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ABSTRACT

Cirlos, Sonya, Encoding Color Sequences in Active Self-Assembly. Master of Science (MS),

July, 2022, 47 pp., 1 table, 15 figures, 45 references.

Constructing patterns is a well-studied problem in both theoretical and experimental self-

assembly with much of the work focused on multi-staged assembly. In this paper, we study building

1D patterns in a model of active self assembly: Tile Automata. This is a generalization of the

2-handed assembly model that borrows the concept of state changes from Cellular Automata. In this

work we further develop the model by partitioning states as colors and show lower and upper bounds

for building patterned assemblies based on an input pattern. Our first two sections utilize recent

results to build binary strings along with Turing machine constructions to get Kolmogorov optimal

state complexity for building patterns in Tile Automata, and show nearly optimal bounds for one

case. For affinity strengthening Tile Automata, where transitions can only increase affinity so there

is no detachment, we focus on scaled patterns based on Space Bounded Kolmogorov Complexity.

Finally, we examine the affinity strengthening freezing case providing an upper bound based on the

minimum context-free grammar. This system utilizes only one dimensional assemblies and has tiles

that do not change color.
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CHAPTER I

INTRODUCTION

Designing and studying different self-assembly systems has quickly grown in biological

research because of their simplicity to create DNA level systems to help understand and advance

experimental techniques. Self-Assembly is the natural process by which small particles randomly

agitate and combine through rules and local interactions to assemble into complex structures. Today,

there are many models of tile self-assembly, each focusing on different aspects of self-assembling

systems. Some models of self-assembly include the Abstract Tile Assembly Model (aTAM) [41],

the Staged self-assembly model [16], and the 2-handed Assembly Model [10]. In this thesis, I focus

on the Tile Automata model [12] and shape and pattern building results in different versions Tile

Automata models.

1.1 Overview

Chapter II of this thesis, includes our research group’s recent published manuscript: Building

Squares with Optimal State Complexity in Restricted Active Self-Assembly. Here, we use a seeded

version of the Tile Automata model to prove optimal complexity bounds for string, squares and

rectangle constructions. This paper was accepted to a conference where it won the award of Best

Student Paper and was chosen to be published in the Journal of Computer and Systems Science.

Chapter III introduces restricted version of Tile Automata system that can simulate a Context- Free

Grammar to build a 1D patterned assembly that represents a string from a given grammar.
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1.2 Squares

Since the start of the self-assembly field, researchers developed several systems that have

yielded many interesting results. One well-studied abstract system is known as Tile-Self Assembly.

From this system, researchers began designing other models such as the abstract Tile Assembly

Model (aTAM). ATAM is a subset of asynchronous well-known powerful model called cellular

automata [20]. Finding the most optimal way to build certain benchmark shapes such as squares and

rectangles in self-assembly [1, 37]. Due to experimental work in [14, 26, 40] active self assembly is

a fast and growing research area. Because cellular automata is a very powerful system, researchers

developed a model that meets the middle ground between aTAM and cellular automata. In [12],

researchers designed a new model of self assembly called Tile Automata, that has attributes of both

aTAM and cellular automata with restrictions that can limit their power. In Chapter II, I provide one

recently published manuscript from our research team, where we use a seeded version of the Tile

Automata model to prove optimal complexity bounds for string, squares and rectangle constructions.

This past year, I helped design and develop our group’s Tile Automata simulator, AutoTile.

AutoTile simulates a seeded Tile Automata system. AutoTile was developed by our research group

of students to aid other self-assembly researchers in their studies and to confirm the results for

our seeded Tile Automata constructions for strings, squares, and rectangles. To have simulator

users create and edit a Tile Automata system, I designed and developed AutoTile’s Editor window,

where users can edit a system they uploaded to AutoTile to test their own seeded Tile Automata

construction algorithms.

1.3 Patterns

In [17], Demaine and his group uncovered the power of the staged assembly model by

developing a connection between the smallest context-free grammars and the staged self-assembly

systems for one-dimensional strings and assemblies. The 1D staged self-assembly model minimizes

components and adds restrictions to its system to make any shape in constant number of particle

2



types, and has drawn interest from experimenters because of its natural and practical design. This

staged self-assembly model can successfully simulate a Context-Free Grammar deriving a particular

string to construct an assembly with a label of the string. In this work, we explore the strength of

Tile Automata by studying the problem of finding the smallest tile automata system with minimum

number of states, producing a one-dimensional patterned line assembly and comparing it to the

well-known problem of finding the minimum context-free grammar. In Chapter III, I introduce a

restricted version of Tile Automata, where states are given a designated color attribute and rule that

a state must remain "color-locked" (i.e. states cannot change color). We prove that this restricted

Tile Automata model is at least as strong as Context-Free Grammars in describing strings.

3



CHAPTER II

SHAPE BUILDING IN SEEDED MODELS

2.1 Introduction

Self-assembly is the process by which simple elements in a system organize themselves

into more complex structures based on a set of rules that govern their interactions. These types of

systems occur naturally and can be easily constructed artificially to offer many advantages when

building micro or nanoscale objects. One abstraction of these systems that has yielded interesting

results is Tile Self-Assembly.

In the abstract Tile Assembly Model (aTAM) [41], the elements of a system are represented

using labeled unit squares called tiles. A system is initialized with a seed (a tile or assembly) that

grows as other single tiles attach until there are no more valid attachments. The behavior of a system

can then be programmed, using the interactions of tiles, and is known to be capable of Turing

Computation [41], is Intrinsically Universal [19], and can assemble general scaled shapes [39].

However, many of these results utilize a concept called cooperative binding, where a tile must

attach to an assembly using the interaction from two other tiles. Unlike with cooperative binding,

the non-cooperative aTAM is not Intrinsically Universal [30, 32] and more recent work has shown

that it is not capable of Turing Computation [31]. Many extensions of this model increase the power

of non-cooperative systems [6, 21, 23, 27, 28, 36].

One recent model of self-assembly is Tile Automata [12]. This model marries the concept

of state changes from Cellular Automata [24, 33, 45] and the assembly process from the 2-Handed

Assembly model (2HAM) [10]. Previous work [5, 11, 12] has explored Tile Automata as a unifying

4



model for comparing the relative powers of the many different Tile Assembly models. The complex-

ity of verifying the behavior of systems along with their computational power was studied in [9].

Many of these works impose additional experimentally motivated limitations on the Tile Automata

model that help connect the model and its capabilities to potential molecular implementations, such

as using DNA assemblies with sensors to assemble larger structures [26], building spacial localized

circuits on DNA origami [14], or DNA walkers that sort cargo [40].

In this paper, we explore the aTAM generalized with state changes; we define our producible

assemblies as what can be grown by attaching tiles one at a time to a seed tile or performing transition

rules, which we refer to as seeded Tile Automata. This is a bounded version of Asynchronous

Cellular Automata [20]. Reachability problems, which are similar to verification problems in self-

assembly, have been studied with many completeness results [18]. Further, the freezing property

used in this and previous work also exists in Cellular Automata [25, 34].1 Freezing is defined

differently in Cellular Automata by requiring that there exists an ordering to the states.

While Tile Automata has many possible metrics, we focus on the number of states needed

to uniquely assemble n×n squares at the smallest constant temperature, τ = 1. We achieve optimal

bounds in three versions of the model with varying restrictions on the transition rules. Our results,

along with previous results in the aTAM, are outlined in Table 2.1.

2.1.1 Previous Work

In the aTAM, the number of tile types needed, for nearly all n, to construct an n×n square

is Θ( logn
logn logn) [1, 37] with temperature τ = 2 (row 2 of Table 2.1). The same lower bounds hold

for τ = 1 (row 1 of Table 2.1). The run time of this system was also shown to be optimal Θ(n) [1].

Other bounds for building rectangles were shown in [2]. While no tighter bounds2 have been shown

for n×n squares at τ = 1 in the aTAM, generalizations to the model that allow (just-barely) 3D

growth have shown an upper bound of O(logn) for tile types needed [15]. Recent work in [22]

1We would like to thank a reviewer for bringing these works to our attention.
2Other than trivial O(n) bounds.
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Model τ
n×n Squares

Lower Upper Theorem
aTAM 1 Ω( logn

log logn) O(n) [37], [1]

aTAM 2 Θ( logn
log logn) [37], [1]

Flexible Glue aTAM 2 Θ(log
1
2 n) [2]

Seeded TA Det. 1 Θ(( logn
log logn)

1
2 ) Thm. 2.2.2, 2.5.1

Seeded TA ST 1 Θ(log
1
3 n) Thm. 2.2.4, 2.5.1

Seeded TA 1 Θ(log
1
4 n) Thm. 2.2.3, 2.5.1

Table 2.1: Bounds on the number of states for n×n squares in the Abstract Tile Assembly model,
with and without cooperative binding, and the seeded Tile Automata model with our transition rules.
ST stands for Single-Transition.

shows improved upper and lower bounds on building thin rectangles in the case of τ = 1 and in

(just-barely) 3D.

