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ABSTRACT 

Nalubolu, Deepya Reddy., Asynchronous Designs on FPGA with Soft Error Tolerance 

for Security Algorithms. Master of Science (MS), August, 2009, 140 pp., references, 52 

titles. 

Asynchronous methodologies, such as Null Convention Logic (NCL), have tremendous 

potential in implementing digital logic. It is essential to design complex asynchronous 

circuits using commercial Electronic Design Automation (EDA) tools. The main focus of 

this thesis is to design NCL circuits using VHDL and implementing them on FPGAs. The 

major contributions of this thesis include: 

1) Developing a methodology of designing NCL circuits with VHDL and applying it 

successfully to all practical designs in this thesis. 

2) As an example, the NCL circuit for DES (Data Encryption Standard) algorithm has 

been designed and simulated using VHDL and the implementation issues on various 

FPGAs (Xilinx and Altera) have been investigated. Modification of the design has been 

done to minimize the amount of logic used. 

3) An effective soft error tolerant scheme for asynchronous circuits on FPGAs is 

proposed, and successfully verified through software simulation and hardware 

implementation by introducing it into a DES round. 

This thesis provides a starting point for further investigation of NCL circuits, in terms of 

VHDL modeling, FPGA implementations, and soft error tolerance. 
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CHAPTER I 

INTRODUCTION 

Data Encryption Standard (DES) algorithm, a most widely used algorithm in the 

world is a cipher (a method for encrypting information) which was selected as an official 

Federal Information Processing Standard (FIPS) for the United States in 1976[1]. DES 

provided the basics for understanding block ciphers and their cryptanalysis. DES 

algorithm operates on a 64 bit plaintext using 56 bit key (actually 64 bit key, every 8th bit 

of the key is not used) thereby generating a 64 bit ciphertext which is the encrypted data. 

A Field Programmable Gate Array (FPGA) is a semiconductor device that can be 

programmed or configured any number of times using a schematic design or a source 

code in HDL (hardware description language) that describe the user's hardware design 

[2]. FPGAs can be configured with dense logic and have very high logic capacity. 

Cryptographic algorithms like DES could be made to accommodate into the logic cells 

and the memory units of the FPGA since it also provides the advantage of updating and 

reprogramming any number of times in the future. 

Asynchronous circuits [3] are digital circuits which operate without a clock unlike 

synchronous circuits whose operation is solely dependent on a clock signal. 

Asynchronous circuits use handshaking protocols to communicate between modules or 
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parts of the circuits for the operations to be done in sequence. As these circuits have 

additional handshaking protocols other than logic, the entire circuit design will be 

undoubtedly large compared to their synchronous counterparts. Hence, the challenge to 

optimize these designs on the FPGA logic is inevitable. 

Soft errors, also called transient faults or single-event upsets (SEUs) are caused 

due to electrical noise or external radiation rather than design or manufacturing defects. 

As CMOS device sizes decrease, they are more easily affected by the low energy 

particles resulting from collisions between cosmic rays and particles in the atmosphere, 

potentially leading to a much higher rate of soft errors [4]. 

1.1 Data Encryption Standard Algorithm 

DES is a block cipher - meaning it operates on plaintext blocks of a given size 

(64-bits) and returns ciphertext blocks of the same size. DES algorithm has been the 

foundation for many of the future cryptographic algorithms. Since its creation, DES was 

considered as a basic cryptographic algorithm by the academia and has been researched 

to crack the algorithm, create similar algorithms which are robust. The algorithm is 

believed to be practically secure in the form of Triple DES (TDEA) [1]. 

DES algorithm takes plain text as a block of 64-bits and generates a cipher using a 

64-bit key. In general, cryptography is used to protect data while it is being 

communicated between two points or while it is stored in a medium vulnerable to 

physical theft. Communication security provides protection to data by enciphering it at 

the transmitting point and deciphering it at the receiving point. Enciphering is the process 

of generating a cipher (encrypted data) using the data and the key while deciphering is 



just the opposite which is getting the original data using the cipher and the key. This 

thesis focuses only on enciphering procedure since deciphering is just the opposite. 

File security provides protection to data by enciphering it when it is recorded on a 

stored medium and deciphering it when it is read back from the stored medium. In the 

first case, the key must be available at the transmitter and receiver simultaneously during 

communication. In the second, case the key must be maintained and accessible for the 

duration of the storage period. Figure 1 shown below pictorially explains the step by step 

procedure of DES. 

("INITIAL PERMUTATION") 

O 

£ . > , 

Y. 
{— 
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(WVSRSE INITIAl PfRNp 
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Figure 1.1 Step by step procedure of DES [5] 

Here is a brief description of DES. The detailed description along with all the 

permutation and expansion tables, s-boxes and shift tables are presented in appendix A 
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and an example is illustrated for better understanding the algorithm. As mentioned 

previously DES algorithm operates on 64-bit plain text using 64-bit key to generate a 64-

bit cipher. The 64-bit key is used to generate 16 sub-keys which are used at each step. 

Firstly an initial permutation PC-1 is done on the 64-bits which simultaneously eliminate 

every 8th bit of the key. Then this 56-bit permuted key is divided into two 28-bits, the left 

half denoted as Co and the right half as Do. Ci, Di, C2, D2 Ci6, Di6 are 

generated from previous Q, Dj based on a left shift table (refer to Appendix A). For 

example, Q , Di are generated by left shifting Co and Do respectively using the number of 

left shifts mentioned in the left shift table. Then each pair is concatenated and permuted 

using a permutation table PC-2, each generating a single sub-key Ki, K2 Ki6 

respectively. 

The 64-bit data is applied with an initial permutation IP and the result is divided 

into two 32-bits, the left half as Lo and the right half as Ro. These Lo and Ro serve as the 

initial data from which further halves (Li, Ri Li6, Ri6) are generated. The final cipher 

is generated from flipping and permuting Li6 and Ri6. The two equations which are used 

to generate Li and Rj are Lj = R,.\ and Rj=Lj.i + f (RM, Ki) which means next L is the 

present R and next R is obtained from present R and K. For example Li has the value of 

Ro and Ri is obtained from Ro and Ki, which is the first sub-key, after a series of steps 

mentioned below. 

After as initial permutation, the 64-bit data is divided into 32-bits each as Lo and 

Ro. Now, Li = Ro and in order to obtain Ri, Ro which is 32-bit is expanded using an 

expansion table (refer to Appendix A) to 48-bits. The resulting 48-bits is exored with Ki 

generating a 48-bit output which is divided into 8 group of 6-bits viz., Bi, B2....B6. Each 
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6-bit value is mapped to 8, respective S-boxes Si Sg generating a 4-bit value. The 

mapping is done by considering the first and the sixth bit of say Bi, and the 2-bits are 

collectively considered to be row number and the remaining four bits from 2n bit to 4l 

bit are collectively considered as column number. By using the row and the column 

numbers, a 4-bit value is taken from the S-box, Si for Bi in this case. So, combining all 

the 8, 4-bit outputs of 8, single S-boxes, we get a 32 bit output. This 32-bit output is 

subjected to permutation by a table P and then exored with Ki and is denoted as f R\ is 

obtained from f and Lo by exoring both the 32-bits. 

The above procedure represents one round of calculations. The entire DES 

algorithm has 16 such rounds using the two important equations mentioned above, 

starting from Lo, Ro until the generation of Li6, Ri6- Li6 which represents the left 32-bits 

and Ri6 which represents the right 32-bits are flipped and subjected to final permutation 

IP"1 and the resulting output is the cipher text. As we know the entire procedure of DES, 

let's move on to investigate how DES is implemented on hardware. 

1.2 Implementations of DES on FPGA 

Since the creation of DES there have been many implementations of the 

algorithm. The most common implementation is the software implementation. Software 

implementation provides a great flexibility but it is slow for those applications where 

execution time is a crucial factor. Another implementation of DES is the ASIC 

(Application Specific Integrated Circuit) implementation. Execution speed is a major 

advantage of this method. ASICs have higher cost of implementation since they have to 

follow expensive and time-consuming fabrication process. Reconfigurable logic like the 

FPGA has the dual advantage of the software implementation and the ASIC 
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implementation. FPGAs are faster and have high flexibility and could be reconfigured or 

reprogrammed any number of times. They have the advantage to be programmed with 

different designs or modifications of the same design hence reducing the time and cost of 

implementing a design. 

There are different synchronous DES designs which have been implemented on 

FPGAs [6-8]. In some of the designs, 16 sub-keys are pre-computed and multiplexers are 

used to select each sub-key. In comparison with the lookup table approach to implement 

the S-boxes, the direct implementation of Boolean functions increased the speed of 

processing, saved on the number of gates and was more suitable for FPGA architectures 

[6]. A design using pipelining approach and ROM elements present in the FPGA could 

achieve lGbps. DES with 16 pipelines gave the maximum speed but occupies more area 

in the FPGA [7]. The overall security of the design was improved by using different keys 

every clock cycle [8]. The fastest synchronous DES implementation on FPGA runs a data 

rate of 10.7 Gbps, utilizes Jbits on a FPGA. Jbits provides a Java-based Application 

Programming Interface (API) for the run-time creation and modification of the 

configuration bit-stream. This design is not a single-chip implementation of the full DES 

algorithm since the key schedule is computed in software. Also, it can only accommodate 

one key per data transfer session [9]. 

Here are some of the conclusions made when a DES design was implemented on 

a FPGA. S-Boxes should be implemented in ROM elements for maximum performance. 

Bigger chip results in a slower design. A migration from speed grades -4 to - 3 , -3 to -2 

and -2 to -1 result in up to 20% higher performance. The Xilinx device is faster than the 



7 

Altera device even if the former is bigger than the later and had a slower speed grade (-4) 

than the second which had the faster speed grade (-1) [7]. 

1.3 Asynchronous Design Methodology 

Logic design methods can be broadly classified into two categories, namely 

synchronous and asynchronous methodologies. Synchronous method is the commonly 

used method where the data is available to all the components of the design at the rising 

edge or at the falling edge of the clock. The clock signal is the dictator for the entire 

circuit's operation. In the asynchronous methodology there is mutual understanding 

between the neighboring units of the design. Sutherland [10] used a metaphor of the 

bucket brigade to explain the difference between the two methodologies. 

€ (A^A^A 
| r- »• v r-

lock i VJ CJ L. 

* hid 
b) 

^ 

i 

vfi 

\fl 

Figure 1.2 Metaphor of the bucket brigade a) Synchronous b) Asynchronous 

Asynchronous circuits have several potential advantages over their synchronous 

counterparts. Clock skew is a matter of concern in synchronous logic but doesn't affect 

asynchronous logic since the methodology doesn't use a clock at all. Asynchronous 

circuits have average case performance unlike synchronous circuits whose clock is set 

according to worst case delay due to which asynchronous designs are faster than the 
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synchronous designs. Another advantage of asynchronous designs is that these have high 

energy efficiencies. Asynchronous circuits eliminate glitches and have transitions on the 

computation path where and when involved in the current computation thereby 

decreasing energy consumption. These designs also have robust external input handling 

capability since there is no clock which determines the inputs at a particular time. Hence, 

asynchronous circuits can accommodate inputs effectively. Asynchronous circuits have 

better noise and EM properties when used in mixed-signal circuits. 

Asynchronous circuits can even utilize a synchronous wrapper, such that the end 

user does not know that the internal circuitry is actually asynchronous in nature. 

International Technology Roadmap for Semiconductors (ITRS) envisions a likely shift 

from synchronous to asynchronous design styles in order to increase circuit robustness, 

decrease power, and alleviate many clock-related issues. ITRS also states that 

asynchronous circuits will account for 19% of chip area within the next 5 years, and 30% 

of chip area within the next 10 years [11]. 

1.4 Soft Errors and Digital Circuits 

Soft errors are random nonrecurring single bit errors in memory devices, 

including SRAM, DRAM, registers, and latches. Alpha particles from decaying uranium 

and thorium impurities in integrated circuit interconnect and packaging is a major source 

of soft errors at sea level and the neutron flux from cosmic rays is the major cause at 

higher altitudes [12]. The intensity of these soft errors depends on the energy of the 

incoming particle, location of the device, the geometry of the impact, the location of the 

strike, and the design of the logic circuit. 
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For applications in medical electronic devices this soft error mechanism may be 

extremely important. Neutrons are produced during high energy cancer radiation therapy 

using photon beam energies above 10 MV. These neutrons are moderated as they are 

scattered from the equipment and walls in the treatment room resulting in a thermal 

neutron flux that is about 40x106 higher than the normal environmental neutron flux. This 

high thermal neutron flux will generally result in a very high rate of soft errors and 

consequent circuit upset [13-14]. 

The incoming particle must be strong enough to induce a charge that can change 

the voltage value. The minimum charge required to change the logic level is called 

critical charge denoted as Qcrjt. As device sizes are scaling down, the devices are prone to 

soft errors for lesser Qcrjt. 

The location of the device also influences the number of particle strikes and their 

effects. For example, the effect of soft error is worse in places father to equator compared 

to places on the equator and worse in mountain tops rather than at sea level due to the 

density of cosmic rays. 

Both synchronous and asynchronous circuits are affected by soft errors. In the 

case of synchronous circuits, if a soft error occurs during a clock tick, a wrong output is 

generated. Asynchronous circuits with dual-rail inputs and outputs have better advantages 

over synchronous circuits to detect and correct soft errors. This thesis focuses only on the 

soft errors generated in asynchronous combinational logic. Soft error rate (SER) is the 

rate at which a device or system encounters or is predicted to encounter soft errors. It is 

typically expressed as either number of failures-in-time (FIT), or mean-time-between-

failures (MTBF). The unit adopted for quantifying failures in time is called FIT, 
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equivalent to 1 error per billion hours of device operation. MTBF is usually given in 

years of device operation. To put it in perspective, 1 year MTBF is equal to 

approximately 114,077 FIT [15]. 

Soft errors were first discovered in memory elements like DRAMs in 1970s. 

Since then DRAMs were the focus for soft errors also because it occupies most of the 

susceptible surface area. DRAMs of 256 Kb with 1980s technology had flips of five to 

six bits from a single alpha particle [15]. The present day devices must have many more 

flips for the same alpha particle. Error-correcting codes [16] are used to deal with soft 

errors in memory elements. Due to the continuous scaling down of the device sizes 

attention has been shifted from memories to combinational logic circuits [17]. Soft error 

detection and correction in combinational logic is an ongoing research topic since 

efficient soft error tolerant designs are not available. Logic soft errors are very significant 

contributors to system-level silent data corruption for designs manufactured in advanced 

technologies (90nm, 65nm, onwards) and targeted for enterprise computing and 

communications applications [18]. The model described by P. Sivakumar, to compute the 

SERs for existing and future microprocessor-style designs predicted that the SER per 

chip of logic circuits will increase nine orders of magnitude from 1992 to 2011 and at that 

point will be comparable to the SER per chip of unprotected memory elements [4]. 

1.5 Thesis objectives 

This thesis concentrates purely on asynchronous methodology. The asynchronous 

methodology used here is Null-Convention Logic (NCL) and is explained in detail in 

Chapter II. The thesis also includes FPGA designs and usage of different FPGAs. The 
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topic of soft error detection and correction is also discussed. The major objectives of the 

thesis are: 

1) Designing an asynchronous model of DES algorithm using NCL dual-rail logic 

and simulating the design and addressing different issues in synthesizing the 

asynchronous DES design on different FPGAs. 

2) Improving the asynchronous DES design to optimally utilize the resources on the 

FPGA chip. 

3) Designing an NCL dual-rail logic circuit which can efficiently detect and correct 

the occurrence of soft errors in asynchronous circuits. 

4) Synthesizing the above mentioned circuit on FPGA and testing the circuit using 

hardware components. 

5) Adding the soft error tolerant circuit to one of the asynchronous DES rounds and 

testing its operation. 
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CHAPTER II 

BACKGROUND WORK ON NULL CONVENTION LOGIC 

Asynchronous circuits can be grouped into two main categories: bounded-delay 

and delay-insensitive (DI) models. Bounded-delay models assume that delays in both 

gates and wires are bounded which leads to extensive timing analysis of worse-case 

behavior to ensure correct circuit operation. Delay-insensitive circuits assume delays in 

both logic elements and interconnects to be unbounded, although they assume that wire 

forks within basic components, such as a full adder, are isochronic, meaning that the wire 

delays within a component are much less than the logic element delays within the 

component, which is a valid assumption in the future nanometer technologies. Wire 

connecting components do not have to adhere to the isochronic fork assumption which 

enables them to operate in the presence of indefinite arrival times for the reception of 

inputs. 

NCL [19] is a delay-insensitive asynchronous paradigm, which means that NCL 

circuits will operate correctly regardless of the delay of components and wires. NCL 

circuits utilize dual-rail or quad-rail logic to achieve delay-insensitivity. Throughout the 

thesis, the designs make use of dual-rail logic. This chapter explains the basics of NCL 

such as the components used to construct NCL circuits, criteria that each and every 

component of the NCL dual-rail signals must possess and transistor level construction of 

the basic components of NCL circuits. 
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2.1 Completion Criteria 

NCL uses two completeness criteria to achieve its delay-insensitive behavior: 

symbolic completeness of expression and completeness of input. A symbolically 

complete expression is defined as an expression that only depends on relationships of the 

symbols presented in the expression. Dual-rail signals with three logic states (NULL, 

DATAO, and DATA1) are used to achieve symbolic completeness of expression. A dual-

rail signal D consists of two wires, D° and D1. The value of a dual-rail signal is 

represented by a value from the set {DATAO, DATA1, NULL}, shown in Table 2.1. The 

DATAO state (D°=l(high), D'=0(low)) corresponds to a Boolean logic 0. The DATAl 

state (D°-0(low), D1=l(high)) corresponds to a Boolean logic 1. Null state (D°=0(low), 

D1=0(low)) corresponds to non- data state. The state where D°=l(high) and D1=l(high) is 

forbidden. 

Table 2.1 Dual-rail encoding 

Logic Value 

DATAl 
DATAO 
NULL 
Invalid 

Encoding 
D° 
0 
1 
0 
1 

D l 

1 
0 
0 
1 

The second criterion, completeness of input, states that for an NCL combinational 

circuit, 1) the output may not transition from NULL to a complete set of DATA until the 

input values are completely DATA and 2) the output may not transition from DATA to a 

complete set of NULL values until the input values are completely NULL. The criterion, 

equivalent to Seitz's "weak condition" [20], is illustrated in figure 2.1. This criterion is a 

necessary condition for speed-independence. The orderings labeled in figure 2.1 are 

explained below. 
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(1) Some inputs become DATA before some outputs become DATA. 

(2) All inputs become DATA before all outputs become DATA. 

(3) All outputs become DATA before some inputs become NULL. 

(4) Some inputs become NULL before some outputs become NULL. 

(5) All inputs become NULL before all outputs become NULL. 

(6) All outputs become NULL before some inputs become DATA. 
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Figure 2.1 Weak conditions for NCL completeness of input. 

An output is said to be input-complete with respect to a particular input if the 

output value (DATA) is not available until the input value (DATA) is available. And this 

input is a complete input of this particular output. A combinational circuit is input-

complete if and only if each input at least has one output that is input-complete with 

respect to it. 
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2.2 Threshold Gates with Hysteresis 

NCL uses a special type of gates, namely threshold gates with hysteresis [21] 

[22]. A general name of a fundamental threshold gate is described as thmnWnin2....nw, 

where 'th' means that the gate is a threshold gate, m is the threshold, n is the number of 

inputs, W means that the following number 'nf, 'n2', ... 'nw' are weights of the first ' W 

inputs and the weights of other inputs are one by default. Some of the threshold gates are 

shown in figure 2.2. In some threshold gates there could be variation for set, reset or 

inverted output. In that case letter 'd', 'n', or 'b ' can be attached to the name of the 

threshold gate. For example, th22n is a tli22 gate with a control input 'reset' so that the 

output is initialized to low as long as 'reset' signal is active. Similarly,'d' is used to 

initialize the output to high and 'b' indicates that the gate generates an inverted output. 

Figure 2.2 Different threshold gates 

The threshold behavior of the threshold gate requires that the output become 1 if 

at least m of n inputs have become 1. The hysteresis behavior requires that the output 

only changes after a sufficiently complete set of input values have been established. In 

the case of a transition from a 0 to 1, the output remains at 0 until atleast m of the n inputs 

become 1. In the case of a transition from 1 to 0, the output remains at 1 until all n inputs 

become 0. The hysteresis within each NCL gate ensures that all inputs must transition to 

NULL before a combinational circuit's output will transition to NULL, making the 

circuit input-complete with respect to NULL, assuming that the circuit is input-complete 



with respect to DATA. These gates are the basic components upon which all the other 

essential components of an NCL pipeline (discussed in 2.3) are built. 

There are 27 fundamental threshold gates in the NCL design library, as shown in 

Table 2.2, which constitute the set of all functions consisting of four or fewer variables. 

Table 2.2 Twenty seven fundamental NCL gates and their Boolean functions 

±i 
NCL gate 

th i2 

th i2 

thu 
th-B 

th« 
th23\V2 

&33W2 

t h p 

tll24 

thj4 

tll44 

thi4W2 

th34W2 
t!l44W2 

tkj4W3 

t!l44\V3 

th-24W22 

th34\V22 

tll44\V22 

th;,4\V22 

tll34W32 

&54W32 

th44Mi322 

tll54\V322 

thjcorO 

tlljndO 

til24eomp 

Boolean Function 
A + B 

AB 
A + B + C 

AB + AC +BC 
ABC 

A + BC 
AB + AC 

A + B + C + D 
AB + AC + AD + BC + BD + CD 

ABC + ABD + ACD + BCD 
ABCD 

A + BC + BD + CD 
AB + AC + AD + BCD 
ABC + ABD + ACD 

A + BCD 
AB + AC + AD 

A + B + CD 
AB + AC + AD+BC+BD 

AB + ACD + BCD 
ABC + ABD 
A + BC + BD 
AB + ACD 

AB + AC + AD +BC 
AB + AC + BCD 

AB + CD 
AB + BC + AD 

AC + BC+AD+BD 
: 

2.3 NCL Pipeline 

The framework for NCL systems consists of delay-insensitive combinational 

logic sandwiched between delay-insensitive registers. This combination of NCL registers 

along with completion detection circuitry and combinational logic is called NCL pipeline 

[23]. So, the basic components of any NCL circuit or system are NCL registers, 
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completion detection circuitry and NCL combinational logic like exor, full-adder, etc. 

Figure 2.3 provides the pictorial representation of an NCL pipeline. 

Figure 2.3 Basic NCL pipeline structure 

DATA and NULL pairs pass through each of the components in the NCL pipeline 

consecutively. The presence of NULL is used as time reference in NCL circuits. The 

input request for each register comes from the completion detection circuit of the next 

register. Assume that all the circuits are in a NULL state and that the input request signals 

of the current register (Kjc) and the next register (Kjn) are requesting a DATA wavefront 

and the previous register is presenting a complete DATA set to its combinational circuit. 

As the wavefront propagates through the previous combinational circuit to the current 

register, the current register passes the data since its control line is requesting DATA. 

