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ABSTRACT

Barboza Sanson, Pedro Paulo, Contributions to the heat capacity of Neutron Stars. Master of Sci-

ence (MS), December, 2021, 50 pp., 2 figures, references, 86 titles.

In this thesis, we review the contribution to the heat capacity of different matter phases

that can appear inside a Neutron Star’s core, paying special attention to the magnetic dual chiral

density wave (MDCDW) phase, which is characterized by an inhomogeneous chiral condensate in

the presence of a magnetic field and that is expected to be favored at intermediate densities and low

temperatures. Furthermore, we compare our results of the heat capacity for different phases with

the observational lower limit of the core heat capacity established from observations of transiently

accreting neutron stars which give us crucial information whether certain phases are feasible to

appear in the core or not. In particular, we show that the heat capacity of the MDCDW quark-

matter phase is well above that lower limit and hence cannot be ruled out.
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CHAPTER I

INTRODUCTION

Since the dawn of humanity, stars have been a distinct point of interest and fascination to

those who look up to the sky. As we tried to understand the universe around us, an entire field

was naturally developed to comprehend the celestial bodies that have been always above us, i.e.

astronomy. Stars are the most widely recognizable and most fascinating astronomical objects. The

majority of stars are between 1 billion and 10 billion years old, almost as old as the Universe itself

and their life cycles are determined by their masses which range from 0.08M⊙ to approximately

300M⊙. For the stars with lowest masses, their cores aren’t hot enough to stably ignite hydrogen

(H), but for most stars they will simply convert H into helium (He) by nuclear fusion and the ”chain”

of fusion is determined by the mass of the star, i.e., while massive stars can fuse atoms up to iron,

low mass stars can convert He into carbon (C) but won’t fuse C into heavier elements. Meanwhile,

their lifetime will be determined by the supply of H inside the core, once this supply is over, they

will no longer generate heat. Therefore, the core becomes increasingly unstable and contracts. At

the same time, the outer shell of the star will expand and as it does so, it will cool and become red,

transforming the star into a red giant.

For stars with masses M > 8M⊙, which will fuse helium, oxygen, nitrogen, carbon, and

all other elements with higher atomic numbers up to iron. Once the core is formed solely by iron,

the star begins its final phase. Fusing iron requires an input of energy since iron is the most stable

element. Thus, once it is reached an iron core the fusion is exhausted and without the pressure asso-

ciated with the outgoing radiation coming from the nuclear fusion reaction, the star starts its grav-
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itational collapse. Hence, as temperature rises the repulsive force between nuclei is overwhelmed

by the push of gravity and iron atoms are crushed together, and the core responds recoiling out,

which we can observe as a supernova explosion, the end of a massive star’s life. It is important to

notice that, since the core of stars can’t fuse iron, heavier elements, such as uranium or gold, can

only be produced in these astounding events where there’s enough energy to create them.

There are two major types of supernovae, type I (SNI) and type II (SNII). SNI are charac-

terized by not presenting H lines and also a deep absorption in 6150Å, while type II (SNII) has

clear H lines [1]. The aftermath of a supernova event depends on the mass of the progenitor star,

and of the mass of its core. If the mass of the star is M > 8M⊙ and it is core had a mass between

M⊙ < Mc < 3M⊙, most of the stellar matter will be thrown far from the star during the supernova

collapse, but the star’s iron-filled inner part will remain as a compact object known as the Neutron

Star (NS), one of the most singular objects in the observable universe. For even bigger progenitor

masses, the supernova collapse can gives rise to a black hole.

The first suggestion or rather anticipation that we had about the existence of NS’s came

from Lev D. Landau who proposed the idea of a star ”forming one gigantic nucleus” and by the

end of the 60’s the first NS was detected [2]. Today, we not only know about their existence, but we

also know that their masses range from 1.4M⊙ up to 2.3M⊙ and they have radius around (10-13)km,

which places them among the densest objects in the observable universe, reaching in their cores

several times the nuclear density ρn = 2.4×1014g/cm3 [3].

Another interesting characteristic of a NS is its magnetic field. They have the strongest mag-

netic fields found in nature, starting from observable values in their surfaces of 108G in millisecond

pulsars, and reaching in their surfaces between 1013 and 1015G for special NSs known as magne-

tars [4, 5]. The inner magnetic fields at the core of these magnetars can be even stronger due to

magnetic field flux conservation in stellar mediums with very large electric conductivity. In fact, it

has been estimated that they are of the order of 1018G for nuclear matter cores [6] and 1019−1020 G

for quark matter ones [7]. The presence of such large magnetic fields can impact several properties
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of such objects, motivating many studies on the equations of state (EoS) of magnetized NS’s.

The EoS is a thermodynamic equation that relates the energy density with the system pres-

sure and it characterizes the system state described by the thermodynamic quantities and exter-

nal fields as temperature, chemical potential, magnetic field, etc. So they are absolutely essential

in modeling the structure and evolution of NSs because they are essential to derive the Tolman-

Oppenheimer-Volkov (TOV) equations [8] from where the relation between the stellar mass and

radius is derived. But since the state of matter existing in the NS interior is still undetermined,

the precise determination of the EoS that describe the inner state enclosed in a NS is still an open

question.

1.1 Possible inner structures for neutron star

Depending of the inner densities that a NS can reach, it can have different structures, which

can form hadronic stars, hybrid stars and strange stars. As follows, we describe what are the internal

characteristics of each of them.

The two first cases of NSs, hadronic and hybrid, have similar structures and they can be

roughly divide in three layers, outer crust, inner crust and the core. The matter density in the outer

crust is in the interval 106g/cm3 < ρ < ρd (where ρd = 4 · 1011g/cm3 is the drift density), which

is not high enough to free nucleons from the nucleus, so they are bound and cannot move freely.

Therefore, the configuration in the outer crust can be simply described as a Coulomb lattice of

heavy nuclei with a relativistic degenerate electron gas. As the density goes up and gets closer

to the neutron drip density ρd , the nuclei have become so rich that the neutron states lying in the

continuumwill be filled and the lattice of neutron-rich nuclei become permeated with free neutrons.

Degenerate neutron Fermi sea will be formed through this process. When entering the inner crust,

the density region becomes ρd < ρ < 0.7ρs , where ρs = 2.84 ·1014g/cm3 is the nuclear matter drip

density. There, as more neutrons are free, they will interact forming Cooper pairs, and because of

the relative low temperatures associated with all but newborn NSs, we will have neutron superfluid
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present in the inner crust [9, 10]. Finally, once the density surpass 0.7ρs we reach the core which

constitutes up to 99% of the stellar mass. Depending on the density that is reached there we can

have two different compositions that we will consider as follows.

1.1.1 Hadronic Star Composition

In the hadronic case, the core’s density lies between ρs < ρ < 2.8ρs. By densities about the

order of ρs the atomic nuclei are practically touching each other, and beyond that density they will

merge into a liquid composed of mainly neutron, some protons and some electrons, which ensures

charge neutrality. At this point, protons will form Cooper pairs and since they aren’t electrically

neutral, they will form a superconducting fluid; while the neutral neutrons will form a superfluid.

Here, it is important to point out that due to the presence of superfluidity and superconductivity

both the thermal and dynamical evolution of the NSs are impacted [10, 11]. In this case, since the

density doesn’t surpass 2.8ρs, hadronic matter is still stable and will prevail in the core of the star,

hence the name Hadronic Star.

1.1.2 Hybrid Star Composition

In order to discuss the hybrid case, we must first point out that quantum chromodynamics

predicts that at sufficiently high densities, quarks will be deconfined leading to a degenerate state

of quarks [12]. Here, we are considering NSs with core densities much higher than the previous

case, 5 ∼ 10ρs. Those densities are so high that we can expect that the nuclear/hadronic matter will

transition into new phases with more exotic particles, as a new quark matter phase, composed by

deconfined quarks and a small mixture of electrons to guarantee electric neutrality, or a phase with

a hyperon mixture [13, 14]. In this scenario, the star crust composition will be purely hadronic

and the core will have new degrees of freedom due to its massive density. The compact object

composed by these two phases is what is called a Hybrid Star.
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1.1.3 Strange Star Composition

The third case is prompted by the Bodmer–Terazawa–Witten hypothesis [15, 16, 17] which

is based on the idea that strange matter has a lower energy per baryon than ordinary nuclei even

including 56Fe. Thus, under this hypothesis, the true ground state of the hadrons may be strange

matter. Now, if this is indeed the case, then ordinary nuclei would decay into strange quark matter,

which is simply a composition of up, down and strange quarks. This process is irreversible, since

it would be more stable, and once it starts it is expected that the whole star will convert into the

quark composition considered above, making it a pure Strange Star [18, 19].

