
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations 

5-2021 

Optimal Quantization for Mixtures of Two Uniform Distributions Optimal Quantization for Mixtures of Two Uniform Distributions 

Eduardo Orozco 
The University of Texas Rio Grande Valley 

Follow this and additional works at: https://scholarworks.utrgv.edu/etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Orozco, Eduardo, "Optimal Quantization for Mixtures of Two Uniform Distributions" (2021). Theses and 
Dissertations. 929. 
https://scholarworks.utrgv.edu/etd/929 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more 
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F929&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utrgv.edu%2Fetd%2F929&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/929?utm_source=scholarworks.utrgv.edu%2Fetd%2F929&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


OPTIMAL QUANTIZATION FOR MIXTURES OF TWO UNIFORM DISTRIBUTIONS

A Thesis

by

EDUARDO OROZCO

Submitted to the Graduate College of
The University of Texas Rio Grande Valley

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2021

Major Subject: Mathematics





OPTIMAL QUANTIZATION FOR MIXTURES OF TWO UNIFORM DISTRIBUTIONS

A Thesis
by

EDUARDO OROZCO

COMMITTEE MEMBERS

Dr. Mrinal Kanti Roychowdhury
Chair of Committee

Dr. Santanu Chakraborty
Committee Member

Dr. Hansapani Rodrigo
Committee Member

Dr. Josef Sifuentes
Committee Member

May 2021





Copyright 2021 Eduardo Orozco

All Rights Reserved





ABSTRACT

Orozco, Eduardo, Optimal quantization for mixtures of two uniform distributions. Master of

Science (MS), May, 2021, 17 pp., 1 table, 24 references.

The basic goal of quantization for probability distribution is to reduce the number of values,

which is typically uncountable, describing a probability distribution to some finite set and thus

approximation of a continuous probability distribution by a discrete distribution. Mixtures of

probability distributions, also known as mixed distributions, are an exciting new area for optimal

quantization. In this thesis, for a mixed distribution we determine the optimal sets of n-means and

the nth quantization errors for all positive integers n.
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CHAPTER I

INTRODUCTION

Continuous-valued signals can take any real value either in the entire range of real numbers

or in a range limited by some system constraints. In either of the two cases, an uncountably

infinite set of values is required to represent the signal values. If a signal has to be processed

or stored digitally, each of its values must be representable by a finite number of bits. Thus, all

values together have to form a finite countable set. A signal consisting only of such discrete

values is said to be a quantized signal. The process of transformation of a continuous-valued

signal into a discrete-valued one is called ‘quantization’. It has broad applications in engineering

and technology (see [GG, GN, Z]). For mathematical treatment of quantization one is referred to

Graf-Luschgy’s book (see [GL1]). Let Rd denote the d-dimensional Euclidean space equipped with

a metric ‖ · ‖ compatible with the Euclidean topology. Let P be a Borel probability measure on Rd

and α be a finite subset of Rd . Then,
∫

mina∈α ‖x− a‖2dP(x) is often referred to as the cost, or

distortion error for α with respect to the probability measure P, and is denoted by V (P;α). Write

Dn := {α ⊂Rd : 1≤ card(α)≤ n}. Then, inf{V (P;α) : α ∈Dn} is called the nth quantization error

for the probability measure P, and is denoted by Vn :=Vn(P). A set α for which the infimum occurs

and contains no more than n points is called an optimal set of n-means. Since
∫
‖x‖2dP(x) < ∞

such a set α always exists (see [AW, GKL, GL1, GL2]). Furthermore, whenever the support of

the probability measure P is an infinite set, then an optimal set of n-means for P contains exactly

n elements (see Theorem 4.12 in [GL1]). For some recent work in this direction one can see

[CR, DR1, DR2, GL3, HMRT, L1, PRRSS, R1, R2, R3, R4, R5, RR1].

