
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations - UTB/UTPA

12-2014

GPS-MIV: The General Purpose System for Multi-display GPS-MIV: The General Purpose System for Multi-display

Interactive Visualization Interactive Visualization

Irving A. Gonzalez Garza
University of Texas-Pan American

Follow this and additional works at: https://scholarworks.utrgv.edu/leg_etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Gonzalez Garza, Irving A., "GPS-MIV: The General Purpose System for Multi-display Interactive
Visualization" (2014). Theses and Dissertations - UTB/UTPA. 985.
https://scholarworks.utrgv.edu/leg_etd/985

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations - UTB/UTPA by an authorized administrator of ScholarWorks @ UTRGV. For
more information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/leg_etd
https://scholarworks.utrgv.edu/leg_etd?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/leg_etd/985?utm_source=scholarworks.utrgv.edu%2Fleg_etd%2F985&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

 GPS-MIV: THE GENERAL PURPOSE SYSTEM

 FOR MULTI-DISPLAY INTERACTIVE

VISUALIZATION

A Thesis

by

IRVING A. GONZALEZ GARZA

Submitted to the Graduate School of

The University of Texas-Pan American

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2014

Major Subject: Computer Science

GPS-MIV: THE GENERAL PURPOSE SYSTEM

FOR MULTI-DISPLAY INTERACTIVE

VISUALIZATION

A Thesis

by

IRVING A. GONZALEZ GARZA

COMMITTEE MEMBERS

Dr. Richard H. Fowler

Chair of Committee

Dr. Wendy A. Lawrence-Fowler

Committee Member

Dr. Zhixiang Chen

Committee Member

December 2014

Copyright 2014 Irving A. Gonzalez Garza

All Rights Reserved

 iii

ABSTRACT

Gonzalez Garza, Irving A., GPS-MIV: The General Purpose System for Multi-

display Interactive Visualization. Master of Science (MS), December, 2014, 53 pp., 20

figures, references, 45 titles.

 The new age of information has created opportunities for inventions like the internet.

These inventions allow us access to tremendous quantities of data. But, with the increase in

information there is need to make sense of such vast quantities of information by

manipulating that information to reveal hidden patterns to aid in making sense of it. Data

visualization systems provide the tools to reveal patterns and filter information, aiding the

processes of insight and decision making. The purpose of this thesis is to develop and test a

data visualization system, The General Purpose System for Multi-display Interactive

Visualization (GPS-MIV). GPS-MIV is a software system allowing the user to visualize

data graphically and interact with it. At the core of the system is a graphics system that

displays different computer generated scenes from multiple perspectives and with multiple

views. Additionally, GSP-MIV provides interaction for the user to explore the scene.

iv

ACKNOWLEDGMENTS

 First and foremost, praise thanks goes to my savior Jesus Christ for the many blessings I

have received. I would like to thank my parents, Rosa Leticia Garza and Jorge Gonzalez, for all

their support during my undergraduate and graduate years. Their love inspired me throughout my

life to dream big and work harder. I would like to express my gratitude to my committee chair,

Dr. Richard H. Fowler, for giving me the opportunity to work next to him in my graduate years.

Finally the love and support of my friends turned any fear of failure into desires to succeed.

Thank you.

v

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

TABLE OF CONTENTS ...v

LIST OF FIGURES .. vii

CHAPTER I. INTRODUCTION ...1

Motivation ..2

Goals ..4

Organization of the Thesis ...5

CHAPTER II. BACKGROUND ...6

CAVE ...8

 CAVELib...10

Hardware ..10

 WorkStation ...10

 Tracking Hardware ..10

 Displays..11

 Multi-Screen ..12

Stereoscopic Graphics ..13

Rendering ...15

The Cost of Knowledge ...17

CHAPTER III. THE GENERAL PURPOSE SYSTEM FOR MULTI-DISPLAY

INTERACTIVE VISUALIZATION ...19

vi

OpenGL..20

OpenGL Pipeline ...21

Installation and Configuration ...23

Immersion and Presence: A Study of Stereoscopic 3D ...23

Stereoscopic 3D in Application ...24

Applications ...30

Medical Applications ...31

OBJ Model Support. ..32

FP Camera Control ..34

Microsoft's Kinect ..34

CHAPTER IV. CONCLUSION ..38

REFERENCES ..40

APPENDIX A ..44

BIOGRAPHICAL SKETCH ...53

vii

LIST OF FIGURES

Page

Figure 1: CAVE Program Based on OpenGL..9

Figure 2: MIP Mapping ...16

Figure 3: GPS-MIV Software Architecture ...20

Figure 4: OpenGL Pipeline ..21

Figure 5: Keystone Effect ..25

Figure 6: World Camera vs. OpenGL Projection ..26

Figure 7: Toed-in Projection ..26

Figure 8: Keystone Effect vs. Compensation for the Keystone Effect ..27

Figure 9: Frustum Shift ..28

Figure 10: Conventional CAVE Configuration ...29

Figure 11: Proposed CAVE Configuration ..30

Figure 12: Blender Model ..33

Figure 13: The GPS-MIV Multi-Perspective ...33

Figure 14: Speckle Pattern ...35

Figure 15: Kinect System Overview ..36

Figure 16: Seated and Standing Tracking ..36

Figure 17: Boids Document Visualization ...37

Figure 18: Shading Models ... 49

Figure 19: OpenGL Cube .. 51

viii

Figure 20: Rendering Models Immediate vs. Vertex Array .. 52

1

CHAPTER I

INTRODUCTION

 In 1962 Richard Wesley Hamming wrote, “The purpose of computing is insight, not

numbers.” The electronic computers available then, as well as today, are not an end in

themselves, rather, they are only useful to the extent that they help us gain insight into problems

and domains described with numbers. The most important things about computers arise in their

use to understand, or gain insight, and create. For example much of the economic advance of the

past generation is due to the use of computers throughout all the business process. This has had a

profound impact on our quality of life. To build upon Hamming's proposition, what we need are

computing techniques and systems that convert numbers into insight and guarantee the relevance

of those numbers.
[4]

 Visualization of data, or numbers has proven to be one such technique.

 Some virtual reality systems, based on immersive displays have proven to be very

effective in data visualization. Immersive displays led to the creation of the CAVE (from

Computer Augmented virtual Environment) system. The CAVE is a system normally composed

of three displays with walls acting as displays surfaces and utilizing stereoscopic projections on

the walls to represent a virtual environment. The cost of such display technology has decreased

to the point where a system like the original CAVE's first development in the 1990's can be

constructed with a dramatically lower price. At this lower cost a larger user base is

2

possible and a wide range of applications is possible. Additionally, there have also been

contributions in the efficiency of how such immersive systems are programmed. When the

CAVE was first introduced, it required very significant programming effort specific to the tasks

to be performed. Now, there are public domain tools that allow us to program immersive systems

at a relatively high level. All these improvements speed up development time and reduce cost,

making CAVE systems an option for a wider audience. But despite all this improvements, the

CAVE is still quite expensive for some small projects and applications. Also, it requires a

significant amount of space for the projection walls to be set up, making a CAVE system

impractical for many circumstances. Nevertheless, the features provided by the CAVE in terms

of immersion and presence can improve the quality of small applications.
[4]

 This research deals with creating a low cost alternative to a CAVE system called the

General Purpose System for Multi-display Interactive Visualization (GPS-MIV) that can be

run on a single machine providing many of the advantages found with the CAVE. With GPS-

MIV a user can visualize data graphically and interact with it. In this study we will show how the

system can display different computer generated scenes that have the capability of being seen

from different perspectives and multiple views, as well as providing interaction mechanisms for

the user to explore the scene.

Motivation

 The new age of information has created opportunities for great inventions like the

internet; such inventions allow us to have access to tremendous quantities of data. But with the

increase in information there is also an increasing need to manipulate that information, revealing

unnoticed patterns, especially in large data sets. Data visualization provides the tools to filter

3

information, make sense of it, and aid in the process of decision making. All this allows us to

reduce the cost to access knowledge, as it whether it is in access time, or resource cost.