Figure 1.1: Typical structure of Neutron Star.

1.2 Neutron Star Cooling

In order to reduce the humongous amount of possible candidates that can serve to define

the state of matter in the dense medium existing in the core of NS, we need to find constraints

that point us to valid EoS’s and, consequently, to predict the most probable inner phases of NS.

The combination of mass-radius measurements, for example, already place robust constraints on

the EoS, but that alone doesn’t seen sufficient to find a unique answer. Recently, LIGO and Virgo

made their first observation of a neutron star binary system and this represents a new possibility to

measure the EoS of matter in such binaries by looking into deviations in the emitted gravitational
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waves because of tidal deformation effects [20].

Another promising approach might be connecting transport properties of different matter

phases with the observed behavior of NS cooling. To understand that, we need to acknowledge

first that without an active core (i.e., those where no nuclear fusion is happening inside them) the

NS internal temperature will inevitably reduce over time and this process can be divided in roughly

two stages [21, 22]: (a) When a NS is born its temperature is around 1011K, then its predominant

cooling mechanism during at least a thousand years is neutrino emission from the core. (b) Once

the temperature decays up to 108K, then photon emission from the surface dominates.

Since the interior of a NS is essentially isothermal, we can propose, as a first approximation,

that its thermal history takes place through the following energy balance equation [22]

− dE
dt

=−CV
dT
dt

= Lν +Lγ −H, (1.1)

where E is the internal energy, T is the inner medium temperature, t the star’s age,CV is the heat ca-

pacity at constant volume, Lν and Lγ are neutrino and surface photon luminosities respectively, and

H is the heating rate associated with any additional heating source. This equation makes clear that

the heat capacity plays a fundamental role in the thermal evolution of the NS. This fact underlines

the importance of the results we will report as part of this thesis.

1.3 How the inner phase of a NS affects its heat capacity

Depending on the star composition, we will have different matter phases and consequently

different thermal properties. To fulfill this analysis, it is useful to start with the extremes cases, that

is, to investigate the CV for the limit cases of the low and high density regions, because they are

easier to work with and give us useful insights. Later, we will consider the more realistic case of a

star at intermediate densities.

In the low density case, when ρ ∼ ρs, we have a Hadronic Star whose interior contains

solely nuclear/hadronic matter in all its internal layers, including the inner core. This means that
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we only have to work with a mixture of neutrons, protons and some electrons in order to ensure

charge neutrality. These are the only components that will play a role in our calculations of the heat

capacity in this case. Nevertheless, we should take into account that despite we are considering the

lowest density candidate, such a compact object is dense enough for the occurrence of quantum-

relativistic effects that will affect its thermodynamic and transport properties.

In the opposite side, at asymptotically high densities that can be equal or greater than 2-3

times the nuclear matter density, quark deconfinement can take place either inside the core of a

Hybrid Star configuration or through out the whole volume of a Strange Star. Now, from QCD

studies it is known that at asymptotically high densities the more stable configuration is a color-

superconducting phase known as color-flavor-locking (CFL) phase. The idea is that at ultra-high

densities the mass of the strange quark becomes negligible small as compared to the baryonic chem-

ical potential leading to the sane density of the three flavors, u, d and s quarks. Thus we observe

the formation of Cooper pairs between all three colors and all three flavors of quarks coupled with

total zero momentum [23].

But in a realistic scenario, NSs don’t have asymptotically high densities. As is well known,

the CFL phase relies on the assumption that the quarks that pair with equal and opposite momenta

can each be arbitrarily close to their common Fermi surface. But, with decreasing density, the

combined effect of the strange quark mass, neutrality constraint and beta equilibrium, create a mis-

match in the Fermi momenta of different flavors, imposing an extra energy cost on the formation of

Cooper pairs. Thus, with decreasing density, the CFL phase eventually becomes gapless and, most

importantly, becomes unstable [24, 25]. The instability manifests itself in the form of imaginary

Meissner masses for some of the gluons and is known as the chromomagnetic instability. This find-

ing indicates an instability towards spontaneous breaking of translational invariance [26, 27, 28, 29].

In other words, the formation of a spatially inhomogeneous phase takes place.

On the other hand, various QCD effective model studies, as well as QCD calculations in

the large-Nc limit [30, 31, 32, 33] indicate that in the region of intermediate densities there exists
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some states, which are characterized by inhomogeneous particle-hole condensates, in which the

pairs carry a total finite momentum. These studies suggest that the inhomogeneous phases might

be unavoidable in the regions of intermediate temperature and density. A systematic and complete

investigation to determine the most energetically favored state under different conditions is still

open. In this thesis we show the results found for the heat capacity of possible different phases

that might be plausible for NS interiors and, in particular, we focus on calculations for the inho-

mogeneous particle-hole phase, called MDCDW phase, in order to show that such phase satisfies

the important observational constraint established for the lower limit of the specific heat of NS, i.e.

CV ≳ 1036( T
108 )

erg
K , showing that, the studied MDCDW phase satisfies this constraint indicating

that it can be a reliable candidate to form the interior of NSs.
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CHAPTER II

STATISTICAL MECHANICS GENERALITIES

The heat capacity C of a body is defined as the amount of energy needed to increase the

body temperature in one degree Kelvin. The specific heat, is then defined as the heat capacity per

unit mass,CV = C
M . Both, the heat capacity and consequently the specific heat, depend on the state

of matter under consideration. For example, the specific heat of water at 20 ◦C is 4182 J
K ·kg; while

that of ice just below 0 ◦C is only 2093 J
K · kg [34]. Therefore, for most systems, the heat capacity

is not constant and will depend on state variables such as temperature, pressure and volume. That

is why it is common practice that the heat capacity of gases and liquids is measured at constant

pressure or volume.

In light of this, the heat capacity at constant volume is an extensive quantity that can be

defined in terms of other thermodynamic quantities as

CV :=
(

dQ
dT

)
V
= T

(
dS
dT

)
V
, (2.1)

where Q is the amount of heat transfer, S the entropy, T the absolute temperature andV the volume

under consideration.

Since our main goal is to deal with NSs, any model we consider to describe its interior will

be formed by a huge amount of particles with many degrees of freedom that are distributed in many

different physical states. So, it only makes sense to use a statistical-mechanic description to extract

the physical properties of this system.

All the equilibrium properties of a statistical system of particles in contact with a thermal
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reservoir can be found by working with the grand canonical potential Ω(T,V,µ), which depends

on the chemical potential µ in addition to temperature and volume. The grand canonical potential

satisfies the thermodynamic relation

Ω = F(T,V,N)−µN, (2.2)

where F is the system Helmholtz free energy and N the number of particles. Therefore, the total

differential of Ω is simply

dΩ =

(
∂Ω
∂T

)
dT +

(
∂Ω
∂V

)
dV +

(
∂Ω
∂N

)
dN

= −SdT −PdV −Ndµ, (2.3)

with P denoting the pressure.

Combining equations (2.1) and (2.3) we find

CV =−T
(

d2Ω
dT 2

)
V
=−2β 2

(
dΩ
dβ

)
V
+β 3

(
d2Ω
dT 2

)
V
, (2.4)

where β denotes the inverse of the absolute temperature ( β = 1
T ). Equation (2.4) is a useful relation

when the grand canonical potential is known [34, 35].

2.1 The ideal gas in the grand canonical ensemble

To understand how the heat capacity can be extracted from the grand canonical potential,

we briefly discuss how it is obtained for the ideal mono-atomic gas system with volume V and in

contact with a reservoir at temperature T and chemical potential µ .
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The grand canonical potential can be defined as:

Ω =− 1
β
lnZ, (2.5)

where Z is the grand partition function which is given by

Z(T,V,µ) =
∞

∑
N=0

1
N!

∫ d3Nqd3N p
h3N e−β (H(q,p,N)−µN) (2.6)

In (2.6), H denotes the system Hamiltonian and N! comes from the fact that in systems where the

particles are indistinguishable, as in an ideal mono-atomic gas, we need to take out the redundant

counting introduced by taking into consideration the identical states that are obtained from their

permutations [35].

For the ideal gas under consideration, the Hamiltonian is simply its kinetic energy

H(p) =
N

∑
i=1

pi
2

2m
(2.7)

Therefore the grand canonical partition function is

Z(T,V,µ) =
∞

∑
N=0

V Neβ µN

N!