When a complete data set is recognized by the current detection circuitry, it transitions its 

control line (KjP) to the previous register to request NULL indicating that the current 

register has received and stored the data wavefront and the previous register can pass a 

NULL wavefront. The requested NULL wavefront from the previous register can arrive 

at the current register but, as long as its (current register's) control line (KjC) is requesting 

DATA, the NULL wavefront will be blocked and the current register will maintain 

presentation the set of DATA values to the current combinational circuit. The control line 

for the current register will remain requesting DATA until the DATA wavefront has 
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propagated through the current circuit and has been received by the next register. When 

the next register receives and stores the DATA wavefront, the DATA set no longer needs 

to be maintained by the current register. The next completion detection circuit detects the 

complete DATA set and transitions it's acknowledge line(Kjc) to request NULL 

indicating that it has received the DATA wavefront and the current register can allow a 

NULL wavefront. This is the entire operation of the whole NCL pipeline. 

2.3.1 NCL Register 

NCL systems contain at least two delay-insensitive registers, one at the input and 

the other at the output. Two adjacent register stages interact through their request and 

acknowledge signals; Ki and Ko, respectively, to prevent the current DATA wavefront 

from overwriting the previous DATA wavefront, by ensuring that the two DATA 

wavefronts are always separated by a NULL wavefront. 

d.railO 

d. rail 1 

reset | 

reset 1 

Ko 

q.reilO 

( 1 2 ) 0 -

Ki 

q.rai l l 

Figure 2.4 1-bit NCL register 

Figure 2.4 shows a 1-bit NCL register. An n-bit register is realized through 

cascaded arrangements of n, 1-bit dual-rail registers. Each 1-bit NCL register used 

throughout the thesis comprises of two tli22n gates that pass a DATA value at the input 

only when Ki (request signal) is logic 1 and pass NULL only when Ki is logic 0. The 
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register also contains a th^b gate which has two inputs one of which is connected to the 

output of one of the two th22n gates and the other input is connected to the output of other 

th22n gate. The output of thi2b is denoted as Ko, the acknowledge signal of the 1-bit 

register. Ko becomes logic 0 when the register receives complete DATA and has logic 1 

when the register receives NULL. The acknowledge signals of each 1-bit register in an n-

bit register are combined in the completion detection circuitry to produce the request 

signal to the previous register stage. The request signal Ki of the current register is from 

the output of the completion detection circuitry of the next register. Since both the tli22 

gates in the 1 -bit register are reset to NULL (th22n), the register outputs zeros when the 

reset signal or input is high. However, either register could be instead reset to a DATA 

value by replacing exactly one of the tli22n gates with a tli22d gate. But for the applications 

in this thesis only th22n gates are used. 

2.3.2 Completion Detection Circuitry 

Completion detection circuitry consists of set of gates which determine the 

complete arrival of DATA or NULL at the registers. As mentioned in the previous 

section, all the Kos of each 1-bit register goes through the completion detection circuitry 

and produces the request signal for the previous register. Figure 2.5 is an example of an 

n-bit completion detection circuit. 

Since the maximum input threshold gate is the thw gate, the number of logic 

levels in the completion component for an n-bit register is given by log4n. For example, 

suppose a 64-bit register. The completion detection circuitry has log464=3 levels. In the 

first level the circuit has 16, th^ gates, in the second level the circuit has 4, tri44 gates and 

the third level has 1, tli44 gate. 
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Figure 2.5 n-bit completion detection circuitry 

Here is another example which clarifies the process of constructing the 

completion detection circuitry in a better way. Consider a 44-bit NCL register. The 

completion detection circuitry of this 44-bit register has three logic levels and is 

constructed using 11, tli44 gates in the first logic level, 2, th44 gates and 1, UI33 gate in the 

second logic level and 1, UI33 gate in the third logic level. 

2.3.3 NCL Combinational Circuit 

The functionality of NCL combinational circuits are similar to Boolean 

combinational logic circuits except that NCL circuits are made from the 27 threshold 

gates mentioned in table 2.2. All the NCL combinational circuits must maintain two vital 

properties viz., input-completeness and observability. 

Input-completeness requires that all outputs of a combinational circuit may not 

transition from NULL to DATA until all inputs have transitioned from NULL to DATA, 

and that all outputs of a combinational circuit may not transition from DATA to NULL 

until all inputs have transitioned from DATA to NULL. 
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Observability requires that no orphans may propagate through a gate. An orphan 

is defined as a wire that transitions during the current DATA wavefront, but is not used in 

the determination of the output. Orphans are caused by wire forks and can be neglected 

through the isochronic fork assumption (i.e. gate delays are much longer than wire delays 

within a component), as long as they are not allowed to cross a gate boundary. This 

observability condition, also referred to as indicatability or stability, ensures that every 

gate transition is observable at the output; which means that every gate that transitions is 

necessary to transition at least one of the outputs. 

Figure 2.6 shows some of the NCL combinational circuits a) inverter, b) exor and 

c) full-adder using threshold gates. Exor is used in the thesis while constructing DES 

algorithm using dual-rail logic and full-adder is taken as an example for combinational 

circuit to demonstrate the working of soft-error detection and correction circuitry. 

Figure 2.6 NCL implementation of a) Inverter b) Exor gate c) Full-adder [24] 

2.4 NCL Circuits using CMOS Transistors 

An efficient method is to design the threshold gates with hysteresis using CMOS 

technology at transistor level. There are three different ways of realizing a threshold gate 

using transistors. These are static, semi-static and dynamic. Static gates are the stable 

transistor level threshold gates while semi-static and dynamic can reduce the amount of 
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area occupied by them. The three designs differ in their structure. The general structure of 

a static threshold gate is shown in figure 2.7. This thesis doesn't use the transistor level 

designs of the threshold gates but makes use of their behavioral description using VHDL. 

This section is basically for understanding the concepts of threshold gates at transistor 

level. 

Go to 
NULL 

Go to 
DATA 

T 

T 

i 

Hold 
NULL 

HOW 
DATA 

' — Z 

Figure 2.7 General structure of a static gate 

The Go to NULL and Hold DATA blocks are complementary to each other and 

have the universal forms shown in figure 2.8. Go to NULL block is only ON when all N 

inputs are 0 and Hold DATA block is ON if one or more of the inputs are 1. Because of 

the series chain in the Go to NULL block, speed considerations will limit these structures 

to a maximum number of inputs, typically less than six. The structures of Go to DATA 

and Hold NULL are complementary to each other and depends on the particular threshold 

gate. 

A 1 H OEK AN 3 
a) Go to NULL b) Hold DATA 

Figure 2.8 Go to NULL and Hold DATA transistor blocks 
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Figure 2.9 is a schematic of a transistor realized static th23 gate. This gate has 

three inputs and the output is asserted only if atleast two of the inputs are asserted. Node 

S shown in the figure is called the sensitive node. 
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Figure 2.9 Static th23 gate 

All the components in the NCL circuit design are made up of these threshold 

gates which could be realized using CMOS transistors. So each component, be it an NCL 

register, completion detection circuitry or combinational logic, is a collection of these 

threshold gates. 
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CHAPTER III 

NCL CIRCUIT DESIGN WITH VHDL 

An FPGA is a semiconductor device that can be programmed or configured any 

number of times using a schematic design or a source code in HDL (hardware description 

language) that describes the user's hardware design. The NCL circuit designs using HDLs 

could be used on these existing CAD tools for synchronous circuits [25]. In order for the 

FPGA to be programmed with NCL circuits, the VHDL (VHSIC (Very High Speed 

Integrated Circuit) Hardware Description Language) description of these circuits is 

necessary. The first part of this chapter gives details about FPGA. The design flow used 

in construction of these NCL circuits until they are programmed on the reconfigurable 

logic is explained in the next section followed by the internal details of each essential unit 

used for constructing NCL circuits. The fourth section details an example of a simple 

NCL circuit and its simulation using the software. 

3.1 FPGA 

The basic resources present in an FPGA are CLBs (configurable logic blocks 

which contain combinational logic and register resources), IOBs (input/output blocks and 

are the interface between FPGA and outside world), Pis (programmable 

interconnections), RAM blocks and other resources like three-state buffers, global clock 

buffers, boundary scan logic, dedicated multipliers, digital clock managers, etc. Figure 

3.1 shows the basic resources present inside an FPGA. 
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Figure 3.1 Basic resources of an FPGA [26] 

The basic design steps to configure an FPGA are shown in figure 3.2. These are 

the design entry, design synthesis, design implementation, and device programming. 

Design verification, which includes both functional verification and timing verification, 

takes places at different points during the design flow. 
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Figure 3.2 FPGA design flow [27] 

Design entry is the first and foremost step in the design process to configure an 

FPGA. This step involves the creation of design files using schematic editor or HDL 
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(Hardware Description Language) and is referred to as RTL (Register Transfer Level). In 

RTL design, a circuit's behavior is defined in terms of the flow of signals (or transfer of 

data) between hardware registers, and the logical operations performed on those signals. 

Automatically creating lower level of logic abstraction from higher level of logic 

abstraction is what design synthesis is all about. In this design process an RTL 

description is usually converted to a gate-level description of the circuit by a logic 

synthesis tool. The next step is the design implementation. This step comprises of three 

steps; translation, mapping and place and routing. Merging multiple design files into a 

single netlist is called translation. Mapping is nothing but assigning a logic element to a 

physical element. Mapping logic onto the specific locations in the target FPGA chip, 

connecting the components and extracting timing data into reports is place and route. The 

design is verified at different levels in this process. Checking the syntax, functional 

simulation and timing simulation are some of the verification procedures. Once all the 

above steps are successfully performed there is the much awaited final step called 

programming or configuring the device. This involves creating a file that the FPGA can 

understand, for example, a .bit file in the case of Xilinx FPGAs or .sof file in for Altera 

FPGAs and downloading the file to the FPGA. 

3.2 Design Flow used in the Thesis 

Figure 3.3 illustrates the design flow used in the thesis starting from how the 

concept of dual-rail logic has been introduced into the design construction all the way 

through programming the FPGA with the constructed design. In order to configure the 

FPGA with NCL circuits, the design entry step must be performed using a HDL. VHDL 
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(VHSIC (Very High Speed Integrated Circuits) hardware description language) is the 

language used throughout the thesis. 

Design Entry Using VHDL 

NCL pipeline 
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a I blocks) 

ntd_sigr«als 
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rscl gates 

Analysis & Synthesis 

Design Implementation 

Design Verification 
functional & timing 

simulation 

Programming & Configuration In-circuit verification 

Figure 3.3 Design flow 

The design entry step deals with the construction of NCL pipeline which includes 

NCL dual-rail registers and the NCL dual-rail computational blocks present between 

them. The way the NCL dual-rails circuits are constructed is clearly described in section 

3.3. Once the circuits are designed, these circuits are undergone compilation using 

Quartus II software which include analysis & synthesis and design implementation. Now, 

the circuit needs to be verified. So, both functional simulation (no delays included) and 

timing simulation are performed on the circuit. Once the verification is done, the 

synthesized design needs to be programmed on an FPGA. Assign I/O pins of the FPGA 

to the inputs and outputs of the generated design and we are set to program the FPGA 

with this design. The "program device" option in the Quartus II leads to a window where 
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*.sof file is selected to be programmed on the Altera's Cyclone II FPGA present on the 

DE2 development and education board. Once the built circuit is configured on a FPGA, 

verification is done by providing inputs generated by components on board and outputs 

are extracted from the expansion headers of the board and viewed on a logic analyzer. 

3.3 NCL Circuits in VHDL 

In order to design NCL circuits in VHDL, several components need to be coded 

first. These components include creating a used defined data-type called the 

"dualraillogic", creating generic n-bit NCL dual-rail registers and completion detection 

circuitry and threshold gates with hysteresis, etc., which are supposed to be building 

blocks of NCL circuits and aid in constructing any kind of NCL pipeline architecture. 

This section explains how these individual units are coded and how they are used in 

constructing NCL pipeline architectures. 

3.3.1 Data Type called dual_rail_logic 

VHDL doesn't contain a predefined data-type for the dual-rail logic signals. So, 

first a user-defined data-type called "dualraillogic" has been defined which comprises 

of two std_logic type signals: RailO and Raill. The data-type also has its vector definition 

as dual_rail_logic_vector. The user-defined data type is defined in a package called 

"nclsignals" and this package is placed in the work directory and will be accessed by all 

the further components using dual-rail logic signals. For instance, if a NCL dual-rail full-

adder circuit is to be created, then the inputs, X, Y, and Ci to this computational block are 

dualraillogic signals which has two stdlogic signals each as (X.RailO , X.Raill) , 

(Y.RailO, Y.Raill) and (Ci.RailO, Ci.Raill). In the VHDL file used to describe the 

behavioral model of full-adder circuit, the "nclsignals" package need to be mentioned as 
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"use.work.ncl_signals.all" and X,Y and Ci needs to be declared as dua lrai l logic instead 

of stdlogic or bit, etc. Figure 3.4 gives the code which creates a user-defined data-type 

called the "dualraillogic". 

Library IEEE; 
use IEEE.std logic 1164.all; 

package ncl signals is 

type dual rail logic is 
record 

RAIL1 : std logic; 
RAILO : std logic; 

end record; 

type dual rail logic vector is array (NATURAL range <>) 

end ncl signals; 

of dual rail logic; 

Figure 3.4 dualraillogic data-type 

3.3.2 Threshold Gates with Hysteresis in VHDL 

The behavioral models of the required threshold gates with hysteresis are written 

using VHDL in a file called "nclgates" (refer to Appendix B for all the other threshold 

gates). A tli22 gate is defined in VHDL and is shown in figure 3.5 as an example. 

library ieee; 
use ieee.std logic 1164.alJ 

entity th22xO is 
port(a: in std logic; 

b: in std logic; • 
z: out std logic ) 

end th22xO; 

architecture archth22xO of 
begin 

th22xO: process(a, ta) 
begin 

if (a= '1' and b= '1' 
z <= '1'; 

elsif (a= '0' and b= 
z <= '0'; 

end if; 
end process; 

end archth22x0; 

r 

; 

th22xO 

) then 

is 

'0') then 

Figure 3.5 Behavioral description of th22 in VHDL 

http://use.work.ncl_signals.all


30 

The inputs to these threshold gates are individual dual-rail signals which could be 

either RailO or Raill according to the designed circuit and hence are stdlogic signals. 

For example, the 1-bit dual-rail register in figure 2.4 has one input as Ki signal and the 

other input (d.railO for the top tli22 and d.raill for the bottom thu), one of the rails o f d' 

which is a dual-rail signal. The "nclgates" file is also needs to be added to the project 

that is being constructed so that the components built in the current project can access 

these threshold gates. 

3.3.3 NCL Dual-Rail Registers & Completion Detection Circuits in VHDL 

NCL dual-rail registers and completion detection circuits are described in a 

VHDL file called "nclcomponents". "nclcomponents" file consists of design units like 

generic n-bit NCL dual-rail register and n-bit completion detection circuitry along with 

their internal components defined in it. The design units present in the "nclcomponents" 

file make use of the "nclsignals" package and threshold gates with hysteresis defined in 

the "nclgates" file. All these files including "nclsignals" are presented in Appendix B 

for reference. 

A single bit NCL register has two th22n gates and a th^b gate as explained in 

section 2.3.1. So the behavioral description of a single bit register in VHDL should 

contain the instances of the two gates as shown in figure 3.6. These instances are 

accessed from the "nclgates" file and since the inputs are dualraiMogic signals, the 

"nclsignals" package declaration needs to be done. An n-bit NCL register is generated 

by iteratively generating the same instance of 1-bit NCL register the input data length 

times as shown in figure 3.7. 
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R s t l : i f i n i t i a l v a l u e 
RO: t h 2 2 n x 0 p o r t 

R l : t h 2 2 d x 0 p o r t 
e n d g e n e r a t e ; 

R s t O : i f i n i t i a l v a l u e 
RO: t h 2 2 d x 0 p o r t 
R l : t h 2 2 n x 0 p o r t 

end g e n e r a t e ; 

Q <= Qbuf; 

= - 4 g e n e r a t e 
m a p ( D . r a i l O , k i , 

m a p ( D . r a i l l , 

= 1 g e n e r a t e 
m a p ( D . r a i l O , 

m a p ( D . r a i l l , 

= 0 g e n e r a t e 
m a p ( D . r a i l O , 
m a p ( D . r a i l l , 

k i , 

k i . 

k i , 

k i , 
k i , 

COHP: t h l 2 b x 0 p o r t m a p ( Q b u f . r a i l O , Qbuf 
e n d ; 

1=DATA1, 

r s t , Qbuf 

r s t , Qbuf 

r s t , Qbuf 

r s t , Qbuf 

r s t , Qbuf 
r s t , Qbuf 

r a i l l , ko] 

D=DATA0, 

r a i l O ) ; 

r a i l l ) ; 

r a i l O ) ; 

r a i l l ) ; 

r a i l O ) ; 
r a i l l ) ; 

' 

-4=NULL 

Figure 3.6 1-bit NCL register in VHDL 

gen reg: foe i in 0 to D' length-1 generate 
REGi: ncl r e g i s t e r Dl 

generic map( in i t i a l value) 
port map(D(i), k i ( i ) , r s t , Q( i ) , 

end genera te ; 
k o ( i ) ) ; 

Figure 3.7 Creating n-bit register from 1-bit register 
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The only gates used for any completion detection circuitry are tli22, tli33, tli44. 

Based on the number of input signals, the number of logic levels must be calculated using 

log4n. This component basically checks if all the inputs are Os during DATA and Is 

during NULL. The code used first calculates the number of logic levels. Then it checks if 

the number of inputs are multiples of four. If yes then the signals are assigned to th44 in 

sets of four. If there are any leftovers from the multiples of four, it checks if they are two 

or three. If the leftovers are three then, the code assigns them to #133 or if the leftovers are 

two then, tli22 will be assigned to the signals. The same process repeats for each logic 

level. For the code of the completion detection circuitry refer to Appendix B. 

3.3.4 Constructing Computational Blocks 

e n t i t y exor i s 
por t ( x : in <3ual_rail_.l.ogie; 

y : in dual r a i l l og i c ; 
z ; out dua l^ ra i l ^ iog ic i ; 

end exot; 

a r c h i t e c t u r e Behavioral ot exotr i s 
s ignal ul ,u2 : s t d_ log i c ; 
component th22x0 

por t ( a: in s td_ log ic ; 
hi in stA_logi.c; 
z: out std_lo<jic ) ; 

end component; 
component th23w2xG ±3 

por t ( a: in s t d ^ l o g i c ; — weight 2 
Us: in s t d_ log i c ; 
c : in s t d ^ l o g i c ; 
z: out 3 td^ logic ) ; 

end component; 
begin 
gl : th22x0 poet imp ( y . r « i U , x . r a U i , u l j ; 
g2 : th22xO port map (y.raiJLQ,*. t a i l i f u 2 ) ; 
g3 : th23u2xO port map l u l , y • r a i I O , x . r a i l O 
g4 : th23w2xO poet map lu2,y-^aii l».x.caiJ,0 
end Behavioral; 

a) 

z . r a i l O ] ; 

e n t i t y ful ladder i s 
pott { a ; in dua l^ ra i l ^ log i c^vec to r U ca 3) ; 

3 ; out duai_ra: . i_logic_vect&r(1 to 2J 

end full-adder; 

a r c h i t e c t u r e behaviora l of fu l ladder i s 
s ignal frO,el : 3 td_ log ic ; 
component th23x0 i s 

poxt{ a: in s t d ^ l o g i c ; 
b : in fltd^ltogic; 
c: in s t d _ l o g i c 
z: out 3td_Jicgic ) ; 

end component; 
component thS'S'wSxO is 

p o r t j a : in a t d ^ l a g i c ; - - weight Z 
b : In Std^lctgic; 
c: in 9 td~Iogic ; 
d: in s t d ^ l o g i c ; 
z: out s t d ^ l o g i c J ; 

end component; 
begin 
gl : th23xO port nap£a(1 ) . r a i lG ,a (2 ) . r a i l O , a 43}.ral lQ,cO); 
g2 : t'h23x0 por t map (a (1) . i r a i l l , a (2) . r a i l l , a (3) . * a i l l , e l ) ,* 
g3 : th34wjjt0 po r t map {cl, a (If . r a i l O , a (2) - l a i lQ , a (3) . trailO, s{2) .raxlO) ; 
g4 : t'h3"3w2.xO por t nap (cG, a ( l J . r a i l l , a (2> . r a l l l , a(3J . r a i l l , 3 $ 2 ) . r a i l l ) ; 
s | l ] . raiIO<»cO;»Ul . r a i l K ^ e l ; 
end behav iora l ; 

b> 

Figure 3.8 VHDL code for a) Exor gate b) Full-adder 

One of the essential parts of an NCL pipeline is the computational block. A 

computational block is a combinational logic which performs some operations on the 

inputs generating outputs and is sandwiched between two NCL dual-rail registers. This 

thesis makes use of only two combinational circuits; the exor gate and the full-adder. 
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These computational blocks are constructed using the threshold gates with hysteresis and 

dualraillogic signals. The schematics of the NCL dual-rail exor gate and full-adder are 

provided in figure 2.6 and the VHDL behavioral descriptions are provided in the below 

figure 3.8. 