As predicted by Gordon Earle Moore, the price to performance ratio of technology

associated with virtual reality has decreased significantly compared to the technology two

decades ago. This decrease in price has been most significant in the areas of computing and

graphics equipment. Most of the advances in displays and graphics equipment have been

achieved through the demand for better gaming experiences. The demand on the consumer side

has proven to be a strong force for technologies to grow, Researches have to push new

technologies to the public so they can grow.
[35]

By creating a lower cost alternative to the CAVE, virtual reality technology can be accessible

to wider audience. All this in its turn pushes VR technology forward by allowing more

developers to have a taste of what are the benefits of such technology, and making them more

likely to invest in more VR technology. It is one of the main motivations of this research to

provide with a system that is functional and that provides developers tools to visualize virtual

environments, but this is in the short term. In the long term it is a main concern to make VR

technology more available so that developers can experiment and discover the advantages of

using such technology as it is there already. It is the author's opinion that the reason that VR

technology is not being used outside of the research labs as much as it should be is because there

hasn't been enough effort in part of researches to promote it, to convince developers of why they

should be interested.
[35]

 Gaining insight is a primary goal in computer visualization. In order to enhance insight

and hidden knowledge in a collection of data, we will show that computer visualization coupled

with interaction to manipulate views of the data improves the probability of finding insight, as

4

well as user satisfaction. Insight is about finding patterns and relations that many times are

hidden in large data sets. By providing tools to interact and visualize the information these

patterns become more apparent and provide the means to facilitate the decision making

process.
[35]

Goals

 The General Purpose System for Multi-display Interactive Visualization should support

data visualization, user interaction, and reduce the cost associated with the creation of computer

generated environments. The system should be portable and capable of being run on one

machine that supports multi-screen configurations. Interaction using the system should be fluid

and natural providing conventional means of interaction, as well as, other means of interaction

that utilize the human body as part of the interface to facilitate interaction.

 The system will provide the ability to be reconfigured in both the hardware and software

areas to suit the needs of the project hand and to guarantee portability. The system should be

stable to allow researches too use it as the basis for future work in the field of VR and human

computer interaction. Most of all, the system should allow the user to create applications that

maximize the amount of insight that is revealed through means of interaction and interface

creation.

5

Organization of the Thesis

 The next sections describe the background, hardware, and implementation used to create

the system. First, background information on the areas of immersive systems, particularly the

CAVE VR system, is provided. Then a brief introduction is provided, covering the background

of virtual reality, its hardware and software requirements, and the current state of relevant

technologies. Next, Stereoscopic 3D is described and an overview is provided of increases in

productivity related to multi-screen display. In the following section, The General Purpose

System for Multi-display Interactive Visualization is described in detail, listing components and

best practices. Finally, the conclusion provides an overview of where the system currently stands

and what future work can help extend the capabilities of the virtual reality applications

supported.

6

CHAPTER II

BACKGROUND

 The existent literature does not have a unique definition of what virtual reality means and

almost everyone has a different understanding. One definition is “Virtual reality is the place

where humans and computers make contact." according to William Bricken. We take this

definition, and with it we explore the concept of the CAVE and what it means for virtual reality.

Though there are many definitions for VR, most agree that it started with Ivan Sutherland’s

proposition of the ultimate display. He greatly influenced the future of VR with other

contributions like the Sword of Damocles thought to be the very first head mounted display.
[4]

When virtual reality started there was enormous hype about how it would change the way

we interact with digital devices, but somehow it went away. Nonetheless, Sutherlands initial

account of virtual reality provided a window to new worlds and new ways of interaction. Ivan

Sutherland said:

 “Don’t think of that thing as a screen, think of it as a window, a window through which

one looks into a virtual world. "...The challenge to computer graphics is to make that virtual

world look real, sound real, move and respond to interaction in real time, and even feel real.”

This vision of what virtual reality should be has motivated scientist to continue

researching the field. But what happened? Why did it seem like virtual reality was here, but

nothing happened? Frederick P. Brooks, from University of North Carolina at Chapel Hill said,

7

“our discipline stood on Mount Pisgah looking into the Promised Land”.
[4]

 Currently VR is

starting to transition from the technology that almost worked to that one that barely works.

There are some technologies that may be responsible for determining the success of VR

in the future. Some of them are the visual display that is the window to that immersion the user is

striving for, the system in charge of rendering the frames, the tracking system that reports the

position and orientation of the user, and a database that maintains the virtual world.

One concern of VR system has always been cost; we have experienced the evolution of

speed and size of CPUs and GPUs, naturally following from Moore's law. This allows for VR

configurations to now be assembled from mass market components. There used to be a time

where the generation of the images was the main factor of cost, but now the factors dominating

cost are the screens or displays and tracking systems. Even though the cost for components has

decreased, a CAVE system can very expensive and is one of the reasons we look for alternatives

to it.
[7]

Tracking the position and orientation of the user’s head used to be one of the major

problems faced by virtual reality researchers; it was difficult to deal with the tracking range and

distortion due to metal objects. But this is no longer a challenge; now we have devices like the

commodity Microsoft Kinect that no longer has problems with magnetic interference and allows

for a wide range tracking. The system is not perfect, but currently it is a major area of research.

One of the major challenges that VR faces since its start in 1994 is how to increase the

adoption of VR systems in the consumer side; not how to advance the technology but how to

increase its adoption. This has to do with how VR is perceived by the public in terms of what

increases in productivity can be achieved, improvements in team communication, and reduced

costs through this type of technology. Some places where VR is more accepted are in

8

engineering organizations where VR walkthroughs are used as part of design evaluations and

reviews. Some companies surprisingly have not benefited in their design practices but in the way

they communicate by using VR. Such is the case of Brown and Root where the painters from the

maintenance force figured out that certain fixtures on an oil platform should be made of extra

heavy steal because it was not able to be repainted when installed. Thanks to the VR simulations

they were able to communicate ideas and find more appropriate methods. I think we will see an

exponential growth in VR technologies during the next years, and, perhaps, this time we may be

able to reach the Promised Land.
[12]

CAVE

The CAVE is a system that creates a projection of the images on large screens

surrounding the user. The CAVE was designed and implemented in 1991 at the Electronic

Visualization Laboratory (EVL) at the University of Illinois at Chicago. The CAVE enables for

data analysis in a visual manner, giving insight into the relationships that very complex data can

have. It has the flexibility of being projected in the three dimensions in different views at the

same time. The CAVE is constructed as surrounding projection walls, the walls made up of rear

projection screens or flat panel displays. The projection equipment is in general high-resolution,

since the user is close to the displays and this requires higher densities of pixels to maintain the

illusion of a real environment. Also, the user typically has to wear 3D glasses to experience the

stereoscopic display produced by the system. In some systems users can walk in the

environment, and so walk around objects and visualize them from different angles. Initially, user

tracking was done with electromagnetic sensors but more recently infrared cameras are used. The

computer tracks the position of the user and displays images and may produce sound

9

accordingly. The CAVE usually may have multiple speakers placed at different angles allowing

for 3D sound along with the 3D images.
[3]

The CAVE provides a promising field of research. What makes it interesting are the

future areas of research, like adaptation of methods for three-dimensional projections, Adapting

the CAVE and its interface to allow different methods for generating sequences. Development

of navigation tools that allow keeping track of the location of the current projection in the three

dimensional space, together with relative positions of projections. Other areas of research

include: how much gain in intuition and understanding of high-dimensional structures do we get

by using 3 dimensional projections over 2 dimensional projections, and coordinating the use of

other tools such as interactive brushing, painting, isolation, identification of data. The CAVE is

a very different method of data visualization that what is commonly used. Users see the

difference that it makes when analyzing data and the potential that it has for much more.
[3]

 Figure 1 CAVE Program Based on OpenGL
[3]

10

CAVELib

 CAVELib was the first software used to program the CAVE created to run only on a

specific set of hardware. CAVELib provides support for multi-display, cluster architecture, and

device integration. When it was first released it provided developers with an alternative to

commercial tools that where expensive, its open source format made it a very popular option.

Later on, the software was extended to support different platforms and architecture types.

Unfortunately, the original developers chose to license the software, sold that license, and now

the software is prohibitively expensive for most university use.

Hardware

Workstation

 Currently, the General Purpose System for Multi-display Interactive Visualization runs

on an HP workstation with two NVidia graphics cards configured in SLI. The workstation

supports the system running up to 4 monitors. This configuration provides great flexibility and

portability. Whereas the CAVE is usually composed of specialized equipment to control

individual screens, the system developed in this thesis can be extended to control projectors,

providing a very large sized display.

Tracking Hardware

 Technologies based on depth imagining have advanced tremendously in very short time.

The commodity Microsoft Kinect provides all the depth imaging technology needed for

powerful application and is affordable and practical for the general public. The pixels that

11

compose a depth image represent a calibrated depth in the environment, versus an image formed

of intensity or color. The Kinect produces a "depth image" with a resolution of 640x480 and a

frame rate of 30 frames per second. Such a depth camera has the advantages compared

traditional sensors, capable of functioning in low light settings, providing a calibrated scale,

being unaffected by color or texture, and distinguishing body ambiguities in a pose. Depth

cameras facilitate the process of eliminating a background to create green screen like effects.