(∫ ∞

−∞

d p
h

e−β p2
2m

)3N

(2.8)

We can combine the equation above with the result below

∫ ∞

−∞
dxe−x2

=
√

π (2.9)
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And now we can calculate the partition function

Z(T,V,µ) =
∞

∑
N=0

V Neβ µN

N!

(√
2πmT

h

)3N

=
∞

∑
N=0

1
N!

(
eβ µ 1

λ 3
T

)N

= exp
(

eβ µ V
λ 3

T

)
(2.10)

where λT = h√
2πmT

is the thermal de Broglie wave length. Therefore, the grand canonical potential

of the ideal gas is

Ω(T,V,µ) =− 1
β

eβ µ V
λ 3

T
(2.11)

From (2.3) and (2.11) we find that the particle number N is given by

N(T,V,µ) =−
(

∂Ω
∂ µ

)
T,V

= eβ µ V
λ 3

T
(2.12)

similarly, we can also find the entropy of this system as

S(T,V,µ) =−
(

∂Ω
∂T

)
T,µ

= N
(

5
2
− µ

T

)
(2.13)

We can invert the chemical potential inside the parenthesis using (2.12) to get the Sackur-Tetrode

equation

S = N
(
ln

V
Nλ 3

T
+

5
2

)
(2.14)

Finally, we can separate the term that depends on temperature using logarithm properties and if the
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number of particles remains constant we find the heat capacity to be

CV = T
(

∂S
∂T

)
V,µ

= NT

(
∂ (3

2 lnT + ln(...))
∂T

)
V,µ

=
3
2

N (2.15)

Which is a well known result that is independent of the temperature and is a good approximation

to the behavior of noble gases [35]. Furthermore, if we were to derive the pressure by similar steps

that were done to find the heat capacity we would find the famous general gas equation PV=nRT,

first stated by Clapeyron.

In the following chapters we will apply similar methods to investigate the heat capacity of

different phases of dense matter that could be forming the interior of NSs.

2.2 Neutrality condition for an electron-proton system

In this section we estimate the value of the electric chemical potential µe for a NS, so to get

an idea of how important is this chemical potential with respect to other parameters characterizing

this compact system.

It is a well accepted fact that NSs are electrically neutral. Because of the difference in

magnitude of the electromagnetic and the gravitational force, the net charge must be extremely

small, with Znet ∼ |Zp −Ze| < 10−36A, where Zp and Ze are the proton and electron numbers and

A is the baryon number [36].

Here, we consider densities that are not high enough so that we would observe other charged

degrees of freedom different than protons and electrons, such as more massive leptons or hyperons.

Therefore, the global charge neutrality condition is

Qnet = Qe +Qp =−eNe + eNp = e
(

∂µ eΩe −∂µ pΩp

)
= 0 (2.16)

Where the chemical potential is given by µp = µ −µe, µ is the baryonic chemical potential, µe is
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the electric chemical potential and me is the electron mass.

The thermodynamic potentials for electrons and protons are given respectively by

Ωe =− 2
β

∫ ∞

−∞

d3 p
(2π)3 ln

[
(1+ e−β (εe+µe))(1+ e−β (εe−µe))

]
(2.17)

Ωp =− 2
β

∫ ∞

−∞

d3 p
(2π)3 ln

[
(1+ e−β (εp+µp))(1+ e−β (εp−µp))

]
, (2.18)

and the particle numbers are simply

Ne =−∂µ eΩe =
1

π2

∫ ∞

0
p2d p

(
1

(1+ eβ (εe−µe))
− 1

(1+ eβ (εe+µe))

)
(2.19)

Np =−∂µ pΩp =
1

π2

∫ ∞

0
p2d p

(
1

(1+ eβ (εp−µp))
− 1

(1+ eβ (εp+µp))

)
(2.20)

Now we want to use the neutrality equation in order to find the relationship between µ , µe and

me. Considering that µe,µp > 0 and knowing that the electron and proton dispersion relations are

respectively, ε =
√

p2 +m2
e and εp =

√
p2 +m2

p, then in the zero-temperature limit we find

Ne =
1

π2

∫ ∞

0
p2d pθ (εe −µe) =

1
π2

∫ √
µ2

e −m2
e

0
p2d p =

1
3π2

[
µ2

e −m2
e
]3/2 (2.21)

Np =
1

π2

∫ ∞

0
p2d pθ (εp −µp) =

1
π2

∫ √
µ2

p−m2
p

0
p2d p =

1
3π2

[
µ2

p −m2
p
]3/2 (2.22)

From the neutrality condition (2.16), we have that Ne = Np, hence it follows that

(µe −µ)2 −m2
p = µ2

e −m2
e (2.23)

Introducing the notation, x = µ/me and y = µe/me; for me = 0.5 MeV and mp = 938.3 MeV, the
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neutrality condition (2.23) can be written as

y =
1−0.4×107

2x
+

x
2

(2.24)

This function is plotted in Fig. 2.1 for the domain of interest for NSs. Since y > 0, we have

that x > 2×103, and we consider µ values corresponding up to 10 times nuclear density.

Figure 2.1: Dependence of µe/me on µ/me. We can observe that µ > µe > me.

Using the neutrality condition for the NS medium formed by protons and electrons as

charged particles, we arrived at Fig. 2.1 where its clear that µ > µe > me. This justifies neglecting

me in Eqs. (3.10) and (3.17) which will be realized in the next Chapter.
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CHAPTER III

THE HEAT CAPACITY OF MAGNETIZED NEUTRON STARS

In this chapter, we will show how different matter phases that can be realized at different

baryon densities can contribute to the heat capacity of NS. In our approach, we are taking into

account the effects produced by a magnetic field, since in the stellar medium the presence of a

magnetic field is unavoidable.

The chapter is divided in three sections. In Section 3.1, we review calculations of the heat

capacity of a relativistic electron gas and of a neutron superfluid at low temperature. Both compo-

nents are commonly found in NS regions at relatively low baryon densities. There, we will also

discuss the effects of the magnetic field on the heat capacity of electrons. In Section 3.2, we calcu-

late the heat capacity of quark matter, first in the CFL phase and then in the MCFL phase, where the

magnetic field will be relevant [37]. In Section, 3.3, we calculate the heat capacity of the MDCDW

phase, which is a phase that can be realized at intermediate densities. In this phase, the magnetic

field will play an essential role in guaranteeing the stability of the phase with respect to thermal

fluctuations [38]. Finally, in Section 3.4 we estimate the heat capacity values for the parameters

(as temperature, density, etc.) characterizing the different NS inner phases.

3.1 Heat Capacity of Neutron Stars at Low Density

As mentioned in Chapter I, Section 1.3, in the low-density limit NS cores are mainly con-

stituted by nuclear matter. So, we only need to consider as constituents that can ensure electric

charge neutrality protons, neutrons and electrons. Moreover, in our calculations we can consider

the low-temperature limit, T << µe,µ where µe and µ are the electric and baryonic chemical po-
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tential respectively. Therefore, in order to calculate the heat capacity, we only need to use Eq. (2.4),

while paying special attention to quantum-relativistic statistics that are important in the thermody-

namic and transport properties inside NSs.

3.1.1 Heat Capacity of relativistic electrons at low temperature

For electrons, the NS inner magnetic field is large enough to have a noticeable effect on the

heat capacity. Thus, we shall calculate it ignoring the presence of the magnetic field first and then

we will compare the result with the one we find when considering the presence of a magnetic field.

A. Electrons at B = 0

When using formula (2.4), we only need to consider the statistical part of the thermody-

namic potential. By performing the Matsubara frequency sum [39, 40], we can obtain the thermo-

dynamic potential in the one-loop approximation at finite temperature and density given by

Ωe
β =− 2

β

∫ ∞

−∞

d3 p
(2π)3

[
ln(1+ e−β (εe+µe))+ ln(1+ e−β (εe−µe))

]
, (3.1)

where the energy spectrum is εe =
√

p2 +m2
e and the factor 2 comes from the spin degeneracy.