Other models of self-assembly have also been shown to have a smaller tile complexity, such

as the staged assembly model [13,16] and temperature programming [?]. Investigation into different

active self-assembly models have also explored the run time of systems [38, 43].

2.1.2 Our Contributions

In this work, we explore building an important benchmark shape, squares, in non-cooperative

seeded Tile Automata. We also consider only affinity-strengthening transition rules that remove the

ability for an assembly to break apart. Our results are shown in Table 2.1.

We start in Section 2.2 by proving lower bounds for building n×n squares based on three

different transition rule restrictions. The first is nondeterministic or general seeded Tile Automata,

where there are no restrictions and a pair of states may have multiple transition rules. The second

is Single-Transition rules where only one tile may change states in a transition rule, but we still

allow multiple rules for each pair of states. The last restriction, Deterministic, is the most restrictive

where each pair of states may only have one transition rule (for each direction).

In Section 2.3, we use Transition Rules to optimally encode strings in the various versions

of the model. We use these encodings as gadgets to seed the future constructions. We show how

6
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Figure 2.1: (a) Example of a Tile Automata system, it should be noted that τ = 1 and state S is our
seed. (b) A walkthrough of our example Tile Automata system building the 3×3 square it uniquely
produces. We use dotted lines throughout our paper to represent tiles attaching to one another.

to build optimal state complexity rectangles in Section 2.4, and finally optimal state complexity

squares in Section 2.5. Future work is discussed in Section 2.6.

AutoTile. To test our constructions, we developed AutoTile, a seeded Tile Automata

simulator. Each system discussed in the paper is currently available for simulation. AutoTile is

available at https://github.com/asarg/AutoTile.

2.1.3 The Tile Automata Model

Here, we define and investigate the Seeded Tile Automata model, which differs by only

allowing single tile attachments to a growing seed similar to the aTAM.

Seeded Tile Automata. A Seeded Tile Automata system is a 6-tuple Γ = {Σ,Λ,Π,∆,s,τ}

where Σ is a set of states, Λ⊆ Σ a set of initial states, Π is an affinity function, ∆ is a set of transition

rules, s is a stable assembly called the seed assembly, and τ is the temperature (or threshold). Our

results use the most restrictive version of this model where s is a single tile.

Attachment Step. A tile t = (σ , p) may attach to an assembly A at temperature τ to build

an assembly A′ = A
⋃

t if A′ is τ-stable and σ ∈ Λ. We denote this as A→Λ,τ A′.

Transition Step. An assembly A is transitionable to an assembly A′ if there exists two

neighboring tiles t1 = (σ1, p1), t2 = (σ2, p2) ∈ A (where t1 is the west or north tile) such that

there exists a transition rule in ∆ with the first pair being (σ1,σ2) and A′ = (A \ {t1, t2})
⋃
{t3 =

(σ3, p1), t4 = (σ4, p2)}. We denote this as A→∆ A′.

7
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Producibles. We refer to both attachment steps and transition steps as production steps, we

define A→∗ A′ as the transitive closure of A→Λ,τ A′ and A→∆ A′. The set of producible assemblies

for a Tile Automata system Γ = {Σ,Λ,Π,∆,s,τ} is written as PROD(Γ). We define PROD(Γ)

recursively as follows,

• s ∈ PROD(Γ)

• A′ ∈ PROD(Γ) if ∃A ∈ PROD(Γ) such that A→Λ,τ A′.

• A′ ∈ PROD(Γ) if ∃A ∈ PROD(Γ) such that A→∆ A′.

Terminal Assemblies. The set of terminal assemblies for a Tile Automata system Γ =

{Σ,Λ,Π,∆,τ} is written as T ERM(Γ). This is the set of assemblies that cannot grow or tran-

sition any further. Formally, an assembly A ∈ T ERM(Γ) if A ∈ PROD(Γ) and there does not

exists any assembly A′ ∈ PROD(Γ) such that A →Λ,τ A′ or A →∆ A′. A Tile Automata sys-

tem Γ = {Σ,Λ,Π,∆,s,τ} uniquely assembles an assembly A if A ∈ T ERM(Γ), and for all A′ ∈

PROD(Γ),A′→∗ A.

2.1.4 Limited Model Reference

We explore an extremely limited version of seeded TA that is affinity-strengthening, freezing,

and may be a single-transition system. We investigate both deterministic and non-deterministic

versions of this model.

Affinity Strengthening. We only consider transitions rules that are affinity strengthening,

meaning for each transition rule ((σ1,σ2),(σ3,σ4),d), the bond between (σ3,σ4) must be at least

the strength of (σ1,σ2). Formally, Π(σ3,σ4,d)≥Π(σ1,σ2,d). This ensures that transitions may

not induce cuts in the bond graph.

In the case of non-cooperative systems (τ = 1), the affinity strength between states is always

1 so we may refer to the affinity function as an affinity set Λs, where each affinity is a 3-pule

(σ1,σ2,d).
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Freezing. Freezing systems were introduced with Tile Automata. A freezing system simply

means that a tile may transition to any state only once. Thus, if a tile is in state A and transitions to

another state, it is not allowed to ever transition back to A.

Deterministic vs. Nondeterministic. For clarification, a deterministic system in TA has

only one possible production step at a time, whether that be an attachment or a state transition. A

nondeterministic system may have many possible production steps and any choice may be taken.

Single-Transition System. We restrict our TA system to only use single-transition rules.

This means that for each transition rule one of the states may change, but not both. It should be

noted that we still allow Nondeterminism in this system.

2.2 State Space Lower Bounds

Let p(n) be a function from the positive integers to the set {0,1}, informally termed a

proposition, where 0 denotes the proposition being false and 1 denotes the proposition being true.

We say a proposition p(n) holds for almost all n if limn→∞
1
n ∑

n
i=1 p(i) = 1.

Lemma 2.2.1. Let U be a set of TA systems, b be a one-to-one function mapping each element

of U to a string of bits, and ε a real number from 0 < ε < 1. Then for almost all integers n, any

TA system Γ ∈U that uniquely assembles either an n×n square or a 1×n line has a bit-string of

length |b(Γ)| ≥ (1− ε) logn.

Proof. For a given i≥ 1, let Mi ∈U denote the TA system in U with the minimum value |b(Mi)|

over all systems in U that uniquely assembly an i× i square or 1× i line, and let Mi be undefined

if no such system in U builds such a shape. Let p(i) be the proposition that |b(Mi)| ≥ (1− ε) log i.

We show that limn→∞
1
n ∑

n
i=1 p(i) = 1. Let Rn = {Mi|1≤ i≤ n, |b(Mi)|< (1− ε) logn}. Note that

n−|Rn| ≤ ∑
n
i=1 p(i). By the pigeon-hole principle, |Rn| ≤ 2(1−ε) logn = n(1−ε). Therefore,

lim
n→∞

1
n

n

∑
i=1

p(i)≥ lim
n→∞

1
n
(n−|Rn|)≥ lim

n→∞

1
n
(n−n1−ε) = 1.
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Theorem 2.2.2 (Deterministic TA). For almost all n, any Deterministic Tile Automata system that

uniquely assembles either a 1×n line or an n×n square contains Ω( logn
log logn)

1
2 states.

Proof. We can create a one-to-one mapping b(Γ) from any deterministic TA system to bit-strings

in the following way. Let S denote the set of states in a given system. We encode the state set

in O(log |S|) bits, we encode the affinity function in a |S|× |S| table of strengths in O(|S|2) bits

(assuming a constant bound on bonding thresholds), and we encode the rules of the system in an

|S|× |S| table mapping pairs of rules to their unique new pair of rules using O(|S|2 log |S|) bits, for

a total of O(|S|2 log |S|) bits to encode any |S| state system.

Let Γn denote the smallest state system that uniquely assembles an n×n square (or similarly

a 1×n line), and let Sn denote the state set. By Lemma 2.2.1, |b(Γn)| ≥ (1− ε) logn for almost

all n, and so |Sn|2 log |Sn|= Ω(logn) for almost all n. We know that |Sn|= O(logn), so for some

constant c, |Sn| ≥ c( logn
log logn)

1
2 for almost all n.

Theorem 2.2.3 (Nondeterministic TA). For almost all n, any Tile Automata system (in particular

any Nondeterministic system) that uniquely assembles either a 1×n line or an n×n square contains

Ω(log
1
4 n) states.

Theorem 2.2.4 (Single-Transition TA). For almost all n, any Single-Transition Tile Automata

system that uniquely assembles either a 1×n line or an n×n square contains Ω(log
1
3 n) states.

2.3 String Unpacking

A key tool in our constructions is the ability to build strings efficiently. We do so by encoding

the string in the transition rules.

Definition 2.3.1 (String Representation). An assembly A over states Σ represent a string S over a

set of symbols U if there exists a mapping from the elements of U to the elements of Σ and a 1×|S|

(or |S|×1) subassembly A′ @ A, such that the state of the ith tile of A′ maps to the ith symbol of S

for all 0≤ i≤ |S|.
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2.3.1 Deterministic Transitions

We start by showing how to encode a binary string of length n in a set of (freezing) transition

rules that take place on a 2× (n+2) rectangle that will print the string on its right side. We extend

this construction to work for an arbitrary base string.