3.4 Simulation of a Simple NCL Pipeline 

This section explains in detail the procedure how a simple NCL pipeline is 

created and simulated using Quartus II software. The pipeline considered has two NCL 

dual-rail register with an NCL dual-rail exor gate as the computational unit between them 

as shown in figure 3.9. 

x.railO 

x.raill 

v.railO 

V.raill 

—• 

r * 

Hid 

register 

K2 

reel 

register 

z.railO 

z.raill 

Figure 3.9 NCL pipeline with exor gate 

The very first step is to create a 'New Project' using 'New Project Wizard' in 

Quartus II [28] (Quartus II tutorial provides all the information on how to compile the 

designs and program an FPGA). Select a 'New' from the 'file' menu and select 'VHDL 

file'. In the file write the following code shown in figure 3.10 and save it as 'exor.vhd'. In 

similar way add the other VHDL files; 'initreg.vhd', 'fmalreg.vhd' and 'exordl.vhd' 

required for the 'exor.vhd' file and these files are presented in figure 3.11. 'initreg.vhd' 

has two components 'nclregisterD' which is a generic n-bit register present in 
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'nclcomponents' file mentioned earlier and 'th22x0' is tli22 threshold gate which is acting 

as the completion detection unit for this register. The behavioral description of this gate is 

present in 'ncl_gates' file, 'finalreg.vhd' has one component which is 1-bit NCL register 

called nclcomponentD 1 and is also described in 'ncl_components' file. 

library ieee; 
use ieee.std 
use work.ncl 

logic_1164.all; 
signals.all; 

entity exor is 
port ( x : 

y = 
rst 
z : 

end exor; 

architecture 

in dual rail logic; 
in dual rail logic; 
: in std logic; 
out dual rail logic); 

behavioral of exor is 
signal m, n: dual rail logic vector 
signal zo: dual rail logic; 
signal kl,k2: 
component ini 

port ( D : 
ki 
rst 
Q : 
ko 

end component 

std logic; 
treg is 

(1 to 

in dual rail logic vector 
: in std logic; 
: in std logic; 

2); 

(1 to 2); 

out dual rail logic_vector(1 to 2); 
: out std logic); 
e 

component finalreg is 
port ( D : 

ki 
rst 
Q : 
ko 

end component 

in dual rail logic; 
: in std logic; 
: in std logic; 
out dual rail logic; 
: out std logic); 
r 

component exor_dl 
port(ax : 

bx : 
ex : 

end component 
begin 
m(l)<=x; m(2) 

in dual rail logic; 
in dual rail logic-
out dual rail logic) 
; 

<=y; 
regl : initreg port map(m,k2,rst,n 
cb : exor dl port map(n(l) ,n(2) , zo 
reg2 : finalreg port map(zo,k2,rst 
end behaviora 1; 

,ki); 
; 

rz,k2) ; 

Figure 3.10 VHDL code for the NCL pipeline with exor gate 
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Library IEEE; 
Use IEEE.std_logic_1164.all; 
Use work.ncl_signals.all; 

entity initreg is 
port ( D : in dual_rail_logic_vector(1 to 2); 

ki : in std_logic; 
rst : in std_logic; 
Q : out dual_rail_logic_vector(1 to 2); 
ko : out std_logic); 

end initreg; 

architecture behavioral of initreg is 
signal ao : std_logic_vector(1 to 2); 
component ncl_register_D 
generic (width: integer; initial_value: integer);— 1=DATA1,0=DATA0,-4=NULL 
port(D: in dual rail_logic vector(width-1 downto 0); 

ki: in std_logic; 
rst: in std_logic; 

Q: out dual_rail_logic_vector(width-1 downto 0); 
ko : out std_logic_vector(width-1 downto 0)); 

end component; 
component th22x0 

port(a: in std_logic; 
b: in std_logic; 
z: out std_logic); 

end component; 
begin 
regi : ncl_register_D generic map(width=>2,initial_value=>-4) 

port map(D,ki,rst,Q,ao); 
cdi : th22xO port map(ao(2) ,ao|l) ,ko); 
end behavioral; 

Figure 3.11a) initreg.vhd 

lifcrarj ieea; 
•us* ieee.sia_iegie_li .64.ail ; 
use eotfc.nei, s i gna l s . a i l ; 

ent i ty estorjSIL .is 
pert( a* : la dual_rail_laflie; 

tut i la dual ca l l legits; 
ex :. out eSital_ra.il_liEB.lcJs 

end esfor til; 

architecture Beaavtoeo! of e3i©c_dl 13 
sigeal ul,u2 t s td loj ic j 
easnponeni thzzico 

poti( a; la, aid logic; 
b: la std_Iogie; 
a; cut sts2_l.6g.ie |i; 

end coBponemt; 
eoapeaeat tlifllsffixD 13 

poire ( a: .in sid_JLegie; — weight 
to: in std logic; 
e: ia s td j legie ; 
2,; ©tit stea_l<ogie f; 

end eettponent; 
begltt 
gl : caJZxO port :»ap(l>x.iralll(aic.ralll 
a;2 : tftZZxO port map (bK.if a l io ,** , teal 11 
tfi i t,B)2So2xt> port Bapj<Jl.,:bn..raiHDl,aj:.. 
g4 : 6621 w2nO port ntapju2.,.bs!,raill,,ax. 
end Behavioral; 

b) escf_dl.vhd 

2 

/ u l i ; 
,u2},; 
r a l i o , est 
tailO.CK 

railO] : 
r a i l l ] ; 

Libra.tr/ IEEE; 
Ose IEEE.sta_logle_n64.all; 
ose irarK.iscl signals.-all; 

ent i ty liisa.lceg ia 
part i] D : in duai j ra i l logic; 

ki : in 3t«l_i.ogie; 
est : iii ac5_logic; 
0 : out dhi»i_reiil. logic: 
kD : out attS logic}; 

.end filial teg'; 

wrchiMeswe beluwtocalL at ii.iwj.treg is 
cottjicmeiit nEljregisterJ&l 

generic j i n i t i a l value: integer);—l=,IHTAl,,Ol=DjiTIO,-4aIJDLL 
po«E(Bt in dwa_eai.i_io.gte: 

hi ; in. 9td_logic; 
r s t ; in. atdl .Bogie: 
<£•; ota, dual r a i l logic; 
teo: qui; std_iegie, | ; 

end. eawnsnerK; 
begin 
regi : itri_Feglatet_DIi generic map)initial v a i w w - ^ 

poiti :ma;i»(B, isi,sat,Q,:to); 
et>a, behavt'oesl; 

c) tmslreg..vhd 

Figure 3.11b) exordl.vhd c) finalreg.vhd 

http://ieee.sia_iegie_li.64.ail
http://eSital_ra.il_liEB.lcJs
http://sts2_l.6g.ie
http://Libra.tr/
http://ii.iwj.treg
http://dwa_eai.i_io.gte
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finalreg.vhd doesn't have a separate completion detection unit because it is just a 

1-bit register. The output signal from thnbxoacts as the completion detection signal. Since 

the internal component definitions are present in 'ncl_components' and 'nclgates' these 

files need to be added to the project by selecting 'add/remove files in project' in the 

'project' menu. Since all these components are dual-rail logic, 'ncl_signals' files must also 

be added to the project. Once all the required files are present in the project folder, the 

project needs to be compiled by clicking on the 'compile design' option on the Quartus II 

software. Check for any syntax error or for any other errors during synthesis and 

implementation such as I/Os not sufficient for the design or design is too large to fit on to 

the device, etc. 

Figure 3.12 Quartus II Software Window 
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Once the above procedure is done generate a new 'vector waveform file' in order 

to provide simulation inputs. Add the input and output signals to the 'vector waveform 

file' and provide appropriate input signals as shown in figure 3.12. 

Since the circuit used has dual-rail components, first reset or 'rst' as named in the 

design need to be asserted. Then the other inputs must be provided as consecutive DATA 

and NULL pairs. As inputs are provided in the 'vector waveform file' the design needs to 

be verified or simulated for these inputs. The functional simulation results after 

simulation is shown in figure 3.13. 

a 3 S d f e l ^ c ; ^ w 3 M ^ .• " , . : \ ; • . , — ' • . . , 

Simulation mode: Functional 

ife 
A 

—* 
• • , 
a,9: 

™™™"'"™ 

Master Time Bar: 1 13.0 ns 

r£>0 

r i > i 

t£J>2 

rx>3 

Q£>4 

•S>5 

•2>6 

Name 

rst 

x.RAILO 

X . R A I U 

jr.RAILO 

ji.RAILI 

z.RAILO 

Z.RAIL1 
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HO 

X
 

X
 

X
 

X
 

X
 

X
 

iidPointe,: i 
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n 
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i 
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I I 

I i 
: : i i i i 

I I I 

Figure 3.13 Simulation results of exor.vhd 
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CHAPTER IV 

ASYNCHRONOUS DATA ENCRYPTION STANDARD ALGORITHM USING NCL 

The symmetric property of DES algorithm provides an added advantage to 

implement DES using NCL dual-rail logic. It creates a scope for the pipelined 

architecture shown in figure 4.1 where the whole algorithm has 17 combinational logics 

embedded between NCL registers. The first round has plaintext and key as inputs and LI, 

Rl and CI, Dl as the outputs. The next round till 15 such rounds have the same 

combinational logic which takes L„-i, Rn-i and Cn-i,Dn.i as inputs and generates Ln, Rnand 

Cn>Dnas outputs. The 16th round takes L15, R15 and CD15 as inputs and gives out L16 

and R16 as outputs which are then permuted in the 17th round to generate the ciphertext 

output. Altogether, the number of registers present in the asynchronous DES pipeline is 

eighteen; initial register, NCL registers 1-15, register 16 and final register and the number 

of combinational logic circuits that are embedded between these eighteen registers are 

seventeen combinational circuits also called rounds in this case and they are, initial 

round, rounds 1-14, round 15 and final round. Also, each NCL register has its own 

completion detection circuitry along with it. The structure of the completion detection 

circuitry varies as the NCL register structure varies. The details of each component of the 

DES pipeline are mentioned in the following sections. 
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pt 

Key 

ncl 

register 

Figure 4.1 DES pipeline in NCL dual-rail logic 

4.1 Initial Register 

DtllJ.rsilO I" 

p t ( l ) . ra i l l ! 

• | 
i i 

pt(64).raill ! 

reset | 

key(l).raiH) | 
teev(2i.r3ill ! 

i i 
i i 

key(64l.raill • 

64-bit 
NCL reg 

i i 

64-bit 
NCL reg 

' 
i 

! ptfl).r=ilO 

i p t f l j . r= i l l 

i < 

i « 

! pt(«4).raill 

key|l).railD 
ksvl'l J. rai l ! 

1 
i 

key|'S4).raill 

Figure 4.2 Initial Register 

The starting stage of the DES pipeline in NCL dual-rail logic is the initial register. 

This register has plaintext of 64 bits and key of 64 bit dual-rail signals as inputs. Along 

with these it also has reset signal and Ki signal inputs similar to all the other registers. 

This initial register is different from the other registers in that it doesn't have a Ko signal 

since there is no register prior to it. This register will output all zeros when reset signal is 

logic 1. It allows the plaintext and key values to pass through it when Ki is logic 1. If Ki 

is logic 0 then the initial register will stop any flow of DATA and will be ready to pass 



40 

NULL through it. This register is the only register in the entire DES pipeline that doesn't 

have a completion detection circuitry. This circuitry has been eliminated to save logic on 

the FPGA. The structure of initial register is presented in figure 4.2. 

4.2 Initial Round 

DES pipeline in NCL dual-rail logic starts with an initial register, followed by an 

initial round. The operations that are performed on the outputs of the initial register are 

described in figure 4.3. 

Pt 
• 

Key 

rtcl 

register 

Pt 

IP 

* • 

Key 

p a 
CO 

X 

E ->a> B1-M -
^ t ; r ~ 

PC2 

Shifter 

S boxes —* P 

f 

— ^ 

LI 

• 

R l 

CI 

Dl 

ncl 

register 

LI 

Rl 

CI 

Dl 

Figure 4.3 Initial round in the DES pipeline 

As soon as the plaintext denoted as pt in figure 4.3 enters the initial round, an 

initial permutation IP is performed on it and is divided into LO and RO. The key also 

undergoes permutation PCI and is divided into CO and DO. Shifter is basically used to 

left shift the bits in CO and DO which become CI and Dl for the next stage and are used 

to form subkey in the present round. The output of the shifter is concatenated and another 

permutation PC2 is applied on it. The function E expands RO from 32 bits to 48 bits as 

mentioned in the DES algorithm. The outputs of E and PC2 are exored bit by bit using 

the exor gate designed for NCL dual-rail logic. This is the only dual-rail combinational 

logic circuit used in the DES algorithm. All the permutations, expansions and left shifts 

are basically wiring and don't involve any logic function or operation. The output of the 
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exor gate goes through S-boxes which are constructed using if-else statements addressing 

all the possible combination of inputs. Eight S-boxes are written in VHDL and the 

structure of these is shown in figure 4.4 which addresses six-bits of inputs each producing 

four-bit outputs. The outputs of the S-boxes are combined and then a final permutation P 

is performed on the bits. The LO output of IP is then exored with the P output and is fed 

to the next register as Rl input. The RO output of the IP becomes the LI input to the next 

stage. 

Bill) 
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S3 
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Figure 4.4 S-box inputs and outputs 

4.3 NCL Registers 1-15 

The outputs of the initial round are LI, Rl, CI, and Dl which are fed to the next 

register which takes these signals as inputs. As mentioned earlier the whole DES pipeline 

consists of fourteen such rounds other than initial round which has the same structure and 

does similar operations. Due to this reason, the registers governing the rounds on both 

sides need to be similar, accepting same number of input signals and outputs the same. So 

NCL registers 1-15 allows Ln, Rn, Cn and Dn (LI, Rl, CI, Dl L15, R15, C15, 

D15) to pass through them. The completion detection circuits for all these registers have 

four internal circuits which take the Ko signals of each term like Ln, Rn, Cn and Dn. The 
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four outputs of the four completion detection circuits are fed to a th44 gate, the output of 

which is the Ko signals (acknowledge signal) for the entire register. The whole structure 

of the NCL register along with the completion detection circuits is depicted in figure 4.5. 
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Figure 4.5 The inside view of NCL register 1-15 

4.4 Rounds 1-14 

Asynchronous DES pipeline has fourteen similar rounds which differ only by two 

functions to initial round. While the initial round has pt, key as inputs and had to permute 

its inputs, rounds 1-14 has L„-i, Rn-i, Cn.i and Dn_i as inputs and the rounds don't require 

the initial permutation IP for pt and PCI for key and is shown in figure 4.6. All the other 

functions are similar to initial round. Among these fourteen rounds, some of the rounds 

require a single bit left shift for the C„-i and Dn.i inputs to form C„ and on while some 
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rounds require two bit left shifts. The number of shifts depends on the left shift table as 

mentioned in Appendix A. 
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Figure 4.6 Internal structure of rounds 1-14 

4.5 Round 15 

Round 15 is in no way different to rounds 1-14 with respect to operations 

performed. But the difference is that round 15 has a slightly different output structure; 

while rounds 1-14 has L„-i, R„-i, Cn-i and Dn_i as inputs and L„, Rn, Cn and D„as outputs, 

round 15 has Ln-l, Rn-1, Cn-1 and Dn-1 as inputs but Ln and R„ alone as the outputs. 

The round need not send C„ and Dn to the next round as it doesn't need them. Because of 

this reason the register next to this round has a slightly different structure and is 

mentioned in the next section. 
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Figure 4.7 NCL register 17 
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4.6 NCL Register 17 

As mentioned in the previous section, this register has Ln and Rn as inputs along 

with reset and Ki. So the structure of this register looks like the one in figure 4.7. 

4.7 Final Round and Final Register 

The final round takes the Rn input into Ln and Ln into Rn and permutes the 

combined result. This round doesn't involve any circuits and is entirely wiring. The 

output of this round is the cipher text. This output is fed to the final register. Hence, the 

completion detection block of the final register consists of sixteen tri44 gates in the first 

logic level , four tli44 gates in the second logic level and one th44 gate in the third logic 

level. 

4.8 NCL DES Design on FPGAs 

The results are in regard with implementation of the whole DES algorithm 

designed using NCL dual-rail logic, on FPGAs manufactured from different companies 

and on different FPGAs manufactured from the same company. Here four different 

FPGAs are selected from two different companies and the details are shown in table 4.1. 

Table 4.1 Devices and companies 

Device Family 

Virtex 5 

Cyclone II 

Cyclone II 

Cyclone III 

Device Name 

XC5VLX50T-3FF1136 
EP2C35F672C6 

EP2C70F672C6 

EP3C25F324C6 

Company 

Xilinx 

Altera 

Altera 

Altera 

The whole DES algorithm was designed using NCL logic and was coded in 

VHDL language. The code was run using ISE 9.1i for Xilinx devices and Quartus II Web 

Edition (v8.1) for Altera devices. The design was simulated and then synthesized and 

tried to fit on different devices. 
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4.8.1 Xilinx Device 

The Xilinx device used for comparison is Virtex 5 XC5VLX50T-3FF1136. Each 

configurable logic block (CLB) of virtex 5 has four slices. Each slice has four LUTs 

(look-up tables) and four registers. The results obtained for Xilinx Virtex 5 device are as 

follows. Table 4.2 shows some of the internal details of the above mentioned device. 

Table 4.2 Virtex5 resources 

CLBs 
7200 

Block RAM 
2160 Kb 

Embedded Multipliers 
48(25x18) 

PLIs 
6 

I/O pins 
480 

The synthesis report shown in table 4.3 gives the details of the resources occupied 

by the whole algorithm on the FPGA. 

Table 4.3 Resources used by DES algorithm (dual-rail logic) on Xilinx device 

Resources 

No. of slice registers 
No. of slice LUTs 
No. of bonded lOBs 

Used by the design. 

10899 
30839 
369 

Available in the 
device 
28800 
28800 
480 

Percentage utilization 

37% 
107% 
76% 

The percentage of the resources occupied in the Virtex5 device exceeds 100, 

which means that the design requires logic resources more than what the device currently 

have. The design was large for the device to be fit into. 

4.8.2 Altera Devices 

Three different Altera devices with different number of resources were considered 

and then compared with respect to the DES algorithm. Each LE (logic element) in the 

Altera devices contains a four input LUT, a programmable register and interconnects. 

Table 4.4 shows all the resources available in different Altera devices considered. 
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Table 4.4: Altera Device Resources 

Resources 
Logic elements 
Block RAM(Kb) 
Embedded Multipliers 
PLLs 
I/O pins 

EP2C35F672C6 
33216 

483 
3 5 ( 1 8 x 1 8 ) 

4 
475 

EP2C70F672C6 
68416 
1152 

150 (18 x 18) 
4 

422 

EP3C25F324C6 
24624 

594 

6 6 ( 1 8 x 1 8 ) 
4 

215 

Among the three devices, EP2C70F672C6 has more number of logic elements. It 

also has sufficient number of I/O pins. Table 4.5 gives the detailed report on the 

resources available in the devices and the resources used by the design in respective 

FPGAs. 

Table 4.5: Resources used by DES algorithm (dual-rail logic) on Altera devices 

Resource Utilization 

Used by the design 
Available in the device 
Percentage utilization 

EP2C35 
LEs 

56817 
33216 
171% 

F672C6 
I/Os 
385 
475 
81% 

EP2C70 
LEs 

56816 
68416 
83% 

F672C6 
I/Os 
385 
422 
91% 

EP3C25 
LEs 

56817 
24624 
230% 

F324C6 
I/Os 
385 
216 

178% 

Out of all the devices, Altera's EP2C70F672C6 was able to fit the entire 

asynchronous DES algorithm. It occupied 83% of its available logic elements and 91% of 

its available I/O pins. All the other devices need to be accommodated with more 

resources for the DES algorithm in NCL logic to be fit into. The Xilinx Virtex 5 would 

require atleast 1039 more slice LUTs for the asynchronous DES algorithm to be 

implemented on the FPGA although it has enough number of I/O pins. Among the three 

Altera devices, the Cyclone II devices have enough I/O pins since the design only 

requires 385 pins. The Cyclone II EP2C35F672C6 still requires 23659 logic elements and 

Cyclone III EP3C25F324C6 requires 32221 logic elements to accommodate the whole 

algorithm. 
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4.9 Improvements in Asynchronous DES Design 

The asynchronous DES design using NCL dual-rail logic requires a lot of logic 

resources. Usually, asynchronous circuits occupy more logic resources compared to their 

synchronous counterparts as asynchronous circuits have additional circuits for 

handshaking protocols. Out of the four devices mentioned in the previous section, only 

one device could accommodate the entire design. 

Asynchronous DES design consists of NCL registers, completion detection 

circuitry and combinational logic also called rounds in the entire design. Out of all the 

components, the S-boxes present in the rounds of the design consume most of the logic 

resources as it doesn't involve any logic but would require more logic elements to realize 

the functionality during mapping the design on FPGAs. Implementing S-boxes using 

RAM elements embedded in the FPGA is the efficient method to save a large amount of 

logic resources [7]. 

4.9.1 Design Modification to Utilize Internal RAM Elements 
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Figure 4.8 Asynchronous DES round with S-boxes as RAM elements 

In order to reduce the amount of logic resources used by the design in the FPGA, 

the DES algorithm using NCL dual-rail logic need to be modified so as to utilize RAM 

elements. All the eight S-boxes need to be implemented using RAM elements. The 
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components operate using a clock signal. So the design needs to have a signal which can 

act as a clock signal to the RAM elements. After the inclusion of S-boxes as RAM 

elements, a single DES round would look like what is shown in figure 4.8. 

The set of eight s-boxes along with two governing NCL registers for each S-box 

are added to the original asynchronous DES round. Only the S-boxes are realized using 

RAM elements. The rest of the design is realized using logic elements. So logic elements 

used to realize the S-boxes were replaced with RAM elements. The internal details of a 

single S-box is shown in figure 4.9. 
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Figure 4.9 S-box as ROM. 

As mentioned earlier each S-box is governed by two NCL dual-rail registers 

which will allow and stop the flow of data (DATA and NULL). In the design, two RAM 

elements are used; one for raill data and the other for railO data. The HDL used for the 

design is VHDL and Altera device is considered and ROM elements are generated using 

the Quartus II software. The RAM elements internal to FPGA are customized as ROM 

elements. 
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The design has two ROMs as two S-boxes; S-box raill and S-box railO which 

need a clock for their operation. The NCL registers with their completion detection 

circuits play a major role in the design. The six bit dual-rail data enters the entry side 

NCL register goes through the S-boxes splitting into raill signals and railO signals. The 

clock generator generates clock signal to the S-boxes according to Kl and K2 signals 

produced by entry side NCL register and exit side NCL register respectively. S-boxes 

realized as ROM elements generates output at the rising edge of the clock and this output 

goes through the exit side NCL register. 

When reset is high, both the NCL registers output zeros. The completion detection 

circuits generate Kl and K2 as 1. The clock generator output is a 0. DATA enters the 

entry side register, Kl becomes 0, and the present value of K2 is 1 which would generate 

1 as the clock signal. During this rising edge of the clock signal, ROM elements output 

the corresponding output values for the inputs. Now, the output signals pass through the 

exit side register thereby making K2 value to 0. When Kl is 0 and K2 is 0, the clock 

generator output will be a 0. When NULL enters the input register, Kl becomes a 1 and 

K2 value is still 0 and the output of the clock generator will be a 1. NULL enters ROM 

elements and generates NULL outputs. The output signals go through output register 

making K2 as 1 and hence generating 0 as the clock generators output. The clock 

generator circuit functions as an exor gate. 

4.9.2 Resource Utilization with RAM Elements 

The entire asynchronous DES algorithm including S-boxes as ROM elements is 

synthesized over some Altera FPGAs and the resource usage results are shown in Table 

4.6. 
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Table 4.6 Resources used by DES algorithm with ROM on Altera devices 

Resource Utilization 

Used by the design 
Available in the device 
Percentage utilization 
P ercent ag e impro vem ent 

EP2C35F672C6 
LEs 

40928 
33216 
123% 
48% 

I/Os 
385 
475 
81% 

-

EP2C70 
LEs 

40927 
68416 
60% 
23% 

F672C6 
I/Os 
385 
422 
91% 

-

EP3C25 
LEs 

40928 
24624 
166% 
64% 

F324C6 
I/Os 
385 
216 

178% 
-

Table 4.6 gives the results of comparison between Altera FPGAs with 

asynchronous DES algorithm with and without ROM. The percentage improvement row 

shows the percentage comparison between the two designs. Again, Altera's 

EP2C70F672C6 is the only device which was able to contain the entire algorithm design. 

With the use of ROM, the device could save 23% of its logic elements. While the DES 

without ROM has only 17% of its logic resources left after the design, DES with ROM 

has 40% of its resources left which is a considerable improvement. Similarly comparing 

the two designs on EP2C35F672C6, the DES without ROM occupied 171% of the 

resources while the DES with ROM occupied only 123% which means there is an 

improvement of 48% in the logic element utilization. The device EP3C25F324C6 has an 

improvement of 64% which means another design with double the capacity to 

asynchronous DES algorithm could be accommodated. 

4.9.3 Resource Comparison between Synchronous and Asynchronous Designs 

Some of the implementations of synchronous DES algorithms on FPGAs have 

been cited in section 1.2. In this section the resource utilization comparison is made 

between synchronous and asynchronous circuits. 