Let us now state the following proposition (see [GG, GL1]):

Proposition I.1. Let α be an optimal set of n-means for P, and a ∈ α . Then,
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(i) P(M(a|α)) > 0, (ii) P(∂M(a|α)) = 0, (iii) a = E(X : X ∈M(a|α)), where M(a|α) is

the Voronoi region of a ∈ α, i.e., M(a|α) is the set of all elements x in Rd which are closest to a

among all the elements in α .

Proposition I.1 says that if α is an optimal set and a∈α , then a is the conditional expectation

of the random variable X given that X takes values in the Voronoi region of a. The following theorem

is known.

Theorem I.2. (see [RR2]) Let P be a uniform distribution on the closed interval [a,b]. Then, the

optimal set of n-means is given by αn := {a+ 2i−1
2n (b− a) : 1 ≤ i ≤ n}, and the corresponding

quantization error is Vn :=Vn(P) =
(a−b)2

12n2 .

Mixed distributions are an exciting new area for optimal quantization. For any two Borel

probability measures P1 and P2, and p∈ (0,1), if P := pP1+(1− p)P2, then the probability measure

P is called the mixture or the mixed distribution generated by the probability measures (P1,P2)

associated with the probability vector (p,1− p). This kind of problems has rigorous applications in

many areas including signal processing. For example, while driving long distances, sometimes we

experience cellular signals getting cut off. This happens because of being far away from the tower,

or there is no tower nearby to catch the signal. In optimal quantization for mixed distributions,

one of our goals is to find the exact locations of the towers by giving different weights, also called

importance, to different portions of a path. Interested readers can also see the paper [R6].

Let P1 and P2 be two uniform distributions on the two disconnected line segments J1 := [0, 1
3 ]

and J2 := [2
3 ,1] of equal lengths, and P be the mixed distribution generated by (P1,P2) associated

with a probability vector (p,1− p). Take p = 1
3 , i.e., for the mixed distribution P = 1

3P1 +
2
3P2, in

this thesis, we determine the optimal sets of n-means and the nth quantization errors for all n ∈ N.

In this regard, we would like to mention that if αn is an optimal set of n-means for all n ∈ N and

if p = 1
3 , then αn∩ J1 6= /0 and αn∩ J2 6= /0. But it is not true for all probability vectors (p,1− p),

where 0 < p < 1
2 , see Remark II.13 and Proposition II.12. One of the main significance of such a

result is that the technique utilized in this thesis can be useful to find the optimal sets of n-means
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and the nth quantization errors for the mixed distributions on any two disconnected line segments

for all n ∈ N. At the end of the thesis, in a remark, we also mentioned about some open questions.
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CHAPTER II

OPTIMAL QUANTIZATION FOR THE MIXTURE OF TWO UNIFORM DISTRIBUTIONS ON

TWO DISCONNECTED LINE SEGMENTS

Let P1 and P2 be uniform distributions, respectively, on the intervals given by

J1 := [0,
1
3
], and J2 := [

2
3
,1].

Let f1 and f2 be their respective density functions. Then, f1(x) = 3 if x ∈ [0, 1
3 ], and zero otherwise;

and f2(x) = 3 if x ∈ [2
3 ,1], and zero otherwise. The underlying mixed distribution considered is

given by P := pP1+(1− p)P2, where p= 1
3 . By E(X) we mean the expectation of a random variable

X with distribution P, and V (X) represents the variance of P. By αn(µ), we denote an optimal set

of n-means with respect to a probability distribution µ , and Vn(µ) represents the corresponding

quantization error for n-means. If µ is the mixed distribution P, sometimes we denote them by αn

instead of αn(P), and the corresponding quantization error by Vn instead of Vn(P).

Lemma II.1. Let P be the mixed distribution defined by P = pP1 +(1− p)P2. Then, E(X) =

1
6(5−4p), and V (X) = 1

108(−48p2 +48p+1).