Substituting Eq. (3.1) into (2.4), we obtain

Ce
V =

1
16π3T 2

∫ ∞

−∞
d3 p

[
(εe +µe)

2sech2
(

εe +µe

2T

)
+(εe −µe)

2sech2
(

εe −µe

2T

)]
(3.2)

Assuming that µe > 0, we can discard, in the low-temperature limit, the positron’s contri-

bution in (3.2) such that

Ce
V ≃ 1

4π2T 2

∫ ∞

0
d pp2(εe −µe)

2sech2
(

εe −µe

2T

)
(3.3)
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Now, using the dispersion relation, we can make a variable change to integrate in energy

Ce
V ≃

∫ ∞

me

dεeg(ε)
(

εe −µe

2T

)2

sech2
(

εe −µe

2T

)
(3.4)

where we introduced the density of state per unit volume function

g(εe) =
εe
√

ε2
e −m2

e
π2 (3.5)

Taking into account the form of the Fermi-Dirac distribution, we have that at low temper-

atures (kBT < εF ), the integral (3.4) only changes significantly in the vicinity of the Fermi energy

εF . Therefore, we can approximate the density of states g(ε) by g(εF) in order to write

Ce
V ≃ g(εF)T

∫ ∞

m−εF
T

(x
2

)2
sech2(

x
2
)dx (3.6)

Where the variable change, x = εe−εF
T , was performed. For me < µe, which is in agreement with

the electric neutrality result (see Section 2.2), and since

lim
T→0

me − εF

T
→−∞ (3.7)

we find

Ce
V ≃ 2g(εF)T

∫ ∞

0

(x
2

)2
sech2(

x
2
)dx (3.8)

≃ π2

3
g(εF)T (3.9)

Finally,

Ce
V ≃ µeT

3

√
µ2

e −m2
e (3.10)

Hence, we notice that a relativistic electron gas has a heat capacity at low temperatures that
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depends linearly on the temperature.

B. Electrons at B ̸= 0

Similarly to the zero-magnetic-field case, we have that in the presence of a constant and

uniform magnetic field, the statistical part of the electron thermodynamic potential is given by [7]

Ωe
β =− eB

4π2β

∫ ∞

−∞
d p

∞

∑
n=0

d(n)
[
ln(1+ e−β (εn+µe))+ ln(1+ e−β (εn−µe))

]
, (3.11)

Here, the energy spectrum is given by ε2
n = p2+2|eB|n+m2

e and the degeneracy is d(n) = 2−δn0

where n ∈ Z+
0 is the Landau level number.

In the low-temperature limit, the leading contribution of Eq. (3.11) will come solely from

the particles in the lowest Landau level (LLL), then we have

Ωe
(β−LLL) ≃− eB

4π2β

∫ ∞

−∞
ln(1+ e−β (ε0−µe))d p (3.12)

Making a variable change from momentum to energy, we find that

Ωe
(β−LLL) ≃− 2

β

∫ ∞

me

dε0gB(ε0)ln[1+ e−β (ε0−µe)] (3.13)

Where

gB(ε0) =
eBε0

4π2
√

ε2
0 −m2

e

(3.14)

is the density of state per volume of the LLL. Using Eq. (2.4), we find for the thermodynamic

potential (3.13),

Ce
V (B)≃ 2

∫ ∞

me

dε0g(ε0)

(
ε0 −µe

2T

)2

sech2
(

ε0 −µe

2T

)
(3.15)
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In the low-temperature limit, repeating the same steps we did for the B = 0 case, we find

Ce
V (B)≃ 2g(eF)T

∫ ∞

−∞

(x
2

)2
sech2

(x
2

)
dx =

2π2

3
g(εF)T (3.16)

Substituting (3.14), for ε0 = εF , into (3.16) it is obtained

Ce
V (B)≃

eBµeT

6
√

µ2
e −m2

e
(3.17)

In this calculation, we neglected the contribution of the interaction of the magnetic field

with the anomalous magnetic moment of the electron, since that contribution is negligible for both

strong and weak fields [41].

Considering µe > me (see Section 2.2) we can approximate the heat capacity of the electron

in the presence of a magnetic field as

Ce
V (B)≃

eBT
6

(3.18)

Notice that the heat capacity in this low-temperature limit also linearly depends on the

temperature, but now it is also proportional to the magnetic field.

3.1.2 Heat Capacity of a Nonrelativistic Superfluid of Neutrons

From attractive pion exchanges, neutrons near the Fermi surface can form pairs that can

produce boson condesate at the low-temperature limit. Since neutrons don’t have electric charge,

the pair condensates will keep the neutrality of the ground state, therefore we will observe a macro-

scopic superfluid state. Similarly, since protons does have charge, their Cooper pairs condesates

will create a macroscopic superconductor state. Finally, if the baryonic chemical potential isn’t

considerably higher than the neutron mass we can use a nonrelativistic approximation in order to

find the heat capacity.
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Following Landau’s calculations in Refs. [42, 43], the thermodynamic potential for a non-

relativistic superfluid, treated as an ideal Bose gas formed by the thermally excited quasiparticles,

is given by

Ωn
β =

1
β

∫ d3 p
(2π)3 ln

(
1− e−βεn

)
(3.19)

with a gapped energy spectrum,

εn =
(p− p0)

2

2m
+∆ (3.20)

Where ∆ is the energy gap created by the neutron-pair condensates, and p0 is the gap location in

momentum space.

Performing the same steps we did to get the heat capacity of the electron gas, we substitute

Eq. (3.19) into Eq. (2.4), to find

Cn
V =

1
2π2T 2

∫ ∞

0
d pp2e(−εn/T )ε2

n (3.21)

Using the energy spectrum (3.20) in Eq. (3.21), we find

Cn
V =

e−(∆/T )

2π2T 2

∫ ∞

0
d pp2e−(p−p0)

2/2mT
(

∆+
(p− p0)

2

2m

)2

(3.22)

Doing the variable change x = p−p0√
2mT

, we can rewrite the heat capacity as

Cn
V =

e−(∆/T )
√

2mT
2π2T 2

∫ ∞

− p0√
2mT

dx
[

p2
0 +2x

√
2mT p0 +2mT x2

]
e−x2

(∆+ x2T )2, (3.23)

Which in the low-temperature limit can be simplified to

Cn
V ≃

e−(∆/T )
√

2mp2
0∆2

2π2T
3
2

∫ ∞

−∞
dxe−x2

(3.24)

Where higher-order terms in T
∆ were neglected.
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Finally,

Cn
V ≃ e−(∆/T )∆2

T
3
2

√
m

2π3 p2
0 (3.25)

From Eq. (3.25), we can see the known result that the CV of superfluids is exponentially

damped by the gap.

The effects on neutrons of the magnetic fields up to 1018G are negligible, as it was shown

in Refs. [4, 5]. In the next section, 3.2, we will show that in color superconductivity although the

gap is neutral with respect to the rotated electromagnetism, we have significant changes coming

from the inner composition made of charged quarks.

3.1.3 Heat Capacity of Superfluid Phonons

From Goldstone’s theorem we know that when a global symmetry of the Lagrangian or

Hamiltonian that describes the system, is spontaneously broken this implies the existence of Gold-

stone fields. For a superfluid of neutrons at T ≤ Tc = 1010K, we have a new contribution from

collective modes generated as massless Goldstone modes associated with the breaking of the bary-

onic symmetry produced by the condensation of the s-wave neutron Cooper pairs. Those collective

modes are known as superfluid phonons.

The phonon heat capacity was calculated in Ref. [44], and it is given by

C(sPh)
V =

2π2T 3

15v3
s
, (3.26)

where vs ≃ kFn√
3M

, M is the neutron mass and kFn the neutron Fermi momentum. At low temperature,

the phonon heat capacity has a cubic dependence on the temperature. Hence, at low temperatures,

the electron contribution Ce
V (see Eq. (3.10)), is larger than that of the superfluid phonons written

above in Eq. (3.26). Hence, the electron contribution to CV is the dominant one.

But, once we have an applied magnetic field with a strength B ≥ 1013G, the contribution

from phonons becomes larger than that of the electrons in the direction of the transverse to the
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field, see Ref. [44]. This is due to the fact that in the presence of a magnetic field the electron

heat transport is very anisotropic with the electron motion in the transverse direction limited by the

Landau quantization, while the phonons, being neutral, can equally move along and transverse to

the field directions.

Increasing the density, the s-wave interactions between neutrons become repulsive, while

the attractive p-waves, which produce spin-1 Cooper pairs, are favored as seen in Ref. [45, 46].

Such condensate breaks rotational and baryonic symmetries and give rise to two gapless Gold-

stones, or angulons, associated with the breaking of the rotational symmetry with respect to the

two perpendicular axis to the condensate spin direction and to an extra Goldstone, the superfluid

phonon. Each of the Goldstone modes give similar contribution to the heat capacity as in Eq. (3.26).