Overview Consider a system that builds a length n string. First, we create a rectangle of

index states that is two wide as seen on the left side of Figure 2.5c. Each row has a unique pair

of index states so each bit of the string is uniquely indexed. We divide the index states into two

groups based on which column they are in, and which “digit” they represent. Let r = dn 1
2 e. Starting

with index states A0 and B0, we build a counter pattern with base r. We use O(n
1
2 ) states shown in

Figure 2.2 to build this pattern. We encode each bit of the string in a transition rule between the two

states that index that bit. A table with these transition rules can be seen in Figure 2.5b.

The pattern is built in r sections of size 2× r with the first section growing off of the seed.

The tile in state SA is the seed. There is also a state SB that has affinity for the right side of SA. The

building process is defined in the following steps for each section.

1. The states SB,0B,1B, . . . ,(r− 1B) grow off of SB, forming the right column of the section.

The last B state allows for a′ to attach on its west side. a tiles attach below a′ and below itself.

This places a states in a row south toward the state SA, depicted in Figure 2.3b.

2. Once a section is built, the states begin to follow their transition rules shown in Figure 2.4a.

The a state transitions with seed state SA to begin indexing the A column by changing state a to

state 0A. For 1≤ y≤ n−2, state a vertically transitions with the other y′A states, incrementing

the index by changing from state a to state (y+1)A.

3. This new index state zA propagates up by transitioning the a tiles to the state zA as well. Once

the zA state reaches a′ at the top of the column, it transitions a′ to the state z′A. Figure 2.4b

presents this process of indexing the A column.
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Seed Row

NBNA

Cap Row Symbol States

Figure 2.2: States to build a length-9 string in deterministic Tile Automata.

4. If z < n−1, there is a horizontal transition rule from states (z′A,n−1B) to states (z′A,n−1′B).

The state 0B attaches to the north of n−1B and starts the next section. If z = n, there does not

exist a transition.

5. This creates an assembly with a unique state pair in each row as seen in the first column of

Figure 2.5c.

States An example system with the states required to print a length-9 string are shown in

Figure 2.2. The first states build the seed row of the assembly. The seed tile has the state SA with

initial tiles in state SB. The index states are divided into two groups. The first set of index states,

which we call the A index states, are used to build the left column. For each i, 0≤ i < r, we have the

states iA and i′A. There are two states a and a′, which exist as initial tiles and act as “blank” states

that can transition to the other A states. The second set of index states are the B states. Again, we

have r B states numbered from 0 to r−1, however, we do not have a prime for each state. Instead,

there are two states r−1′B and r−1′′B, that are used to control the growth of the next column and the

printing of the strings. The last states are the symbol states 0S and 1S, the states that represent the

string.

Affinity Rules/Placing Section Here, we describe the affinity rules for building the first

section. We later describe how this is generalized to the other r−1 sections. We walk through this

process in Figure 2.3b. To begin, the B states attach in sequence above the tile SB in the seed row.

Assuming r2 = n, n is a perfect square, the first state to attach is 0B. 1B attaches above this tile and

so on. The last B state r−1B does not have affinity with 0B, so the column stops growing. However,

the state a′ has affinity on the left of r−1B and can attach. a has affinity for the south side of a′,

so it attaches below. The a state also has a vertical affinity with itself. This grows the A column

12
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(b) Process of Building a section

Figure 2.3: (a) Affinity rules to build each section. We only show affinity rules that are actually
used in our system for initial tiles to attach, while our system would have more rules in order to
meet the affinity strengthening restriction. (b) The B column attaches above the state SB as shown
by the dotted lines. The a′ attaches to the left of 2B and the other a states may attach below it until
they reach SA.

southward toward the seed row.

If n is not a perfect square, we start the index state pattern at a different value. We do so by

finding the value q = r2−n. In general, the state iB attaches above SB for i = q%r.

Transition Rules/Indexing A column Once the A column is complete and the last A state

is placed above the seed, it transitions with SA to 0A (assuming r2 = n). A has a vertical transition

rule with iA (0≤ i < r) changing the state A to state iA. This can be seen in Figure 2.4a, where the

0A state is propagated upward to the A′ state. The A′ state also transitions when 0A is below it, going

from state A′ to state 0′A. If n is not a perfect square, then A transitions to iA for i = bq/rc.

Once the transition rules have finished indexing the A column if i < r−1, the last state i′A

transitions with r−1B changing the state r−1B to r−1′B. This transition can be seen in Figure 2.4b.

The new state r−1′B has an affinity rule allowing 0B to attach above it allowing the next section to

be built. When the state A is above a state j′A, 0≤ j < r−1, it transitions with that state changing

from state A to j+1A, which increments the A index.

Look up After creating a 2× (n+2) rectangle, we can encode a length n string S into the

transitions rules. Note that each row of our assembly consists of a unique pair of index states, which

we call a bit gadget. Each bit gadget will look up a specific bit of our string and transition the B tile

to a state representing the value of that bit.
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(b) Process of Indexing A column

Figure 2.4: (a) The first transition rule used is takes place between the seed SA and the a state
changing to 0A. The state 0A changes the states north of it to 0A or 0′A. Finally, the state 0′A transitions
with 2B (b) Once the a states reach the seed row they transition with the state SA to go to 0A. This
state propagates upward to the top of the section.

Figure 2.5b shows how to encode a string S in a table with two columns using r digits to

index each bit. From this encoding, we create our transition rules. Consider the kth bit of S (where

the 0th bit is the least significant bit) for k = ir+ j. Add transition rules between the states iA and

jB, changing the state jB to either 0S or 1S based on the kth bit of S. This transition rule is slightly

different for the northmost row of each section as the state in the A column is i′A. Also, we do not

want the state in the B column, r−1B, to prematurely transition to a symbol state. Thus, we have

the two states r−1′B and r−1′′B. As mentioned, once the A column finishes indexing, it changes

the state r− 1B to state r− 1′B, allowing for 0B to attach above it, which starts the next column.

Once the state 0B (or a symbol state) is above r−1′B, there are no longer any possible undesired

attachments, so the state transitions to r−1′′B, which has the transition to the symbol state.

The last section has a slightly different process as r−1B state will never have a 0B attach

above it, so we have a different transition rule. This alternate process is shown in Figure 2.5a. The

state r−1′A has a vertical affinity with the cap state NA. This state allows NB to attach on its right

side. This state transitions with r−1B below it, changing it directly to r−1′′B, allowing the symbol

state to print.

Theorem 2.3.2. For any binary string s with length n > 0, there exists a freezing tile automata

system Γs with deterministic transition rules, that uniquely assembles an 2× (n+2) assembly AS

that represents S with O(n
1
2 ) states.
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(c) Transition Rules

Figure 2.5: (a) Once the last section finishes building the state NA attaches above 2′A. NB then
attaches to the assembly and transitions with 2B changing it directly to 2′′B so the string may begin
printing. (b) A table indexing the string S = 011101100 using two columns and base |S| 12 . (c)
Transition Rules to print S. We build an assembly where each row has a unique pair of index states
in ascending order.

Arbitrary Base In order to optimally build rectangles, we first print arbitrary base strings.

Here, we show how to generalize Theorem 2.3.2 to print base-b strings.

Corollary 2.3.3. For any base-b string S with length n > 0, there exists a freezing tile automata

system Γ with deterministic transition rules, that uniquely assembles an (n+2)×2 assembly which

represents S with O(n
1
2 +b) states.

2.3.2 Nondeterministic Single-Transition Systems

For the case of Single-Transition systems, we use the same method from above but instead

building bit gadgets that are of size 3×2. Expanding to 3 columns allows for a third index digit

to be used giving us an upper bound of O(n
1
3 ). The second row will be used for error checking

which we will describe later in the section. This system utilizes Nondeterministic transitions, (two

states may have multiple rules with the same orientation) and is non-freezing (a tile may repeat

states). This system also contains cycles in its production graph, this implies the system may run

indefinitely. We conjecture this system has a polynomial run time. Here, let r = dn 1
3 e.
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Figure 2.6: (a) States needed to construct a length 27 string where r = 3. (b) The index 0 propagates
upward by transitioning the tiles in the column to 0B and 0Bu and transitions a′ to 0′Bu. The state
0′Bu transitions with the state 2Cu, changing the state 2Cu to 2′Cu, which has affinity with 0C to build
the next section. These rules also exist for the index 1. (c) When the index state 2B reaches the top
of the section, it transitions b′ to 2′Bu. This state does not transition with the C column and instead
has affinity with the state a′, which builds the A column downward. The index propagates up the A
column in the same way as the B column. When the index state 0A reaches the top of the section, it
transitions the state 2′B to 2′′B. This state transitions with 2Cu changing it to 2′Cu allowing the column
to grow.