Proof. We have

E(X) =
∫

xdP = p
∫

xd(P1(x))+(1− p)
∫

xd(P2(x)) = p
∫

J1

3xdx+(1− p)
∫

J2

3xdx

yielding E(X) = 1
6(5−4p), and

V (X) =
∫
(x−E(X))2dP = p

∫
(x−E(X))2d(P1(x))+(1− p)

∫
(x−E(X))2d(P2(x)),
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implying V (X) = 1
108(−48p2 +48p+1), and thus, the lemma is yielded.

Remark II.2. The optimal set of one-mean is the set {1
6(5−4p)}, and the corresponding quantiza-

tion error is the variance V :=V (X) of a random variable with distribution P := pP1 +(1− p)P2.

Recall that in our case, p = 1
3 , and then E(X) = 11

18 and V (X) = 35
324 .

Proposition II.3. For n ≥ 2 let αn be an optimal set of n-means for P. Then, αn ∩ J1 6= /0 and

αn∩ J2 6= /0.

Proof. The distortion error due to the set β := {1
6 ,

5
6} is given by

∫
min
a∈β

(x−a)2dP = p
∫
(x− 1

6
)2dP1 +(1− p)

∫
(x− 5

6
)2dP2 =

1
108

.

Let αn := {a1,a2, · · · ,an} be an optimal set of n-means for P such that a1 < a2 < · · ·< an for n≥ 2.

Since Vn is the quantization error for n-means for n ≥ 2, we have Vn ≤ V2 ≤ 1
108 . Suppose that

αn∩ J1 = /0, which yields 1
3 < a1. Then, we have

V2 ≥
∫

J1

(x− 1
3
)2dP =

1
81

>
1

108
≥V2,

which leads to a contradiction. Next, suppose that αn∩ J2 = /0. Then, an <
2
3 , which yields

V2 ≥
∫

J2

(x− 2
3
)2dP =

2
81

>
1

108
≥V2,

which gives a contradiction. Hence, we can assume that αn∩ J1 6= /0, and αn∩ J2 6= /0. Thus, the

proof of the proposition is complete.

Corollary II.4. Proposition II.3 implies that the set β := {1
6 ,

5
6} forms an optimal set of two means

with quantization error V2 =
1

108 .

Proposition II.5. For n≥ 2 let αn be an optimal set of n-means for P. If αn contains a point from

the open interval (1
3 ,

2
3), then we must have card(αn∩ (1

3 ,
2
3)) = 1, where card(A) of a set A means

the cardinality of the set A.
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Proof. By Proposition II.3, we see that α2 does not contain any point from the open interval (1
3 ,

2
3),

and if α3 contains a point from the open interval, it cannot contain more than one point from the

open interval. Thus, the proposition is true for n = 2,3. We now prove that the proposition is

true for n ≥ 4. For n ≥ 4, let αn := {a1,a2, · · · ,an} be an optimal set of n-means for P such that

a1 < a2 < · · ·< an. Since the points in an optimal set are the conditional expectations in their own

Voronoi regions, we must have 0 < a1 < a2 < a3 < · · ·< an < 1. Let k be the largest positive integer

such that ak ≤ 1
3 . Suppose that αn contains a point from the open interval (1

3 ,
2
3). For the sake of

contradiction assume that card(αn∩ (1
3 ,

2
3)) = m, where m≥ 2. Then,

1
3
< ak+1 < ak+2 < · · ·< ak+m <

2
3
.

The following two cases can arise:

Case 1. m≥ 3.

In this case, we have P(M(ak+ j|αn))= 0 for 2≤ j≤m−1, which because of Proposition I.1,

leads to a contradiction.

Case 2. m = 2.

In this case, we have ak ≤ 1
3 < ak+1 < ak+2 <

2
3 ≤ ak+3. Indeed, due to Proposition I.1, we

have

ak <
1
2
(ak +ak+1)<

1
3
< ak+1 <

1
2
(ak+1 +ak+2)< ak+2 <

2
3
<

1
2
(ak+2 +ak+3)< ak+3.