Importantly, such depth cameras allow to synthesize realistic images of people and build data

sets to train to recognize those shapes. The system developed in this thesis is based on the

creation of a system capable of analyzing one depth image, and from there, extracting relevant

features like body joints, head position, and head orientation.

 Our bodies can move in many different ways and assume many different poses that are

hard to recreate by simulations and models. The Kinect provides tools to track many of these

poses and movements; it also allows to track over 60 points relevant to an individual's face.
[16]

Displays

 There are many different configurations available. Single surface display that are an

alternative to multi-surface displays because of their lower price while still providing elements of

multi-surface displays needed for immersion. Some of the approaches used are front projected

displays or even tiled displays made of an array of common monitors.

 Two Surface Displays provide more immersion for the user but have disadvantages in

terms of cost and complexity to operate. In general this displays work as if the projection was on

the corner of a room. This type of displays has the disadvantage that the viewer does not have

complete freedom to move around.

12

 There are many solutions for dealing with systems that need to provide more than two

surface displays. One of the main benefits of three or more Surface displays is the user mobility

that leads to feeling more immersed, all this in general achieved by rear projection.
[15]

Multi-Screen

 Since the invention of windows 98, computers are able to support configurations

involving more than one monitor. At first multi-screen set ups where being used for gaming, the

area of gaming being the driving force for any of the improvements in computer displays,

graphics, and video performance. With the increase in computing power and drop in cost, more

and more places like the office and the household can support more applications, so multi-

tasking has become very important to take advantage of the new found computing power.
[2]

 Multi-screen solutions are display configurations of more than one monitor connected to

the same computer. The computer can treat the screens as a boundary space, connected space, or

extended. For instance, a program can be maximized to occupy the space of one screen or it can

also be maximized to occupy the space on all available screens in that particular configuration.

Multi-screens let the user move applications between the displays or spread the applications

across all displays, depending on what the user sees fit. The real benefit of having multiple

displays is in how it improves efficiency.

 If we consider scenarios like transferring data from one text processor to another, with a

single screen we have to sacrifice visibility to have more than one document open at a time or we

sacrifice time by minimizing one and maximizing the other. There are significant issues with

these as losing the point in the document that is supposed to be changed. This type of problems

means more time going between the documents to find the specific place to be modified.

13

 Task improvements in efficiency are more obvious in cases where data is large or

benefits from opening multiple windows. This particularly applies to the area of computer

graphics, in which designers benefit from looking at models from different angles or looking at

the source material for their model at the same time. Displaying multiple angles of a 3D model

clearly cuts down the time that it takes to build a model by not having to rotate or translate the

model to accommodate for the use of only one display.

 Cognitively, physical placement of the digital content has an effect on the mental

processing. There are two main cognitive abilities used in the task of interacting with multiple

windows simultaneously: the ability to differentiate between the windows and the ability to track

locations that are both individual and relative to each window. One screen forces a disassociation

of data by replacement of material or reduced views. This means that the cognitive process is

freed from processing the relocation of the information.
[2]

 Productivity testing is usually measured by reproducing a common work scenario.

Participants then are asked to complete a task or series of task using different configurations. the

time for completing the task, response time, and satisfaction are measured. Following the data

analysis, the participants answer a questioner that rates the display configuration and briefly

detail their experience.
[2]

Stereoscopic Graphics

 A stereoscopic image is created by simultaneously presenting the left and right eye

different images, i.e., those images as viewed from the viewpoint of each eye, images that are

slightly different. The brain creates an image with depth by combining the two viewpoints. That

is the reason why you can only notice one image instead of one superimposed on the other.

14

Computer generated images usually are created by computing the image from one perspective

point, but a stereographic image is different in that it must be generated from two viewpoints.
[43]

Monocular depth cues are what allow us to perceive depth in images, even without

stereoscopic viewing, i.e., different images for each eye. Monocular depth cues include light and

shade, relative size, interposition, textural gradient, aerial perspective, motion parallax, and

perspective. Light and shade allows the graphics modeler to create objects with very defined

edges or rounded by manipulating shading, bright objects are perceived as been closer to the

observer opposed to dim objects. Relative size has to do with how objects look larger when they

are closer to the observer and smaller when they are far away. Interposition is when for example

you hold a book and you know it's closer than the desk where you are seating because you

cannot see through the book. Textural gradient like a grassy lawn or a tweed jacket provides

depth cues because the closer you are to an object the better you can see the texture. Aerial

perspective is the reduction in vision of objects at the distance. Motion parallax is like when you

are in your car and you can see how the telephone poles move faster than say the mountains, not

every virtual scene can use motion parallax but if it can, it will decently help to the depth

perception. Perspective is among the most important depth cues, and this is because it scales the

depth cue. A strong perspective cue will make everything look deeper and easier to perceive.
[43]

 In addition to monocular cues there are binocular cues. Stereoscopy is one, and it is created

by the disparity in the left and right eye images received at the retinas. The brain fuses them into

one. A stereoscopic display provides the two images. A simple experiment that can be conducted

is holding your finger into your face, when you look at it your eyes will converge on it. If you

continue to focus on the finger while at the same time noticing the background, you will see the

background image doubles. If you reverse the experiment and focus on the background while

15

paying attention to your finger, your finger will appear to double. If we could extract the image

that each eye receives and superimpose them, we would get two almost overlapping images of

the same. This is what is known as disparity, better defined as the distance horizontally of the

two viewpoints.
[43]

Rendering

 Rendering is a series of actions and transformations that generates an image from a model

by using software. The end result of such process is called a rendering. A computer scene is

stored in a defined data structure or format; it holds texture, lighting, viewpoint, and geometry

information that describe in detail the scene that will be generated. The information contained in

the data structure is read by the application and transformed to a digital image. Rendering can be

seen as analogous to the challenge faced by a painter trying to produce a 2D image from a 3D

source; even though, the method to achieve an image varies from a painting to a virtual scene,

the transformation steps are relative.

 Rendering deals with the process of creating polygons and giving particular

characteristics to polygon faces. Polygon faces can be textured by applying images to their

surfaces, these textures can create an illusion where the polygons seem to have more detail than

what is actually defined by the underlying geometry. Unfortunately, texture have the

disadvantage of requiring video RAM memory which is at the time of this writing limited to no

more than 6 GB for commercial computers running high end graphics cards. Computer scientists

have come up with ways to minimize texture memory use in order to increase the performance of

applications. A very well known technique for optimizing textures is using MIP mapping, this

means that pre-calculated optimized textures are attached to the main texture, this textures are a

16

lower resolution representation of the same texture. This works because as the camera moves

away from a particular object, the texture attached to that object will be reduced since the detail

on the object is not visible. Similar to the MIP approach, geometry on the scene can be adjusted

to accommodate for the camera placement. A method called level of detail (LOD) changes the

number of polygons in an object based on how far they are from the camera.
[21]

Figure 2 MIP Mapping

 In computer graphics there are two types of lighting models known as static and dynamic

lighting. Static lighting does not change position on the object. It is very computationally

efficient for rendering scenes that are not in motion. Since the scene does not move, the lighting

can be calculated in advance, which increases the efficiency drastically. The resulting directional

light, shadows, and brightness are combined with the texture to create the final effect.

 Dynamic lighting is that which is in constant movement within the environment, for that

reason it cannot be pre-calculated since it is dependent on the actions performed in the scene.

Once all the parts described before combine, the last process is the rendering. This process

17

consists of generating the display that will be drawn on the screen. In this last step the scene is

rendered in real time which allows the user to interact with the world seamlessly.
[21]

The Cost of Knowledge

 Computers are becoming more and more to an information access point. Naturally this

will continue as information grows and memory cost comes down. In 1991 Tennant and

Heilmeier predicted that by 1995 the information would have increased 10,000 greater than it

was, and they were right.
[6]

 The challenge since the 90's has been to come up with innovative ways to deal with the

increasing amount of information, how to access and process it. It was observed that information

that is part of a system has a cost structure. The cost structure is a cost value for the information

depending on what part of the system it is. The cost of knowledge is not only applicable to

digital information but any kind, getting a document from a stand in a library or a filing cabinet

and placing it in your work area will reduce the cost associated with accessing it multiple times.