Index States and Look Up States We generalize the method from above to start from a C

column. The B column now behaves as the second index of the pattern and is built using B′ and B

as the A column was in the previous system. Once the B reaches the seed row, it is indexed with its

starting value. This construction also requires bit gadgets of height 2, so we will use index states

iA, iB, iC and north index states iAu, iBu, iCu for 0≤ i < r. This allows us to separate the two functions

of the bit gadget into each row. The north row has transition rules to control the building of each

section. The bottom row has transition rules that encode the represented bit.

In addition to the index states, we use 2r look up states, 0Ci and 1Ci for 0 ≤ i < r. These

states are used as intermediate states during the look up. The first number (0 or 1) represents the

value of the retrieved bit, while the second number represents the C index of the bit. The A and B

indices of the bit will be represented by the other states in the transition rule.
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In the same way as the previous construction, we build the rightmost column first. We

include the C index states as initial states and allow 0C to attach above SC. We include affinity rules

to build the column northwards as follows starting with the southmost state 0C,0Cu,1C,1Cu, . . . ,r−

2Cu,r−1C,r−1Cu .

To build the other columns, the state b′ can attach on the left of r−1Cu. The state b is an

initial state and attaches below b′ and itself to grow downward toward the seed row. The state b

transitions with the seed row as in the previous construction to start the column. However, we

alternate between C states and Cu states. The state b above iC transitions b to iCu. If b is above iCu it

transitions to iC. The state b′ above state iB transitions to i′Bu. If i < r−1, the state i′B and r−1Cu

transition horizontally changing r−1′Cu, which allows 0C to attach above it to repeat the process.

This is shown in Figure 2.6b.

The state a′ attaches on the left of r−1Cu. The A column is indexed just like the B column.

For 0≤ i < r−1, the state i′Au and r−1′Bu change the state r−1′Bu to r−1′′Bu. This state transitions

with r−1Cu, changing it to r−1′Cu. See Figure 2.6c.

Bit Gadget Look Up The bottom row of each bit gadget has a unique sequence of states,

again we use these index states to represent the bit indexed by the digits of the states. However,

since we can only transition between two tiles at a time, we must read all three states in multiple

steps. These steps are outlined in Figure 2.7a. The first transition takes place between the states iA

and jB. We refer to these transition rules as look up rules. We have r look up rules between these

states for 0≤ k < r of these states that changes the state jB to that state kC0 if the bit indexed by i, j,

and k is 0 or the state kC1 if the bit is 1.

Our bit gadget has Nondeterministically looked up each bit indexed by it’s A and B states,

Now, we must compare the bit we just retrieved to the C index via the state in the C column. The

states kC0 and kC transition changing the state kC to the 0i state only when they represent the same k.

The same is true for the state kC1 except Ck transitions to 1i.

17



(u)

(u)

(u)

(v)

(x)

(w)

1C00A

0Au 0Bu 0Cu 0Cu

0Cu

2C10A

0Au 0Bu

0C

0C00A

0Au 0Bu

0s0A

0Au 0Bu

0B 0C

0Cu

S = 001...

0C 0C

0C0 0C0A

0Cu0Au 0Bu 0Cu

xB0A

0Au 0Bu

(a) ST Bit Gadget look up

0'B

0D

0Bu0Cu

0Cu

0Bu

0Bu

0Cu 0Cu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu0Au 0Bu 0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0D

0Du0Cu

1D10A1

0D0C0A 0B

0Du0Cu

0D0C0A 0'B 0D00A00A

0D02A0

0A

0A

0D0PA00A

PA1 1D10A

FB 0D00A

PD0PA00A

FCPA10A

PD0FB0A

PA00A 0S PA00A

FB FC0A

0Du0Cu0Au 0Bu 0Du

0D

0Du

0D

0Du

0D

0Du

0Du0Cu

0D

0Au

0Au

0Au

0Au 0Bu

0Au 0Bu

0Au 0Bu 0Du0Cu

0A

0Au 0Bu 0Du0Cu

0DxC

0A

0Au 0Bu 0Du0Cu

0DxC0'B

(a) (b) (c) (c) (d)

(e)

(d)

(f)

0S 0S

(b) Nondeterminstic Bit Gadget look up

Figure 2.7: (a.u) For a string S, where the first 3 bits are 001, the states 0A and 0B have |S| 13 transition
rules changing the state 0B to a state representing one of the first |S| 13 bits. The state is iC0 if the ith

bit is 0 or iC1 if the ith bit is 1 (a.v) The state 0C0 and the state 0C both represent the same C index
so the 0C state transition to the 0s. (a.w) For all states not matching the index of 0C, they transition
to xB, which can be seen as a blank B state. (a.x) The state 0Bu transitions with the state xB changing
to 0B resetting the bit gadget. (b.a) Once the state A0 appears in the bit gadget it transitions with 0B
changing 0B to 0′B. (b.b) The states 0′B and 0C Nondeterminstically look up bits with matching B
and C indices. The state 0′B transitions to look up state representing the bit retrieved and the bit’s A
index. The state 0C transitions to a look up state representing the D index of the retrieved bit. (b.c)
The look-up states transition with the states 0A and 0D, respectively. As with the Single-Transition
construction these may pass or fail. (b.d) When both tests pass, they transition the D look up state
to a symbol state that propagates out. (b.e) If a test fails, the states both go to blank states. (b.f) The
blank states then reset using the states to their north.

If they both represent different k, then the state kC goes to the state Bx. This is the error

checking of our system. The Bx states transitions with the north state jBu above it transitioning Bx

to jB once again. This takes the bit gadget back to it’s starting configuration and another look up

can occur.

Theorem 2.3.4. For any binary string S with length n > 0, there exists a Single-Transition tile

automata system Γ, that uniquely assembles an (2n+ 2)× 3 assembly which represents S with

O(n
1
3 ) states.

2.3.3 General Nondeterministic Transitions

Using a similar method to the previous sections, we build length n strings using O(n
1
4 )

states. We start by building a pattern of index states with bit gadgets of height 2 and width 4.

Overview Here, let r = dn 1
4 e. We build index states in the same way as the Single-Transition

system but instead starting from the D column. We have 4 sets of index states, A, B, C, D. The same
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methods are used to control when the next section builds by transitioning the state r−1D to r−1′D

when the current section is finished building.

We use a similar look up method as the previous construction where we Nondeterministically

retrieve a bit. However, since we are not restricting our rules to be a Single-Transition system, we

may retrieve 2 indices in a single step. We include 2 sets of O(r) look up states, the A look up states

and the D look up states. We also include Pass and Fail states FB,FC,PA0,PD0,PA1,PD1 along with

the blank states Bx and Cx. We utilize the same method to build the north and south row.

Let S(α,β ,γ,δ ) be the ith bit of S where i = αr3 +β r2 + γr+δ . The states β ′B and γC have

r2 transitions rules. The process of these transitions is outlined in Figure 2.7b. They transition

from (β ′B,γC) to either (αA0,δD0) if S(α,β ,γ,δ ) = 0, or (αA1,δD1) if S(α,β ,γ,δ ) = 1. After both

transitions have happened, we test if the indices match to the actual A and D indices. We include

the transition rules (αA,αA0) to (αA,PA0) and (αA,αA1) to (αA,PA1). We refer to this as the bit

gadget passing a test. The two states (PA0,PD0) horizontally transition to (PA0,0s). The 0s state then

transitions the state δD to 0s as well as propagating the state to the right side of the assembly. If the

compared indices are not equal, then the test fails and the look up states will transition to the fail

states FB or FC. These fail states will transition with the states above them, resetting the bit gadget

as in the previous system.

Theorem 2.3.5. For any binary string S with length n > 0, there exists a tile automata system Γ,

that uniquely assembles an (2n+2)×4 assembly which represents S with O(n
1
4 ) states.

2.4 Rectangles

In this section, we will show how to use the previous constructions to build O(logn)×n

rectangles. All of these constructions rely on using the previous results to encode and print a string

then adding additional states and rules to build a counter.
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Figure 2.9: (a) The process of the binary counter. (b) A base-10 counter.

2.4.1 States

We choose a string and construct a system that will create that string, using the techniques

shown in the previous section. We then add states to implement a binary counter that will count up

from the initial string. The states of the system, seen in Figure 2.8a, have two purposes. The north

and south states (N and S) are the bounds of the assembly. The plus, carry, and no carry states (+, c,

and nc) forward the counting. The 1, 0, and 0 with a carry state make up the number. The counting

states and the number states work together as half adders to compute bits of the number.

2.4.2 Transition Rules / Single Tile Half Adder

As the column grows, in order to complete computing the number, each new tile attached in

the current column along with its west neighbor are used in a half adder configuration to compute

the next bit. Figure 2.8b shows the various cases for this half adder.

When a bit is going to be computed, the first step is an attachment of a carry tile or a no-carry

tile (c or nc). A carry tile is attached if the previous bit has a carry, indicated by a tile with a state of

plus or 0 with a carry (+ or 0c). A no-carry tile is placed if the previous bit has no-carry, indicated
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by a tile with a state of 0 or 1. Next, a transition needs to occur between the newly attached tile

and its neighbor to the west. This transition step is the addition between the newly placed tile and

the west neighbor. The neighbor does not change states, but the newly placed tile changes into a

number state, 0 or 1, that either contains a carry or does not. This transition step completes the half

adder cycle, and the next bit is ready to be computed.