Now notice that the total error contributed by the two points ak+1 and ak+2 is given by

∫
[ 1

2 (ak+ak+1),
1
3 ]
(x−ak+1)

2dP+
∫
[ 2

3 ,
1
2 (ak+2+ak+3)]

(x−ak+2)
2dP,

which can be strictly reduced if we replace ak+1 by 1
3 , and ak+2 by 2

3 , which is a contradiction, as

we assumed that αn is an optimal set of n-means with 1
3 < ak+1 < ak+2 <

2
3 .

By Case 1 and Case 2, we can deduce that m ≤ 1, i.e., if αn contains a point from the

6



open interval (1
3 ,

2
3), then we must have card(αn∩ (1

3 ,
2
3)) = 1, which completes the proof of the

proposition.

Lemma II.6. The set {1
6 ,

3
4 ,

11
12} forms an optimal set of three-means with quantization error

V3 =
1

216 .

Proof. Consider the set of three points β such that β := {1
6 ,

3
4 ,

11
12}. The distortion error due to the

set β is given by

∫
min
a∈β

(x−a)2dP =
1
3

∫
J1

(x− 1
6
)2dP1 +2 · 2

3

∫
[ 2

3 ,
5
6 ]
(x− 3

4
)2dP2 =

1
216

.

Since V3 is the quantization error for three-means, we have V3 ≤ 1
216 . Let α := {a1,a2,a3} be an

optimal set of three-means. Since the points in an optimal set are the conditional expectations in

their own Voronoi regions, without any loss of generality, we can assume that 0 < a1 < a2 < a3 < 1.

By Proposition II.3, we have a1 <
1
3 , and 2

3 < a3. We now show that 2
3 < a2. Suppose that a2 ≤ 1

3 .

Then, notice that the Voronoi region of a2 does not contain any point from J2. If it does, then we

must have 1
2(a2 +a3)>

2
3 implying a3 >

4
3 −a2 ≥ 4

3 −
1
3 = 1, which leads to a contradiction as we

know a3 < 1. Thus, if a2 ≤ 1
3 , then a3 = E(X : X ∈ J2) =

5
6 , and so

V3 ≥
∫

J2

(x− 5
6
)2dP =

2
3

∫
J2

(x− 5
6
)2dP2 =

1
162

>
1

216
≥V3,

which leads to a contradiction. Hence, we can assume that 1
3 < a2. Next, suppose that 1

3 < a2 <
2
3 .

Then, the following two cases can arise:

Case 1. 1
3 < a2 ≤ 1

2 .

Then, the Voronoi region of a2 must contain points from J2, i.e., 1
2(a2 +a3)≥ 2

3 implying

a3 ≥ 4
3 −a2 ≥ 4

3 −
1
2 = 5

6 , otherwise the quantization error can be strictly reduced by moving the

7



point a2 to 1
3 . We see that

∫
J2

min
a∈{a2,a3}

(x−a)2dP≥
∫

J2

min
a∈{ 1

2 ,a3}
(x−a)2dP

=
2
3

(∫
[ 2

3 ,
1
2 (

1
2+a3)]

(x− 1
2
)2dP2 +

∫
[ 1

2 (
1
2+a3),1]

(x−a3)
2dP2

)
=−

a3
3

2
+

7a2
3

4
− 15a3

8
+

833
1296

which is minimum when a3 =
5
6 , and the minimum value is 1

162 . Thus, we have

V3 ≥
1

162
>

1
216
≥V3,

which leads to a contradiction.

Case 2. 1
2 ≤ a2 <

2
3 .

