson
iid independent identically distributed
MLE maximum likelihood estimator
MLR monotone likelihood ratio
pmf probability mass function
rv random variable
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