Due to the presence of additional circuitry for handshaking protocols such as the 

NCL registers and completion detection circuitry, asynchronous circuits are undoubtedly 

huge compared to their synchronous counterparts. Table 4.7 gives the resources utilized 
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by different synchronous DES designs on FPGAs as well as the resources used by 

asynchronous design created in the thesis. The resources utilized in Xilinx and Altera 

devices shows that asynchronous designs are 6-10 times bigger than the synchronous 

designs. So, these (asynchronous) circuits need to be designed such that they occupy the 

FPGA resources optimally just like the modification of the asynchronous DES algorithm 

incorporating RAM elements for the S-boxes. No asynchronous DES design has been 

implemented on FPGAs till date. The simulation results from this thesis provide a basic 

idea to design asynchronous DES with NCL dual-rail logic as well as the amount of logic 

elements required in the FPGAs for the design and will definitely be useful for 

implementation on FPGAs with asynchronous logic elements as mentioned by Smith [29-

31] and others [32-33]. 

Table 4.7 FPGA resources used by different DES designs 

Design by 
Wong et.al [6] 

Kaps & Paar [34] 
McLooney, McCanny [8] 

Patterson [9] 
Standaert et.al [35] 

Xilinx [36] 
Asynchronous DES(thesis) 

Arich et.al [7] 
Asynchronous DES(thesis) 

Asynchronous DES RAM(thesis) 

Device Used 
XC4020E 

XC4028EX 
XCV1000 
XCV150 

Virtex II Pro 
XC2V1000 

XC5VLX50T 
EP1K100FC484-3 
EP2C70F672C6 
EP2C70F672C6 

Resources Used 
438 CLB slices 
741 CLB slices 

6446 CLB slices 
1584 CLB slices 
250 CLB slices 

5036 LUTs 
30839 LUTs 

5991 LEs 
56816 LEs 
40927LEs 

Data Rate(Mbps) 
26.7 

402.7 
3808 
10752 
1036 
15100 

* 

1054.24 
* 

* 

* The asynchronous DES designed for the thesis generates DATA output for approximately every 360-
380ns depending on the input values and the propagation path chosen by the inputs(to be studied in detail). 
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CHAPTERV 

SOFT ERROR AND NCL CIRCUITS 

While most of the researchers investigate the soft error issues in traditional 

synchronous circuits, little attention has been paid to asynchronous circuits. In fact, quasi 

delay insensitive (QDI) asynchronous circuits have a strong potential for soft error 

tolerance. The combination of handshaking protocol and dual-rail encoding in QDI 

circuits provide the circuits with a potential capability to detect and correct the soft 

errors. Besides single event upsets, particle strikes may cause other malfunctions on a 

chip: charges induced by particle strikes may slowly accumulate in the substrate of a 

chip. Those long term dose effects usually cause parameter shifts, in particular threshold 

voltages, which affect the timing of the system. QDI circuits are very robust to timing 

variations. 

5.1 SEUs in Null Convention Logic 

The analysis and estimation of the soft error rate have been extensively studied 

based on the three maskings which are logical masking, electrical masking and latching 

window masking [4] [3 7] [3 8]. This section explains the mechanism of soft errors in 

semiconductor circuits, how the generation and propagation affects the circuits and what 

kind of soft errors propagate through the NCL pipelines. 
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5.1.1 SEUs in Semiconductor Circuits 

When a neutron particle strikes a CMOS transistor it generates a very high carrier 

concentration of electron-hole pairs [39] as it loses its energy in silicon with a rate, called 

stopping power (dE/dx) or linear energy transfer (LET). These electron-hole pairs are 

subject to drift, diffusion, and recombination. The ratio of the collected to the generated 

charge is called the collection efficiency. A higher voltage and a larger electric field in 

the depletion region result in a faster charge collection, creating a larger current transient 

at that node. An SEU, occurs when enough charge is collected in such a short time to 

reverse or flip the data of a gate output, memory cell, register, latch, or flip-flop. The 

transient current due to a particle strike can be modeled as [40] 

I » - ^ - « P ( - ? ) CD 

where Q is the amount of collected charge, and T is a process technology-dependent time 

constant. Figure 5.1 shows the mechanism of soft errors in semiconductors circuits along 

with a transient current plotted for Q=60/C and T=20/?s. 

Figure 5.1 Mechanism of soft errors in semiconductor circuits. 

Whether the current is injected into or removed from the node depends on the 

type of victim drain. For example, a current is injected into the node if a particle hit 
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occurs at a p-type drain, therefore momentarily increasing the node voltage. If the logic 

value of the node is 0 and the current is injected to the node, a 0-1-0 SEU may occur. 

Similarly, a 1-0-1 SEU may be generated if an n-type drain is hit. 

5.1.2 Generation and Propagation of Soft Errors in NCL 

The hysteresis behavior of Threshold Gates and the fact that their input data is 

encoded using dual-rail encoding makes asynchronous systems more susceptible to soft 

errors. The specific type of soft error depends on the input pattern, present output, and the 

location of the particle strike. 

Theoretically, there are four types of soft errors that could be generated at the 

output of a threshold gate. Let us consider a tli23 gate in figure 2.9 to demonstrate these 

errors. 

1) Positive glitch (PG): 0-1-0. The positive glitch could be generated when the input 

pattern of the tli23 gate is ABC=000 and a strike occurs into any of nl, n3 or n6 n-type 

drains (removed current), as show in figure 5.2a. 

2) Negative glitch (NG): 1-0-1. The negative glitch could be generated when ABC=011 

while the output is 1 and a strike occurs into any of p3 or p9 p-type drains (injected 

current), as shown in figure 5.2b. 

3) Positive fault transition (PFT): 0-1. The positive fault transition could be generated 

when ABC=001 while the output is 0 and a strike occurs into any of nl, n3, or n6 n-type 

drains (removed current), as shown in figure 5.2c. 

4) Negative fault transition (NFT): 1-0. The negative fault transition could be generated 

when ABC=001 while the output is 1 and a strike occurs into any of p3 or p9 p-type 

drains (injected current), as shown in figure 5.2d. 
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Figure 5.2 SEU generation in tli23 gate. 

Fortunately, only two types of SEUs are to be considered for NCL systems, 

Positive Glitch (PG) and Positive Fault Transition (PFT), because these are the only two 

possible SEUs that could flip the state of the node and propagate to the circuit output 

causing a soft error (malfunction). As for both Negative Glitch (NG) and Negative Fault 

Transition (NFT) they would only speed up the arrival of NULL if the strike happens 

after DATA arrival or they might not have any effect if the strike happens before DATA 

arrival as tested in [41]. The most sensitive node in a threshold gate for both PG and PFT 

is node S (in figure 2.9), where a soft error could cause either PG or PFT when a particle 

strikes any n-type drains of the NMOS transistors connected to node S. 

5.2 Study of NCL Pipeline for an SEU 

Unlike traditional synchronous circuits, there is no global clock in NCL circuits. 

The delivery of the computation results from one stage to the next stage is implemented 

by the handshaking scheme. Due to the hysteresis, a generated glitch SEU (0-1-0 or 1-0-

1) will be either filtered or transformed into a fault transition (0-1 or 1-0) immediately by 

the following gate, and then the resulting fault transition (0-1 or 1-0) conditionally 
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propagates through the next gates. Therefore only fault transitions (0-1 or 1-0) may arrive 

at the output of computational block. SEUs on computational blocks have only been 

focused on throughout the thesis. 

Due to the handshaking protocols used in the NCL methodology, all the possible 

circumstances during which the computational block is affected by the soft error must be 

studied in detail. A particle strike could affect the computational block any time during 

the 'request data'. The three possible strike timings that can generate a soft error are 

described below. 

1) Before computation completion: This is the time during which the input register is 

requesting DATA and partial or complete DATA has already arrived at the input of the 

computational block until before the correct computation of outputs are done. A strike at 

this time could generate an error at the output of an input threshold gate leading to its 

propagation to the next gate and thereby generating a valid faulty output. If this soft error 

is not detected, it could pass on to the next stages. This situation is illustrated in figure 

5.3b in terms of output signals. 

2) Exactly during computation completion: A strike can happen on any of the internal 

components of the computational block when the input register is requesting data leading 

to a (1,1) output which is invalid in dual-rail logic as shown in figure 5.3c. The 

propagation of this invalid output to the next stage may cause a lot of computational 

errors at that stage. 

3) After computation completion: The possibility of a strike after the computation of 

correct outputs cannot be ruled out. The next stage can even take this incorrect data if it is 

still requesting DATA. This incorrect output is shown in figure 5.3d. 
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Figure 5.3 Different outputs during different strike timings 

Any dual-rail NCL circuit designed to detect, eliminate and correct the soft errors 

must address the three different scenarios mentioned above and must be able to 

recompute the correct output. 

5.3 Tackling Soft Errors using NCL Methodology 

This section describes different methods by which soft errors can be handled so as 

to avoid them from disturbing the circuit's performance. The second part of this section 

focuses on different methods and circuits used for soft error hardening, detecting and 

correcting as well. 

5.3.1 Soft Error Mitigation and Correction 

Two ways in general, by which a designer can tackle soft errors are soft error 

mitigation and soft error correction. Soft error mitigation is a method in which a designer 

can attempt to minimize the rate of soft errors by judicious device design, choosing the 
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right semiconductor, package and substrate materials, and the right device geometry. 

Often, however, this is limited by the need to reduce device size and voltage, to increase 

operating speed and to reduce power dissipation. One technique that can be used to 

reduce the soft error rate in digital circuits is called radiation hardening. This involves 

increasing the capacitance at selected circuit nodes in order to increase its effective Qcrit 

value. This reduces the range of particle energies to which the logic value of the node can 

be upset. Radiation hardening is often accomplished by increasing the size of transistors 

which share a drain/source region at the node. 

Soft error correction is a method where a designer chooses to accept that soft 

errors will occur, and design systems with appropriate error detection and correction to 

recover gracefully. 

Typically, a semiconductor memory design might use forward error correction, 

incorporating redundant data into each word to create an error correcting code. 

Alternatively, roll-back error correction can be used, detecting the soft error with an 

error-detecting code such as parity, and rewriting correct data from another source. This 

technique is often used for write-through cache memories. 

Soft errors in logic circuits are sometimes detected and corrected using the 

techniques of fault tolerant design. These often include the use of redundant circuitry or 

computation of data, and typically come at the cost of circuit area, decreased 

performance, and/or higher power consumption. 

The concept of triple modular redundancy (TMR) can be employed to ensure very 

high soft-error reliability in logic circuits. In this technique, three identical copies of a 

circuit compute on the same data in parallel and outputs are fed into majority voting 
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logic, returning the value that occurred in at least two of three cases. In this way, the 

failure of one circuit due to soft error is discarded assuming the other two circuits 

operated correctly. In practice, however, few designers can afford the greater than 200% 

circuit area and power overhead required, so it is usually only selectively applied. 

Another common concept to correct soft errors in logic circuits is temporal 

(or time) redundancy, in which one circuit operates on the same data multiple times and 

compares subsequent evaluations for consistency. This approach, however, often incurs 

performance overhead, area overhead (if copies of latches are used to store data), and 

power overhead, though is considerably more area-efficient than modular redundancy. 

5.3.2 Soft Error Tolerant Schemes in NCL 

Several attempts have been made in the past to tackle soft errors in NCL circuits. 

Some of the methods involve soft error hardening by carefully designing the threshold 

gates and some of them are designs to detect and correct the occurence of a strike and are 

discussed below. 

Monnet et.al proposed a metric, sensitive time to evaluate the sensitivity of 

asynchronous circuits to transient faults [42-43]. Jang et.al proposed several SEU-tolerant 

QDI circuit designs which cause the circuits to become three times larger and twice 

slower [44]. Peng et.al developed an efficient concurrent failure detection method for 

pipelined asynchronous circuits so that the asynchronous circuits halt in the presence of 

failure by single stuck at faults or single event upsets [45]. 

Casto, [46] proposed some techniques for preventing soft errors which include the 

use of Schmitt trigger in threshold gates, feedback transistor sizing and modification of 

NCL pipeline structures to prevent electrical and latch-window masking. An additional 



60 

self-feedback NCL register is inserted before the actual NCL register in the pipeline. This 

will reduce the amount of time during which a computational block's output will be 

affected due to soft error by blocking any incorrect outputs generated due to strike once 

the correct outputs pass through it. The occurence of outputs as described in figure 6.3d 

can be completely eliminated using this method. 

Kuang, et.al [47] concluded that increasing the feedback PMOS transistor size in 

the threshold gate can improve the robustness to particle strike and both single and 

double Schmitt triggers significantly increase the Qmax without static soft error. Kuang, 

et.al [48] also proposed a modified NCL circuit which includes a self- feedback register 

that could eliminate most of the SEUs in the computational blocks. In another publication 

[49], they proposed a soft error detection and correction circuitry for any combinational 

logic. 

Waleed, [41] proved that semi-static gates(in terms of transistors) could be used 

to construct soft error hardened asynchronous circuits and also proposed a circuit design 

that can detect, eliminate and correct the soft error. 
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CHAPTER VI 

SOFT ERROR TOLERANT DESIGN USING FPGA 

The previous designs that addressed the problem of soft errors are simulated using 

CADENCE software and are not tested in practical. This section explains in detail the 

design for soft error tolerance which has been synthesized using FPGA logic. FPGA 

provided the scope for testing and to demonstrate the design readily since it is 

reconfigurable logic device. Behavioral model designs are created and mapped onto the 

FPGA logic and tested for its functionality. 

This chapter describes in detail the soft error tolerant circuit, the basic 

components involved in the design, inducing a strike into the designed circuit, testing the 

circuit using FPGA and analyzing the simulation and actual results. 

6.1 Introduction 

Unlike the existing designs that have their threshold gates designed using a set of 

NMOS and PMOS transistors generating the simulation results, the design in this thesis is 

designed to be made to work on FPGA to extract the actual outputs from the device. The 

soft error tolerant design using FPGA is designed in order to demonstrate the 

functionality of soft error tolerant designs. An idea need to be sought to imitate a particle 

strike and to induce the strike on to the computational block and to analyze the behavior 

of the circuit under the influence of these particle strikes. In the thesis the particle strike 
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is mimicked on the circuit using the software and the circuits behavior is studied. The 

details of how a particle strike is created and assumed are mentioned in sections 6.2.2 and 

6.2.3. 

6.2 Soft Error Tolerant Design 

An efficient soft error tolerant design needs to combat the effect of particle strikes 

on the computational block. Hence, a design is created in this thesis which is efficient in 

dealing with soft errors due to particle strikes on the computational block. This section 

details a generic soft error tolerant design, a case study of a full-adder used as the 

computational block, how the inputs and strike are generated, how to induce the strike on 

to the computational block, simulation results of the designed circuit, and finally 

experimenting the circuit on the FPGA. 

6.2.1 Circuit for Soft Error Tolerance 

Figure 6.1 shown below is the NCL pipeline architecture used for soft error 

detection, elimination and correction assuming no strike on the NCL registers. The entire 

design is first coded using VHDL as software components in the same manner as 

mentioned in section 3.4 and later tested using FPGA and other hardware components. 
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Figure 6.1 Soft error tolerant design 
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The circuit shown in figure 6.1 has separate components each for detecting the 

occurence of a soft error, for stopping the error flowing to the next stage and for 

correcting the faulty output due to the soft error, ensuring correct outputs. Apart from the 

NCL pipeline which consists of two registers with completion detection circuits that 

govern the inputs and outputs plus the computational block, it has a set of and gates 

between the initial register and the computational block, an inverter connected to the 

initial register's completion detection output, a soft error detection unit and few more and 

gates providing the control signals to the self-feedback inserted register and the final 

register. 

Initially, the circuit needs to be reset. When 'reset' signal is applied, the NCL 

registers outputs all zeros. These zeros pass through the completion detection circuits 

giving T as the output indicating that the registers are ready to accept DATA. These 

zeros (NULL) pass through the and gates and the computational block and prepares then 

for the next incoming DATA. Now the 'Kl' signal mentioned in figure 7.1 is logic 1 

which goes through the inverter giving logic 0 for 'Klo' signal. This 'Klo' signal plays a 

crucial role in determining whether DATA can pass through the self-feedback register or 

not. The 'Klo' signal holding logic 0 goes to the input of the first and gate at the input of 

the self-feedback register, which is already having 'KRo' signal as it's another input. 

'KRo' signal is the output of the completion detection circuit of the self-feedback register. 

When 'reset' signal is applied to the self-feedback register, 'KRo' holds logic 1, waiting 

for the DATA as done by the completion detection outputs of the other two registers in 

the pipeline. So, at the first and gate, 'KRo' is ' 1 ' and 'Klo' is '0' making the output signal 

'Ka' hold logic 0. On the other hand, the SE detect unit which is nothing but a tli22b gate 
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had (0, 0) pass through it giving a logic 1 value to the 'se' signal. This 'se' signal along 

with the 'Ka' is fed to the inputs of the second and gate, 'se' is ' 1 ' and 'Ka' is '0', making 

'KRi' input of the self-feedback register hold a logic 0 meaning the register is not ready to 

accept DATA. And finally the and gate at the final register accepts DATA only when 'se' 

is T and 'K3' is ' 1 ' . 'K3' is the output of the completion detection circuit of the following 

NCL register. For convenience, 'K3' is taken as 'K2' in the thesis since there is no next 

stage. 'K2' is the output of completion detection circuit of the final register. 'K2o' which 

is the output of the and gate at the input of the final register hold a logic 1 since 'se' is ' 1 ' 

and 'K2' is also '1 ' . 'se' also acts as the other input to the set of and gates present between 

the initial register and the computational unit. 

Now, DATA enters the inputs. Since 'se' is '1 ' , the exact DATA flows through the 

and gates and to the computational block. When complete DATA enters the inputs of the 

initial register, 'Kl ' becomes a '0' making 'Klo' logic 1. As 'KRo' is already '1 ' , the first 

and gate at the self-feedback register opens. When there is no strike, 'se' holds a '1 ' value. 

With 'Ka' also ' 1 ' the second and gate will also be open making 'KRi' a T allowing the 

correct DATA to pass through the self-feedback register. If there is a particle strike 'se' 

acquires logic 0 turning off the 'KRi' and 'K2o' signals at the self-feedback and the final 

registers respectively, stopping the flow of the invalid DATA (1, 1). When 'se' is '0', the 

outputs of the set of and gates at the input of the computational block assumes all zeros 

which is NULL resetting the computational block. As NULL value pass through the 

computational unit making it ready for the same input values again, 'se' becomes a '1 ' . 

But 'KRi' is still '0'. So the self-feedback register allows NULL to pass through it making 

'KRo' take '1 ' . Now 'KRi' become '1 ' ready for recomputed correct DATA. Here we have 
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to make sure that the DATA is still present at the input for recomputation. Once the 

correct DATA pass through the self-feedback register to the final register, it locks up 

further changes in the DATA values due to any further strikes. 

Summarizing all the facts from the operation of the circuit, the importance of each 

component is described blow. 

1) SE detect unit helps in detecting the particle strike by analyzing the outputs of the 

computational unit. Its gives a '0' output only when it detects invalid data (1, 1) on any of 

its dual rails. 

2) Set of and gates are used to pass DATA and NULL through them as usually. When 

SE detect finds an error and sends a '0' to it these and gates reset the computational block. 

3) The self-feedback register allows DATA to pass through it only when 'Ki' indicates 

complete DATA arrival. This register don't allow DATA in three different situations; 

when there is no complete DATA arrival at the input, when SE detect indicates a particle 

strike and after the passage of correct DATA through the register. These three situations 

are governed by the two and gates at the input of the register. 

4) The and gate at the input of the final register allows DATA only when there is no 

strike and the next stage is ready to accept DATA. 

6.2.2 Case Study: NCL Full-adder as Computational Block 

The full-adder circuit is a dual-rail NCL circuit which has three dual-rail inputs 

and two dual-rail outputs. Since the full-adder has three inputs, the initial register 

mentioned in the above figure 6.1 is a 3-bit NCL dual-rail register and since the full-

adder has two dual-rail outputs, the final register is a 2-bit dual-rail NCL register. The 

pictorial description of 1-bit NCL register with reset is shown in figure 2.4 and the 
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VHDL description of 1-bit and n-bit NCL dual-rail registers are done in figures 3.6 and 

3.7 respectively. 

The completion detection circuitry at the initial register has three inputs and hence 

is a tli33 threshold gate and the completion detection circuitry at the final register is a th22 

threshold gate as it has only two inputs. An n-bit completion detection block is 

represented in figure 2.5. 

A 1-bit NCL full-adder functions just as the conventional synchronous 1-bit full-

adder with the exception of having dual-rails for each I/O bit. The schematic of the NCL 

full-adder is shown in figure 2.6c and the VHDL description of it is shown in figure 3.8b. 

A sample truth table of the dual-rail 1-bit NCL full-adder is shown in table 6.1. When any 

of the inputs (Ci, X, or Y) is still Null value (0, 0), the output is not complete, either S or 

Co will still be Null. When any of the inputs is invalid value (1,1) and all other inputs are 

Data, the resulted output will be incorrect (either S or Co). 

Table 6.1 Truth Table of a 1-bit full adder with different states 

CaseNo 
1 
2 
3 
4 

CiO 
0 
0 
1 
I 

Ci! 
0 
0 
0 
1 

xo 
0 
1 
1 
1 

Xi 
0 
0 
0 
0 

Y0 
0 
0 
0 
0 

Y! 
0' 
1 
I 
1 

SO 
0 
0 
0 
1 

SI 
0 
0 
1 
1 

CoO 
0 
0 
1 
1 

Col 
0 
0 
0 
1 

State 
NULL 

Incomplete DATA 
Complete DATA 
Invalid DATA 

The three different situations that are to be tested to prove that the circuit works as 

desired in tolerating soft errors are already mentioned in section 5.3. These are, a soft 

error happening before computation, a soft error happening exactly during output 

computation and a soft error happening after the output computation. These three 

scenarios are depicted using the timing of the inputs for the full-adder circuit in figure 

6.2. 



67 

YBa i l l 

YRailf) 

XPaill 

XRa.itn 

c ; P nil 1 

Tl T2 T3 
1 1 

r iRa i in 

K2 J 

Figure 6.2 Three scenarios to be tested for a full-adder 

The figure above is in particular to the full-adder circuit taken to be the 

computational block in this case. The full-adder has three inputs, each dual-rail and a 

particular pattern of inputs is selected as an example to clearly explain the threats of this 

circuit to a particle strike and how they are tackled. 'Tl ' in the figure is the time during 

which case 1 in figure 5.3 happens. The inputs are not complete. Due to the input 

completeness nature of the NCL full-adder, some or all of the outputs will not be 

complete. This means either S or Co will still be a (0, 0). Carefully looking at the number 

of inputs during 'Tl', it indicates that already two inputs are available and waiting for the 

third input. At this time a strike on Ci.RailO can cause incorrect DATA computation 

which is Co.Raill=l instead of correct DATA being Co.RailO=l and Co.Raill=0. In the 

absence of soft error detection circuit, this wrong DATA output caused by the strike 

could pass through the final register to the next stage. Or a (1, 1) is generated on Co dual-

rails when Ci.RailO comes into the full-adder. 