2.4.3 Walls and Stopping

The computation of a column is complete when a no-carry tile is placed next to any tile

with a north state. The transition rule changes the no-carry tile into a north state, preventing the

column from growing any higher. The tiles in the column with a carry transition to remove the carry

information, as it is no longer needed for computation. A tile with a carry changes states into a

state without the carry. The next column can begin computation when the plus tile transitions into a

south tile, thus allowing a new plus tile to be attached. The assembly stops growing to the right

when the last column gets stuck in an unfinished state. This column, the stopping column, has carry

information in every tile that is unable to transition. When a carry tile is placed next to a north tile,

there is no transition rule to change the state of the carry tile, thus preventing any more growth to

the right of the column.

Theorem 2.4.1. For all n > 0, there exists a Tile Automata system that uniquely assembles a

O(logn)×n rectangle using,

• Deterministic Transition Rules and O(log
1
2 n) states.

• Single-Transition Transition Rules and Θ(log
1
3 n) states.

• Nondeterministic Transition Rules and Θ(log
1
4 n) states.

2.4.4 Arbitrary Bases

Here, we generalize the binary counter process for arbitrary bases. The basic functionality

remains the same. The digits of the number are computed one at a time going up the column. If a
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digit has a carry, then a carry tile attaches to the north, just like the binary counter. If a digit has no

carry, then a no-carry tile is attached to the north. The half adder addition step still adds the newly

placed carry or no-carry tile with the west neighbor to compute the next digit. This requires adding

O(b) counter states to the system, where b is the base.

Theorem 2.4.2. For all n > 0, there exists a Deterministic Tile Automata system that uniquely

assembles a O( logn
log logn)×n rectangle using Θ

(
( logn

log logn)
1
2

)
states.

2.5 Squares

In this section we utilize the rectangle constructions to build n×n squares using the optimal

number of states.

Let n′ = n− 4d logn
log logne− 2, and Γ0 be a determinstic Tile Automata system that builds a

n′× (4d logn
log logne+2) rectangle using the process described in Theorem 2.4.2. Let Γ1 be a copy of

Γ0 with the affinity and transition rules rotated 90 degrees clockwise, and the state labels appended

with the symbol “*1”. This system will have distinct states from Γ0, and will build an equivalent

rectangle rotated 90 degrees clockwise. We create two more copies of Γ0 (Γ2 and Γ3), and rotate

them 180 and 270 degrees, respectively. We append the state labels of Γ2 and Γ3 in a similar way.

We utilize the four systems described above to build a hollow border consisting of the four

rectangles, and then adding additional initial states which fill in this border, creating the n× n

square.

We create Γn, starting with system Γ0, and adding all the states, initial states, affinity rules,

and transition rules from the other systems (Γ1,Γ2,Γ3). The seed states of the other systems are

added as initial states to Γn. We add a constant number of additional states and transition rules so

that the completion of one rectangle allows for the “seeding” of the next.

Reseeding the Next Rectangle. To Γn we add transition rules such that once the first

rectangle (originally built by Γ0) has built to its final width, a tile on the rightmost column of the

rectangle will transition to a new state pA. pA has affinity with the state SA ∗1, which originally

22



SA

N C pAN

SA

SA*

C*

N*

pA

SA

SA*pA

SA

Figure 2.10: The transitions that take place after the first rectangle is built. The carry state transitions
to a new state that allows a seed row for the second rectangle to begin growth

pC

SA#

pD pD

SA$

SA*

N*

pA

SA

pB

pC

SA#

pD pD pD

SA$

SA*

N*

pA

SA

pB

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f f

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f f f f

fff

ff

f f f

f f

f

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

Figure 2.11: Once all 4 sides of the square build the pD state propagates to the center and allows
the light blue tiles to fill in

was the seed state of Γ1. This allows state SA ∗1 to attach to the right side of the rectangle, “seeding”

Γ1 and allowing the next rectangle to assemble (Figure 2.10). The same technique is used to seed

Γ2 and Γ3.

Filler Tiles. When the construction of the final rectangle (of Γ3) completes, transition rules

propagate a state pD towards the center of the square (Figure 2.11). Additionally, we add an initial

state r, which has affinity with itself in every orientation, as will as with state pD on its west side.

This allows the center of the square to be filled with tiles.

Theorem 2.5.1. For all n > 0, there exists a Tile Automata system that uniquely assembles an n×n

square with,

• Deterministic transition rules and Θ

(
( logn

log logn)
1
2

)
states.

• Single-Transition rules and Θ(log
1
3 n) states.

• Nondeterministic transition rules and Θ(log
1
4 n) states.

2.6 Future Work

This paper showed optimal bounds for uniquely building n× n squares in three variants

of seeded Tile Automata without cooperative binding. En route, we proved upper bounds for
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constructing strings and rectangles. Serving as a preliminary investigation into constructing shapes

in this model. This leaves many open questions:

• As shown in [9], even 1D Tile Automata systems can perform Turing computation. This

behavior may imply interesting results for constructing 1× n lines. We conjecture, it is

possible to achieve the optimal bound of Θ(( logn
log logn)

1
2 ) with deterministic rules.

• Our rectangles had a height bounded by O( logn
log logn), and none fell below the k < logn

log logn [2]

bound for a thin rectangle. In Tile Automata without cooperative binding, is it possible to

optimally construct k×n thin rectangles?

• We allow transition rules between non-bonded tiles. Can the same results be achieved with

the restriction that a transition rule can only exist between two tiles if they share an affinity in

the same direction?

• While we show optimal bounds can be achieved without cooperative binding, can we simulate

so-called zig-zag aTAM systems? These are a restricted version of the cooperative aTAM

that is capable of Turing computation.

• We show efficient bounds for constructing strings in Tile Automata. Given the power of

the model, it should be possible to build algorithmically defined shapes such as in [39] by

printing Komolgorov optimal strings and inputting them to a Turing machine.
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CHAPTER III

PATTERNS

3.1 Model and Definitions

Here, we quickly review basic definitions and provide full formal definitions of these

concepts in Appendix ??.

States, Tiles, and Assemblies. A tile is a unit square centered along the square lattice. Each

tile is assigned a state from the alphabet Σ. An assembly is a collection of adjacent tiles at disjoint

locations.

Affinity and Transition Rules. Systems consist of local affinities between states denoting

the direction and strength of attraction between adjacent monomer tiles in those states, and a

temperature or threshold defining the minimum attraction strength needed to bind. Our systems all

use a threshold of 1. A set of local state-change rules, or transition rules, are included for pairs of

two adjacent states.

Breakable, Combinable, Transitionable Assemblies. For two assemblies to combine, the

border of where they meet must have the total affinity strength sum to at least the temperature of the

system. An assembly may also break apart into two assemblies when the total affinity strength along

the border of where each assembly meet sum to less than the temperature of the system. Further,

existing assemblies may change states based on the transition rules.

3.1.1 Tile Automata model (TA)

A Tile Automata system is a 5-tuple (Σ,Π,Λ,∆,τ) where Σ is an alphabet of state types, Π

is an affinity function, Λ is a set of initial assemblies with each tile assigned a state from Σ, ∆ is a

25



(a) A Tile Automata System
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(b) A patterned assembly and scaled patterned assembly

Figure 3.1: (a) An example of a Tile Automata system Γ. Recursively applying the transition rules
and affinity functions to the initial assemblies of a system yields a set of producible assemblies. Any
producibles that cannot combine with, break into, or transition to another assembly are considered
to be terminal. Note that none of the transition rules allow states to change color. (b) For the pattern
problem, an input string defining the pattern and a patterned assembly representing it. Also shown
is the 2×2 scaled pattern and the corresponding 2×2 scaled patterned assembly.

set of transition rules for states in Σ, and τ ∈ N is the stability threshold. When the affinity function

and state types are implied, let (Λ,∆,τ) denote a tile automata system. An example Tile Automata

system can be seen in Figure ??. Please see Appendix ??.

Definition 3.1.1 (Tile Automata Producibility). For a given Tile Automata system Γ=(Σ,Λ,Π,∆,τ),

the set of producible assemblies of Γ, denoted PRODΓ, is defined recursively:

• (Base) Λ⊆ PRODΓ

• (Recursion) Any of the following:

– (Combinations) For any A,B ∈ PRODΓ s.t. A and B are τ-combinable into C, then

C ∈ PRODΓ.

– (Breaks) For any C ∈ PRODΓ s.t. C is τ-breakable into A and B, then A,B ∈ PRODΓ.

– (Transitions) For any A ∈ PRODΓ s.t. A is transitionable into B (with respect to ∆), then

B ∈ PRODΓ.