3.2 Heat Capacity of Neutron Stars at High Density

At sufficient high densities we expect to observe deconfined quarks and, if the density is

larger than the mass of the s quark, the CFL phase will be favored Ref. [47]. In this section we

will calculate the heat capacity of the relevant contributions of this CFL phase Ref. [48], first in

a system without magnetic field, and latter, in a system with magnetic field which will form the

magnetic CFL, also known as the MCFL phase Ref. [49, 50, 51, 52].

3.2.1 Heat Capacity of quark matter in the CFL phase

In the CFL phase, the temperature-dependent thermodynamic potential was found in Ref.

[48] as

ΩCFL
β =− 1

2π2β

4

∑
i=1

∫ Λ

0
d pp2ln[1+ e−β |εi|], (3.27)

with energy spectra given by

|ε1,2|=
√
(p∓µ)2 +∆2, |ε3,4|=

√
(p∓µ)2 +4∆2 (3.28)
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where ∆ is the CFL gap, µ is the baryonic chemical potential and Λ is the momentum cutoff of the

low-energy theory described by a Nambu–Jona-Lasinio (NJL) model [47]. Once again, substituting

the thermodynamic potential Eq. (3.27) into Eq. (2.4), we find that the heat capacity is given by

CCFL
V =

1
2π2T 2

4

∑
i=1

∫ Λ

0
d pp2ε2

i sech
2
(
|εi|
2T

)
(3.29)

Which can be rewritten as

CCFL
V =

2T 3

π2

4

∑
i=1

∫ Λ̂

0
dxx2ε̂2

i sech
2
(
|ε̂i|
2

)
(3.30)

where x = p
T and Q̂ = Q

T for all the quantities, including |ε̂1,2| =
√

(x∓ µ̂)2 + ∆̂2 and |ε̂3,4| =√
(x∓ µ̂)2 +4∆̂2.

In the low-temperature limit, the leading contribution in Eq. (3.30) can be expressed as

CCFL
V ≃ 2T 3

π2

4

∑
i=1

∫ Λ̂

0
dxx2ε̂2

i exp(−|ε̂i|) (3.31)

Because of the negative exponential, exp(−|ε̂i|), the main contribution in Eq. (3.31) comes

from the region around the integral lower limit. Thus, up to a numerical coefficient, we can extract

the leading contribution making

CCFL
V ≃

[
(µ2 +∆2)T

π2 e−
√

µ2+∆2
T +

(µ2 +4∆2)T
π2 e−

√
µ2+4∆2

T

]∫ 1

0
dxx2 (3.32)

Finally, we have

CCFL
V ≃ (µ2 +∆2)T

3π2 e−
√

µ2+∆2
T +

(µ2 +4∆2)T
3π2 e−

√
µ2+∆2

T (3.33)

Hence, we obtain that in this case, similar to the superfluid state, the heat capacity is exponentially
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damped at low temperature, with a damping factor that depends on the gap and baryonic chemical

potential.

3.2.2 Heat Capacity of Goldstone modes in the CFL phase

Taking into account that the symmetry-breaking pattern in the CFL is given by (see Ref.

[53, 54, 55]),

G = SU(3)C ×SU(3)L ×SU(3)R ×U(1)(1)A ×U(1)B → SU(3)C+L+R. (3.34)

This symmetry reduction leaves ten Goldstone bosons: a singlet associated with the breaking of

the baryonic symmetry U(1)B, another singlet associated with the breaking of theU(1)(1)A approx-

imated symmetry (The groupU(1)(1)A , not to be confused with the usual anomalyU(1)A, is related

to the current which is an anomaly-free linear combination of s, d, and u axial currents [56]), and

an octet associated with the axial SU(3)A group.

If the baryonic chemical potential is not sufficiently large to justify neglecting the quark

masses, the breaking of the axial SU(3)A group is only apparent. If this is the case then we have

an octet of massive pseudo-Goldstone modes associated with the breaking of the global symmetry

SU(3)A, another pseudo-Goldstone associated with the breaking of theU(1)(1)A group and only one

massless Goldstone mode associated with the breaking of the baryonic symmetry. The correspond-

ing CV ’s of the massive and massless modes were found in Ref. [57] and are given, respectively,

by

CB
V ≃ m7/2

2
√

2π3/2v3
√

T
e
−m
T (3.35)

and

CG
V =

2π2T 3

15v3 (3.36)

In these equations, m is the mass of the pseudo-Goldstones and v is their velocity, which should be
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found from the CFL microscopic theory. Comparing Eq. (3.36) with Eq. (3.33) and Eq. (3.35), we

can confirm that the major contribution in the CFL phase comes from the massless Goldstones.

3.2.3 Heat Capacity of quark matter in the MCFL phase

As said in the beginning of Section 3.2, for high density limits and in the presence of a

magnetic field we have a new phase called MCFL Ref. [50, 51, 52] which sees a reduction in

symmetries when compared to the CFL phase, because a magnetic field interacting with quarks of

different electric charges reduces the flavor symmetry and it also breaks rotational symmetry.

Furthermore, in this color superconducting phase we need to redefine electromagnetism.

Though the original electromagneticU(1)em symmetry is broken by the formation of quark Cooper

pairs that are electrically charged Ref. [58], a residual Ũ(1) symmetry still remains Ref. [23].

The massless gauge field associated with this symmetry is given by the linear combination of the

conventional photon field and the eight-gluon field Ref. [23, 59, 60], Ãµ = cosθAµ − sinθG8
µ ,

with the mixing angle given as a function of the strong coupling constant g and the electromag-

netic coupling e as θ = cos−1
(

g
√

e2/3+g2
)
. The field Ãµ works as an in-medium or rotated

electromagnetic field. Therefore, a magnetic field associated with Ãµ can penetrate the color super-

conductor without being subject to the Meissner effect, since the color condensate is neutral with

respect to the corresponding rotated electric charge. In this phase, the temperature-dependent part

of the thermodynamic potential of this phase can be written as Ref. [61]

ΩMCFL
β = ΩC +ΩN , (3.37)

where

ΩC =− ẽB̃
4π2β

∞

∑
n=o

d(n)
2

∑
i=1

∫ Λ

0
d pln

(
1+ e−β |ε(c)i |

)
(3.38)

is the contribution of the rotated-charged quarks, n ∈ Z+
0 is the Landau level number and B̃. Simi-
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larly, ΩN is the contribution from the rotated-neutral quarks, which is simply

ΩN =− 1
4π2β

6

∑
i=1

∫ Λ

0
d pp2ln

(
1+ e−β |εi|

)
(3.39)

The energy spectra in these equations are given by

|ε(c)1,2|=

[(√
p2 +2ẽB̃n±µ

)2

+∆2
H

]1/2

(3.40)

|ε(0)1,2 |=
√
(p±µ)2 +∆2, |ε(0)3,4 |=

√
(p±µ)2 +∆2

a, |ε(0)5,6 |=
√
(p±µ)2 +∆2

b (3.41)

with

∆a =
1
2

[
∆+

√
∆2 +8∆2

H

]
∆b =

1
2

[
∆−

√
∆2 +8∆2

H

]
(3.42)

In the expressions above ∆ and ∆H denote the two gaps of the MCFL phase Ref. [50, 51, 52]. Here,

since this phase lowers the system symmetry, it doubles the number of gaps as compared with the

CFL phase. As a consequence of the breaking of rotational symmetry by the uniformmagnetic field,

which opens new interaction channels, a third gap appears related to the interaction of the magnetic

field with the anomalous magnetic moment of the diquark pairs as studied in Ref. [62]. This new

gap can be neglected at moderate magnetic fields, but it becomes significant when B≥̃1019G.

From Eq. (2.4) we can check that for ΩN the result is exponentially damped at low temper-

atures, similarly to the CFL case, Eq. (3.33). In the case of ΩC, in the low-temperature limit, the

leading contribution to CV , comes from the LLL because of the negative exponential term in Eq.