Then, we must have 1
2(a1 +

1
2)≤

1
3 implying a1 ≤ 2

3 −
1
2 = 1

6 . Notice that

V3 =
∫

J1

min
a∈{a1,a2}

(x−a)2dP+
∫

J2

min
a∈{a2,a3}

(x−a)2dP

≥ 1
3

∫
J1

min
a∈{a1,

1
2}
(x−a)2dP1 +

2
3

∫
J2

min
b∈{ 2

3 ,a3}
(x−b)2dP

=
a3

1
4
+

a2
1

8
− a1

16
+

23
2592

−
a3

3
2
+

5a2
3

3
− 16a3

9
+

50
81

.

Under the condition a1 < 1
6 , and 1

2 ≤ a2 < 2
3 < a3 < 1, we see that the minimum value of the

following expression

a3
1

4
+

a2
1

8
− a1

16
+

23
2592

−
a3

3
2
+

5a2
3

3
− 16a3

9
+

50
81

is 17
2916 , which occurs when a1 =

1
6 and a3 =

8
9 . Thus, in this case, we have V3 ≥ 17

2916 ≥
1

216 >V3,

which is a contradiction.

Hence, by Case 1 and Case 2, we can conclude that 2
3 < a2, i.e., a1 <

1
3 and 2

3 < a2 < a3 < 1.

Since the Voronoi region of a1 does not contain any point from J2 and the Voronoi region of a2
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does not contain any point from J1, by Theorem I.2, we have a1 =
1
6 , a2 =

3
4 , and a3 =

11
12 with

the quantization error for three means is given by V3 = 1
216 . Thus, the proof of the lemma is

complete.

Remark II.7. Proceeding similarly as in Lemma II.6, we can show that the set { 1
12 ,

1
4 ,

3
4 ,

11
12} forms

an optimal set of four-means with quantization error V4 =
1

432 .

Proposition II.8. For n≥ 2 let αn be an optimal set of n-means for P. Then, αn does not contain

any point from the open interval (1
3 ,

2
3). Moreover, the Voronoi region of any point in αn∩ J1 does

not contain any point from J2, and the Voronoi region of any point in αn∩ J2 does not contain any

point from J1.

Proof. By Corollary II.4, Lemma II.6, and Remark II.7, we can conclude that the proposition is true

for 2≤ n≤ 4. We now prove the proposition for n≥ 5. Let αn := {a1,a2, · · · ,an} be an optimal set

of n-means for n≥ 5 such that 0 < a1 < a2 < · · ·< an < 1. First, we show that αn does not contain

any point from the open interval (1
3 ,

2
3). Using Theorem I.2, we see that the distortion error due to

the set β := { 1
12 ,

1
4 ,

13
18 ,

5
6 ,

17
18} is given by

∫
min
a∈β

(x−a)2dP =
17

11664
.

Since Vn is the quantization error for n-means, where n≥ 5, we have

Vn ≤V5 ≤
17

11664
.

By Proposition II.3, we have αn∩ J1 6= /0, and αn∩ J2 6= /0. Let k be the largest positive integer such

that ak ≤ 1
3 . For the sake of contradiction, assume that αn contains a point from the open interval

(1
3 ,

2
3). Then, by Proposition II.5, we must have ak+1 ∈ (1

3 ,
2
3), and 2

3 ≤ ak+2. The following two

cases can arise:

Case 1. 1
3 < ak+1 ≤ 1

2 .

Then, the Voronoi region of ak+1 must contain points from J2, i.e., 1
2(ak+1 + ak+2) ≥ 2

3

9



implying ak+2 ≥ 4
3 −ak+1 ≥ 4

3 −
1
2 = 5

6 , otherwise the quantization error can be strictly reduced by

moving the point ak+1 to 1
3 . Then,

Vn ≥
∫
[ 2

3 ,
5
6 ]
(x− 5

6
)2dP =

1
324

>
17

11664
≥Vn,

which is a contradiction.

Case 2. 1
2 ≤ ak+1 <

2
3 .

Then, we must have 1
2(ak +ak+1)≤ 1

3 implying ak ≤ 2
3 −ak+1 ≤ 2

3 −
1
2 = 1

6 , and so

Vn ≥
∫
[ 1

6 ,
1
3 ]
(x− 1

6
)2dP =

1
648

>
17

11664
≥Vn,

which leads to a contradiction.