For a system Γ = (Σ,Λ,Π,∆,τ), we say A→Γ
1 B for assemblies A and B if A is τ-combinable

with some producible assembly to form B, if A is transitionable into B (with respect to ∆), if A is

τ-breakable into assembly B and some other assembly, or if A = B. Intuitively this means that A
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may grow into assembly B through one or fewer combinations, transitions, and breaks. We define

the relation →Γ to be the transitive closure of →Γ
1 , i.e., A→Γ B means that A may grow into B

through a sequence of combinations, transitions, and/or breaks.

Definition 3.1.2 (Production Graph). The production graph of a Tile Automata system Γ is a

directed graph where each vertex corresponds to an assembly in PRODΓ and there exists a directed

edge between assemblies A and B if A→Γ B.

Definition 3.1.3 (Terminal Assemblies). A producible assembly A of a Tile Automata system

Γ = (Σ,Λ,Π,∆,τ) is terminal provided A is not τ-combinable with any producible assembly of Γ, A

is not τ-breakable, and A is not transitionable to any producible assembly of Γ. Let TERMΓ ⊆ PRODΓ

denote the set of producible assemblies of Γ that are terminal.

Definition 3.1.4 (Bounded). A tile automata system Γ is bounded if and only if there exists a

k ∈ Z>0 such that for all A ∈ PRODΓ, |A|< k.

Definition 3.1.5 (Unique Assembly). A TA system Γ uniquely produces an assembly A if

• A is the only assembly in TERMΓ,

• for all B ∈ PRODΓ, B→Γ A, and

• Γ is bounded.

When there does not exist a pair of assemblies B,C ∈ PRODΓ, such that B→Γ C→Γ B, we

refer to it as cycle-free. Cycles are only possible when detachment is allowed.

3.1.2 Restrictions

Based on hierarchies that have been studied in Cellular Automata [34], we also restrict our

TA systems. Unique Assembly and directedness captures the idea of convergence from Cellular

Automata where the system is required to eventually end at some configuration. Allowing or

disallowing cycles (cycle-free) is similar to the concept of bounded change. While we do not focus
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on this, we note the only systems without this property are the nondeterministic transition rule

results based on the efficient string constructions from [3].

The main restrictions considered here are:

• Directed. If a system Γ uniquely produces some assembly A allowing cycles we say Γ is

directed. This concept is well-defined in models such as the aTAM.

• Freezing. We say a system is freezing if a tile only ever visits each state at most once.

The concept of freezing has been studied in Cellular Automata [25] where is it defined as

having a fixed order on the states. However, we note that these definitions are equivalent for

deterministic systems based on the state transitions.

• Affinity Strengthening. A TA system where, whenever a state a transitions to state b, b must

have at least the same affinity rules as a. This prevents detachment.

• Determinism. A deterministic system in TA has only one possible production step at a time,

whether that be an attachment or a state transition. A nondeterministic system may have

many possible production steps where any choice may be taken.

• Single-Transition System. We restrict our TA system to only use single-transition rules.

Thus, for each transition rule, only one of the states may change.

3.1.3 Colors and Patterns

In this paper, we augment the Tile Automata model with the concept of a tile’s color based

on the current state. For a set of color labels C, this is a partition of the states into |C| sets. We only

consider constant sized C. Thus, the color of tile t is the partition the tile’s state is in, and is denoted

as c(t).

Definition 3.1.6 (Pattern). A pattern P over a set of colors C is a partial mapping of Z2 to elements

in C. Let P(z) be the color at z ∈ Z. A scaled pattern Phw is the pattern where each pixel is replaced

by a h×w rectangle of pixels.
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Definition 3.1.7 (Patterned Assemblies). We say a positioned assembly A′ represents a pattern P

if for each tile t ∈ A′, c(t) = P(L(t)) and dom(A′) = dom(P). We say a positioned assembly B′

represents a pattern P at scale h×w if it represents the scaled pattern Phw.

A system Γ uniquely assembles a pattern P if it uniquely assembles an assembly A, such

that A contains a positioned assembly that represents P.

3.1.4 Algorithmic Hierarchy

We measure the efficiency of building a pattern P using three algorithmic complexity values

related to levels of the Chomsky Hierarchy.

• Kolmogorov Complexity (KP). The Kolmogrov complexity the size of the smallest binary

string that when input to some fixed universal Turing machine MK it outputs the prints the

pattern P. Note that KP may differed based on the choice of MK however it has been shown

the choice only changes an additive constant.

• Space Bounded Kolmogorov Complexity (KSP). The space bounded Kolmogorov com-

plexity for some function f (|P|), KSP is the smallest binary string that when input to MK is

P is output in f (|P|) space. Time and Space bounded Kolmogorov Complexity is explored

in [29].

• Context-Free (CFP). We denote the size of the smallest Context-Free Grammar as CFP. The

size of the grammar is the total number of symbols on the right hand side of the rules. We

provide a formal definition in Section 3.4 and consider the same class of grammars as [17].

3.1.5 General Turing Machine

3.2 Optimal Patterns in Tile Automata

In this section we show that general Tile Automata can obtain Kolmogorov optimal state

complexity at 1×1 scale. These first results are achieved by applying the efficient binary string

construction from [3], and allowing the additional tiles used by the assembly to fall off, thus leaving
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only the string. We can then utilize the Turing machine from [9] to simulate a universal Turing

Machine. The Turing Machine in [9] was designed to accept/reject an input, so we modify the

Turing Machine to print P on the tape and halt.

Lemma 3.2.1. For any binary pattern X there exists an affinity strengthening Tile Automata system

that uniquely constructs an assembly representing X at scale,

• 4×2 with O(|X | 14 ) states,

• 3×2 with O(|X | 13 ) states using single-transition rules, and

• 2×1 with O(|X | 12 ) states using deterministic single-transition rules and is cycle free.

Proof. These constructions are provided in [3] which shows that there exists a method to encode

the bits of a string in the transition rules of the system. Each construction takes advantage of a

feature not available in the stricter class of systems. The model shown in this paper however does

have seeded growth but a simple extension shows this works with 2-handed production.

Theorem 3.2.2. For any pattern P, there exists a Tile Automata system Γ that uniquely assembles P

with Θ(K
1
4
P ) states at 1×1 scale.

Proof. Given a pattern P, we first consider a Turing machine M that will print P. Using the process

described in [9], we create a system ΓM = (Σ,Π,Λ,∆,τ) that simulates M. When M has completed

printing P, the buffer states BL and BR need to detach. We take Σ and create a copy ΣSR which we

modify by removing the accept/reject states in favor of final states. For every state ρ ∈ ΣSR where

ρ composes P, we create ρF ∈ ΣSR with affinity only for every other final state. Starting with the

rightmost tile that composes P, we add transition rules that will transition each tile with state ρ

into their final state equivalent ρF . Since these final states have no affinity with the buffer states,

tiles with those buffer states, and any other state not considered a final state, will detach from the

assembly. This detaching process begins with a transition rule between BR and the rightmost tile

with state ρ , turning ρ into ρF .
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From Lemma 3.2.1, we encode ΓM in a binary string b(ΓM) and use b(ΓM) to construct

system ΓS that uses Θ(K
1
4
P ) to assemble b(ΓM). [44] states there exists a universal Turing machine

that uses linear space in the amount of space used by the machine being simulated. Γ will simulate

a universal Turing machine with ΓS being used to construct the input into Γ, giving us a system that

uniquely assembles P with Θ(K
1
4
P ) states and 1×1 scale.

3.2.1 Deterministic Single Transition Turing Machine

The Turing machine from [9] utilizes transition rules that change both tiles in the same step.

While [11] shows a way to simulate double rules with single rules, we present a slight modification

to the Turing machine construction to make it utilize single rules.

Lemma 3.2.3. For any pattern P, there exists a Tile Automata system Γ with deterministic single-

transition rules that uniquely assembles P with O(KP) states and 1×1 scale. This system is cycle

free.

Proof. We create a Turing machine M that will print P. Using Turing machine M, we use the process

described in [9] to create a system ΓD = (Σ,Π,Λ,∆,τ) that simulates M utilizing double-transition

rules. We then modify Σ, ∆, and Π into single-transition rule versions ΣSR, ∆SR, and ΠSR as follows.

ΣSR and ΠSR will initially be a copy of Σ and Π respectively, while ∆SR is populated with

every single-transition rule in ∆. For every double-transition rule δ = (A,B,C,D,d) ∈ ∆, we create

an additional state ω ∈ ΣSR. The affinity strength of ω using ΠSR will be equal to the affinity

strength of D using Π for all directions. We take δ and create 3 transition rules δS1,δS2,δS3 ∈ ∆S

defined below.

• δS1 = (A,B,A,ω,d)

• δS2 = (A,ω,C,ω,d)

• δS3 = (C,ω,C,D,d)
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We use the final states described in the proof of Theorem 3.2.2 to modify ΣSR in order

to detach the buffer states. Using our modifications, we create a Tile Automata system Γ =

(ΣSR,ΠSR,Λ,∆SR,τ) with deterministic single-transition rules that uniquely assembles P with O(KP)

states and 1×1 scale.

Using Lemma 3.2.1we can encode the input to a universal Turing machine with square root

the number of states with deterministic single transition rules.