(3.38). Therefore, we can approximate

Ω(LLL)
C ≃− ẽB̃

4π2β

2

∑
i=1

∫ Λ

0
d pln

(
1+ e−β |ε(LLL)

i |
)

(3.43)
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with

|ε(LLL)
1,2 |=

√
(p±µ)2 +∆2

H (3.44)

From Eq. (3.43), we obtain the heat capacity

CMCFL
V =− ẽB̃

16π2T 2

2

∑
i=1

∫ Λ

0
d p|ε̂i|2sech2

(
|ε̂i|
2T

)
, (3.45)

where we are using, once again, the notation Q̂ = Q
T for all physical quantities. The equation above

can be simplified in the low-temperature limit as

CMCFL
V ≃ ẽB̃

4π2T 2

2

∑
i=1

∫ Λ

0
d p|εi|2e−|εi|/T (3.46)

Defining a new variable x := p
T and considering that µ > p, we obtain

CMCFL
V ≃ ẽB̃T

2π2

∫ 1

0

(
µ̂2 + ∆̂2

H
)

e−
√

µ̂2+∆̂2
H dx (3.47)

and finally after integration

CMCFL
V ≃ ẽB̃

2π2T

(
µ2 +∆2

H
)

e−
√

µ2+∆2
H/T (3.48)

Comparing Eq. (3.48) with Eq. (3.33), we see that the MCFL heat capacity is larger at low

temperature than that of the CFL phase, although it is also exponentially damped by the baryonic

chemical potential and the gap formed by quarks that are charged with respect to the electromag-

netism inside the superconductor.

3.2.4 Heat Capacity of Goldstone modes in the MCFL phase

As we already know the MCFL phase presents a different symmetry-breaking pattern than

that of the CFL phase. In fact, if a system has a magnetic field, the difference between the electric
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charge of the u quark and that of the d and s quarks reduces the original flavor symmetry of the

theory, and consequently also the symmetry group remaining after the diquark condensate is formed.

Then, the breaking pattern for the MCFL-phase Ref. [50, 51, 52] becomes

GB = SU(3)C ×SU(2)L ×SU(2)R ×U(1)(1)A ×U(1)B → SU(2)C+L+R (3.49)

The magnetic field applied to the superconducting phase reduces the number of Goldstone bosons,

from nine to only five, three of them related to the breaking of SU(2)A, one to the breaking of

U(1)(1)A , and one to the breaking ofU(1)B. Another characteristic of the MCFL phase, besides the

reduction of Goldstone fields, is that all these bosons are neutral with respect to the rotated electric

charge Ref. [63]. Thus, no charged low-energy excitation can be produced in the MCFL phase.

Therefore, we can say that once the magnetic field is present, the original symmetry group

G is reduced, to GB, and that the low energy theory should immediately correspond to the breaking

pattern (Eq. 3.49), having only five neutral Goldstone bosons. However, at very weak magnetic

fields the symmetry of the CFL phase can be treated as a good approximated symmetry, meaning

that at weak fields the low-energy excitations are essentially governed by ten approximately mass-

less scalars (those of the breaking pattern Eq. (3.34)) instead of five. From there, we can understand

what is the threshold-field strength that effectively separates the CFL low-energy behavior from the

MCFL one.

In fact, the threshold field that marks the reduction in the number of Goldstones was found

in Ref. [63]. First, we recall that when a magnetic field interacts with a charged particle, it endows

it with an effective mass. Now, in order to have a stable meson in this medium, its mass must be less

than twice the gap, otherwise it will decay into a particle-antiparticle pair. Hence, for an effective

transition between the CFL → MCFL symmetries, there must be a threshold field, which in Ref.

[63] was found to be of order 1016G.

In the MCFL phase, where only neutral Goldstone bosons exist, four massive (their masses
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don’t depend on the magnetic field) and one massless (associated with the baryonic symmetric

breaking), we have that the corresponding heat capacities are expressed by similar formulas to Eq.

(3.35) and Eq. (3.36), respectively. Therefore, the contribution from theGoldstonemode associated

with the breaking of he baryonic symmetry is the dominant one for the heat capacity in the MCFL

phase.

3.3 Heat Capacity of Neutron Stars at Intermediate Density

From QCD-inspired NJL models we know that, with increasing chemical potential, the en-

ergy separation between quarks and anti-quarks increases, so that it is not energetically favorable

to excite anti-quarks from the Dirac sea to be paired with quarks at the Fermi surface. Since the

densities aren’t high enough we don’t expect to observe a CFL phase and, therefore, we need to

consider different matter phases in such case. Either no condensate is favored, and the chiral sym-

metry is restored, or quarks and holes near the Fermi surface pair with parallel momenta and we

have inhomogeneous chiral condensates. Finally, quarks may pair with quarks forming a color

superconductor phase, which will be, in general, inhomogeneous at the moderate densities we are

working with Ref. [64, 65]. The last two possibilities are usually favored Ref. [64, 65, 66, 33],

meaning that the transition to a chirally restored phase found in NJLmodels with increasing density

[67] will most likely occur in more than one step, or perhaps will not occur.

As mentioned in the Introduction, we will calculate the heat capacity of one of the inho-

mogeneous chiral condensate phase, known as the MDCDW phase, that is formed precisely at

intermediary densities in the presence of a magnetic field [66]. A magnetic field appears naturally

in a NS and it is essential in order to maintain the stability of this phase which indicates that it

is plausible to appear inside its core. Furthermore, we are interested in this phase because it is

compatible with various astrophysical constraints as seen in Ref. [68] and it presents interesting

anomalous electromagnetic transport properties [32, 69].
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3.3.1 Heat Capacity of quark matter in the MDCDW phase

The temperature-dependent thermodynamic potential for this phase is given by [66]

ΩMDCDW
β =− ∑

f=u,d

|e f B|Nc

(2π)2β

∫ ∞

−∞
d p∑

lξ ε
ln
(

1+ e−β (|E f
l,ξ ,ε−µ|)

)
(3.50)

where Nc is the color number, f denotes the flavor index for quarks u and d, l is the Landau level

number, and the energy spectra are given by

E0,ε = ε
√

m2 + p2 +b, ε =±, l = 0

E f
l,ξ ,ε = ε

[(
ξ
√

m2 + p2 +b
)2

+2|e f B|l
]1/2

, ε =±,ξ =±, l = 1,2,3, ... (3.51)

In Eq. (3.51), m and b are respectively the amplitude and modulation of the inhomogeneous

condensate. These are dynamical parameters and can be found through the system gap equations

as shown in Refs. [33, 66]. Also, from (3.51) we can see that the energy spectrum is asymmetric

in the LLL around the zero-energy level, this asymmetry has topological implications which were

discussed in Refs. [32, 69, 70]

Substituting Eq. (3.50) in Eq. (2.4), we find

CMDCDW
V = ∑

f=u,d

|e f B|Nc

(2π)2 ∑
l,ξ ,ε

∫ ∞

−∞
d p

 |E f
l,ξ ,ε −µ|

2T

2

sech2

 |E f
l,ξ ,ε −µ|

2T

 (3.52)

Which, in the low-temperature limit, can be approximated to

CMDCDW
V ≃ ∑

f=u,d

4|e f B|Nc

(2π)2 ∑
l,ξ ,ε

∫ ∞

−∞
d p

 |E f
l,ξ ,ε −µ|

2T

2

e−|E f
l,ξ ,ε−µ|/T (3.53)

Once again, we have a negative exponential so that the leading contribution comes from

the LLL, and from ε = − because of the modulus in the exponent. Now, we can express the heat
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capacity as

CMDCDW
V ≃ ∑

f=u,d

2|e f B|Nc

(2π)2

∫ ∞

0
d p

(
|E f

0,−−µ|
2T

)2

sech2
(
|E0,−−µ|

2T

)
(3.54)

= ∑
f=u,d

2|e f B|Nc

(2π)2 (3.55)

×
∫ ∞

0
d p

(
|−
√

p2 +m2 +b−µ|
2T

)2

sech2

(
|−
√

p2 +m2 +b−µ|
2T

)

Now, making the variable change p/T → p′, we have

CMDCDW
V ≃ ∑

f=u,d

2|e f B|NcT
(2π)2 (3.56)

×
∫ ∞

0
d p′
(
|−
√

p′2 + m̂2 + b̂− µ̂|
2

)2

sech2

(
|−
√

p′2 + m̂2 + b̂− µ̂|
2

)

Where we used the normalization notation Q̂ = Q/T in Eq. (3.57).