 A key point on designing an information system is to work with the cost of knowledge in

mind and design it as efficient as possible. The paper argues that in a world with such amount of

information the real task is not to find information, but to allocate the limited time a person has

on gaining useful information.

 The idea is to increase the benefits of information for each established unit of cost, so we

need to figure out how fast the information is growing for each unit of time spent looking. This is

defined as the Cost of knowledge Characteristic Function. In any system like a library we have

information arranged as a hierarchy where small chunks of information are accessed at low cost

and larger chucks cost more to access. The way we can improve such scenario is by reducing the

time cost for each different level in the hierarchy or by keeping the number of documents the

18

same, which reduces the access cost. The Cost of Knowledge function helps us have a better idea

of what system runs more efficiently when compare cost performance.

 In the context of this thesis, the information search deals with using multi-screen

configurations to reduce the Cost of Knowledge on direct walk tasks, which are tasks where a

user has to navigate from a start to an end by a series of direct manipulation methods like mouse

clicks. Some examples of these tasks can be a series of button presses and mouse clicks to

operate a hierarchical file system or a help system. In essence this file systems display the file

structure and the user points to a file resulting in a new display, and then the process is

repeated.
[6]

19

CHAPTER III

THE GENERAL PURPOSE SYSTEM

FOR MULTI-DISPLAY INTERACTIVE

VISUALIZATION

 When creating a system like the one reported in this work, there are several

considerations in how to approach the creation of the system. The goals of the system have to be

clear, the hardware to be used, especially screen and tracking technology, and peripheral device

support. Usually, the best way to have flexibility in wide customization options in the

development phase is by taking advantage of open source software. But sometimes this approach

is difficult, as documentation for this type of software tends to be nonexistent or not

comprehensive enough.

 The General Purpose System for Multi-display Interactive Visualization takes the

approach of combining open source and custom developed software to speed up the development

process. The system uses the Windows API for handling the windowing system and display

adjustment. OpenGL provides model rendering, scene creation, and stereoscopic projection, as

well as, low level control over the graphics hardware. The Microsoft Kinect SDK provides

device integration for the Kinect device. Though there are open source alternatives to the

Microsoft's proprietary software, the SDK provides enough flexibility to customize applications

as needed while at the same time providing optimized skeleton and face point recognition.

20

 The following figure represents the overall software layers used in The General Purpose

System for Multi-display Interactive Visualization.

 Figure 3 The GPS-MIV Software Architecture

OpenGL

 OpenGL provides an environment where interactive graphics can be developed; it is the

most widely used graphics standard. Since its creation OpenGL has allowed developers to

program for a wide range of computer platforms. OpenGL speeds up the development of

software applications by providing rendering, texture mapping, special effects, and very versatile

graphic functions. OpenGL provides support for all desktop and workstation platforms allowing

for a vast array of applications in all platforms. Any application that requires performance, from

CAD modeling to 3D animation can utilize OpenGL to minimize overhead associated with the

use of higher level languages. OpenGL was specifically chosen for this project as it has been

proven to deliver consistent visual display result on any compliant hardware. Another reason

OpenGL was chosen is for its forward thinking design. The design allows to incorporate new

hardware innovation through extensions of the OpenGL API. All this is in contrast to graphics

programming direct competitor, DirectX. Since it is owned by Microsoft all new updates have to

be approved by them, which can take a long time. OpenGL is easy to use thanks to its intuitive

design and state machine model.

The windows 32
API’s

Stereo
projection OpenGL

FaceTracking
SDK Kinect SDK

Operating system

21

 As noted before, open source software tends to be poorly documented and difficult to

work with, but in the case of OpenGL there is a great deal of available code, multiple books and

tutorials are available, as well as wealth of forums, making the access of OpenGL information

relatively inexpensive and easy to obtain.

OpenGL Pipeline

 As it can be seen from the diagram below, the architecture of OpenGL is designed as a

stage pipeline. The following picture represents a somewhat simplified version of the pipeline.

Figure 4 OpenGL Pipeline

 From left to right, commands are fed into the pipeline. The commands can be

accumulated in a display list or sent down the pipeline. A display list can improve the

performance of the application since it allows commands to be stored and executed at a later

time. In general, it is a good practice to store commands if you are planning on redrawing the

scene multiple times, or have internal stages that will be re-applied.

22

 The first stage following the display list is the pipeline evaluator. The evaluator

examines the commands and relates them to the corresponding vertex and attribute commands.

The evaluator serves as a translator converting surfaces or parametric curves that maybe be

described by functions or control points. The evaluator provides a way to derive the vertices

from the functions or control points.
[22]

 The second stage is known as the per-vertex operations, this stage converts vertices into

OpenGL primitives. The vertex data is transformed by 4x4 floating point matrices. Special

coordinates have to be transformed from a 3D position to a position on the display. This stage

does a lot of computation and becomes quite busy as this is where texture coordinates generated,

lightning calculations performed using the transformed vertex data, as well as considering light

source position, material properties, and other information to produce color values.
[22]

 The third stage is rasterization, which is the conversion of pixel and geometric data into

fragments. These fragments are a series of frame buffer addresses and their corresponding

values. Calculations like lines, polygon stipples, and antialiasing are important in this stage as

vertices connect with lines and the interior polygons need filled. Each fragment also has an

associated color and depth value that helps in calculations relative to the perpendicular plane of

the camera.

 The fourth stage is the per fragment operations. For values to be stored in the frame

buffer, there are a series of operations that can alter or remove fragments. OpenGL allows the

programmer to decide if these operations should be enabled or disabled. One of these

operations is texturing, in this operation a texture element is generated from the texture memory

associated with each fragment. Next, calculations like fog, alpha test, stencil test, and depth-

buffer test may be applied. These tests help optimize the system by not doing some unnecessary

23

computations like not drawing polygons that are out sight or obscured by other objects. Lastly,

the completely processed fragment is drawn into the corresponding buffer where it is converted

into a pixel with a final display place.
[22]

Installation and Configuration

 Most of the support libraries used in this particular system are open source meaning that

the source code for compilation is provided. Following is a list that provides a brief overview of

the required dependencies for building The General Purpose System for Multi-display Interactive

Visualization:

 gl.h Library provides support for calling functions defined in the OpenGL API. Most

popular operating systems like Linux and Windows come with some form of this library.

Windows comes with the version 1.1 of OpenGL, so you will need to make sure that you

download the latest drivers for your graphics card to support some of the features included in the

system.

 glm.h is a header library for c/c++ that provides support for the OpenGL shading

Language (GLSL). Glm simplifies mathematical computation programming by providing

functions that resemble GLSL conventions. Glm was built with interoperability in mind allowing

communication with any third party sdk.

Immersion and Presence: A Study of Stereoscopic 3D

 Stereo 3D is perceived by the general public as a relatively new invention, mainly

because of its newly found integration in movie theaters, but it was actually first introduced in

1838. One may ask the reason why it has taken so long for 3D to be integrated in obvious

24

environments like a cinema. One strong reason for the recent resurgence of 3D technology is the

switch from analog to digital. Errors and discrepancies that can appear in the two images

required for 3D can destroy the visual effect, but with new digital film and editing tools this

errors can be corrected, whereas with analog the problems could not be easily corrected.

 Everything indicates that it may not be long before 3D is adopted they way it was

intended many years ago. But there are still many consumers that do not have a good opinion or

are just not yet convinced that the 3D technology is a way to enhance the experience. Some have

the impression that the technology is just a way that studios try for increasing profit. But 3D

used appropriately can allow an artist to immerse the audience and extend what the audience can

feel.
[15]

Stereoscopic 3D in Application

 OpenGL has support for quad-buffered stereo. Quad-buffer allows to render into four

buffers independently: left and right(for the two images required for stereoscopic images), and

front and back (allowing double buffering required for smooth movement perception). This

allows the buffers to sync shutter glasses for the image of the front left and front right buffers

that display the stereo image while at the same time the back left and back right buffers can be

updated without interference. A solid understanding of how OpenGL geometry works is

essential for achieving correct manipulation of the camera and viewports. When trying to render

scene in stereo there are two techniques that are common Toed-in stereo and Asymmetric

frustum parallel axis projection stereo.
[44]

 Toed-in stereo is easily implemented but does give room to some unwanted visual

effects. Keystone distortion is such effect, it occurs when using this technique; this effect is

produced by trying to project a scene on the screen with the viewpoint at an angle, very similar

25

to how an image looks when a projector is not well centered and the image appears larger on the

sides.
[44]

Figure 5 Keystone Effect
[44]

 Before explaining how this type of projection is set up on OpenGL, the concept of

viewing frustum should be explained. The frustum is a region of space in the virtual world that

is projected onto the screen; it is analogous to the field of view of a conventional camera. The

frustum requires to specify the near and far clipping planes and aspect ratio. Just as with a

camera the field of view specifies how much of the virtual environment is visible at a given

moment. Given all this information the process of setting up a scene for rendering is similar to

taking a photo. You start by setting a tripod and pointing the camera, which is equivalent to a

viewing transformation, arrange the objects in the scene (modeling transformation), and choose a

camera lens or adjust the zoom. the final step of choosing a camera lens relates to our viewing

frustum.