By Case 1 and Case 2, we conclude that αn does not contain any point from the open

interval (1
3 ,

2
3). Thus, 2

3 ≤ ak+1. To complete the proof, assume that the Voronoi region of ak

contains points from J2. Then, 1
2(ak +ak+1)>

2
3 implying ak+1 >

4
3 −ak ≥ 4

3 −
1
3 = 1, which is a

contradiction. Similarly, we can show that if the Voronoi region of ak+1 contains points from J1,

then a contradiction arises. Thus, the proof of the proposition is complete.

We are now ready to prove the following theorem.

Theorem II.9. Let αn be an optimal set of n-means for P for n≥ 2. Let card(αn∩ J1) = k. Then,

αn contains k elements from J1, and (n− k) elements from J2, and αn(P) = αk(P1)∪αn−k(P2) with

quantization error

Vn(P) =
1

324

( 1
k2 +

2
(n− k)2

)
.

Proof. By Proposition II.3, we have αn∩ J1 6= /0 and αn∩ J2 6= /0. Thus, there exist two positive

integers n1 and n2 such that card(αn∩ J1) = n1, and card(αn∩ J2) = n2. Since by Proposition II.8,

αn does not contain any point from the open interval (1
3 ,

2
3), we have n = n1 +n2. Hence, by taking

n1 = k, we see that αn contains k elements from J1, and (n− k) elements from J2. Again, by

Proposition II.8, we know that the Voronoi region of any point in αn∩ J1 does not contain any point
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from J2, and the Voronoi region of any point from αn∩ J2 does not contain any point from J1. This

implies the fact that αn(P) = αk(P1)∪αn−k(P2), and the corresponding quantization error is given

by

Vn(P) =
1
3

Vk(P1)+
2
3

Vn−k(P2) =
1

324

( 1
k2 +

2
(n− k)2

)
.

Thus, the proof of the theorem is complete.

Remark II.10. Let k be the positive integer as stated in Theorem II.9. By Theorem I.2, αk(P1) and

αn−k(P2) are known. Thus, once k is known, we can easily determine the optimal sets of n-means

and the nth quantization errors for all n ∈N with n≥ 2. For n≥ 2, consider the real valued function

F(n,x) :=
1

324

( 1
x2 +

2
(n− x)2

)

defined in the domain 1≤ x≤ n−1. Notice that F(n,x) is concave upward, and so F(n,x) attains

its minimum at a unique x in the interval [1,n− 1]. Thus, we can say that for a given positive

integer n≥ 2, there exists a unique positive integer k := k(n), depending on n, for which F(n,x) is

minimum if x ranges over the positive integers in the interval [1,n−1]. In other words, k := k(n) is

the positive integer such that 1≤ k ≤ n−1, and satisfies:

F(n,k) = min{F(n, j) : j ∈ N, 1≤ j ≤ n−1}. (2.1)

Using the expression (2.1), for any positive integer n≥ 2 we can easily determine k(n). In Table 2.1,

we give the values of k(n) for 8≤ n≤ 79.

Remark II.11. In the statement of the following proposition, the two decimal numbers are the

rational approximations of two real numbers that minimize the expression (2.2).

Proposition II.12. For the mixed distribution P := 1
100P1 +

99
100P2 the optimal set of two means is

given by {0.731517,0.910506} with quantization error V2 =
1314−53

√
53

163350 .

Proof. Since 2
3 < 1

2(0.731517 + 0.910506) = 0.821012, the distortion error due to the set β :=

11



{0.731517,0.910506} is given by

∫
J1

(x−0.731517)2dP+
∫
[ 2

3 ,0.821012]
(x−0.731517)2dP+

∫
[0.821012,1]

(x−0.910506)2dP= 0.005682.