Introducing the new variable change

x :=−
√

p′2 + m̂2 + b̂− µ̂ = Ê0,−− µ̂ (3.57)

with

d p′ =
x− b̂+ µ̂√

(x− b̂+ µ̂)2 − m̂2
dx (3.58)

we obtain

CMDCDW
V ≃ ∑

f=u,d
2NcT

∫ ∞

m̂+b̂−µ̂
dxg f (x)

(
|x|
2

)2

sech2
(
|x|
2

)
(3.59)

where g f (x) represents the system density of states per unit volume given by

g f (x) =
|e f B|
4π2

x− b̂+ µ̂√
(x− b̂+ µ̂)2 − m̂2

(3.60)
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As it was discussed in Section 3.1.1, the Fermi-Dirac distribution at low temperature only

changes significantly in the vicinity of the Fermi energy. Similarly, the integral in Eq. (3.59) main

contributions comes from the surroundings of E0,− = µ . From Eq. (3.60) we see that g f (E0,− =

µ)≡ g f (x = 0)which enables us to write the density of states ĝ f (x) as ĝ f (x = 0). After this change

and taking into account that in the T → 0 limit the lower limit in the integral of Eq. (3.59) goes to

negative infinity because µ > m,b, we find

CMDCDW
V ≃ 2NcT ∑

f=u,d
g f (0)

∫ ∞

−∞

(x
2

)2
sech2

(x
2

)
dx

≃ 2π2Nc

3
T ∑

f=u,d
g f (0)

≃ (µ −b)|eB|T
2
√

(µ −b)2 −m2
(3.61)

Here, we have neither a superfluid phase nor a superconducting phase and we can observe

that the heat capacity isn’t so damped as in the CFL phase found in Subsection 3.2.1, which had

a negative exponential damping. The CV in this case depends on the dynamical parameters m and

b that have to be determined by the system gap equations, as mentioned. These parameters will

decrease with the temperature, but even if T = 0, we have that µ > b > m in the region of interest

[63, 66]. Hence,CMDCDW
V ∼ eBT/2.

If we compare Eq. (3.17) after neglecting me, with Eq. (3.61) after neglecting m and b, we

see that the quark contribution to the heat capacity is 3 times larger than the electron contribution at

the same temperature and with the same magnitude of the magnetic field. This is due to the quark

phase having more degrees of freedom, specially the three color degrees of freedom, because the

flavor ones enter in CV through |e f B|, hence the fractional quark charges in the flavor sum gives

|eB| without an extra factor.

It is important to notice that at intermediate densities, other phases can compete with the
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MDCDW phase. With decreasing densities homogeneous CS phases, such as CFL and the 2SC,

become gapless and unstable [24, 25, 71, 72].This instability manifests itself through imaginary

Meissner masses for some of the gluons which indicates an instability towards spontaneous break-

ing of translational invariance [26, 27, 28, 29]. This means that inhomogeneous phases will be also

favored in color superconductivity.

Most inhomogeneous CS phases are based on the idea of Larkin and Ovchinnikov (LO) [73]

and Fulde and Ferrell [74], originally applied to condensed matter. In the CS LOFF phases [75, 76,

77], quarks of different flavors form Cooper pairs with nonzero momentum. CS inhomogeneous

phases with gluon condensates that break rotational symmetry [78] have also been considered to

solve the chromomagnetic instability, we expect these phases to have larger CV values but their

calculations are a pending task.

3.4 Heat Capacity Estimates for Different Neutron Star Compositions

In this section we want to estimate the main contributions to the heat capacity from different

phases that were discussed in previous sections and then to compare the contributions with the

phenomenological constraint C̃V ⪆ 1036(T/108) ergK coming from astrophysical observations. This

will give us important informations such as, which phases respect the constraint and therefore, are

feasible to appear inside NS and which are the ones given a major contribution.

3.4.1 Nuclear Matter Phase

The low density limit for NS is completely dominated by nuclear matter, i.e, neutrons, pro-

tons and electrons which will give the main contribution to the heat capacity. If neutron and protons

are in superfluid and superconducting states respectively, their contributions toCV can be neglected,

as commented before. Therefore, the main contribution comes from unpaired neutrons and elec-

trons. We will try to estimate the order of these contributions for a NS in the absence and in the

presence of the magnetic field.

A. Unpaired Neutrons
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We can find the heat capacity for neutrons with similar steps we did for electrons, we just

have to substitute µe by the baryonic chemical potential µ , and the electron mass by the neutron

mass mn, so that from Eq. (3.10), we find

Cn
V ≃ µT

3

√
µ2 −m2

n (3.62)

From QCD we know that a single particle density n is given in terms of the Fermi momentum by

n =
d

6π2 k3
F (3.63)

where d counts the internal degrees of freedom. Therefore for d = 2 (spin degeneracy) the Fermi

momentum can be written as

kF = cℏ
(
3π2nN

)1/3 (3.64)

If nB = 3ns and nN ≃ nB, where ns = 0.15fm−3 is the saturation density. The baryonic chemical

potential can be written as

µ =
√

k2
F +m2

n (3.65)

where mn ≃ 939.57 MeV is the neutron mass. Therefore, from Eq.(3.64) we can calculate the

Fermi momentum, then we find µ = 1050 MeV and the corresponding Fermi temperature TF =

µ
kB

≃ 12.2×1012K.

If µ > mn, the heat capacity Eq. (3.62) can be simplified as

CN
V ≃ µ2k2

BT
3

, (3.66)

here we included k2
B, associated with the second derivative with respect to the temperature T in

Eq. (2.4) (Notice that, on the other hand, in the thermodynamic potential, T , appears always mul-

tiplied by kB). We can approximate the neutron number density by nN = 2µ3

3π2 and, from the Fermi

35



temperature kBTF = µ , we can rewrite Eq. (3.66) as

CN
V ≃ π2

2
nNkB

(
T
TF

)
(3.67)

Finally, for nN = 3ns and TF = 12.2×1012K, choosing T = 108 K, we obtain the volumetric heat

capacity

CN
V ≃ 0.25×1019 erg

K cm3 (3.68)

We can compare the result above with those found in Ref. [79]. In order to do that, first we

multiply Eq. (3.68) by the volume of a NS of radius R = 10 km, considering it a perfect sphere, so

that VNS =
4
3πR3 = 4.2×1018cm3. Although it is a rough approximation, it is useful since we can

find the order of the heat capacity for a given temperature, which, in this case, is given by

C̃N
V =CN

V ×VNS = 0.1×1038 erg
K

, (3.69)

this result is of the same order as the one reported in Ref. [79]. The inclusion of a magnetic field

can be done through the anomalous-magnetic-moment/magnetic field interaction. This calculation

was performed in Ref. [4, 5] and it was found that up to magnetic fields of 1018G the magnetic

field effect on the heat capacityCV is negligible.

The calculations for unpaired protons in a system without magnetic field is similar to what

we did in this section. We just need to to replace nP = XenN , where nP and nN are the number

densities of protons and neutrons, respectively, and Xe is the electron fraction, which is expected

to be larger than a threshold value Xe ∼ 1/9 in order for the direct URCA process to occur in NSs

Ref. [80]. If B ̸= 0, the calculations are similar to what is reported in Subsection, 3.4.1 - C, with

the replacement of the mass me → mn and chemical potential µe → µ −µe.

B. Electrons at B=0
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For µe > me, we rewrite Eq. (3.10) as

Ce
V ≃ µ2

e k2
BT

3
, (3.70)

Where, as in Eq. (3.66), we included the square of the Boltzmann constant and neglect me consid-

ering that µe > me. From the electron number density ne = 2µ3
e /3π2 and the Fermi temperature

kBTF = µe, we can manipulate Eq. (3.70), so that

Ce
V ≃ π2

2
nekB

(
T
TF

)
(3.71)

Nowwewant to estimate the electron number density, using electric neutrality we know that

ne = nP =XenN . Thus, for nN = 3ns, we have ne = (1/3)ns, with a corresponding TF = 2.1×1012K.

Substituting with these values in (3.71), we obtain for T = 108 K the volumetric heat capacity

Ce
V ≃ 0.2×1019 erg

K cm3 (3.72)

Multiplying by the volume for a NS with 10 km radius, as we did for neutrons, we obtain

C̃e
V =Ce

V ×VNS = 0.8×1037 erg
K

, (3.73)

which is of the same order than the one reported in [79]. It is important to notice that for themassless

Goldstones C̃G
V ∼ ns

(
T
TF

)3
≪ C̃e

V since
(

T
TF

)
∼ 10−4.

C. Electrons at B ̸=0

Considering the same approximation used in the previous section, from Eq. (3.17) we

can write

Ce
V (B)≃

eBk2
BT

6
(3.74)
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The electron number at zero temperature in this case is given by

Ne(B) =−
∂Ω(e)

LLL
∂ µe

=
eB
2π2

√
µ2

e −m2
e ≃

eBµe

2π2 (3.75)

Here, if the number density of electrons is equal to the one calculated in the B = 0 case,

for the same chemical potential, we would need to have a magnetic field B = 2µ2

3 = 1.7×1019 G,

which is a value too high to be expected inside the NS core [4, 5].