The second criterion 'T2' represents a strike happening exactly during the 

computation representing case 2 in figure 5.3. This time is after the arrival of complete 
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inputs and during the propagation of the inputs through the full-adder's internal 

components. In this case the output of the threshold gate is supposed to output a '0' but 

apparently becomes a T due to the particle strike at the same time when its other dual-

rail signal is also a ' 1 ' . This condition may arise when the strike modified dual-rail signal 

(e.g., Co.Raill=l) and its other dual-rail signal (e.g., Co.RailO=l) coming from another 

threshold gate happens to propagate to the outputs at the same time. If this is not avoided, 

the (1, 1) which is an invalid DATA, propagates to the next stages. 

The third case is represented by 'T3' which is when the correct output is 

calculated and a strike happens after the calculated output pass through the register, 

generating invalid (1, 1) at the outputs as shown in case 3 of figure 5.3. This situation 

must be avoided which otherwise would lead to the propagation of (1, 1) right after the 

correct DATA output in time. 

6.2.3 Generating Inputs and Strike 

Alpha particles and neutrons are the actual ones which affect the digital circuitry 

in practical. Due to the non-availability of neutron or alpha particle generator, a particle 

strike is mimicked using the software. This method also provides the flexibility to test the 

circuit during different particle strike timings. 

Full-adder is the combinational circuit used for testing. The internal components 

of this full-adder consist of four threshold gates as shown in figure 6.3. As these 

threshold gates are actually behavioral models, a strike can only be applied at the inputs 

unlike the transistor built circuits where a strike can be applied to the most sensitive node 

(node S in figure 2.9) inside a threshold gate. The assumption here is that the strike 

applied at one of the input rails is equivalent to strike happening anywhere on the internal 
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circuit of that particular threshold gate present in the FPGA as long as it causes a fault 

propagation. This assumption is valid because the outputs are the ones which are tested 

for any faults. 

Figure 6.3 1-bit dual-rail full-adder with strike 

The above figure suggests that all the three inputs, Ci, X and Y have equal 

priority due to symmetry. So, a strike on Ci has equal effects when compared to strike on 

X as well as Y. In this case study a particle strike is made on Ci.Raill input of the full-

adder. 

The full-adder circuit is designed in such a way that it accepts the strike on to the 

Ci.Raill input whenever the strike signal is 'logic 1' assuming a strike happened. 

Otherwise the full-adder takes the Ci.Raill input from the initial register. The modified 

VHDL code for a full-adder accepting a particle strike is shown in figure 6.4.The 

behavioral model of the strike that is being induced on to the input rail of the full-adder is 

shown in figure 6.5. 
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Library IEEE; 
use IEEE.STD_LOGIC_l164.ALL; 
use work.ncl_signals.all; 

entity fulladder is 
port ( a : in dual_rail_logic_vector(1 to 3); 

strk : in std_logic; 
s : out dual_rail_logic_vector(1 to 2) 

); 
end fulladder; 

architecture beh of fulladder is 
signal c0,cl,cstrk : std_logic; 
component strike is 

port( data : in std_logic; 
i : in std_logic; 
ipulse : out std_logic); 

end component; 
component th23xO is 

port( a: in std_logic; 
b: in std_logic; 
c: in std_logic; 
z: out std_logic ); 

end component; 
component th3 4w2x0 is 

port(a: in std_logic; — Height 2 
b: in std_logic; 
c: in std_logic; 
d: in std_logic; 
z: out std_logic ); 

end component; 
begin 
gO : strike port map(a(l).raill,strk,cstrk) ; 
gl : th23xO port map(a(l).rail0,a(2).rail0,a(3) .railO,cO); 
g2 : th23xO port map(cstrk,a(2).raill,a(3).raill,cl); 
s(l).railO<=cO;s(l).raill<-cl; 
g3 : th34ra2x0 port map (cl, a (1) .railO, a(2) .rail0,a (3) .rail0,s (2) . railO) ; 
g4 : th34w2x0 port map (c0,cstrk,a(2) .raill,a(3) .raill,s (2) .raill) ; 
end beh; 

Figure 6.4 Modified full-adder incorporating strike 

entity strike is 
port ( data : 

i : 
ipulse 

end strike; 

in std logic; 
in std logic; 
: out std_logic); 

architecture beh of strike is 
begin 

process(data,i 
begin 

if i = ' 1 
ipulse 

else 
ipulse 

end if; 
end process; 

end beh; 

then 
<= i; 

<= data; 

Figure 6.5 VHDL code for inducing a particle strike 

The inputs and the particle strike have been generated from internal components 

present on the FPGA board. In order to test the circuit, a clock signal of 50MHz present 

http://work.ncl_signals.all
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on the FPGA kit has been utilized. The clock output from the oscillator is connected to 

one of the pins of the FPGA. This has been taken as an advantage to generate the inputs 

to the full-adder with delay between each of them. The same clock has also been utilized 

to generate strikes at different timings. Figure 6.6 shows the special code used to generate 

the inputs and the strike. 

entity signal genl is 
poet( clock : in std_logic; 

Di : out dual rail logic vector(l to 3); 
strk : out std logic 

end signal_genl; 

architecture behavior of signal genl is 
begin 
incrementer: process is 

variable count value: natural:=0; 
begin 

wait until clock = 'l1; 
count value := (count_value+l) 

Di(3) .railO<='0' ;Di(2) .railK-'O1 ; 

case count value is 
when 1 to 8 => 

Di(3).raill <='1' 
when others => 

Di(3).raill <='0' 
end case; 
case count_value is 

when 3 to 10 => 
Di(2).railO <='1' 

when others => 
Di(2).railO <=' 01 

end case; 
case count_value is 

when S to 12 => 
Di(l) .railO <=' 1' 

when others => 
Di(l) .railO <=' 0' 

end case; 
case count_value is 

when 3 => 
strk <='l1; 
when others => 
strk <=ID'; 

end case; 

end process incrementer; 

end behavior; 

mod 16; 
Di(l).raill<='0'; 

; 

; 

; 

; 

; 

; 

Figure 6.6 Inputs and strike generator 

The code in figure 6.6 uses the 50MHz clock which has 20 ns time period to 

generate the three different inputs with delay. The basic idea is to count the number of 

clock pulses and making each input start at different clock pulse thereby creating a delay 
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between them. A strike is also generated in a similar fashion. The minimum width a 

strike can have using the code is 10 ns. A strike is made to appear at different times and 

at each possible time and the simulation and actual outputs are obtained. 

The above code in figure 6.6 generates the input signals and strike as shown by 

the simulated results in figure 6.7. 
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Figure 6.7 Simulation waveform of inputs and strike generator 

6.2.4 Simulation Results 

Simulation results are obtained from the whole soft error tolerant circuit with full-

adder as the computational block, for both cases i.e., without a strike and with a strike. 

Along with the end outputs which are from the final register, the outputs from the full-

adder are also viewed to notice how the outputs from the full-adder are filtered by the 

additional circuitry that deals with soft error. In the following figures, Qi signals are the 

outputs from the full-adder and Qo signals are the outputs from the final register. Qi(l) 

represents Co and Qi(2) represents S directly from the full-adder. Similarly, Qo(l) 

represents Co and Qo(2) represents S from the final register. Figure 6.8 represents the 

outputs of the circuit with full-adder when there is no strike. When there is no strike, the 
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circuit operates normally and doesn't need to reset the computational block and 

recompute the outputs. Due to this the outputs appear, for example, in this case at 101.75 

ns. 
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Figure 6.8 Simulation results without a strike. 
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Figure 6.9 Simulation results during a strike at third clock cycle. 

Figure 6.9 represents the outputs of the circuit when there is a strike happening at 

the third clock cycle. In this case, the output appears at a later time compared to the case 

without a strike. The time between 101.75 ns and 109.731 ns is the time during which the 
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circuit detects a (1, 1) on the output rails, resets the circuit and recomputes the outputs for 

the same inputs and hence the delay. 
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Figure 6.10 Simulation results when strike is placed at the first clock cycle 
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Figure 6.11 Simulation results when strike is placed at the second clock cycle 

Figure 6.10 shows that the Col signal became a T due to the strike long before 

all the inputs arrive at the full-adder, but has not been passed through the final register. 

When the circuit detects the (1, 1) visible as glitches in the Qi, it resets the circuit due to 
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which all the outputs of the full-adder becomes zeros. This final correct output has been 

delivered to the final register. 

The above two conditions come under the first scenario represented as 'Tl' in 

figure 6.2 where only one input, Y.Raill is present and due to the strike the Co.Raill 

becomes a T . Later when X.RailO is asserted, S.RailO becomes a ' 1 ' which are incorrect 

outputs generated due to strike. Now, when the third input appears, the signals which 

should be actually asserted according to the full-adder circuit, that is Co.RailO and 

S.Raill becomes ' 1 ' showing the little glitches on the waveform editor. 
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Figure 6.12 Simulation results when strike is placed at the third clock cycle 

Figure 6.12 is the result of a strike appearing at the third clock cycle. The second 

input to the full-adder also starts at the third clock cycle. So by the time the strike makes 

Co.Raill take a T , X.RailO is already ' 1 ' and hence the waveforms shows a lesser time 

difference between Co.Raill becoming T and S.RailO becoming a T . The simulation 

result clearly explains the occurence of strike at the same time of the second input. The 
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little delay between Co.Raill and S.RailO is due to the propagation delay of the U134W2 

gate which is taking both Co.Raill and X.RailO to generate S.RailO as T . 

The figure 6.13 shown below is almost a similar situation to the previous figure 

when there are two inputs present and a strike is appearing. This still falls under 'TT 

scenario of incomplete DATA and pre-computation. 
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Figure 6.13 Simulation results when strike is placed at the fourth clock cycle 
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Figure 6.14 Simulation results when strike is placed at the fifth clock cycle 
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Figure 6.14 is a situation where all of the inputs are present and a strike happens. 

This comes under 'T2' scenario. Here all the outputs become 'F almost at the same 

timing. By the time the strike happens, Co.RailO is already 'F generated due to the 

complete inputs and this is still propagating through th34W2 threshold gate having S.Raill 

as the output. Due to the strike on Ci.Raill, Co.Raill becomes a 'F and the SE detect 

detects (1, 1) and resets the circuit due to which Qi(l).RailO goes to a zero in figure 6.14. 

In the mean time the other threshold gates outputs the strike effected signals and then gets 

reset and now, all the outputs become NULL. As the DATA is still available at the 

inputs, recalculation is done generating the correct output which passes through the final 

register. 
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Figure 6.15 Simulation results when strike is placed at the sixth clock cycle 

Figure 6.15 is the third scenario where the correct inputs are calculated and they 

pass through the self-feedback register and then a strike happens. During this case as the 

correct outputs have crossed the inserted register, it blocks from any further changes in 

the outputs and the register will be ready to accept NULL. But when a strike happens, as 
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the DATA is still present at the inputs, a (1, 1) appears on the outputs due to which 

resetting the circuit takes place internally. This is the reason why the output DATA is 

normal for sometime but becomes a NULL after sometime and gets back to the correct 

DATA again as shown in the figure above. 

6.3 Experiments on FPGA Device 

Now that we have the design on hand along with a provision for particle strike, it 

needs to be modeled practically to test its behavior. An FPGA provides the scope of 

creating the design onto its logic and be made available for testing. The design needs to 

be tested using hardware components, practically giving inputs and extracting the 

outputs. Once the design is simulated to check its behavior, the design is mapped on to a 

FPGA device for testing. The design flow is already mentioned in figure 3.3. 

Logic Analyzer 

Probs 
Cable 

Computer 

/ \ 

USB Cable 

FPGA Board i 

Figure 6.16 Experimental set up 

The soft error tolerant design is first simulated and the simulation results are 

extracted and are presented in section 6.2.4. Then the design is synthesized, mapped and 

place and route procedure is done to put the design on the FPGA logic. Then pin 

assignment is done on the FPGA kit to provide inputs and to check the actual outputs. 

Some of the internal components of the FPGA were used to generate the high speed input 

signals and the procedure is described in section 6.2.3. The output pins of the FPGA are 
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connected to a logic analyzer and the outputs are viewed on the display and are provided 

in section 6.3.3. The experimental set up is shown in figure 6.16. 

6.3.1 Experimental Set Up 

This section explains about the equipments used for the project and the 

experimental set up. The entire experimental set up at the laboratory is shown in figure 

6.17, consists of a PC (personal computer) with USB cable connected to the CPU, FPGA 

board whose expansion connectors are connected to probe cable of the logic analyzer. 

Figure 6.17 Laboratory experimental set up 

A PC is a desktop computer used to download the Quartus II software, to write 

the essential code and simulating the code using the software. Most part of the project is 

performed on the PC starting from design entry, analysis, implementation, verification 

and till pin assignment using pin planner present in Quartus II. Altera's DE2 with 



80 

Cyclone II FPGA and Quartus II 8.1 Web Edition, the supporting software has been used 

for the thesis. The device manual is presented in [50]. Once the pin assignments are done, 

the FPGA device is connected to the PC via a download cable. USB 2.0 (type A to type 

B) cable is used for the device. The configuration file is sent from the PC to the FPGA 

via the USB cable. The inputs to the circuit present inside the FPGA are provided using 

one of the switches and the clock of 50MHz present on DE2 board. The outputs are 

extracted from the FPGA through expansion headers present on DE2 board on to a logic 

analyzer. HP 1663C Logic Analyzer is used in the experimental set up to view the 

outputs of the design present in the FPGA. 

6.3.2 FPGA Board 
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Figure 6.18 The DE2 board [50] 

As mentioned earlier Altera's DE2 Development and Educational Board is used 

for the thesis. It has a wide variety of features and resources. But only few of them have 
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been used in the thesis. Figure 6.18 taken from DE2 user manual shows all the resources 

present on board. 

The resources used in the above figure are the Altera Cyclone II FPGA, 50 MHz 

oscillator, one of the 18 toggle switches, Expansion Header JP2, USB Blaster Port, 9V 

DC Power supply connector and Power ON/OFF Switch. 50MHz clock is connected to 

PINN2 of the FPGA. 'rst' signal in the circuit which is the reset signal to the entire NCL 

dual-rail circuits is connected to PINN25 of the FPGA which is connected to the switch 

SWO of the 18 toggle switches on board. PINJC25, PIN_K26, PIN_M22 and PIN_M23 

are the FPGA pins connected to IOB0, I O B 1 , IOB2 and I O B 3 expansion header pins 

on JP2(GPIO_l). These pins are connected to Qo(l).RailO (CoO), Qo(l).Raill (Col), 

Qo(2).RailO (SO) and Qo(2).Raill (SI) signals of the internal circuit, that are the outputs 

from the final register in the soft error tolerant design pipeline. Similarly, PINM19, 

PIN_M20, PIN_N20 and PIN_M21 are the FPGA pins connected to IO_B4, IO_B5, 

IOB6 and I O B 7 expansion header pins on JP2(GPIO_l). These pins are connected to 

Qi(l).RailO (CoO), Qi(l).Raill (Col), Qi(2).RailO (SO) and Qi(2).Raill (SI) signals of the 

internal circuit, that are the outputs from the full-adder in the soft error tolerant design 

pipeline. 

6.3.3 Results 

The actual outputs are from the FPGA using hardware components that generate 

the inputs and extract the outputs to the logic analyzer. The below are the images from 

the logic analyzer for strikes during different timings which resemble the simulation 

outputs. These actual outputs from the FPGA are very much similar to the simulation 

results except that the glitches present in the simulation waveform are not visible for the 
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actual waveform. The reason behind this could be the low resolution of the logic analyzer 

which could not properly capture the small glitches. 

The first signal mentioned as Lab 10 represents Qo(l).RailO, Labll as 

Qo(l).Raill, Labl2 as Qo(2).RailO, Labl3 as Qo(2).Raill, Labl4 as Qi(l).RaiK), Labl5 

as Qi(l).Raill, Labl6 as Qi(2).RailO and Labl7 is for Qi(2).Raill. Qo is the output from 

the final register and Qi is the output of the full-adder. Q(l) represents Co which is carry 

and Q(2) represents S which is sum of the full-adder. 

( Analyzer ¥ 

( Accumulate 
1 0ff 

[ 100! ns J 
OBI 6 

Labi 1 

Labi 2 

Labi 3 

Labi 4 

Labi 5 

Labi 6 

Labi 7 

Haveform (ifiCHINE 1 ] (Acq 

Delay 
0 s 

. Control] Jfcance ' ) ( 

Current Sample Period - 4.000 ns 
Next Sample Period = 4.000 ns 

(larkers 
Off 

' 

Acquis!tion Time 
30 Jul 2009 I6>14'38 

— i — » — 

Rum ] 

n 
t 

Figure 6.19 Actual results when strike is placed at the first clock cycle 
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CHAPTER VII 

SOFT ERROR TOLERANT ASYNCHRONOUS DES DESIGN 

In the thesis two asynchronous NCL designs are devised. One is the asynchronous 

NCL dual-rail logic DES algorithm and the other design is the soft error tolerant circuit 

for any NCL dual-rail circuit. This chapter explains how to implement the two circuits 

together on an FPGA. 

7.1 Asynchronous DES with Soft Error Tolerance 

The 17 stage pipelined asynchronous DES algorithm is added with the soft error 

detection and correction circuitry in one of the exor gates following the P box in figure 

4.6 and the simulation and actual results are obtained from the FPGA. Altera's 

EP2C35F672C6 which is a cyclone II FPGA, is the device used. Since this device cannot 

accommodate the whole asynchronous DES design with dual-rail logic, only a single 

round is used. The modified asynchronous DES design with RAM elements as S-boxes 

has been used to test the soft error tolerant design's efficiency which successfully 

produced desired results representing the robustness of the soft error tolerant design. 

A clock oscillator of 50MHz on board the FPGA has been used to generate inputs 

and strike in the similar manner as generated for testing the soft error tolerant design with 

full-adder as the computational block. The strike has been induced on to the exor gate at 

different timings and the results are collected. Figure 7.1 is the entire circuit implemented 

on the FPGA to show the working of soft error tolerant design on asynchronous DES. 
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Figure 7.1 Asynchronous DES with embedded soft error tolerant circuit 

The Xor gate following P permutation block has 32 exor gates as shown in the 

above figure. Soft error tolerant circuit is applied to only the first exor gate. The inputs to 

'Round' are provided by the clock. To simplify the input generation all the inputs are 

given at a time instead of generating them with different delays between them due to the 

large number of inputs. The strike is given at different clock cycles of the 50MHz clock. 
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7.2 Results Obtained 

In this section the result obtained from circuit shown in figure 7.1 are analyzed. 

The circuit worked as desired by detecting, correcting and eliminating the soft error. 
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Figure 7.2 Simulation result for strike at first clock cycle. 

'xorse' signal which is Rn(l) is the output obtained from the final ncl-register of 

the 'round' while 'fromxr' signal is directly from the exorl gate in figure 7.1. Figure 7.2 is 

the case when the inputs to the exor gate are still propagating when the strike happened 

and reaches the exor gate when there is no strike due to which there is no effect of soft 

error reflected in the waveform. 

Figure 7.3 is the actual results obtained with similar condition in figure 7.2. Here, 

strike happens exactly during computation generating a (1,1) because of which the 

outputs of the exorl gate are reset to zeros and then the output appears at the final register 

of the 'round'. In figure 7.3, the first two signals LablO and Labll are xorse.RailO and 

xorse.Raill respectively while Lab 12 and Lab 13 are fromxr.RailO and fromxr.Raill 

respectively. 
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Figure 7.4 Simulation result for strike at second clock cycle. 

This result is similar to figure 7.3 where a strike happened exactly during 

computation causing (1,1) and settling to good outputs after resetting circuital,1) is 

stopped from passing through the final register. 
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Figure 7.5 Actual result for strike at second clock cycle. 

Here, the correct data passed through the self-feedback register in the soft error 

tolerant circuit and then a strike happened due to which (1,1) is generated, which is the 

case of a strike happening after computation completion unlike the simulation result. 

After this output go through the final register of the 'Round' followed by all the other 

signals of the DES round (Ln, Rn(except the first signal), Cn and Dn), the final register 

will stay in accepting NULL state since all the DATA passed through it. Now NULL is 

generated at the first signal of Rn(output of exorl) due to circuit reset by the soft error 

tolerant circuit. As the final register is in accepting NULL state it accepts the NULL 

signal at Rn(l), while all the other signalsRn(2...32) are still data because there is no 

NULL at the inputs of the 'Round'. This is the reason why recomputed DATA is not 

present at the Rn(l) output at the final register. 

Figure 7.6 and 7.7 are the results when the strike happens during third clock 

cycle. This is already the case of strike happening after computation completion allowing 

good DATA to pass through the register and blocking any further changes. 
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Figure 7.7 Actual result for strike at third clock cycle. 

The reason behind the differences in the simulated results and actual results is due 

to the more propagation delay of simulated signals compared to actual signals in the 

FPGA due to which figure 7.2 has no effect on the waveforms while figure 7.3 has effect 

of soft error on the waveforms. Similarly in figure 7.4 the outputs appear at the final 

register only after resetting and recomputation of the soft error tolerant circuit while 

correct DATA already passed through the register in figure 7.5. 
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CHAPTER VIII 

CONCLUSION AND FUTURE WORK 

The present day digital era calls for cryptography as an inevitable concept in the 

day to day life whether it is storing data or transferring data. These cryptographic 

algorithms need a very high range of accuracy. The problem of soft errors cannot be 

overlooked upon. So circuits which could be able to tolerate these soft errors are as 

important for applications like security algorithms as these security algorithms are for 

digital data. Asynchronous dual-rail NCL methodology is a technique which is getting its 

popularity for various reasons. This methodology could be taken for advantage in 

creating the soft error tolerant models. So the application on which the soft error tolerant 

design needs to be implemented should also be an asynchronous design. In this thesis a 

basic yet powerful security algorithm has been considered. The NCL design of the DES 

algorithm is implemented on different FPGAs to figure out what kind of FPGA is suitable 

for such huge designs and to determine the amount of logic and hardware resources 

needed for the device. Apart from the implementation of the algorithm, some design 

techniques are used to save the amount of resources utilized by the design on an FPGA. 

The second part of the thesis focuses on creating a soft error tolerant design that 

could be used for these kinds of security algorithms making them 100% accurate. A 

design which can tolerate the soft errors is simulated as well as practically implemented 

on the FPGA extracting the outputs in real-time with satisfactory results. This soft error 
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tolerant design is added to one exor gate in the DES round and the results are discussed. 

The designs created in the thesis would help to do some future work on the 

asynchronous circuits. The asynchronous DES design in the thesis could be implemented 

on an FPGA and the performance parameters such as speed, power consumption, etc 

could be measured. 

The soft error tolerant design could be embedded in the asynchronous DES 

algorithm [51] generated in the thesis and this collective design should be exposed to a 

natural particle strike environment [52] [43] and the design performance could be 

measured. 

Another task that needs to be performed is to actually create the soft error tolerant 

design at the transistor level. And this circuit could be verified in practical. 