26

Figure 6 World Camera vs. OpenGL Projection
[19]

 The next diagram represents how the Toed -in projection is composed using a frustum

and right and left eye positioning.

Figure 7 Toed-in Projection
[44]

27

 One frustum is created for both eyes that is represented by the middle triangle in the

diagram, the left and rights are shifted right or left accordingly. The displacement of each eye

with respect to the viewing frustum creates independent rendering planes for each eye. Now the

keystone effect can be seen as a distortion such that shapes like squares appear to be trapezoidal.

/-ok.org

Figure 8 Keystone Effect vs. Compensation for the Keystone Effect.
[44]

 The left side of the image above shows the left and right images over imposed as to

create a 3D image, this particular image shows how the keystone effect can degrade or alter an

image. The brain will not be able to correctly merge the views. In contrast the right image

provides an example of using the Asymmetric frustum parallel axis projection.

 This approach is quiet more complex, since two asymmetric frustums need to be set up.

Using OpenGL the asymmetric frustum is set up at the point (0,0,0), and then it is translated by

the intraocular distance divided by two to the left or right accordingly.

28

Figure 9 Frustum Shift
[44]

As it can be seen from the diagram above in this case the screen view port is parallel to the

corresponding eye due to the fact that the viewing frustum is being shifted to correspond with the

placement of each eye. This technique provides the correct 3D effect as on the right side of

figure 7.

The General Purpose System for Multi-display Interactive Visualization is composed of

one workstation that serves as the replacement for a cluster in conventional CAVE set ups. In

general, Cave system is composed of a set of slave nodes and one master node. The slave nodes

are usually tasked with controlling the rendering of the Virtual Environments, one of the nodes

may be used exclusively for computing tracking information obtained from cameras, depth

sensors, and other input devices. And the master node is used for syncing the slave nodes,

controlling set up operation, configuration files, and very importantly the master node tells each

other node what portion of the virtual environment to display in a viewport, so that movement

29

received from tracking devices appears fluid in the nodes. Touching on the last point a viewport

is the area of interest, the area we want to visualize in some coordinate system.

Figure 10 Conventional CAVE Configuration

Given the previous description of what components are required for a CAVE and how

they interact with each other, it can be seen that a CAVE requires a large number of components

to be put together which is fine for large visualization labs. However, smaller labs or projects can

benefit from a single node that works as master and slave while at the same time decreasing cost

and facilitating the test of environments. The single node system works by taking advantage of

Nvidia's SLI technology. SLI is a revolutionary technology that allows to drastically increase the

graphical performance by combining various GPUs in systems that have a certified SLI port.

SLI uses Nvidia's proprietary software algorithms that can duplicate or scale the performance

depending on the number of graphics cards.

30

Figure 11 Proposed CAVE Configuration

 The use of an SLI eliminates the need of having a router sending packages from the

master node to the slave nodes and in-between the slave nodes. Each SLI compatible graphics

card can easily support two displays run through display port outputs. This system provides

developers with more options when choosing a system and hardware configuration that suits

their needs. It does not attempt to replace conventional CAVES, but to be used as a cost effective

solution for developing Virtual Environments.

Applications

 The General Purpose System for Multi-display Interactive Visualization runs applications

that are native to OpenGL. These applications help a developer get familiar with the

development of software in the system. In general the elements of the sample applications are

combined to create more robust applications. The system easily integrates existing OpenGL

code from other applications, allowing these applications to take advantage of the features

provided by the system discussed in this paper.

31

 When developers create OpenGL applications, they have to use utilities like glut and

freeglut or use plain Windows API function calls and initializations. The system developed

abstracts the Windows API calls and simplifies the process of creating windows, setting view

ports, and initializing perspective and orthographic projections. This is particularly useful for

programmer that are starting to get acquainted with OpenGL as it frees them from having to deal

with all the windowing system details and lets them dive right into programming with OpenGL.

The system defines the class " GLContext". This class handles processes like initializing a

window, choosing window formant, enabling stereo, etc. The following code segment shows

how easy it is to initialize a window:

GLContext guiContext(0); // WinAPI Context for the GUI Window
hWnd = CreateMyWindow(hInstance, TEXT("GUIWindow"), 1080, 1000);
guiContext2.Initialize(hWnd);
guiContext2.EnableStereo();

Medical Applications

 Computer simulations are becoming more and more important, and the development of

techniques for obtaining digital data for medical imagining are increasing. Technologies like

ultrasound, magnetic resonance imaging, and computer tomography are part of daily medical

procedures. These new technologies provide very detailed anatomical models that allow for

better data and analysis representation. The simulation of medical operations allows for

predictions on the outcome of different medical procedures such as: radiation therapy and

neurosurgery. Virtual reality plays a new role in telemedicine for remote diagnostic and even

interventions. This past decade medical applications of virtual reality have moved from a

curiosity for researchers to invaluable tools.
[19]

32

Especially in radiology visualization provides a much more natural view and analysis of a

patient’s anatomy. Endoscopy or bronchoscopy techniques based on virtual reconstructions of a

patient’s anatomy are in fast development. This allows the patient to have the benefits of comfort

and cost reduction. One of the most noteworthy developments has been in colonoscopy, which is

currently in clinical validation phase.
[19]

For a surgery preoperative planning is crucial for the highest probability of success.

Traditionally, this preoperative planning has been limited and its implementation in the operation

room no guaranteed. Computer assistance and virtual reality technology can substantially

contribute to the precise execution of preoperative plans.

For areas such as conformal radiotherapy and stereotactic neurosurgery, virtual reality

have become a necessity for treatment and preoperative planning. Other areas, such as

craniofacial neurosurgery and open neurosurgery, have also benefit from planning and realistic

predictions facilitated by VR technologies.

.OBJ Model Support

 Content in 3D exists in various formats and variants, .OBJ being the most popular one.

This file type is preferred for its open nature, cross platform use, and simplicity. Software like

Blender, Maya, Zbrush and many other graphics packages support .OBJ.

 .OBJ is a type of file that defines geometry created by Wavefront Technologies. This type

of file is open format and has been adopted by a wide array of 3D graphics programs, it could be

said that it is a universally accepted format. The .OBJ format can be expressed as a data format

that allows for geometric representation by the points of each vertex, it also defines the UV

position for each texture, vertex normals, and the faces that conform each polygon defined as a

33

list of vertices and texture vertices. It is important to note that vertices are stored in a counter-

clockwise order by default, making unnecessary the explicit declaration of the face normals.

 The following set of image show how a model can be imported into our system using

.OBJ file support. In this case the model was created using Blender and exported to our system.

Figure 12 Blender Model

 Inside The General Purpose System for Multi-display Interactive Visualization we can

show up to four viewports of a scene that is four different perspectives of the world. The system

can set on or off the stereoscopic 3D effect individually for each viewport.

Figure 13 The GPS-MIV Multi-Perspective

34

FP Camera Control

 Included in the system is the option to use what is commonly known in games as a FP

(First Person) camera. This type of camera perspective refers to seeing the world through the

eyes of a player in the environment. Many times this perspective is used to simulate the feeling

of driving a car or some type of vehicle as it allows to show the inside of the cockpit and adds

realism. First-person shooter made this type of perspective very popular as the graphical

perspective has a very immersive impact on the experience.

 The system developed in this work is as noted, an alternative to a conventional CAVE

system. One of the applications that a CAVE can have is to aid architects or engineers by

providing virtual guided tours of buildings or construction. This provides the designer a spatial

feel for what the end product will be like and allows to the designer to make changes based on

the experience. Customers that want to build a house can navigate through the digital model and

decide if that is what they want.