Multiplying and dividing the right hand side of Eq. (3.74) by µe and introducing the Fermi

temperature as before we have

Ce
V (B)≃

π2N(e)
(LLL)kB

3

(
T
TF

)
(3.76)

Keeping the same parameters than in the B = 0 case, we obtain

C̃e
V (B)≃ 0.2×1037 erg

K
, (3.77)

If we consider a realistic field value of B ∼ 1017 G, the heat capacity decreases by two orders in

relation toC(e)
V . Hence, we find that in the presence of a moderately high magnetic field ∼ 1017 G,

the electron heat capacity decreases.

3.4.2 Quark Phase

Below, we consider the contribution of quark matter at intermediate densities to the heat

capacity of NS, paying special attention to the inhomogeneous MDCDW phase.

Here, we are considering a quark star which is formed only by quarks and a small cloud

of electrons occupying a region of a few fm around the quark surface [81]. Based on the Bodmer-

Terazawa-Witten hypothesis (see Introduction) [15, 16, 17], it is possible that a Neutron Star made

up solely of quarks is the most energetically favored configuration once quark matter is present
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inside it, i.e. this NS is either formed solely by three-flavor (u, d and s), which is known as a

strange star, or two-flavor (u and d) quark matter.

The proposal that a strange star can be stable takes into account the fact that strange matter,

which consists of roughly equal numbers of u, d, and s quarks at high densities is absolutely stable

(it has lower energy per baryon than ordinary iron nuclei) which, as said, comes from Bodmer-

Terezawa-Witten hypothesis [15, 16, 17]. Recently, it was shown using phenomenological quark-

meson model, including flavor-dependent feedback of the quark gas on the QCD vacuum, that u-d

quark matter is in general more stable than strange quark matter, and it can be more stable than

ordinary nuclear matter if the baryon number is large enough, above Amin ≳ 300 which, on the

other hand, ensures the stability of ordinary nuclei.

We are going to consider a two-flavor quark star whose interior is made up solely by u and

d quarks in order to work with the two-flavor MDCDW phase in the section below.

A. Quarks in the MDCDW phase

As discussed in Section 3.3, at intermediate densities where it is possible to realize the

MDCDW phase, the heat capacity given in Eq. (3.61) can be reduced to

CMDCDW
V ≃ eBT

2
(3.78)

From [32, 69], we know that the quark number density for the MDCDW phase is given by

nq = nanom +nord (3.79)

Here nanom = 3 |eB|b
2π2 is the so-called anomalous quark number density, and nord = 3 |eB|µ

2π2 is the ordi-

nary contribution coming from the MDCDW non-anomalous many-particle thermodynamic poten-

tial at zero temperature. Since µ > b in the region of interest, we have that the leading contribution
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comes from the nonanomalous part,

nq ≃ nord =
3|eB|µ

2π2 (3.80)

Finally, substituting Eq. (3.80) into Eq. (3.78), we find

CMDCDW
V ≃ π2

3
nqkB

(
T
TF

)
(3.81)

To find the order of the contribution of this phase to the heat capacity, we need to find the

quark number density, thus we consider that the baryonic number density is nB = 3ns, therefore, the

quark number density is nq =
nB
3 = ns, and the corresponding Fermi temperature is TF = 2.6×1012

K. Substituting these quantities in (3.81) we obtain for T = 108 K the volumetric heat capacity

CMDCDW
V ≃ 0.26×1019 erg

K cm3 (3.82)

In order to find the heat capacity, we multiply this result by the volume of a star of radius 10 km.

C̃MDCDW
V =CN

V ×VNS = 0.1×1038 erg
K

, (3.83)

which is of the same order as the one obtained for unpaired neutrons Eq. (3.69).
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CHAPTER IV

CONCLUSION

This thesis deals with investigating the dominant contributions to the heat capacity of NS

due to the different matter states that can be realized in the stellar core. As is it well known, depend-

ing on the baryonic density that can be reached in the core and on the value of the existing magnetic

field, different states of matter will prevail. Our focus, in particular, is to check, based on this ther-

modynamical study associated to the different media heat capacity, if deconfined quark matter can

play a role in the star’s inner composition. We pay special attention to the thermal properties of a

new quark-matter phase called the Magnetic Dual Chiral Density Wave phase that can be realized

in the intermediate density regime that can be the more appropriate one inside this compact objects.

Our work consists in deriving from first principles of statistical mechanics, the heat capac-

ity of different dense matter phases comparing the results with the one obtained from astrophysical

observations. Observing NSs after the accretion outburst help us to comprehend the crust heat

capacity [82, 83, 84], and long-running observations on a timescale of years can give us limiting

values of the heat capacity of NSs core. A lower limit to the heat capacity was found from those

observations to beCV ⪆ 1036( T
108 )

erg
K [79]. Our calculations indicate that matter states that exhibit

superfluidity or superconductivity do not satisfy this constraint, since in those cases CV is expo-

nentially damped. At low densities, only electron-rich media and those with a large number of

unpaired neutrons have heat capacities satisfying the constraint. At high densities the situation is

different. If we consider that the most favorable quark-matter state at those very high densities and

in the presence of a magnetic field is the color superconducting phase known as the magnetic color-
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flavor-locking (MCFL) phase, since being a superconducting phase does not satisfy the minimum

constraint for the heat capacity, so invalidating the presence of quark matter in the core. But as

we already discussed, the densities inside a NS core aren’t asymptotically high enough to make the

MCFL reliable and we should look for other phases that are more suitable at intermediate densities.

For feasible intermediate densities which are expected to be reached in the inner core of a

NS, other phases can be realized [85]. Good candidates for quark-matter phases at the intermediate

densities and low temperatures found in the NS’s core are the chiral inhomogeneous condensate

phases formed by particle-hole pairs, and in particular the phase known as MDCDW that we con-

sider in this thesis. Considering the MDCDW phase, we prove that the heat capacity for this phase

has the same behavior as the heat capacity of media formed by electrons and unpaired neutrons, i.e,

it is a linear function of temperature, and when evaluated in the stellar characteristic parameters, as

the star radius and temperature, it satisfies the observational constraint.

An important aspect of the NSs’s system, besides the high density and the low temperature,

is its strong inner magnetic field, which can impact the heat capacity. For a system composed by

both, electrons and quarks in the MDCDW phase, we found that the heat capacity is not exponen-

tially damped, while the magnetic field has the following impact: its presence redefines the system

density of states that now depends on eB and also produces the Landau quantization of the energy

levels. We also found that the main contribution toCV comes from the LLL when we consider the

low-temperature limit, i.e., kBT << EF . This happens because at low temperatures, the particles in

the Fermi sphere don’t have sufficient energy to overcome the gap between Landau energy levels,

which are of order
√

eB > T . Furthermore, the magnetic field is crucial for the thermal stability

of the MDCDW phase. The problem is that the new structures created by the magnetic field in

the Ginzburg-Landau free energy stiffen the spectrum of the thermal fluctuations in the transverse

direction, thereby avoiding the Landau-Peierls instability that affect single-modulated phases at

arbitrarily low temperatures [38].

We are also reporting other results that can be important to understand the physics of the
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dense phases that can play a role in the inner composition of NS. Among them, we have that ob-

serving that only the electric chemical potential affects the electron Dirac distribution, while for

protons both the electric and baryonic chemical potential will play a role in the proton Dirac distri-

bution, we found that, as a consequence of the electric neutrality condition that characterizes the

stellar medium, the relation µ > µe > me is satisfies. This result was shown in Fig. 1, for a system

made up solely by protons and electrons as charged particles. We also found that in the presence

of the magnetic field - for realistic values of magnetic field and baryonic density - the heat capac-

ity of the MDCDW phase decreases when compared with the B = 0 case. Similarly, the electron

contribution to the NS heat capacity is reduced when the magnetic field is present. On the other

hand, if we want to observe the same density of electrons for B = 0 and B ̸= 0, we must have for

a baryonic density of 3ns a magnetic field of B = 2µ2

3 = 109 G, a value that is too high for what is

expected in NSs cores [4, 5, 86].

In conclusion, we found that the contribution of quarks in the MDCDW phase to the heat

capacity is one order larger than that of electrons in a magnetic field and two orders larger than

the low-limit observational constraint to the heat capacity, see Section 3.4. Additionally, since two

quark flavors cannot ensure charge neutrality for the MDCDW phase, then we must have electrons

in the system which will also significantly contribute to the NS heat capacity [68]. Hence, we

can affirm that the presence of quarks cannot be ruled out by the thermodynamic constraint under

consideration, as part of the composition of NSs core.
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