Let α := {a1,a2} be an optimal set of two-means with 0 < a1 < a2 < 1. Since V2 is the quantization

error for two-means, we have V2 ≤ 0.005682. If a2 <
2
3 , then

V2 ≥
∫

J2

(x− 2
3
)2dP =

22
621

>V2,

which leads to a contradiction. Hence, 2
3 < a2. Assume that a1 ≤ 1

2 . Notice that E(X : X ∈ J2) =
5
6 ,

and 1
2(

1
2 +

5
6) =

2
3 , and so by Proposition I.1, we can assume that a1 = E(X : X ∈ J1) =

1
6 , and

a2 = E(X : X ∈ J2) =
5
6 yielding

V2 =
∫

J1

(x− 1
6
)2dP+

∫
J2

(x− 5
6
)2dP =

1
108

>V2,

which is a contradiction. Hence, we can assume that 1
2 < a1. Then, the Voronoi region of a1 must

contain points from J2, i.e., 2
3 < 1

2(a1 +a2). Thus, the distortion error is given by

1
100

∫ 1
3

0
3(x−a1)

2 dx+
99

100

(∫ a1+a2
2

2
3

3(x−a1)
2 dx+

∫ 1

a1+a2
2

3(x−a2)
2 dx
)
,

which upon simplification yields

1
10800

(8019a3
1+27a2

1(297a2−788)−9a1
(
891a2

2−1580
)
−8019a3

2+32076a2
2−32076a2+7528),

(2.2)

the minimum value of which occurs at a1 = 0.731517 and a2 = 0.910506, and the minimum value

is 1314−53
√

53
163350 . Thus, the set {0.731517,0.910506} forms an optimal set of two-means for P with

quantization error V2 =
1314−53

√
53

163350 , which is the proposition.

Remark II.13. In Proposition II.3, we have shown that if αn is an optimal set of n-means for the

12



mixed distribution P := 1
3P1+

2
3P2, then, αn∩J1 6= /0 and αn∩J2 6= /0 for all n≥ 2. Proposition II.12

shows that the set {0.731517,0.910506} forms an optimal set of two-means for the mixed dis-

tribution P := 1
100P1 +

99
100P2. Notice that here both the points 0.731517 and 0.910506 lie in the

interval J2. Thus, we see that the condition αn∩ J1 6= /0 and αn∩ J2 6= /0 are not true for all mixed

distributions P := pP1 +(1− p)P2 with 0 < p < 1
2 and n≥ 2.

Let us now end the discussion with some open questions given in the following remark.

Remark II.14. By Table 2.1, we observe that there are some positive integers n for which

either k(n+9) = k(n+10) = k(n+11), or k(n+7) = k(n+8) = k(n+9); (2.3)

and for all n ∈N with n≥ 2, either k(n) = k(n−1), or k(n) = k(n+1). It is still not known whether

there is a subsequence (n j) of positive integers for which the expression (2.3) is true. It is also not

known whether there is a closed form of the sequence (k(n)), which will help us to determine k(n)

for any positive integer n≥ 2, without the help of expression given in (2.1).
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n k(n) n k(n) n k(n) n k(n) n k(n) n k(n)
8 4 20 9 32 14 44 19 56 25 68 30
9 4 21 9 33 15 45 20 57 25 69 31

10 4 22 10 34 15 46 20 58 26 70 31
11 5 23 10 35 15 47 21 59 26 71 31
12 5 24 11 36 16 48 21 60 27 72 32
13 6 25 11 37 16 49 22 61 27 73 32
14 6 26 12 38 17 50 22 62 27 74 33
15 7 27 12 39 17 51 23 63 28 75 33
16 7 28 12 40 18 52 23 64 28 76 34
17 8 29 13 41 18 53 23 65 29 77 34
18 8 30 13 42 19 54 24 66 29 78 35
19 8 31 14 43 19 55 24 67 30 79 35

Table 2.1: Values of k(n) for 8≤ n≤ 79.
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