Microsoft's Kinect

 The latest entry in the virtual reality inspired gaming world is Project Natal, now known

as Kinect, new technology developed by Microsoft now for the Xbox 360. The technology has

a new way of interacting with video games and also with computer systems in general. In their

demo videos, a system was proposed that required no keyboard and no controller. A user's voice

and motions served as their methods for interacting with the system. The Kinect device works

very well, but games have not yet exploited its full potential. Lately, the development of

software for Kinect is shifting to the computer. This is exemplified by the release of Kinect for

35

windows. This new version of Kinect supports a near mode allowing detection of users when

located closer to the device and extended depth data giving developers more flexibility to make a

choice of using the data beyond 4 meters.[5]

 GPS-MIV takes advantage of the Kinect's depth tracking feature to locate a user in the

room and track the skeleton position. This is accomplished by using the IR emitter on the Kinect

to project an irregular pattern of infrared dots of varying intensities. Then, the Kinect creates a

depth image by detecting the distortion in the pattern.

Figure 14 Speckle Pattern
[34]

 The Kinect has a hard coded pattern of the speckle pattern. Each dot created by the

infrared camera has a relative surrounding that facilitates identification on a scene. The

algorithm used chooses a dot in the speckle pattern and compares it with the one cast on the

environment and then checks for the eight surrounding pixels. Once that is completed, it is

relatively easy to check for disparity and adjust using the focal length of the camera to determine

the depth of that pixel. The process has to be repeated for each dot in the speckle pattern.

36

Figure 15 Kinect System Overview
[34]

 The Kinect offers the flexibility to choose the range at which the sensor should work.

This is done through the different sized dots on the speckle pattern. The range can be adjusted to

work anywhere in between 1m and 8m. GPS-MIV takes advantage of the infrared sensor in the

Kinect by proving skeleton recognition in seated and standing mode, additionally it provides two

range modes: near and far.

Figure 16 Seated and Standing Tracking

 Existing applications on the GPS-MIV can support head rotation on the x-plain to control

the camera and look at the environment freely. This level of interaction is intuitive and allows to

examine the information presented on the scene faster. For instance, the boids document

visualization system has been ported to work with the system described in this paper.

http://www.depthbiomechanics.co.uk/wp-content/uploads/2012/06/f11.jpg

37

Figure 17 Boids Document Visualization

 The boids essentially creates clusters of documents and represents them as flocks of

birds. By porting the boids application to the GPS-MIV it can incorporate the motion controls

and multi-screen functionality to increase the level of information that a simulation can yield.

38

CHAPTER IV

CONCLUSION

 Just as paper and pencil can help us overcome the limits of our memory and conscious

reasoning by enhancing the ability to compute and store information, virtual reality technology

can increase productivity beyond what was previously possible.

 The goal of virtual reality is to present virtual objects that are as close as possible to their

real world counter parts or that are beyond what is found in the real world. Virtual reality

attempts to emulate the real world or even go beyond. This notion of going beyond what is

normal is the basis of many principles of information visualization. Using computer aided

software in the process of analyzing data leads to the discovery of hidden patterns and provides

better choices for the analyst.

 There are different commercial software solutions for analyzing data sets but they can

have large licensing and software cost. This has been one of the main reasons that led

independent developers to form an open source community and develop software solutions that

are free of charge and have the power and upgradeability to create applications in different fields

from realistic environments to information retrieval and decision making support. Open source

software at the same time has suffered by commercialization and licensing from companies that

change its free distribution to expensive packages based on proprietary software. The current

state of the software market has led researches and independent developers in the direction of

new open source alternatives for their Virtual reality needs. As with most open source software

39

out there, VR open source software in general lacks proper documentation. The aim of the

system proposed in this paper has been to provide developers with a system that can be tailored

to their needs, well documented, and upgradeable. The GPS-MIV provides the tools needed to

port existing OpenGL applications to this new system abstracting must of the work. The system

proposed in this paper provides an inexpensive alternative to a full sized CAVE, and thanks to

the optimizations used it can run on one single machine reducing much of the cost.

40

 REFERENCES

1. J. Shotton, M. Cook, T. Sharp. "Real-Time Human Pose Recognition in Parts from Single

Depth Images." Microsoft [Online] Available:

<http://research.microsoft.com/pubs/145347/bodypartrecognition.pdf>.

2. J. Anderson, J. Colvin, N. Tobler. " Productivity and Multi-Screen Displays ." University of

Utah [Online] Available:

<http://www.ergotron.com/Portals/0/literature/whitePapers/english/Multi-Mon-Report.pdf>.

3. J. Symanzik, D. Cook. (20011). “Dynamic Statistical Graphics in the CAVE Virtual Reality

Environment,” Iowa Center for Emerging Manufacturing Technology, Iowa State University,

Ames, IA, 50011

4. F. P. Brooks, Jr. (1999, DEc.). “What’s Real About Virtual Reality?” IEEE Xplore. [Online].

19. (6), 16-27. Available: < http://faculty.utpa.edu/fowler/VR-

papers/Brooks_1999_WhatRealAboutVR_Computer.pdf>

5. J. Yi, Y. Kang, J. Stasko, “Toward a Deeper Understanding of the Role of

Interaction in Information Visualization” presented at IEEE Symposium on Information

Visualization (InfoVis '05), pp. 111-117, 2007. [Online] Available:

<http://www.cc.gatech.edu/~stasko/papers/infovis07-interaction.pdf>

6. S. Card, P. Pirolli, J. Mackinlay. (1994, April.).“The Cost-of-Knowledge Characteristic

Function: Display Evaluation for Direct-Walk Dynamic Information Visualizations” ACM

Conference on Human Factors in Computing Systems. [Online]. Available: <

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.24.2797&rep=rep1&type=pdf>

7. A. D. Mauro. (2009.). “Virtual Reality Based Rehabilitation and Game Technology” eHealth

& Biomedical Applications Vicomtech [Online] Available: http://ceur-ws.org/Vol-

727/eics4med9.pdf

8. M. C. Rinard. (2012, Dec.). “Technical Perspective: Example-Driven Program Synthesis for

End-User Programming.” Communications of the ACM. [Online]. 55. (8), 96. Available:

<http://ezhost.utpa.edu:2845/magazines/2012/8/153802-technical-perspective-example-driven-

program-synthesis-for-end-user-programming/fulltext>

9. M. Slater, V. Linakis, M. Usoh, R. Kooper. (2006). “Immersion, Presence, and Performance

in Virtual Environments:An Experiment with Tri-Dimensional Chess” Department of Computer

http://faculty.utpa.edu/fowler/VR-papers/Brooks_1999_WhatRealAboutVR_Computer.pdf
http://faculty.utpa.edu/fowler/VR-papers/Brooks_1999_WhatRealAboutVR_Computer.pdf
http://ezhost.utpa.edu:2845/magazines/2012/8/153802-technical-perspective-example-driven-program-synthesis-for-end-user-programming/fulltext
http://ezhost.utpa.edu:2845/magazines/2012/8/153802-technical-perspective-example-driven-program-synthesis-for-end-user-programming/fulltext

41

Science University College London, [Online]: Available:

<http://reference.kfupm.edu.sa/content/i/m/immersion__presence__and_performance_in__38808

2.pdf>

10. University of North Carolina (1997). "StereoGraphics Developers’ Handbook", North

Carolina at Chapel Hill [Online]: Available:

<http://www.cs.unc.edu/Research/stc/FAQs/Stereo/stereo-handbook.pdf>

11. Bowman, D. A. et al. (2006). "3D user interface: New Directions and Perspectives",

International Journal of Virtual Reality. [Online]: Available: <http://faculty.utpa.edu/fowler/VR-

papers/Bowman_2006_New-Directions-in-3D-User-Interfaces_IJVR.pdf>

12. D.. Bowman, E. Kruijff, Joseph J. LaViola, Jr., I. Poupyrev et al. (2006). "3D user interfaces

Theory and practice", Addison-Wesley [Online]: Available: <

http://ptgmedia.pearsoncmg.com/images/9780201758672/samplepages/0201758679.pdf>

13 J. Derry. (1995, Oct.). “Virtual and Real Realities”. Fiction-Mediated Communication:

[Online]. Available: < http://cas.illinoisstate.edu/english/mediations/deery.html>

14. J. Suler. (2004). “Computer and cyberspace addiction”. International Journal of Applied

Psychoanalytic [Online], 359-362. Available:

<http://users.rider.edu/~suler/psycyber/cybaddict.html>

15. G. C. Burdea, “Output devices: Graphics, Three-dimensional sound, and haptic displays,” in

Virtual Reality Technology, 2th ed. USA: Wiley, 2003, ch. 3, pp. 58–111.