Also, the generation and propagation of soft errors on FPGAs need to be studied 

and a technique to combat those could be devised. 
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APPENDIX A 

DES Algorithm and Design Units in VHDL 

Reference: http://www.orlingrabbe.com/des.htm 
DES is a block cipAcr—meaning it operates on plaintext blocks of a given size (64-bits) and returns 
ciphertext blocks of the same size. Thus DES results in a permutation among the 2A64 (read this as: "2 to 
the 64th power") possible arrangements of 64 bits, each of which may be either 0 or 1. Each block of 64 
bits is divided into two blocks of 32 bits each, a left half block L and a right half R. (This division is only 
used in certain operations.) 
Example: Let M be the plain text message M = 0123456789ABCDEF, where M is in hexadecimal (base 
16) format. Rewriting M in binary format, we get the 64-bit block of text: 
M = 0000 0001 0010 0011 0100 0101 01100111 1000 1001 1010 1011 1100 1101 1110 1111 
L = 0000 0001 0010 00110100 0101 0110 0111 
R = 1000 1001 1010 1011 1100 1101 1110 1111 
The first bit of M is "0". The last bit is "1" . We read from left to right. 
DES operates on the 64-bit blocks using key sizes of 56- bits. The keys are actually stored as being 64 bits 
long, but every 8th bit in the key is not used (i.e. bits numbered 8, 16, 24, 32, 40, 48, 56, and 64). However, 
we will nevertheless number the bits from 1 to 64, going left to right, in the following calculations. But, as 
you will see, the eight bits just mentioned get eliminated when we create subkeys. 
Example: Let K be the hexadecimal key K = 133457799BBCDFF1. This gives us as the binary key 
(setting 1 = 0001, 3 = 0011, etc., and grouping together every eight bits, of which the last one in each group 
will be unused): 
K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001 
The DES algorithm uses the following steps: 

Step 1: Create 16 subkeys, each of which is 48-bits long. 
The 64-bit key is permuted according to the following table, PC-1. Since the first entry in the table is "57", 
this means that the 57th bit of the original key K becomes the first bit of the permuted key K+. The 49th bit 
of the original key becomes the second bit of the permuted key. The 4th bit of the original key is the last bit 
of the permuted key. Note only 56 bits of the original key appear in the permuted key. 

PC-1 
57 
1 

10 
19 
63 
7 

14 
21 

49 
58 
2 

11 
55 
62 
6 

13 

41 
50 
59 
3 

47 
54 
61 
5 

33 
42 
51 
60 
39 
46 
53 
28 

25 
34 
43 
52 
31 
38 
45 
20 

17 
26 
35 
44 
23 
30 
37 
12 

9 
18 
27 
36 
15 
22 
29 
4 

Example: From the original 64-bit key 
K = 00010011 00110100 01010111 01111001 10011011 10111100 11011111 11110001 
we get the 56-bit permutation 
K+= 1111000 0110011 0010101 0101111 0101010 1011001 1001111 0001111 
Next, split this key into left and right halves, C0 and D0, where each half has 28 bits. 
Example: From the permuted key K+, we get 
C0= 11110000110011 0010101 0101111 
A> = 0101010 1011001 1001111 0001111 

http://www.orlingrabbe.com/des.htm
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With C0 and D0 defined, we now create sixteen blocks C„ and Dn, l<=n<=16. Each pair of blocks C„ and 
D„ is formed from the previous pair C„., and D„.t, respectively, for n = 1,2, ..., 16, using the following 
schedule of "left shifts" of the previous block. To do a left shift, move each bit one place to the left, except 
for the first bit, which is cycled to the end of the block. 

Iteration Number of 
Number Left Shifts 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

1 
1 
2 
2 
2 
2 
2 
2 
1 
2 
2 
2 
2 
2 
2 
1 

This means, for example, C3 and D3 are obtained from C2 and Z)2, respectively, by two left shifts, and C,6 

and D,6 are obtained from C15 and D/j, respectively, by one left shift. In all cases, by a single left shift is 
meant a rotation of the bits one place to the left, so that after one left shift the bits in the 28 positions are the 
bits that were previously in positions 2, 3,..., 28, 1. 
Example: From original pair pair Cg and D0 we obtain: 
C« =1111000011001100101010101111 
D0=0101010101100110011110001111 
C,= 1110000110011001010101011111 
D,= 1010101011001100111100011110 
C2= 1100001100110010101010111111 
D2= 0101010110011001111000111101 
C, = 00001100110010101010111 111 11 
D3= 0101011001100111100011110101 
0 = 0011001100101010101111111100 
A, = 0101100110011110001111010101 
C5=1100110010101010111111110000 
D,=0110011001111000111101010101 
C6= 0011001010101011111111000011 

D6= 1001100111100011110101010101 
C7= 1100101010101111111100001100 
Z>7=0110011110001111010101010110 
Cs=0010101010111111110000110011 
Ds= 1001111000111101010101011001 
C„=0101010101111111100001100110 
D9= 0011110001111010101010110011 
Cj0=0101010111111110000110011001 
D,B= 1111000111101010101011001100 
C„ = 010101111 111 1000011001100101 
Dn= 1100011110101010101100110011 
C12=0101111111100001100110010101 
Z),2 = 0001111010101010110011001111 
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C13= 0111111110000110011001010101 
D13=0111101010101011001100111100 
C14 = 1111111000011001100101010101 
Dl4 = 1110101010101100110011110001 
C /5 =1111100001100110010101010111 
Z>/5=1010101010110011001111000111 
C16=1111000011001100101010101111 
Dl6 = 0101010101100110011110001 111 
We now form the keys #„, for K=w<=16, by applying the following permutation table to each of the 
concatenated pairs C„D„. Each pair has 56 bits, but PC-2 only uses 48 of these. 

PC-2 
14 
3 

23 
16 
41 
30 
44 
46 

17 
28 
19 
7 

52 
40 
49 
42 

11 
15 
12 
27 
31 
51 
39 
50 

24 
6 
4 

20 
37 
45 
56 
36 

1 
21 
26 
13 
47 
33 
34 
29 

5 
10 
8 
2 

55 
48 
53 
32 

Therefore, the first bit of #„ is the 14th bit of C„D„, the second bit the 17th, and so on, ending with the 48th 
bit of #„ being the 32th bit of C„D„. 
Example: For the first key we have QD, = 1110000 1100110 0101010 1011111 1010101 0110011 
00111100011110 
which, after we apply the permutation PC-2, becomes 
# , = 000110 110000 001011 101111 111111000111000001 110010 
For the other keys we have 
K2 = 011110 011010 111011 011001 110110 111100 100111 100101 
# , = 010101 011111 110010 001010 010000 101100 111110011001 
# , = 011100 101010 110111 010110 110110 110011 010100011101 
#5=011111 001110 110000 000111 111010 110101001110 101000 
#5=011000 111010010100 111110010100 000111 101100 101111 
#7=111011001000010010 110111 111101 100001 100010 111100 
# , = 111101 111000 101000 111010 110000010011 101111 111011 
# 9 = 111000 001101 101111 101011 111011 011110 011110 000001 
#w=101100011111 001101000111 101110 100100011001001111 
# i ; = 001000 010101 111111010011 110111 101101001110000110 
# i 2 = 011101 010111 000111 110101 100101 000110011111 101001 
# „ = 100101 111100 010111010001 111110 101011 101001000001 
#,4 = 010111 110100 001110 110111 111100 101110011100 111010 
# , 5 = 101111 111001 000110001101 001111 010011 111100 001010 
#,,(=110010 110011 110110 001011000011 100001011111 110101 
So much for the subkeys. Now we look at the message itself. 

Step 2: Encode each 64-bit block of data. 
There is an initial permutation IP of the 64 bits of the message data M. This rearranges the bits according 
to the following table, where the entries in the table show the new arrangement of the bits from their initial 
order. The 58th bit of M becomes the first bit of IP. The 50th bit of M becomes the second bit of IP. The 
7th bit of M is the last bit of IP. 

58 
60 
62 
64 
57 
59 
61 
63 

50 
52 
54 
56 
49 
51 
53 
55 

42 
44 
46 
48 
41 
43 
45 
47 

IP 
34 
36 
38 
40 
33 
35 
37 
39 

26 
28 
30 
32 
25 
27 
29 
31 

18 
20 
22 
24 
17 
19 
21 
23 

10 
12 
14 
16 
9 

11 
13 
15 

2 
4 
6 
8 
1 
3 
5 
7 
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Example: Applying the initial permutation to the block of text M, given previously, we get 
M = 0000 0001 00100011 01000101 01100111 1000 1001 1010 1011 1100 1101 1110 1111 
IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000 1010 1010 1111 0000 1010 1010 
Here the 58th bit of M is "1" , which becomes the first bit of IP. The 50th bit of M is "1" , which becomes 
the second bit of IP. The 7th bit of M is "0", which becomes the last bit of IP. 
Next divide the permuted block IP into a left half L0 of 32 bits, and a right half R0 of 32 bits. 
Example: From IP, we get L0 and R„ 
L0= 1100 1100 0000 0000 1100 1100 1111 1111 
R0 = 1111 0000 1010 1010 1111 0000 1010 1010 
We now proceed through 16 iterations, for 1<=«<=16, using a function/ which operates on two blocks~a 
data block of 32 bits and a key K„ of 48 bits~to produce a block of 32 bits. Let + denote XOR addition, 
(bit-by-bit addition modulo 2). Then for n going from 1 to 16 we calculate 
L„ = R„-i 
Rn - L„.i +J[Rn./,K„) 
This results in a final block, for « = 16, of L16R16. That is, in each iteration, we take the right 32 bits of the 
previous result and make them the left 32 bits of the current step. For the right 32 bits in the current step, 
we XOR the left 32 bits of the previous step with the calculation/. 
Example: For n = 1, we have 
A"7 = 000110 110000 001011 101111 111111 000111 000001 110010 
Lj=R„= 1111 0000 1010 1010 1111 0000 1010 1010 
R,=L,+J[R,*,) 
It remains to explain how the function/works. To calculate/ we first expand each block R„_i from 32 bits 
to 48 bits. This is done by using a selection table that repeats some of the bits in R„.,. We'll call the use of 
this selection table the function E. Thus E(K„_/) has a 32 bit input block, and a 48 bit output block. 
Let E be such that the 48 bits of its output, written as 8 blocks of 6 bits each, are obtained by selecting the 
bits in its inputs in order according to the following table: 

E BIT-SELECTION TABLE 
32 
4 
8 

12 
16 
20 
24 
28 

1 
5 
9 

13 
17 
21 
25 
29 

2 
6 

10 
14 
18 
22 
26 
30 

3 
7 

11 
15 
19 
23 
27 
31 

4 
8 

12 
16 
20 
24 
28 
32 

5 
9 

13 
17 
21 
25 
29 
1 

Thus the first three bits of E(/?„_,) are the bits in positions 32, 1 and 2 of R„_i while the last 2 bits ofE(R„.,) 
are the bits in positions 32 and 1. 
Example: We calculate TL(R0) from R0 as follows: 
R0= 1111 0000 1010 1010 1111 0000 1010 1010 
E(J?fl) = 011110 100001 010101 010101 011110 100001 010101 010101 
(Note that each block of 4 original bits has been expanded to a block of 6 output bits.) 
Next in the/calculation, we XOR the output E(R„_/) with the key K„: 

Kn + Wn-,)-
Example: For Kt, E(R»), we have 
# , = 000110 110000 001011 101111 111111000111000001 110010 
E(/?«,) = 011110 100001 010101 010101 011110 100001 010101 010101 
A"/+E(JR0) = 011000 010001 011110 111010 100001 100110 010100 100111. 
We have not yet finished calculating the function/. To this point we have expanded /?„_/ from 32 bits to 48 
bits, using the selection table, and XORed the result with the key K„ . We now have 48 bits, or eight groups 
of six bits. We now do something strange with each group of six bits: we use them as addresses in tables 
called "S boxes". Each group of six bits will give us an address in a different S box. Located at that address 
will be a 4 bit number. This 4 bit number will replace the original 6 bits. The net result is that the eight 
groups of 6 bits are transformed into eight groups of 4 bits (the 4-bit outputs from the S boxes) for 32 bits 
total. 
Write the previous result, which is 48 bits, in the form: 

Kn + E(R„.,) =B1B2B3B4BSB6B7B8, 
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where each B-, is a group of six bits. We now calculate 
S1(B1)S2(B2)S3(B3)S4(B4)S,(Bs)S6(B6)S7(B7)Slt(Bll) 

where 5,/Bj) refers to the output of the t-th S box. 
To repeat, each of the functions 57, S2,..., S8, takes a 6-bit block as input and yields a 4-bit block as output. 
The table to determine 5; is shown and explained below: 

SI 

Column Number 
Row 
No. 

0 
1 
2 
3 

0 

14 
0 
4 

15 

1 

4 
15 
1 

12 

2 

13 
7 

14 
8 

3 

1 
4 
8 
2 

4 

2 
14 
13 
4 

5 

15 
2 
6 
9 

6 

11 
13 
2 
1 

7 

8 
1 

11 
7 

8 

3 
10 
15 
5 

9 

10 
6 

12 
11 

10 

6 
12 
9 
3 

11 

12 
11 
7 

14 

12 

5 
9 
3 

10 

13 

9 
5 

10 
0 

14 

0 
3 
5 
6 

15 

7 
8 
0 

13 

If Si is the function defined in this table and B is a block of 6 bits, then S}(B) is determined as follows: The 
first and last bits of B represent in base 2 a number in the decimal range 0 to 3 (or binary 00 to 11). Let that 
number be i. The middle 4 bits of B represent in base 2 a number in the decimal range 0 to 15 (binary 0000 
to 1111). Let that number be / . Look up in the table the number in the i-th row and/'-th column. It is a 
number in the range 0 to 15 and is uniquely represented by a 4 bit block. That block is the output St(B) of 
S, for the input B. For example, for input block B = 011011 the first bit is "0" and the last bit "1" giving 01 
as the row. This is row 1. The middle four bits are "1101". This is the binary equivalent of decimal 13, so 
the column is column number 13. In row 1, column 13 appears 5. This determines the output; 5 is binary 
0101, so that the output is 0101. Hence 5/(011011) = 0101. 
The tables defining the functions S1,...,S8 are the following: 

SI 
14 
0 
4 

15 

15 
3 
0 

13 

10 
13 
13 
1 

7 
13 
10 
3 

2 
14 
4 

4 
15 
1 

12 

1 
13 
14 
8 

0 
7 
6 

10 

13 
8 
6 

15 

12 
11 
2 

13 
7 

14 
8 

8 
4 
7 

10 

9 
0 
4 

13 

14 
11 
9 
0 

4 
2 
1 

1 
4 
8 
2 

14 
7 

11 
1 

14 
9 
9 
0 

3 
5 
0 
6 

1 
12 
11 

2 
14 
13 
4 

6 
15 
10 
3 

6 
3 
8 
6 

0 
6 

12 
10 

7 
4 

10 

15 
2 
6 
9 

11 
2 
4 

15 

3 
4 

15 
9 

6 
15 
11 
1 

10 
7 

13 

11 
13 
2 
1 

3 
8 

13 
4 

15 
6 
3 
8 

9 
0 
7 

13 

11 
13 
7 

8 
1 

11 
7 

S2 

4 
14 
1 
2 

S3 
5 

10 
0 
7 

S4 
10 
3 

13 
8 

S5 
6 
1 
8 

3 
10 
15 
5 

9 
12 
5 

11 

1 
2 

11 
4 

1 
4 

15 
9 

8 
5 

15 

10 
6 

12 
11 

7 
0 
8 
6 

13 
8 
1 

15 

2 
7 
1 
4 

5 
0 
9 

6 
12 
9 
3 

2 
1 

12 
7 

12 
5 
2 

14 

8 
2 
3 
5 

3 
15 
12 

12 
11 
7 

14 

13 
10 
6 

12 

7 
14 
12 
3 

5 
12 
14 
11 

15 
10 
5 

5 
9 
3 

10 

12 
6 
9 
0 

11 
12 
5 

11 

11 
1 
5 

12 

13 
3 
6 

9 
5 

10 
0 

0 
9 
3 
5 

4 
11 
10 
5 

12 
10 
2 
7 

0 
9 
3 

0 
3 
5 
6 

5 
11 
2 

14 

2 
15 
14 
2 

4 
14 
8 
2 

14 
8 
0 

7 
8 
0 

13 

10 
5 

15 
9 

8 
1 
7 

12 

15 
9 
4 

14 

9 
6 

14 

11 8 12 7 1 14 2 13 6 15 0 9 10 
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12 
10 
9 
4 

4 
13 
1 
6 

13 
1 
7 
2 

1 
15 
14 
3 

11 
0 
4 

11 

2 
15 
11 
1 

10 
4 

15 
2 

2 
11 
11 
13 

8 
13 
4 

14 

15 
2 
5 

12 

14 
7 

13 
8 

4 
8 
1 
7 

9 
7 
2 
9 

15 
4 

12 
1 

6 
10 
9 
4 

2 
12 
8 
5 

0 
9 
3 
4 

15 
3 

12 
10 

6 
9 

12 
15 

8 
1 
7 

10 

11 
7 

14 
8 

S6 
8 
5 
3 

10 

S7 
13 
10 
14 
7 

S8 
1 
4 
2 

13 

0 
6 
7 

11 

3 
14 
10 
9 

10 
12 
0 

15 

13 
1 
0 

14 

12 
3 

15 
5 

9 
5 
6 

12 

3 
13 
4 
1 

9 
5 
6 
0 

3 
6 

10 
9 

4 
14 
10 
7 

7 
12 
8 

15 

14 
11 
13 
0 
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0 
1 
6 

5 
2 
0 

14 

5 
0 

15 
3 

7 
11 
13 
0 

10 
15 
5 
2 

0 
14 
3 
5 

5 
3 

11 
8 
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8 
9 
3 

12 
9 
5 
6 

11 
8 
6 

13 

1 
6 
2 

12 

7 
2 
8 

11 
Example: For the first round, we obtain as the output of the eight S boxes: 
K, + E(R0) = 011000 010001 011110 111010 100001 100110 010100 100111. 
SI(Bl)S2(B2)S3(B3)S4(B4)Ss(B5)S6(B6)S7(B7)S8(B8) = 0101 1100 1000 0010 1011 0101 1001 0111 
The final stage in the calculation of/ is to do a permutation P of the S-box output to obtain the final value 
of/: 

f=P(S1(Bl)S2(B2)...S8(Bs)) 
The permutation P is defined in the following table. P yields a 32-bit output from a 32-bit input by 
permuting the bits of the input block. 

ie 
29 
I 
5 
2 

32 
19 
22 

7 
12 
15 
18 
8 

27 
13 
11 

20 
28 
23 
31 
24 
3 

30 
4 

21 
17 
26 
10 
14 
9 
6 

25 
Example: From the output of the eight S boxes: 

S,(B1)S2(B2)S3(B3)S4(B4)SS(BS)S6(B^S7(B7)SS(BS) = 0101 1100 1000 0010 1011 0101 1001 0111 
we get 

/=00100011 0100 1010 1010 1001 1011 1011 
R,= L„ +/{R„ ,K,) 
= 1100 1100 0000 0000 1100 1100 1111 1111 
+ 0010 00110100 1010 1010 1001 1011 1011 
= 1110 m i oioo loioonooioi 01000100 
In the next round, we will have L2 = Ri, which is the block we just calculated, and then we must calculate 
R2 =L, +f(Ri, K^, and so on for 16 rounds. At the end of the sixteenth round we have the blocks Ll6 and 
R16. We then reverse the order of the two blocks into the 64-bit block 

and apply a final permutation IP"1 as defined by the following table: 
IP"1 

40 
39 
38 
37 
36 
35 

8 
7 
6 
5 
4 
3 

48 
47 
46 
45 
44 
43 

16 
15 
14 
13 
12 
11 

56 
55 
54 
53 
52 
51 

24 
23 
22 
21 
20 
19 

64 
63 
62 
61 
60 
59 

32 
31 
30 
29 
28 
27 



34 2 42 10 50 18 58 26 
33 1 41 9 49 17 57 25 

That is, the output of the algorithm has bit 40 of the preoutput block as its first bit, bit 8 as its second bit, 
and so on, until bit 25 of the preoutput block is the last bit of the output. 
Example: If we process all 16 blocks using the method defined previously, we get, on the 16th round, 
Ln = 0100 0011 0100 0010 0011 0010 0011 0100 
R16 = 0000 10100100 1100 1101 1001 10010101 
We reverse the order of these two blocks and apply the final permutation to 
R16L16 = 00001010 01001100 11011001 10010101 01000011 010000100011001000110100 
IF1 = 10000101 11101000 00010011 01010100 00001111 00001010 10110100 00000101 
which in hexadecimal format is 
85E813540F0AB405. 
This is the encrypted form of M = 0123456789ABCDEF: namely, C = 85E813540F0AB405. 
Decryption is simply the inverse of encryption, following the same steps as above, but reversing the order 
in which the subkeys are applied. 
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APPENDIX B 

NCLsignals.vhd 
NCL Library 

Library IEEE; 
use IEEE.std_logic_1164.all; 

package ncl_signals is 

type dual_rail_logic is 
record 

RAIL1 : std_logiC; 
RAILO : std_logic; 

end record; 

type dual_rail_logic_vector is array (NATURAL range <>) of dual_rail_logic; 

end ncl_signals; 

NCLgates.vhd 

invxO 

library ieee; 
use ieee.std_logic_1164.all; 

entity invxO is 
port(i: in std_logic; 

zb: out std_logic); 
end invxO; 

architecture archinvxO of invxO is 
begin 

invxO: process(i) 
begin 

if i = '0' then 
zb <= '1'; 

elsif i = '1' then 
zb <= ' 0' ; 

else 
zb <= not i; 

end if; 
end process; 

end archinvxO; 

-- thl2bx0 

library ieee; 
use ieee.std_logic_1164.all; 

entity thl2bx0 is 
port(a: in std_logic; 

b: in std_logic; 
zb: out std_logic); 

end th!2bx0; 



architecture archthl2bx0 of thl2bx0 is 
begin 

thl2bx0: process(a, b) 
begin 

if a = '0' and b = '0' then 
zb <= •!'; 

elsif a = '1' or b = '1' then 
zb <= '0'; 

-- else 
--zb <= a nor b; 

end if; 
end process; 

end archthl2bx0; 

th22dx0 

library ieee; 
use ieee.std_logic_1164.all; 

entity th22dx0 is 
port(a: in std_logic; 

b: in std_logic; 
rst: in std_logic; 
z: out std_logic ); 

end th22dx0; 

architecture archth22dx0 of th22dx0 is 
begin 

th22dx0: process(a, b, rst) 
begin 

if rst = '1' then -- reset 
z <= ' 1' ; 

elsif (a= '1' and b= '1') then 
z <= ' 1' ; 

elsif (a= '0' and b= '0') then 
z <= ' 0' ; 

end if; 
end process; 

end archth22dx0; 

th22nx0 

library ieee; 
use ieee.std_logic_1164.all; 

entity th22nx0 is 
port(a: in std_logic; 

b: in std_logic,-
rst: in std_logic; 
z: out std_logic ); 

end th22nx0; 

architecture archth22nx0 of th22nx0 is 
begin 

th22nx0: process(a, b, rst) 
begin 

if rst = '1' then -- reset 
z <= '0'; 

elsif (a= '1' and b= '1') then 
z <= '1'; 

elsif (a= '0' and b= '0') then 
z <= '0'; 

end i f; 
end process ,-

end archth22nx0,-
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-- th22x0 

library ieee; 
use ieee.std_logic_1164.all; 

entity th22x0 is 
port(a: in std_logic; 

b: in std_logic; 
z: out std_logic ); 

end th22x0; 

architecture archth22x0 of th22x0 is 
begin 

th22x0: process(a, b) 
begin 

if (a= •1' and b= •1') then 
z <= '1'; 

elsif (a= '0' and b= '0') then 
z <= '0' ; 

end if; 
end process; 

end archth22x0; 