Theorem 3.2.4. For any pattern P, there exists a Tile Automata system Γ with deterministic single

transition rules that uniquely assembles P with O(K
1
2
P ) states and 1×1 scale. This system is cycle

free.

Proof. We make some modifications to the process used in the proof of Theorem 3.2.2 to satisfy

the deterministic single-transition rules. We create ΓM using the method described in the proof of

Lemma 3.2.3 and encode the system in a binary string b(ΓM). ΓS is created using b(ΓM) which will

use O(K
1
2
P ) as shown in Lemma 3.2.1. Γ will simulate a universal Turing machine that uses the

assembly built by ΓS, giving us a system that uniquely assembles P with O(K
1
2
P ) states and 1×1

scale.

Other methods for non-deterministic rules and with single and double rules give the follow-

ing.

Theorem 3.2.5. For any pattern P, there exists a Tile Automata system Γ with single transition

rules that uniquely assembles P with Θ(K
1
3
P ) states and 1×1 scale.

Proof. A deterministic single-rule TA system ΓM can be constructed according to Lemma 3.2.3,

and using an encoding b(ΓM), we make ΓS which uses Θ(K
1
3
P ) states using Lemma 3.2.1

3.2.2 Freezing with Detachment

We do not directly consider Freezing and allowing detachment since the results of [12]

shown that any non-freezing system can be simulated by a freezing system by replacing tiles. Also
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shown in the full version of [9] it was shown freezing Tile Automata with only height 2 assemblies

can simulate a general Turing machine. The assembly can then fall apart to achieve 1×1 scale.

3.2.3 Affinity Strengthening

3.3 Affinity Strengthening

As shown in [9], Affinity Strengthening Tile Automata (ASTA) is capable of simulating

Linear Bounded Automata (LBA) and that verification in ASTA is PSPACE-Complete. Thus, it

makes sense to view this version of the model as the spaced-bounded version of Tile Automata,

similar in power to LBAs or Context Sensitive Grammars. We select space-bounded Kolmogorov

complexity as our method of bounding the state complexity since we can encode a string and

simulate a Turing machine as in the previous section to get an upper bound. The concept of bounded

Kolmogorov Complexity was explored in [29]. For these results, we consider building scaled

patterns in which each pixel of the pattern is expanded to a s×O(1) box of pixels. Another way to

view this upper bound is that for any algorithm α that outputs P in f (|P|) space, we may construct

an assembly representing P of size O( f (|P|), in O(|α|) 1
4 states, where |α| is the number of bits

describing α for general Tile Automata. Similar bounds are shown for the other restrictions. It

is interesting to point out that with a large enough scale factor we achieve Kolmogorov optimal

bounds, including optimal scaled shape constructions as in [39].

3.3.1 Space Bounded Kolmogorov Complexity

Definition 3.3.1 (Space Bounded Kolmogorov Complexity). Given a pattern P, and a function

f : N→ N that outputs the space used by a Turing machine, let KSP( f (|P|)) be the length of the

smallest string that, when input to a universal Turing machine MK , halts with the pattern P on the

tape in f (|P|) space.

It was stated in [29] that there exists some optimal Turing machine, which we call MK ,

that incurs only a constant multiplicative factor increase in the space used. We note for two space

bounds f (|P|) and g(|P|), the value KSP(g(|P|)) ≤ KSP( f (|P|)) as using more space allows for
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1 0 0 1 1 1 0 1

(a) Assembly representing input string.

1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1

(b) Universal Turing machine running on input.
1 0 1 1 1 0 0 1 0 0 1

(c) The pattern is output on the tape. (d) The pattern scales outward to fill the assembly.

Figure 3.2: (a) It is possible to build assemblies representing binary strings with an efficient number
of states. (b) We can then run a universal Turing machine on the input increasing the length of the
assembly as needed. (c) The Turing machine will halt with the pattern output on the tape. (d) The
pattern will then scale out to fill the assembly.

more efficient computing of all pattern P, with |P|< c for some constant c.

3.3.2 Construction

Figure 3.2a shows a sketch of the assembly for deterministic Tile Automata using the string

constructions from [3] shown in Lemma 3.2.1. The single rule Turing machine can be modified to

never break apart and only increase the tape length, similar to the PSPACE-hard reduction from [9].

Figure 3.2b shows an example Turing machine being run where the tape length is increased.

Once the pattern has been printed or assembled (Figure 3.2c), there are additional tiles in the

assembly to deal with. However, since we cannot detach tiles, we scale the pattern. The first step

is to expand the length of pattern. If we use s tape cells to print a pattern |P|, we scale each point

in the pattern by c · |P|. This is done with a simple algorithm implemented in the transition rules.

Create a token state that starts at the leftmost state after the string is printed. Go to each ‘pixel’ and

tell it expand once after first signaling the neighboring cells to move right (to prevent overwriting).

We do this for each pixel in the pattern, push the other states, increase pixel size. The system repeats

this process until all pixels of the pattern are fully expanded, and then they transition the tiles below

them, which results in the patterned assembly of Figure 3.2d.

Theorem 3.3.2. For any pattern P, scale factor s > 0, there exists an Affinity Strengthening

Tile Automata system Γ with deterministic single transition rules that uniquely assembles P with

O(KSP(s|P|)
1
2 ) states and s×2 scale. This system is cycle free.
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Proof. Let X be the string that when input to M, P is written to the tape in s|P| space. Using the

binary string building results from Lemma 3.2.1 we can encode X in O(|X | 12 ) states. Then we run

M using the single transition rule Turing machine described in the proof of Lemma 3.2.3. This will

run and leave the pattern P on the tape states. Consider a second Turing machine MINC scales up

the pattern to fill the width of the tape. Each pixel is increased by the same amount. The states then

copy the color to the state below it as well. This can be done in a constant number of states. The

amount that each pattern scales by is s|P|
|P| = |P| · (s−1).

Theorem 3.3.3. For any pattern P, scale factor s > 0, there exists an Affinity Strengthening Tile

Automata system Γ with single-transition rules that uniquely assembles P with O(KSP(s|P|)
1
3 )

states and s×3 scale.

Proof. Again using the Single-Transition rule Turing machine from the proof of Lemma 3.2.3 and

the string building result from Lemma 3.2.1, we can construct the input to the universal Turing

machine MK . The pattern P can be output in s|P| space. We then scale up the pattern to fill the

assembly.

Theorem 3.3.4. For any pattern P, scale factor s > 0, there exists an Affinity Strengthening Tile

Automata system Γ that uniquely assembles P with O(KSP(s|P|)
1
4 ) states and s×4 scale.

Proof. Lastly using the same method from Lemma 3.2.1 we can encode the input to the universal

Turing machine in |X | 14 where |X | is the length of the string. This results in an assembly of height 4

as resulting assembly will be of dimensions |X |×4. The string X can then be input to the Turing

machine to print the pattern than scale up.

3.4 Freezing Affinity Strengthening

In this section, we design a Freezing Tile Automata system to build a pattern P based on

a context-free grammar (CFG) that encodes P. This construction draws inspiration from pattern

building in staged self-assembly [17] and line building in Tile Automata and the Signal Tile
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Model [9, 35]. An example CFG is shown in Figure 3.3, along with the corresponding TA system in

Figure ??. In addition to the freezing and affinity strengthening constraints, this result achieves the

feature that tiles never undergo a change in their color throughout the assembly process. We denote

rules that adhere to this constraint as color-locked rules.

3.4.1 Context-Free Grammars

A context-free grammar (CFG) is a set of recursive rules used to generate patterns of

strings in a given language. A CFG is defined as a quadruple G = (V,ϒ,R,S). V represents a finite

set of non-terminal symbols and ϒ is a finite set of terminal symbols. The symbol R is the set of

production rules and S is a special variable in V called the start symbol. Production rules R of

CFGs are in the form A→ BC|a, with V in the left-hand side and V and/or ϒ on the right- hand

side. A CFG derives a string through recursively replacing nonterminal symbols with terminal and

non-terminal symbols based on its production rules.

Definition 3.4.1 (Minimum Context Free Grammars). We define the size of a grammar G as the

number of symbols in the right hand side rules. Let CFP be the size of the smallest CFG that

produces the singleton language |P|.

Restricted Context-Free Grammars (RCFG). In this work, we focus on the CFG class

used in [17] which they name Restricted CFGs. These restricted grammars produce a singleton

language, |L(G)|= 1 and thus are deterministic. This is the same concept of Context-Free Straight

Line grammars from [7]. Each RCFG production rule R contains two symbols on its right-hand side.

We can convert any other deterministic CFG to this form with only a constant factor size increase.

Figure 3.3 presents an example RCFG G and its parse tree that derives a pattern of symbols

P, ξ ξ δδδψ . The parse tree shows how internal nodes are non-terminal symbols and leaf nodes

contain a terminal symbol whose in-order traversal derives the output string. Notice that since

RCFG G is deterministic, each non-terminal symbol N ∈V has a unique subpattern g(N) that is

defined by taking N to be the start symbol S and applying the production rules. Here, the language
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Figure 3.3: A restricted context-free grammar (RCFG) G and its corresponding parse tree that
produces a pattern P, ξ ξ δδδψ . This is a deterministic grammar, producing only pattern P.

or output pattern P of G can be denoted by L(G) = g(S).