16. D. Rowan. (2010, Oct.). “Kinect for Xbox 360: The inside story of Microsoft's secret

'Project Natal' ” Wired Magazine. [Online]. Available:

http://www.wired.co.uk/magazine/archive/2010/11/features/the-game-changer

17. R. M. Wham. (2012, Jun.) “Three-Dimensional Kinematic Analysis Using the

Xbox Kinect”. Tennessee Research and Creative Exchange. [Online]Available:

<http://trace.tennessee.edu/cgi/viewcontent.cgi?article=2555&context=utk_chanhonoproj>

18. Tracy Samantha Schmidt. (20011). “Is the Wii Really Good for Your Health?”. Time

Magazine. [Online] Available:

http://www.time.com/time/business/article/0,8599,1584697,00.html

19. R. M. Satava. (1999, Feb.). “MEDICAL APPLICATIONS OF VIRTUAL REALITY”.

Medical IVR. [Online] Available:

<http://www.neurovr.org/pdf/papers/VR_Clinical/MedicalVR.pdf>

20. A. Shendarkar. (2006, Jun.). “CROWD SIMULATION FOR EMERGENCY RESPONSE

USING BDI AGENT BASED ON VIRTUAL REALITY”. Winter Simulation Conference.

[Online] Available: <http://www.informs-sim.org/wsc06papers/067.pdf>

http://reference.kfupm.edu.sa/content/i/m/immersion__presence__and_performance_in__388082.pdf
http://reference.kfupm.edu.sa/content/i/m/immersion__presence__and_performance_in__388082.pdf
http://cas.illinoisstate.edu/english/mediations/deery.html
http://users.rider.edu/~suler/psycyber/cybaddict.html
http://www.neurovr.org/pdf/papers/VR_Clinical/MedicalVR.pdf
http://www.informs-sim.org/wsc06papers/067.pdf

42

21. ADAM GORLICK . (2011, April). “New virtual reality research”. Sanford News. [Online]

Available: <http://news.stanford.edu/news/2011/april/virtual-reality-trees-040811.html>

22. "The Trusted Leader in High Performance Computing." SGI. N.p., n.d. Web. 16 Nov. 2014.

23. Fanelli, Gabriele. "Random Forests for Real Time Head Pose Estimation." Random Forests

for Real Time Head Pose Estimation . [Online] Available:

<http://www.vision.ee.ethz.ch/~gfanelli/head_pose/head_forest.html>.

24. Shotton, Jamie, Mat Cook, and Toby Sharp. "Real-Time Human Pose Recognition in Parts

from Single Depth Images." Microsoft. [Online] Available:

<http://research.microsoft.com/pubs/145347/bodypartrecognition.pdf>.

25. Newcombe, Richard A., ShahramIzadi, and OtmarHilliges. "KinectFusion: Real-Time

Dense Surface Mapping and Tracking∗." Microsoft. . [Online] Available:

<http://research.microsoft.com/pubs/155378/ismar2011.pdf>.

26. Inthanayothin, Chanjira, NonlapasWongwaen, and WisarutBholsithi. "Skeleton Tracking

Using Kinect Sensor & Displaying in 3D Virtual Scene." AICIT . [Online] Available:

<http://www.aicit.org/IJACT/ppl/IJACTVol4No11_Part23.pdf>.

27. Sko, Torben, Henry Gardner, and Michael Martin. "Studying a Head Tracking Technique for

First-Person-Shooter Games in a Home Setting." IRIT. . [Online] Available:

<http://www.irit.fr/recherches/ICS/events/conferences/interact2013/papers/8120247.pdf>.

28. Erichsen, Martin H., and Peter H. Poulsen. "Virtual Reality: A Study On Perception." 01

June 2012. [Online] Available:.

<http://image.diku.dk/sporring/files/poulsen.erichsen120619.pdf>.

29. Li, Songnan, King NgiNgan, and Lu Sheng. "A Head Pose Tracking System Using RGB-D

Camera. [Online] Available:. <http://www.ee.cuhk.edu.hk/~snli/ICVS2013.pdf>.

30. Bowman, Doug A., Sabine Coquillart, and Bernd Froehlich. "3D User Interfaces: New

Directions and Perspectives." N.p., Nov.-Dec. 2008. Web. <http://faculty.utpa.edu/fowler/VR-

papers/Bowman_2008_3dUIs_NewDirectionsPerspectives_Computer.pdf>.

31. Wingrave, Chadwick A., Brian Williamson, and Paul Varcholik. "The Wiimote and Beyond:

Spatially Convenient Devices for 3D User Interfaces."

32. Xia, Lu, Chia-Chih Chen, and J. K. Aggarwal. "Human Detection Using Depth Information

by Kinect." . [Online] Available:

<http://cvrc.ece.utexas.edu/Publications/HAU3D11_Xia.pdf>.

33. Choppin, Simon. "Kinect Biomechanics: Part 1." Engineering Sport Blog. The Centre for

Sports Engineering Research, 9 May 2011. Web. [Online] Available:

<http://engineeringsport.co.uk/2011/05/09/kinect-biomechanics-part-1/>.

http://news.stanford.edu/news/2011/april/virtual-reality-trees-040811.html

43

34. "Skeletal Tracking Fundamentals (Beta 2 SDK)." Channel 9 - MSDN. Microsoft. Web. 15

Feb. 2012. [Online] Available:

<http://channel9.msdn.com/Series/KinectSDKQuickstarts/Skeletal-Tracking-Fundamentals>.

35 Moore, G.e. "Cramming More Components Onto Integrated Circuits." Proceedings of the

IEEE 86.1 (1998): 82-85. Print.

36. Schmalstieg, D.; Wagner, Daniel, "Experiences with Handheld Augmented Reality," Mixed

and Augmented Reality, 2007. ISMAR 2007. 6th IEEE and ACM International Symposium on ,

vol., no., pp.3,18, 13-16 Nov. 2007 doi: 10.1109/ISMAR.2007.4538819

37. N. Polys, S. Kim and D. Bowman, “Effects of information layout, screen size, and field of

view on user performance in information-rich virtual environments,” Proc. ACM Symp. Virtual

Reality Software and Technology, pp. 46-55, 2005.

38. D. Pape, J. Anstey and G. Dawe, “A low-cost projection based virtual reality display,” Proc.

SPIE (International Society for Optical Engineering), vol. 4660, pp. 483-491, 2002.

39. C. Cruz-Neira, D. Sandin and T. DeFanti, “Surround-screen projection-based virtual reality:

The design and implementation of the CAVE,” SIGGRAPH '93 Proc. 20th Ann. Conf. on

Computer Graphics and Interactive Techniques, pp. 135-142, 1993.

40. Henderson, D. A., Jr. and Card, S. K. Rooms: The use of multiple virtual workspaces to

reduce space contention in a window-based graphical user interface. ACM Transactions on

Graphics 5 (3, July 1986)., 211- 243.

41. A. Buja, J. A. McDonald, J. Michalak, and W. Stuetzle, "Interactive data visualization using

focusing and linking," presented at IEEE Conference on Visualization (Visualization '91), San

Diego, California, pp. 156-163, 1991.

42. A. Dix, J. Finlay, G. D. Abowd, and R. Beale, "Human-computer interaction", 3rd ed:

Pearson Prentice Hall, 2004.

43. N. A. Dodgson, J. R. Moore, S. R. Lang, "MULTI–VIEW AUTOSTEREOSCOPIC 3D

DISPLAY" , University of Cambrige Computer Laboratory [Online] Available:

<http://www.cl.cam.ac.uk/~nad10/pubs/IBC99-Dodgson.pdf>

44. G. R. Little, S. C. Gustafson & V. E. Nikolaou, 1994, “Multiperspective autostereoscopic

display”, Proc. SPIE, 2219, 388–394.

45. F. Guimbretiere, M. Stone, and T. Winograd, "Fluid Interaction with High-resolution Wall-

size Displays," Proceedings of ACM Symposium on User Interface Software and Technology,

Orlando, FL, 2001, pp. 21-30.

44

APPENDIX A

45

APPENDIX A

API Overview and Tutorial

 The General Purpose System for Multi-display Interactive Visualization provides its own

API to abstract many of the steps required to set up a virtual environment such as: registering a

window, setting up a projection type, setting up transformations for the openGL pipeline, and

more. Setting up windowed mode

 We begin by looking at the class GLContext, this class is fundamental for the system

discussed in this paper.

GLContext guiContext(0);

 We have the option to choose between windowed or full screen mode. by initializing a

class instance with either 0 for windowed or 1 for full screen. In the example above we have

created an application in windowed mode. Next, we need to register our class with windows by

using the command RegisterMyClass(hInstance), where hInstance is of type HINSTANCE.