-- th23x0 

library ieee; 
use ieee.std_logic_1164.all; 

entity th2 3x0 is 
port(a: in std_logic; 

b: in std_logic; 
c: in std_logic; 
z: out std_logic ); 

end th23x0; 

architecture archth23x0 of th23x0 is 
begin 

th23x0: process(a, b, c) 
begin 

if (a= '0' and b= '0' and c= '0') then 
z <= '0'; 

elsif (a= '1' and b= '1') or (b= '1' and c= '1') or (c= '1' and a= '1') then 
z <= •1'; 

end if; 
end process; 

end archth23x0; 

-- th23w2x0 

library ieee; 
use ieee.std_logic_1164.all; 

entity th23w2x0 is 
port(a: in std_logic; -- weight 2 

b: in std_logic; 
c: in std_logic; 
z: out std_logic ) ,-

end th23w2x0; 

architecture archth23w2x0 of th23w2x0 is 
begin 

th23w2x0: process(a, b, c) 
begin 

if (a= '0' and b= '0' and c= '0') then 
z <= '0'; 

elsif (a= '!' or (b= •1' and c= '!')) then 



Z <= '1' ; 
end if; -- else NULL 

end process; 
end archth23w2x0; 

-- th3 3x0 

library ieee; 
use ieee.std_logic_1164.all; 

entity th33x0 is 
port(a: in std_logic; 

b: in std_logic; 
c: in std_logic; 
z: out std_logic ); 

end th33x0; 

architecture archth33x0 of th33x0 is 
begin 

th33x0: process(a, b, c) 
begin 

if (a= '1' and b= '1' and c= '1') then 
z <= '1'; 

elsif (a= '0' and b= '0' and c= '0') then 
z <= '0' ; 

end if; -- else NULL 
end process; 

end archth33x0; 

--th34w2x0 

library ieee; 
use ieee.std_logic_1164.all; 

entity th34w2x0 is 
port(a: in std_logic; -- weight 2 

b: in std_logic; 
c: in std_logic; 
d: in std_logic; 
z: out std_logic ); 

end th34w2x0; 

architecture archth34w2x0 of th34w2x0 is 
begin 

th34w2x0: process(a, b, c, d) 
begin 

if (a= '0' and b= '0' and c= '0' and d = '0') then 
z <= '0'; 

elsif (a = '1' and b = '1') 
or (a = '1' and c = '1') 
or (a = '1' and d = '1') 
or (b = '1' and c = '1' and d = '1') then 

z <= •1'; 

end if; -- else NULL 
end process; 

end archth34w2x0; 

-- th44x0 

library ieee; 
use ieee.std_logic_1164.all; 

entity th44x0 is 
port(a 

b 
c 
d 

in std_logic; 
in std_logic; 
in std_logic; 
in std_logic; 



z: out std_logic ); 
end th44x0; 

architecture archth44x0 of th44x0 is 
begin 

th44x0: process(a, b, c, d) 
begin 

if (a= •1' and b= '1' and c= '1' and d= '1') then 
z <= '1'; 

elsif (a= '0' and b= '0' and c= '0' and d= '0') then 
z <= '0'; 

end if; -- else NULL 
end process; 

end archth44x0; 

NCLcomponents. vhd 
-- Package used for Completion Component 

Library IEEE; 
use IEEE.std_logic_1164.all; 

package tree_funcs is 

function log_u(L: integer; R: integer) return integer; -- ceiling of Log base R of 1 
function level_number(width, level, base: integer) return integer; -- bits to be combined 
on level of tree of width using base input gates 

end tree_funcs,-

package body tree_funcs is 

function log_u(L: integer; R: integer) return integer is 
variable temp: integer := 1; 
variable level: integer := 0; 
begin 

if L = 1 then 
return 0; 

end i f; 

while temp < L loop 
temp := temp * R; 
level := level + 1; 

end loop; 
return level; 

end; 

function level_number(width, level, base: integer) return integer is 
variable num: integer := width; 
begin 

if level /= 0 then 
for i in 1 to level loop 

if (log_u((num / base) + (num rem base), base) + i) = log_u(width, base) 
then 

num := (num / base) + (num rem base); 
else 

num := (num / base) + 1; 
end i f; 

end loop; 
end if; 
return num; 

end; 

end tree_funcs; 

-- Generic Completion Component 

library ieee; 
use ieee.std_logic_1164.all; 
use work.tree funcs.all; 



entity comp is 
generic (width : integer) ; 
port(a: IN std_logic_vector(width-1 downto 0) ; 

ko: OUT std_logic); 
end comp; 

architecture arch of comp is 

type completion is array (log_u (width, 4) downto 0, width-1 downto 0) of std_logic,-
signal comp_array: completion; 

component th22x0 
port(a: in std_logic; 

b: in std_logic; 
z: out std_logic); 

end component; 

component th33x0 
port(a: in std_logic; 

b: in std_logic; 
c: in std_logic; 
z: out std_logic); 

end component; 

component th44x0 
port(a: in std_logic; 

in std_logic; 
in std_logic; 
in std_logic; 
out std_logic), 

end component; 

begin 
RENAME: for i in 0 to width-1 generate 

comp_array (0, i) <= a(i); 
end generate; 

STRUCTURE: for k in 0 to log_u(width, 4)-l generate 
begin 
NOT_LAST: if level_number(width, k, 4) > 4 generate 
begin 
PRINCIPLE: for j in 0 to (level_number(width, k, 4) / 4)-l generate 
G4: th44x0 
port map(comp_array(k, j*4), comp_array(k, j*4+l), comp_array(k, j*4+2), comp_array(k, 
j*4+3), comp_array(k+1, j) ) ; 
end generate; 

LEFT_OVER_GATE: if log_u((level_number(width, k, 4) / 4) + (level_number(width, k, 4) rem 
4), 4) + k + 1/= log_u(width, 4) generate 
begin 
NEED22: if (level_number(width, k, 4) rem 4) = 2 generate 
G2: th22x0 
port map(comp_array(k, level_number(width, k, 4)-2), comp_array(k, level_number(width, k, 
4)-l), comp_array(k+1, (level_number(width, k, 4) / 4))); 
end generate 

NEED33: if (level_number(width, k, 4) rem 4) = 3 generate 
G3: th33x0 
port map(comp_array(k, level_number(width, k, 4)-3), comp_array(k, level_number(width, k, 
4)-2), comp_array(k, level_number(width, k, 4)-l), comp_array(k+1, (level_number(width, 
k, 4) / 4))) 
end generate 
end generate 

LEFT_OVER_SIGNALS: if (log_u((level_number(width, k, 4) / 4) + (level_number(width, k, 4) 
rem 4), 4) + k + 1 = log_u(width, 4)) and ((level_number(width, k, 4) rem 4) /= 0) 
generate 
begin 

RENAME_SIGNALS: for h in 0 to (level_number(width, k, 4) rem 4)-l generate 
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comp_array (k+1, (level_number(width, k, 4) / 4)+h) <= comp_array (k, level__number (width, 
k, 4)-l-h); 
end generate; 
end generate; 
end generate; 

LAST22: if level_number(width, k, 4) = 2 generate 
G2F: th22xO 
port map(comp_array (k, 0), comp_array (k, 1), ko) ,-
end generate; 

LAST33: if level_number(width, k, 4) = 3 generate 
G3F: th3 3x0 
port map(comp_array(k, 0), comp_array(k, 1), comp_array(k, 2), ko) ; 
end generate; 

LAST44: if level_number(width, k, 4) = 4 generate 
G4F: th44x0 
port map(comp_array(k, 0), comp_array(k, 1), comp_array(k, 2), comp_array(k, 3), ko) ; 
end generate; 
end generate; 

end arch; 

-- 1-bit Dual-Rail Register 

use work.ncl_signals.all; 
library ieee; 
use ieee.std_logic_1164.all; 

entity ncl_register_Dl is 
generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 
port(D: in dual_rail_logic; 

ki: in std_logic; 
rst: in std_logic; 
Q: out dual_rail_logic; 
ko: out std_logic); 

end ncl_register_Dl; 

architecture arch of ncl_register_Dl is 
signal Qbuf: dual_rail_logic; 

component th22nx0 
port (a, b, rst: IN std_logic; 

z: OUT std_logic); 
end component; 

component th22dx0 
port (a, b, rst: IN std_logic; 

z: OUT std_logic); 
end component; 

component thl2bx0 
port (a, b: IN std_logic; 

zb: OUT std_logic); 
end component; 

begin 
RstN: if initial_value = -4 generate 

R0: th22nx0 
port map(D.railO, ki, rst, Qbuf . railO) ,• 

Rl: th22nx0 
port map(D.raill, ki, rst, Qbuf.raill); 

end generate; 

Rstl: if initial_value = 1 generate 
R0: th22nx0 

port map(D.railO, ki, rst, Qbuf.railO); 

Rl: th22dx0 



port map(D.raill, ki, rst, Qbuf.raill); 
end generate; 
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RstO: if initial_value = 0 generate 
RO: th22dx0 

port map(D.railO, ki, rst, Qbuf.railO); 

Rl: th22nx0 
port map(D.raill, ki, rst, Qbuf.raill); 

end generate; 

Q <= Qbuf; 

COMP: thl2bx0 
port map(Qbuf.railO, Qbuf.raill, ko) ; 

end; 

-- Generic Length Dual-Rail Register 

use work.ncl_signals.all; 
library ieee; 
use ieee.std_logic_1164.all; 

entity ncl_register_D is 
generic(width: integer; 

initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 
port(D: in dual_rail_logic_vector(width-1 downto 0); 

ki: in std_logic; 
rst: in std_logic; 
Q: out dual_rail_logic_vector(width-1 downto 0); 
ko: out std_logic_vector(width-1 downto 0)); 

end ncl_register_D; 

architecture gen of ncl_register_D is 
component ncl_register_Dl 

generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 
port(D: in dual_rail_logic; 

ki: in std_logic; 
rst: in std_logic; 
Q: out dual_rail_logic; 
ko: out std_logic); 

end component; 

begin 
gen_reg: for i in 0 to D'length-1 generate 

REGi: ncl_register_Dl 
generic map(initial_value) 
port map(D(i), ki, rst, Q(i), ko(i)); 

end generate; 
end; 

-- 1-bit initreg without comp det 

use work.ncl_signals.all; 
library ieee; 
use ieee.std_logic_1164.all; 

entity ncl_register_Dll is 
generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 
port(D: in dual_rail_logic; 

ki: in std_logic,-
rst: in std_logic; 
Q: out dual_rail_logic); 

end ncl_register_Dll; 

architecture arch of ncl_register_Dll is 

component th22nx0 
port (a, b, rst: IN std_logic; 

z: OUT std_logic); 



end component; 

component th22dx0 
port (a, b, rst: IN std_logic; 

z: OUT std_logic); 
end component; 

begin 
RstN: if initial_value = -4 generate 

RO: th22nx0 
port map(D.railO, ki, rst, Q.railO); 

Rl: th22nx0 
port map(D.raill, ki, rst, Q.raill); 

end generate; 

Rstl: if initial_value = 1 generate 
RO: th22nx0 

port map(D.railO, ki, rst, Q.railO); 

Rl: th22dx0 
port map(D.raill, ki, rst, Q.raill); 

end generate; 

RstO: if initial_value = 0 generate 
RO: th22dx0 

port map(D.railO, ki, rst, Q.railO); 

Rl: th22nx0 
port map(D.raill, ki, rst, Q.raill); 

end generate; 

end; 

-- Generic Length initial register 

use work.ncl_signals.all; 
library ieee; 
use i e e e . s td_ logic_HS4 . a l l ; 

entity ncl_reg_Dinit is 
generic(width: integer; 

initial_value: integer ); -- 1=DATA1, 0=DATA0, -4=NULL 
port(D: in dual_rail_logic_vector(width-1 downto 0); 

ki: in std_logic; 
rst: in std_logic; 
Q: out dual_rail_logic_vector (width-1 downto 0) ) ,• 

end ncl_reg_Dinit; 

architecture gen of ncl_reg_Dinit is 
component ncl_register_Dll 

generic(initial_value: integer := -4); -- 1=DATA1, 0=DATA0, -4=NULL 
port(D: in dual_rail_logic; 

ki: in std_logic; 
rst: in std_logic; 
Q: out dual_rail_logic); 

end component; 

begin 
gen_reg: for i in 0 to D'length-1 generate 

REGi: ncl_register_Dll 
generic map(initial_value) 
port map(D(i), ki, rst, Q(i)); 

end generate; 
end; 
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VHDL Files Used for the Thesis 

Asynchronous DES Algorithm: 
desl.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use work.ncl_signals.all; 

entity desl is 
Port ( pt : 

key 
ct : 
rst 

end desl; 

in dual_rail_logic_vector (1 to 64); 
in dual_rail_logic_vector (1 to 64), 
out dual_rail_logic_vector (1 to 64) 
: in STD LOGIC); 

architecture Behavioral of desl is 
signal pti,keyi,keycpto,cti : dual_rail_logic_vector(1 to 64); 
signal LI,L2,L3,L4,L5,L6,L7,L8,L9,L10,Lll,L12,L13,L14,L15,L16, 

Lli,L2i,L3i,L4i,L5i,L6i,L7i,L8i,L9i,L10i,Llli,L12i,L13i, 
L14i , L15i,L16i,Rl,R2,R3,R4,R5,R6,R7,R8,R9,RIO,Rll,R12, 
R13,R14,R15,R16,Rli,R2i,R3i,R4i,R5i,R6i,R7i,R8i,R9i,R10i, 
Rlli,R12i,R13i,R14i,R15i,R16i : dual_rail_logic_vector(1 to 32); 

signal CI,C2,C3,C4,C5,C6,C7,C8,C9,CIO,Cll,C12,C13,C14,C15,C16, 
Cli,C2i,C3i,C4i,C5i,C6i,C7i,C8i,C9i,C10i,Clli,C12i,C13i, 
C14i,C15i,C16i,Dl,D2,D3,D4,D5,D6,D7,D8,D9,D10,Dll,D12,D13, 
D14,D15,D16,Dli,D2 i,D3 i,D4 i,D5i,D6i,D7i,D8i,D9i,DIOi,Dili, 
D12i,D13i,D14i,D15i,D16i : dual_rail_logic_vector(1 to 28); 

signal kl, k2,k3,k4,k5,k6,k7,k8,k9,klO,kll,kl2,kl3,kl4,kl5,kl6,kl7 : std_logic; 
component initreg 

port ( DTI : in dual_rail_logic_vector(1 to 64); 
in dual_rail_logic_vector(1 to 64); 

: in std_logic; 
in std_logic; 
out dual_rail_logic_vector(1 to 64); 
out dual_rail_logic_vector(1 to 64)); 

DT2 
rst 
ki 
Ql 
Q2 

end component; 
component regandcompdetltolS is 

Port ( DTI 
DT2 
DT3 
DT4 
rst 
ki : 
Ql 
Q2 
Q3 
Q4 

in dual_rail_logic_vector(1 to 32) 
in dual_rail_logic_vector(1 to 32) 
in dual_rail_logic_vector(1 to 28) 
in dual_rail_logic_vector(1 to 28) 
in STD_LOGIC; 

in STD_LOGIC; 
out dual_rail_logic_vector(1 to 32) 
out dual_rail_logic_vector(1 to 32) 
out dual_rail_logic_vector(1 to 28) 
out dual_rail_logic_vector(1 to 28) 
out std_logic); ko 

end component; 
component regcompdet 

port ( DTI : in dual_rail_logic_vector(1 to 32); 
DT2 : in dual_rail_logic_vector(1 to 32); 
rst : in std_logic; 
ki : in std_logic; 
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Ql : out dual_rail_logic_vector(1 to 32); 
Q2 : out dual_rail_logic_vector(1 to 32); 
ko : out std_logic); 

end component; 
component finalregandcompdet 

port ( D : in dual_rail_logic_vector(1 to 64); 
rst : in std_logic,-
ki : in std_logic; 
Q : out dual_rail_logic_vector(1 to 64); 
ko : out std_logic); 

end component; 
component initround 

port ( pt : in dual_rail_logic_vector(1 to 64); 
key : in dual_rail_logic_vector(1 to 64); 
L : out dual_rail_logic_vector(1 to 32); 
R : out dual_rail_logic_vector(1 to 32) ; 
C : out dual_rail_logic_vector(1 to 28) ; 
D : out dual_rail_logic_vector(1 to 28)); 

end component; 
component roundltol4sl 

port ( Li : in dual_rail_logic_vector(1 to 32); 
Ri : in dual_rail_logic_vector(1 to 32); 
Ci : in dual_rail_logic_vector(1 to 28); 
Di : in dual_rail_logic_vector(1 to 28); 
Lo : out dual_rail_logic_vector(1 to 32) 
Ro : out dual_rail_logic_vector(1 to 32) 
Co : out dual_rail_logic_vector(1 to 28) 
Do : out dual_rail_logic_vector(1 to 28) 

end component; 
component roundltol4s2 

port ( Li : in dual_rail_logic_vector(1 to 32); 
in dual_rail_logic_vector(1 to 32); 
in dual_rail_logic_vector(1 to 28); 
in dual_rail_logic_vector(1 to 28); 
out dual_rail_logic_vector(1 to 32) 
out dual_rail_logic_vector(1 to 32) 
out dual_rail_logic_vector(1 to 28) 
out dual_rail_logic_vector(1 to 28 

Ri 
Ci 
Di 
Lo 
Ro 
Co 
Do 

end component; 
component round 

port ( Li : 
Ri 
Ci 
Di 
Lo 
Ro 

end component; 
component finalround 

port ( L16 : in dual_rail_logic_vector(1 to 32); 
R16 : in dual_rail_logic_vector(1 to 32 
ct : out dual_rail_logic_vector(1 to 64 

end component; 

)); 

in dual_rail_logic_vector(1 to 32); 
in dual_rail_logic_vector(1 to 32) 
in dual_rail_logic_vector(1 to 28) 
in dual_rail_logic_vector(1 to 28) 
out dual_rail_logic_vector(1 to 32 
out dual_rail_logic_vector(1 to 32 

begin 

pti <= pt; keyi <= key; 
regO : initreg port map(pti,keyi,rst,kl,pto,keyo); 
roundO : initround port map (pto, keyo, Lli,Rli,Cli, Dli) ,-
regl : regandcompdetltolS port map(Lli,Rli,Cli,Dli,rst, 
roundl : roundltol4sl port map(L1,R1,C1,D1,L2i,R2i,C2i, 
reg2 : regandcompdetltolS port map(L2i,R2i,C2i,D2i,rst, 
round2 : roundltol4s2 port map(L2,R2,C2,D2,L3i,R3i,C3i, 
reg3 : regandcompdetltolS port map(L3i,R3i,C3i,D3i,rst, 
round3 : roundltol4s2 port map(L3,R3,C3,D3,L4i,R4i,C4i, 
reg4 : regandcompdetltolS port map(L4i,R4i,C4i,D4i,rst, 
round4 : roundltol4s2 port map(L4,R4,C4,D4,L5i,R5i,C5i, 
reg5 : regandcompdetltolS port map(L5i,R5i,C5i,D5i,rst, 
round5 : roundltol4s2 port map(L5,R5,C5,D5,L6i,R6i,C6i, 
reg6 : regandcompdetltolS port map(L6i,R6i,C6i,D6i,rst, 
round6 : roundltol4s2 port map(L6,R6,C6,D6,L7i,R7i,C7i, 
reg7 : regandcompdetltolS port map(L7i,R7i,C7i,D7i,rst, 

k2,Ll,Rl,Cl,Dl,kl) 
D2i) ; 
k3,L2,R2,C2,D2,k2) 
D3i) ; 
k4 , L3 , R3 , C3 , D3 , k3 ) 
D4i) ; 
k5 , L4 , R4 , C4 , D4 , k4 ) 
D5i) ; 
k6,L5,R5,C5,D5,k5) 
D6i) ; 
k7,L6,R6,C6,D6,k6) 
D7i) ; 
k8,L7,R7,C7,D7,k7) 
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round7 : roundltol4s2 port map(L7,R7,C7,D7,L8i,R8i,C8i,D8i); 
reg8 : regandcompdetltolS port map(L8i,R8i,C8i,D8i,rst,k8,L8,R8,C8,D8,k8); 
round8 : roundltol4sl port map(L8,R8,C8.D8,L9i,R9i, C9i, D9i) ; 
reg9 : regandcompdetltolS port map(L9i,R9i,C9i,D9i,rst,klO,L9,R9,C9,D9,k9); 
round9 : roundltol4s2 port map(L9.R9,C9,D9,L10i,R10i,ClOi,DIOi); 
reglO : regandcompdetltolS port map(L10i,R10i,C10i,D10i, rst,kll,L10,R10,C10,D10,klO) 
roundlO : roundltol4s2 port map(L10,RIO,CIO,D10,Llli,Rlli,Clli,Dili); 
regll : regandcompdetltol5 port map(Llli,Rlli,Clli,Dili,rst,kl2,L11,R11,Cll,Dll,kll) 
roundll : roundltol4s2 port map(Lll,Rll,C11,D11,L12i,R12i, C12i, D12i) ; 
regl2 : regandcompdetltolS port map(L12i,R12i,C12i,D12i, rst,kl3,L12.R12,C12,D12,kl2) 
roundl2 : roundltol4s2 port map(L12,R12,C12,D12,L13i,R13i,C13i,D13i); 
regl3 : regandcompdetltolS port map(L13i,R13i,C13i,D13i,rst,kl4,L13,R13,C13,D13,kl3) 
roundl3 : roundltol4s2 port map(L13,R13,C13,D13,L14i,R14i,C14i,D14i); 
regl4 : regandcompdetltolS port map(L14i,R14i,C14i,D14i,rst,kl5,L14,R14,C14,D14,kl4) 
roundl4 : roundltol4s2 port map(L14,R14,C14,D14,L15i,R15i,C15i,D15i); 
regl5 : regandcompdetltolS port map(L15i,R15i,C15i,D15i,rst,kl6,L15,R15,C15,D15,kl5) 
roundlS : round port map(L15,R15,C15,D15,L16i,R16i); 
regl6 : regcompdet port map(L16i,R16i,rst,kl7,L16,R16,kl6); 
roundl6 : finalround port map(R16,L16,cti) ; 
regl7 : f inalregandcorapdet port map(cti,rst,kl7,ct,kl7); 

end Behavioral ; 

initreg.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use work.ncl_signals.all; 

entity initreg is 
Port ( DTI 

DT2 
rst 
ki 
Ql 
Q2 

end initreg; 

in dual_rail_logic_vector(1 to 64) 
in dual_rail_logic_vector(1 to 54) 
in STD_LOGIC ; 

in STD_LOGIC; 
out dual_rail_logic_vector(1 to 64); 
out dual_rail_logic_vector(1 to 64)), 

architecture Behavioral of initreg is 

component ncl_reg_Dinit 
generic(width: integer; 

initial_value: integer ); -- 1=DATA1, 0=DATA0, -4=NULL 
port( D: in dual_rail_logic_vector(width-1 downto 0); 

ki: in std_logic; 
rst: in std_logic; 
Q: out dual_rail_logic_vector(width-1 downto 0)); 

end component; 

begin 
regl : ncl_reg_Dinit 

generic map(width => 64,initial_value => -4) 
port map(DTl,ki,rst,Ql) ,• 

reg2 : ncl_reg_Dinit 
generic map(width => 64,initial_value => -4) 
port map(DT2,ki,rst,Q2); 

end Behavioral; 

regandcompdet 1 to 15. vhd 
library IEEE; 
use IEEE.STD_L0GIC_1164.ALL; 
use IEEE. STD_LOGIC_ARITH. ALL; 
use IEEE . STD_LOGIC_UNSIGNED . ALL ; 
use work.ncl_signals.all; 

entity regandcompdetltolS is 
Port ( DTI : in dual_rail_logic_vector(1 to 32); 