3.4.2 1D Patterned Assembly Construction

We describe our method of simulating a Restricted CFG G with Tile Automata to build a

1D patterned assembly that represents the pattern P derived from G.

Initial Tiles and Producibles. This Tile Automata system, ΓG, begins with creating its

initial tiles from the unique terminal symbols, ϒ, in RCFG G. In Figure 3.3, the output pattern P

derived from G has three unique terminal symbols ξ , δ , and ψ . Each unique ϒ in G is mapped to a

distinct color and remains locked to the symbol throughout the construction. From G’s production

rule parse tree, internal nodes have two child nodes consisting of two similar or different terminal

symbols, ϒ. Depending on the placement of the terminal symbols, the initial tiles are designated as

L for left-hand side or R for right-hand side. Figure 3.4a depicts that an initial tile consists of an ϒ

symbol with its distinct color in an L or R state.

Following G’s parse tree, the initial tiles can combine to build ΓG’s first set of producible

assemblies. Grammar G’s production rules can be encoded into system ΓG by providing the affinity

rules. If two terminal symbols in G connect to the same internal node in its parse tree, the initial

tiles in ΓG that represent the symbols combine to form a producible. The first set of producibles

cannot bind to any other tile because they are capped with L and R states, which we denote as

captiles, and thus are stopped from growing, shown in Figure 3.4b. Note that these first producibles

are subpatterns of P.
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(a) (b)

(c) (d)

Figure 3.4: Tile Automata system, ΓG, assembling a 1D patterned assembly that represents the
pattern P produced by the RCFG G shown in Figure 3.3. (a) ΓG contains initial tiles from the unique
terminal symbols of G. Grammar G’s production rules are encoded in ΓG as affinity rules, allowing
initial tiles to form the first set of producibles. (b) Following G’s rules, ΓG’s color-locked, one-sided
transition rules are applied to the first set of producibles. (c) Subpattern assembly Lδ Dδ Fδ Rψ

transitions tiles towards captile R, marking visited tiles. Once the transitions reach captile R, we
transition to the left of the subassembly to Cδ tiles, removing the marks along the way. (d) RCFG
G production rule Y → BC, directs ΓG to combine B and C subassemblies to build the terminal
patterned line assembly, representing pattern P from grammar G.

Uncapping Producibles. RCFG G production rules tell ΓG how the first producible as-

semblies will combine to form larger subpatterns of P and ultimately represent the final patterned

line assembly. In ΓG, our first set of producibles are composed of L and R captiles. For these

producibles to combine with each other, we apply one-sided, color-locked transition rules to un-

cap each producible, opening their left or right-hand side depending on the nonterminal symbols

placement in grammar G’s production rules. For example, in Figure 3.3 nonterminal C is composed

of a D on the left-hand side and F on the right-hand side. In Figure 3.2b, the producible Lδ Rψ

represents G’s terminal symbols δψ as well as nonterminal F. Because F sticks to D’s right side,

a one-sided transition rule is applied to producible Lδ Rψ changing only the pink tile Lδ to a new
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tile Fδ , forming next producible Fδ Rψ . Here, the color-locked restriction in ΓG applies because the

new tile Fδ retains its color (pink) that is designated to the terminal symbol δ of P from G. This

producible Fδ Rψ is considered a right-handed subassembly because it is uncapped on its left side,

allowing it to attach to the right-hand side of the producible that represents nonterminal D. The rest

of ΓG’s first producibles transition according to G’s production rules as shown in Figure 3.4b.

Transition Walk. ΓG recursively applies G’s production rules to build the other subassem-

blies needed to represent pattern P. Grammar G’s production rule C→ DF tells ΓG that there

is affinity between D and F, directing producibles Lδ Dδ and Fδ Rψ to combine and form a new

subpattern assembly δδδψ of P, shown at the top of Figure 3.4c. In Lemma 3.4.3, we show

how every nonterminal in G is represented as a subpattern assembly produced by ΓG. Subpattern

assembly Lδ Dδ Fδ Rψ , represents nonterminal C from G and is capped with captiles L and R. From

G’s production rules in Figure 3.3, nonterminal symbol Y is composed of B on the left-hand side

and C on right-hand side. To uncap the left side of subpattern Lδ Dδ Fδ Rψ , a series of one-sided,

color-locked transition rules are applied to turn each tile into a Cδ tile making the subassembly

uniform, depicted in Figure 3.4c. The adjacent tiles that have transition rules between them are

outlined in purple, with the resulting tiles shown in the subassembly below it.

We apply the method of "walking" across 1D assemblies from [9] to uncap left or right

sides of subassemblies. Subpattern assembly Lδ Dδ Fδ Rψ must have an opened left side to attach to

subassembly B, so we first transition tiles towards the right side, marking visited tiles with a prime

notation. Once the transitions reach captile R, we begin to transition to the left of the subassembly to

Cδ tiles, removing the prime notations along the way. As shown in Figure 3.4c, once producibles D

and F combine, a one-sided, color-locked transition rule applies changing the Fδ tile for a temporary

C′
δ

tile, where the prime marks the tile as visited. Next, the adjacent C′
δ

and Rψ tiles transition to

remove the prime from the C′
δ

tile, producing subpattern Lδ DδCδ Rψ . Another transition is applied

between adjacent tiles DδCδ to form the fourth subassembly in Figure 3.4c. Finally, one more

transition occurs between LδCδ to produce subpattern CδCδCδ Rψ .
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Patterned Line Assembly. Figure 3.4d depicts the subpattern assemblies created by ΓG that

represent nonterminal symbols B and C. According to the affinity rules of ΓG, subassemblies B and

C combine to form terminal assembly Y. Subassemblies for B and C attach and terminal assembly

Y is constructed and capped with captiles L and R on its sides. This new terminal assembly Y

represents G’s pattern P, with each distinct colored tile representing unique terminal symbols of

pattern P.

Definition 3.4.2 (Nonterminal Pattern). For a nonterminal N ∈V , let g(N) be a substring derived

when N is the start symbol of grammar G.

Lemma 3.4.3. Each producible assembly in ΓG, created from a RCFG G = (V,ϒ,R,S) represents a

subpattern g(N) for some symbol N in V
⋃

ϒ.

Proof. We will prove by induction that any producible assembly B represents a subpattern g(N) for

some symbol N in V
⋃

ϒ.

For the base case, if B is an initial tile, then B represents some terminal symbol N ∈ ϒ. For

the inductive step, if B is a larger assembly, then we show B represents a non-terminal N ∈V . We

define the following two recursive cases. B is built from combining subassemblies C and D, we can

assume these assemblies represent symbols NC and ND respectively. We know from how we defined

our affinity rules if C and D can combine then there is some rule N→ NCND. Then B represents the

pattern g(N) = g(NC)⊕g(ND). B is producible via transition from an assembly C, B must represent

the same subpattern as C since the transition rules do not change the color.

Theorem 3.4.4. For any pattern P, there exists a Freezing Tile Automata system Γ with deterministic

single transition rules that uniquely assembles P with O(CFP) states and 1×1 scale. This system is

cycle-free and transition rules do not change the color of tiles.

Proof. By definition, there exists a CFG G that produces P with |G| = CFP. We construct the

system ΓG. From Lemma 3.4.3, each producible assembly B must represent a subpattern g(N) for
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some symbol N. The only terminal of Γ is the assembly representing the start symbol S since all

other assemblies either can attach to another assembly or can transition.

3.5 Future Work

A possible extension to our constructions is general shape constructors as in [39] to produce

general shapes at optimal state complexity. However, the ability to perform computation in 1D can

help us bound the scale factor more reasonably. Based on Space Bounded Kolmogrov Complexity,

lower bounds for bounded scale shapes in other assembly models may be possible. Time Bounded

Kolmogorov Complexity is more studied in works such as [4, 8].

Closing the lower and upper bound gap for deterministic transition rules might be possible

using base conversations, as we can encode general base strings using the string building results.

For affinity strengthening, a stronger lower bound for the case of seeded Tile Automata should be

possible since reading the output of a system might require less space. Are there more efficient

algorithms for the original model to raise the lower bound?

The system to simulate a CFG is very restricted: it is freezing, one uses all 1D assemblies,

and tiles never change color. Is there a limited version of TA that is equivalent to CFGs? A similar

result was shown in the one-dimensional Staged Assembly Model when only one assembly is

produced in each bin [17]. Can the 2D upper bounds be improved with scaling as in [42]? This

allows for encoding CFG symbols with geometry rather than states. Also introduced in [42] are

Polyomino Context-Free Grammars, which generalizes CFGs to define patterned polyominos in

2D rather than strings. This extension seems to be possible in Freezing Affinity Strengthening

Tile Automata and would help us further compare passive tiles being mixed in a certain order vs.

programming the tiles themselves to perform actions.
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