 Then, we create the specified window using the following command:

 hWnd = CreateMyWindow(hInstance, TEXT("GUIWindow"), 1080, 1000) and hand it over

to our GLContext by using the next command:

guiContext.Initialize(hWnd)

In summary, we need four commands to set up or window. They are as follows:

GLContext guiContext(0);

46

RegisterMyClass(hInstance);

hWnd = CreateMyWindow(hInstance, TEXT("GUIWindow"), 1080, 1000);

guiContext.Initialize(hWnd);

Setting up full screen mode

 The real strength of the system comes from creating multiple full screen viewports of the

system and setting them up in the desired virtual location and direction. This is analogous to

having a set of cameras and getting ready for a photo shoot by placing them around the studio.

GLContext guiContext2(1);

RegisterMyClass(hInstance);

int counter= MonitorCount();

hWnd2= CreateFullScreenWindow (hInstance,0);

guiContext2.Initialize(hWnd2);

guiContext2.EnableStereo();

guiContext.Draw(draw);

 The first change compared to the windowed initialization is that we set the initialization

parameter for GLContext to 1, this will prepare our GLContext to work in full screen mode. The

second like will stay the same as before. Next, we use MonitorCount() to query the operating

system for the number of monitors and the size of each in pixels. The fourth line creates the

window and requires an HINSTANCE parameter and the monitor number. In this particular

example we set the full screen to be on monitor 1 represented by 0, So if we have 4 monitor they

47

start from 0 to 3. The fifth like starts the rendering of graphics in or full screen. The line

guiContext2.EnableStereo() is optional, it enables the stereo 3D in that particular screen. The

last line takes as a parameter a function, this function sent as argument should contain all the

OpenGL commands needed to create a virtual environment. This is particularly helpful since the

developer can use the start up application provided with the system and just work within the

draw function without having to worry about any other code, but the one that pertains to that

particular application and OpenGL. This capability allows for easily translating OpenGL code

form other existing applications to this system taking advantages of all the added functionality,

Note: stereo 3D will not work in windowed mode.

.OBJ loader

 Virtual environments are composed of 3D models. These models are usually created

using specialized modeling software such as Maya or 3ds max. It results impossible to attempt to

model complex geometry using only OpenGL commands, of immersive environments are to be

supported by the system presented in this paper; integration with .obj files is necessary as it is the

most commonly supported 3d format.

 The system provides a specialized class for importing models from .obj format to

OpenGL applications with a couple lines of code. The special class is named Model, it holds

information about vertices, normals, elements. The following segment of code shows how to

initialize an instance of the Model class:

Model myModel;

myModel.load_obj(“myfile.obj");

48

myModel.draw();

 As can be seen from the previous example it is easy to import a model from any software

with .obj support. The first line declares and instance of the class Model, the second line reads

the information from the file and populates the variables in our instance, and the last line can be

call anywhere to draw our model.

 It is important to note that this functionality is one of the main advantages of the system,

since it provides the means to incorporate a plethora of already existing 3D models from a wide

range of applications, from AutoCAD files to blender designs.

 As of this writing the system supports flat shading when lighting the models, this is a

basic type of shading. Shading is implemented in drawing a scene and depicting levels of light

and darkness on screen, in computer science in particular shading refers to changing the color of

a 3d model in the scene. This is done by calculating the angle of intersection of the object and

the source of light. The shading in general is computed in the rendering process of the

application called a shader.

 The system has been created with upgradability in mind, and with some more

development time it can be updated to incorporate different types of shading. The next image

shows some of the better known shading models.

49

Figure 18 Shading Models

 The flat shading technique is used to light each polygon based on its normal and the angle

between the normal and the light source. It is used for efficiency and high speed rendering where

other methods are too computationally expensive.

 Smooth shading rather than assuming that light changes per polygon it changes it per

pixel, it also assumes that a surface is curves and uses interpolation to calculate the value for a

pixel between the vertices.

 Gouraud shading determines the normals at the vertices of each polygon, applies an

illumination model to all vertices to calculate vertex intensity, and interpolates the vertex

intensity over the surface polygon.

Camera

 To interface and coordinate the multi-screen support a camera control system has been

implemented, this control allows for each glContext to have control of where the camera is

placed and where it is pointing to. Because the camera move in first person view extensive

http://www.google.com/imgres?imgurl=http://prosjekt.ffi.no/unik-4660/lectures04/chapters/jpgfiles/3-shadings.jpg&imgrefurl=http://prosjekt.ffi.no/unik-4660/lectures04/chapters/Introduction.html&h=244&w=556&tbnid=alnFJLiztcWjCM:&zoom=1&docid=Q2Y0XO_uubkgbM&ei=34FlVKOrH4mfyATG8IDgBA&tbm=isch&ved=0CCQQMygCMAI&iact=rc&uact=3&dur=3267&page=1&start=0&ndsp=11

50

computation is done to coordinate depending on the number of current screens and tracking

input. The Camera rotates all the view ports based on the input received be it through a depth

sensor or mouse and keyboard. This Camera class is hidden from the user to facilitate the use of

the API. The camera functions are linked to methods that are part of the glContext class. They

can be accessed by calling “glcontext.cam.” for instance to rotate a particular camera you would

use the command “glcontext.cam.Rotate(angle)” following is a list of the methods available as of

this writing:

void MoveFront();

 void MoveBack();

 void MoveLeft();

 void MoveRight();

 void RotateLeft();

 void RotateRight();

 void Rotate(int r);

 void Setoffset(int r);

 void Rotate(float a);

Vertex Rendering

 When OpenGL was first created in1998 by Khronos Group, it utilized a pipeline based on

fixed-functions that permitted the developers to interact with the graphics hardware at very low

level by typing OpenGL functions that were predefined. This first approach introduced was not

very flexible and constricted what could be achieved with the API. The next iteration of OpenGL

added a programmable shader pipeline, this meant that the programmer now had the flexibility to

51

write specialized shaders that were more suited to meet the needs of the program in question.

With the arrival of OpenGL 3.2 specification a new shader was added, this shader lets the

programmer introduce shaders into the rendering pipeline on the fly and to perform that add

complex operations like approximating better curves. Given the new control provided by some of

the latest specifications the programmer has to ways of rendering geometry: immediate mode

and vertex arrays.

 When a program is rendered in immediate mode, all the rendering commands have to be

called between a matching glBegin and glEnd function calls, this mode is easy to implement and

is very transparent to beginner programmers. The problem with this method is that to create

geometry in the scene, redundant function calls are made. This can greatly affect the

performance of your application when drawing millions of polygons on screen. If for instance a

cube is drawn in immediate, six faces are needed to create the cube. For each face we need three

vertex, so in all we need 36 calls to glVertex() function. If a vertex normal and color is applied to

the particular face, this furthermore increases the number of function calls. Something to notice

on the figure above is that vertices are shared among faces, looking closely at vertex v1 we see

Figure 19 OpenGL Cube

52

that it is shared with 3 adjacent faces. But because we are in immediate mode that same vertex

has to be provided 6 times, greatly increasing the computational cost.

Figure 20 Rendering Models Immediate vs. Vertex Array

 The system described in this paper uses an alternate method known as vertex arrays

which reduces the number of times functions and vertices are called. Eliminating redundant

function calls can greatly increase the frame rate of the program in question creating a smoother

experience for the user. Since the storage of vertex arrays is done on the client side and OpenGL

gets access to them from the server side, we have to use different functions as to glBegin and

glEnd. The next figure shows the frame rate of the same virtual environment being render in

immediate mode vs. vertex arrays.

53

BIOGRAPHICAL SKETCH

 Irving Alan Gonzalez earned his Bachelor of Science in Computer Engineering degree

from The University of Texas-Pan American in 2012. He received his Master of Science degree

in Computer Science in 2014 from The University of Texas-Pan American. Irving Alan

Gonzalez has been recipient of numerous honors and awards including the Xerox Scholarship

and awarded the Dean's honor list multiple occasions. During his time as a graduate student, he

worked as a Teacher Assistant and Research Assistant for the Department of Computer Science.

After he graduates in December 2014, Irving Alan Gonzalez will move to Austin to work as a

Software Developer. You may contact Irving Alan Gonzalez at iagonzalez2@broncs.utpa.edu.

	GPS-MIV: The General Purpose System for Multi-display Interactive Visualization
	Recommended Citation

	tmp.1684776614.pdf.7ZZji