DT2 : in dual_rail_logic_vector(1 to 32) 
DT3 : in dual_rail_logic_vector(1 to 28) 
DT4 : in dual_rail_logic_vector(1 to 28) 
rst : in STD_LOGIC; 
ki : in STD_LOGIC; 

Ql : out dual_rail_logic_vector(1 to 32) 
Q2 : out dual_rail_logic_vector(1 to 32) 
Q3 : out dual_rail_logic_vector(1 to 28) 
Q4 : out dual_rail_logic_vector(1 to 28) 
ko : out std_logic) ,-

end regandcompdetltolS; 

architecture Behavioral of regandcompdetltolS is 
signal kol,ko2 : std_logic_vector(31 downto 0) ; 
signal ko3,ko4 : std_logic_vector(27 downto 0) ; 
signal aol,ao2,ao3,ao4 : std_logic; 
component ncl_register_D 

generic(width : integer;initial_value: integer); 
port(D: in dual_rail_logic_vector(width-1 downto 0); 

ki: in std_logic; 
rst: in std_logic; 
Q: out dual_rail_logic_vector(width-1 downto 0) , 
ko : out std_logic_vector(width-1 downto 0)); 

end component; 
component comp 

generic(width : integer); 
portta: IN std_logic_vector(width-1 downto 0); 

ko: OUT std_logic); 
end component; 
component th44x0 

port(a: in std_logic; 
b: in std_logic; 
c: in std_logic; 
d: in std_logic; 

z: out std_logic ); 
end component; 
begin 
regl : ncl_register_D 

generic map(width => 3 2,initial_value => -4) 
port map(DTl,ki,rst,Ql,kol); 

cdl : comp 
generic map(width => 32) 
port map(kol, aol) ,• 

reg2 : nclregisterD 
generic map(width => 32,initial_value => -4) 
port map(DT2,ki,rst,Q2,ko2); 

cd2 : comp 
generic map(width => 32) 
port map (ko2, ao2) ,-

reg3 : ncl_register_D 
generic map(width => 2 8,initial_value => -4) 
port map(DT3,ki,rst,Q3,ko3); 

cd3 : comp 
generic map(width => 28) 
port map(ko3,ao3); 

reg4 : ncl_register_D 
generic map(width => 28,initial_value => -4) 
port map(DT4,ki,rst,Q4,ko4); 

cd4 : comp 
generic mapfwidth => 28) 
port map(ko4,ao4); 

g4 : th44x0 port map(aol,ao2,ao3,ao4,ko) ; 
end Behavioral; 

regcompdet.vhd 
library IEEE; 
use IEEE.STD_L0GIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE . STD_LOGIC_UNSIGNED . ALL ; 
use work.ncl_signals.all; 
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entity regcompdet is 
port ( DTI : in dual_rail_logic_vector(1 to 32); 

DT2 : in dual_rail_logic_vector(1 to 32) 
rst : in std_logic; 

in std_logic,-
out dual_rail_logic_vector(1 to 32) 
out dual_rail_logic_vector(1 to 32) 
out std_logic); 

ki 
Ql 
Q2 
ko 

end regcompdet; 

architecture Behavioral of regcompdet is 
signal kol,ko2 : std_logic_vector(31 downto 0) ; 
signal aol,ao2 : std_logic; 
component ncl_register_D 

generic(width : integer;initial_value: integer); 
port(D: in dual_rail_logic_vector(width-1 downto 0); 

ki: in std_logic; 
rst: in std_logic; 
Q: out dual_rail_logic_vector(width-1 downto 0) ; 
ko : out std_logic_vector(width-1 downto 0) ) ; 

end component; 
component comp 

generic(width : integer); 
port(a: IN std_logic_vector(width-1 downto 0); 

ko: OUT std_logic); 
end component; 
component th2 2x0 

port(a: in stdlogic; 
b: in std_logic; 
z: out std_logic ); 

end component; 

begin 
regl : ncl_register_D 

generic map(width => 32,initial_value => -4) 
port map(DTl,ki,rst,Ql,kol); 

cdl : comp 
generic map(width => 32) 
port map(kol,aol); 

reg2 : ncl_register_D 
generic map(width => 32,initial_value => -4) 
port map(DT2,ki,rst,Q2,ko2); 

cd2 : comp 
generic map(width => 32) 
port map(ko2,ao2); 

g3 : th22x0 port map(aol, ao2,ko) ,-
end Behavioral; 

finalregandcompdet.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use work.ncl_signals.all; 

entity finalregandcompdet is 
port ( D : in dual_rail_logic_vector(1 to 64); 

rst : in std_logic; 
ki : in std_logic; 
Q : out dual_rail_logic_vector(1 to 64); 
ko : out std_logic) ,-

end finalregandcompdet; 

architecture Behavioral of finalregandcompdet is 
signal kol : std_logic_vector(63 downto 0); 
component ncl_register_D 

generic(width : integer;initial_value: integer); 
port(D: in dual_rail_logic_vector(width-1 downto 0); 

ki: in std_logic; 
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rst: in std_logic,-
Q: out dual_rail_logic_vector(width-1 downto 0); 
ko : out std_logic_vector (width-1 downto 0) ) ,-

end component; 
component comp 

generic(width : integer); 
port(a: IN std_logic_vector(width-1 downto 0) ; 

ko: OUT std_logic) ,-
end component; 
begin 
regl : ncl_register_D 

generic map(width => 64,initial_value => -4) 
port map(D,ki,rst,Q,kol); 

cdl : comp 
generic map(width => 54) 
port map(kol,ko); 

end Behavioral; 

initround.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE . STD_LOGIC_ARITH . ALL ; 
use IEEE. STD_LOGIC_UNSIGNED. ALL; 
use work.ncl_signals.all; 

entity initround is 
Port ( pt : in dual_rail_logic_vector(1 to 64); 

key : in dual_rail_logic_vector(1 to 64); 
L : out dual_rail_logic_vector(1 to 32) ; 
R : out dual_rail_logic_vector(1 to 32); 

out dual_rail_logic_vector(1 to 28); 
out dual_rail_logic_vector(1 to 28)); 

C 
D 

end initround 

architecture Behavioral of initround is 
signal L0,R0,f,Ro : dual_rail_logic_vector(1 to 32); 
signal CO,DO,CI,Dl : dual_rail_logic_vector(1 to 28); 
signal ao,bo : dual_rail_logic_vector(1 to 48); 
signal el,e2,e3,e4,e5,e6,e7,e8 : dual_rail_logic_vector (1 to 6) ,-
signal yl,y2,y3 , y4,y5,y6,y7,y8 : dual_rail_logic_vector(1 to 4) ; 
component ip 

port( pt : in dual_rail_logic_vector(1 to 64); 
L0 : out dual_rail_logic_vector(1 to 32); 
R0 : out dual_rail_logic_vector (1 to 32)),-

end component; 
component pel 

port( key : in dual_rail_logic_vector(1 to 64); 
CO : out dual_rail_logic_vector(1 to 28); 
DO : out dual_rail_logic_vector(1 to 28)); 

end component; 
component shifterl 

port ( CO : in dual_rail_logic_vector(1 to 28); 
DO : in dual_rail_logic_vector(1 to 28); 
CI : out dual_rail_logic_vector(1 to 28); 
Dl : out dual_rail_logic_vector(1 to 28)); 

end component; 
component expl 

port ( R0 : in dual_rail_logic_vector(1 to 32); 
bo : out dual_rail_logic_vector(1 to 48)); 

end component; 
component pc2 

port( CI : in dual_rail_logic_vector(1 to 28); 
Dl : in dual_rail_logic_vector(1 to 28); 
ao : out dual_rail_logic_vector(1 to 48)); 

end component; 
component xordll 

port ( ao : in dual_rail_logic_vector(1 to 48); 
bo : in dual_rail_logic_vector(1 to 48) ; 
el,e2,e3,e4,e5,e6,e7,e8 : out dual_rail_logic_vector(1 to 6)), 

end component; 
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in dual_rail_logic_vector(1 to 6); 
: out dual_rail_logic_vector(1 to 4)) 

component s1 
port ( b : in dual_rail_logic_vector(1 to 6); 

s : out dual_rail_logic_vector(1 to 4) 
end component; 
component s2 

port ( b : 
s 

end component; 
component S3 

port ( b : in dual_rail_logic_vector (1 to 6) ,• 
s : out dual_rail_logic_vector(1 to 4)) 

end component; 
component s4 

in dual_rail_logic_vector(1 to 6); 
out dual_rail_logic_vector(1 to 4)) 

port ( b 
s 

end component; 
component s5 

port ( b : 
S : 

end component; 
component s6 

port ( b : 
s 

end component; 
component s7 

port ( b 
s 

end component; 
component s8 

port ( b : 
s : 

end component; 
component fp 

port ( yl,y2,y3,y4,y5,y6,y7,y8 : in dual_rail_logic_vector(1 to 4) 
f : out dual_rail_logic_vector(1 to 32)); 

end component; 
component xordl2 

port ( ao : in dual_rail_logic_vector(1 to 32); 
bo : in dual_rail_logic_vector(1 to 32); 
z : out dual_rail_logic_vector(1 to 32)); 

end component; 

in dual_rail_logic_vector(1 to 6); 
out dual_rail_logic_vector(1 to 4)) 

in dual_rail_logic_vector(1 to 6); 
out dual_rail_logic_vector(1 to 4)), 

in dual_rail_logic_vector(1 to 6); 
out dual_rail_logic_vector(1 to 4); 

in dual_rail_logic_vector(1 to 6); 
out dual_rail_logic_vector(1 to 4)) 

begin 
compl .-
L <= RO, 
COmp2 : 
COmp3 : 
C <= CI, 
comp4 
compS 
comp6 
comp7 
comp8 
comp9 
coraplO 
compll 
compl2 
compl3 
compl4 
compl5 
complS 

ip port map(pt,L0,RO); 

pel port map (key, CO,DO) ,-
shifterl port map(CO,DO,CI,Dl); 
r D <= Dl; 
expl port map(R0,bo); 
pc2 port map(Cl,Dl,ao); 
xordll port map(ao,bo,el,e2,e3,e4 , e5, e6, e7, e8) , 
si port map(el,yl); 
s2 port map(e2,y2); 
s3 port map(e3,y3); 
s4 port map(e4,y4) 
s5 port map(e5,y5) 
s6 port map(eS,y6) 
s7 port map(e7,y7) 
s8 port map(e8,y8) 
fp port map(yl,y2,y3,y4 
xordl2 port map(f,L0,R) 

y5, y6, y7, y8, f) ; 

end Behavioral; 

ip.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE . STD_LOGIC_ARITH . ALL ; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use work.ncl_signals.all; 



entity ip is 
port( pt : in dual_rail_logic_vector(1 to 64); 

LO : out dual_rail_logic_vector(1 to 32) ; 
RO : out dual_rail_logic_vector(1 to 32)); 

end ip; 

architecture Behavioral of ip is 

begin 
L0(l)<=pt(58) ;L0 (2) <=pt (50) ; LO (3) <=pt (42) ; LO (4) <=pt (34) ; LO (5) <=pt (26) ; 
L0(6)<=pt(18);L0(7)<=pt (10);LO(8)<=pt(2);LO(9)<=pt(60);L0(10)<=pt(52); 
L0(ll)<=pt(44) ;L0(12)<=pt(36) ;L0(13)<=pt(28) ;L0(14)<=pt(20) ; 
L0(15)<=pt(12);L0(16)<=pt(4);L0(17)<=pt(62);L0(18)<=pt(54); 
L0(19)<=pt(46) ;L0(20)<=pt(38) ; L0 (21) <=pt (30) ;L0 (22) <=pt (22) ; 
L0(23)<=pt(14) ;L0(24)<=pt(6) ; L0 (25) <=pt (64) ;L0 (26) <=pt (56) ; 
L0(27)<=pt(48) ;L0(28)<=pt(40) ; L0 (29) <=pt (32) ; L0 (30) <=pt (24) ; 
L0(31)<=pt(16) ;L0(32)<=pt(8) ; 
R0(l)<=pt(57) ;R0(2)<=pt (4 9) ;R0 (3 ) <=pt (41) ;R0 (4) <=pt (33) ;R0 (5) <=pt (25) ; 
R0(6)<=pt(17) ;R0(7)<=pt (9) ;R0 (8) <=pt (1) ;R0 (9) <=pt (59) ;R0 (10) <=pt (51) ; 
R0(ll)<=pt(43);R0(12)<=pt(35);R0(13)<=pt(27);R0(14)<=pt(19); 
R0(15)<=pt(ll);R0(16)<=pt(3);R0(17)<=pt(61);R0(18)<=pt(53); 
R0(19)<=pt(45) ;R0(20)<=pt(37) ;R0 (21) <=pt (29) ;R0 (22) <=pt (21) ; 
R0(23)<=pt(13);R0(24)<=pt(5);R0(25)<=pt(63);R0(26)<=pt(55); 
R0(27)<=pt(47) ;R0 (28)<=pt(39) ;R0 (29) <=pt (31) ;R0 (30) <=pt (23) ; 
R0(31)<=pt{15) ;R0(32)<=pt(7) ; 
end Behavioral; 

PCl.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use work.ncl_signals.all; 

entity pel is 
port( key : in dual_rail_logic_vector(1 to 64); 

CO : out dual_rail_logic_vector(1 to 28) ; 
DO : out dual_rail_logic_vector(1 to 28)); 

end pel; 

architecture Behavioral of pel is 
signal XX : dual_rail_logic_vector(1 to 56); 
begin 

XX(l)<=key(57) ;XX (2) <=key (4 9) ;XX (3) <=key (41) ;XX (4) <=key (33) ; 
XX(5 )<=key (25 ) ;XX(6 )<=key (17 ) ;XX(7 )<=key (9 ) ;XX(8 )<=key (1 ) ; 
XX(9 )<=key(58 ) ;XX(10)<=key(50 ) ;XX(11)<=key(42 ) ;XX(12)<=key(34 ) ; 
XX(13)<=key(26 ) ;XX(14)<=key(18 ) ;XX(15)<=key(10 ) ;XX(16)<=key(2 ) ; 
XX(17)<=key(59) ;XX(18)<=key(51) ;XX(19)<=key(43) ;XX(20)<=key(3 5 ) ; 
XX(21)<=key(27 ) ;XX(22)<=key(19 ) ;XX(23)<=key(11 ) ;XX(24)<=key(3 ) ; 
XX(25)<=key (60 ) ;XX(26)<=key (52 ) ;XX(27)<=key (44 ) ;XX(28)<=key (36 ) ; 
XX(29)<=key(63) ;XX (30) <=key (55) ;XX(31) <=key (47) ;XX (32) <=key (3 9) ; 
XX(33)<=key(31 ) ;XX(34)<=key(23 ) ;XX(35)<=key(15 ) ;XX(36)<=key(7 ) ; 
XX(37)<=key(62) ;XX (3 8) <=key (54) ;XX(3 9) <=key (46) ;XX (40) <=key (38) ; 
XX(41)<=key(30) ;XX (42) <=key (22) ;XX(43)<=key(14) ,-XX (44) <=key (6) ; 
XX(45)<=key(61) ;XX (46) <=key (53) ;XX(47) <=key (45) ;XX (48) <=key (37) ; 
XX(49)<=key(29) ;XX (50) <=key (21) ;XX(51) <=key (13) ;XX (52) <=key (5) ; 
XX(53)<=key(28 ) ;XX(54)<=key(20 ) ;XX(55)<=key(12 ) ;XX(56)<=key(4 ) ; 
C0<=XX(1 t o 2 8 ) ; D0<=XX(29 t o 5 6 ) ; 

end B e h a v i o r a l ; 

shifter l.vhd 
library IEEE; 
use IEEE . STD_LOGIC_1164 . ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use work.ncl_signals.all; 

entity shifterl is 



port ( CO : in dual_rail_logic_vector(1 to 28); 
DO : in dual_rail_logic_vector(l to 28); 
CI : out dual_rail_logic_vector(1 to 28); 
Dl : out dual_rail_logic_vector(1 to 28)) 

end shifterl; 

architecture Behavioral of shifterl is 

begin 
C1(1)<=C0(2) ;C1(2 
C1(6)<=C0(7) ;C1(7 
C1(11)<=C0(12);C1 
C1(15)<=C0(16) ;C1 
C1(19)<=C0(20) ;C1 
C1(23)<=C0(24) ;C1 
C1(27)<=C0(28) ;C1 
D1(1)<=D0(2) ;D1(2 
D1(6)<=D0(7);D1(7 
D1(11)<=D0(12);D1 
D1(15)<=D0(16);D1 
D1(19)<=D0(20) ;D1 
D1(23)<=D0(24);D1 
D1(27)<=D0(28) ;D1 
end Behavioral; 

) < = C 0 ( 3 ) ; C 1 ( 3 ) < 
) < = C 0 ( 8 ) ; C 1 ( 8 ) < 
( 1 2 ) < 
( 1 6 ) < 
( 2 0 ) < 
( 2 4 ) < 
( 2 8 ) < 

= C 0 ( 1 3 ) 
= C 0 ( 1 7 ) 
= C 0 ( 2 1 ) 
= C 0 ( 2 5 ) 
= C 0 ( 1 ) ; 

; C 1 
; C 1 
; C 1 
; C 1 

) < = D 0 ( 3 ) ; D 1 ( 3 ) < 
) < = D 0 ( 8 ) ; D 1 ( 8 ) < 
( 1 2 ) < 
( 1 6 ) < 
( 2 0 ) < 
( 2 4 ) < 
( 2 8 ) < 

= D 0 ( 1 3 ) 
= D 0 ( 1 7 ) 
= D 0 ( 2 1 ) 
= D 0 ( 2 5 ) 
= D 0 ( 1 ) ; 

;D1 
;D1 
;D1 
; D 1 

=C0(4) ;C1(4)<=C0(5) ;C1 (5) <=C0 (6) ; 
=C0(9);C1(9)<=CO(10);C1(10)<=C0(11) 
(13)<=C0(14);C1(14)<=C0(15) 
(17)<=C0(18);C1(18)<=C0(19), 
(21)<=C0(22) ;C1(22)<=C0(23) 
(25) <=C0 (26) ;C1 (26) <=C0 (27) 

=D0(4) ;D1(4)<= DO (5) ;D1 (5) <=D0 (6) ; 
=D0(9);D1(9)<=D0(10);D1(10)<=D0(11) 
(13)<=D0(14) ;D1(14)<=D0(15) 
(17)<=D0(18);D1(18)<=D0(19) 
(21)<=D0(22) ;D1(22)<=D0(23) 
(25)<=D0(26) ;D1(26)<=D0(27) 

expl.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE . STD_LOGIC_UNSIGNED . ALL ; 
use work.ncl_signals .all,-

entity expl is 
port ( R0 : in dual_rail_logic_vector(1 to 32); 

bo : out dual_rail_logic_vector(1 to 48)); 
end expl; 

architecture Behavioral of expl is 

begin 
bo(l) <=R0 (32) ;bo(2) <=R0 (1) ;bo(3) <=R0 (2) ;bo(4) <=R0 (3) ;bo(5) <=R0 (4) ; 
bo(6)<=R0(5) ;bo(7)<=R0(4) ;bo(8) <=R0 (5) ;bo (9) <=R0 (6) ;bo (10) <=R0 (7) ; 
bo(ll)<=R0(8);bo(12)<=R0(9);bo(13)<=R0(8);bo(14)<=R0(9);bo(15)<=R0(10) 
bo(16)<=R0(11);bo(17)<=R0(12);bo(18)<=R0(13);bo(19)<=R0(12) 
bo(20)<=R0(13);bo(21)<=R0(14);bo(22)<=R0(15);bo(23)<=R0(16) 
bo(24) <=R0 (17) ;bo(25) <=R0 (16) ;bo(26) <=R0 (17) ;bo(27) <=R0 (18) 
bo(28) <=R0 (19) ;bo(29) <=R0 (20) ;bo(30) <=R0 (21) ;bo(31) <=R0 (20) 
bo(32) <=R0 (21) ;bo(33) <=R0 (22) ;bo(34) <=R0 (23) ;bo(35) <=R0 (24) 
bo(3 6)<=R0(25) ;bo(37)<=R0(24) ;bo (38) <=R0 (25) ;bo (39) <=R0 (26) 
bo(40) <=R0 (27) ;bo(41) <=R0 (28) ;bo(42) <=R0 (29) ;bo(43) <=R0 (28) 
bo(44) <=R0 (29) ;bo(45) <=R0 (30) ;bo(46) <=R0 (31) ;bo(47) <=R0 (32) 
bo(48)<=R0(l) ; 
end Behavioral; 

pc2.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE . STD_LOGIC_ARITH . ALL ; 
use IEEE. STD_LOGIC_UNSIGNED.ALL; 
use work.ncl_signals.all; 

entity pc2 is 
port( CI 

Dl 
ao 

end pc2 ,• 

in dual_rail_logic_vector(1 to 28); 
in dual_rail_logic_vector(1 to 28); 
out dual_rail_logic_vector (1 to 48) ', 

architecture Behavioral of pc2 is 
signal YY : dual_rail_logic_vector(1 to 56) 
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begin 
YY(1 to 28) <= Cl(l to 28); YY(29 to 56) <= Dl(l to 28); 

ao(l)<=YY(14) ;ao(2)<=YY(17) ,-ao (3) <=YY(11) ;ao (4) <=YY(24) ,-ao (5) <=YY(1) ,-
ao(6)<=YY(5) ,-ao (7) <=YY(3) ;ao (8) <=YY(28) ,-ao (9) <=YY(15) ;ao(10) <=YY (6) ; 
ao(ll)<=YY(21) ;ao(12)<=YY(10) ;ao(13) <=YY(23) ;ao(14) <=YY(19) ; 
ao(15) <=YY(12) ;ao(16) <=YY(4) ;ao(17) <=YY(26) ;ao(18) <=YY(8) ; 
ao(19)<=YY(16) ;ao(20) <=YY(7) ;ao (21) <=YY(27) ;ao (22) <=YY (20) ; 
ao(23)<=YY(13) ,-ao (24) <=YY(2) ,-ao (25) <=YY (41) ;ao (26) <=YY (52) ; 
ao(27)<=YY(31) ,-ao (28) <=YY(37) ,-ao (29) <=YY(47) ,-ao (3 0) <=YY(55) ; 
ao(31)<=YY(3 0) ;ao (32) <=YY(40) ;ao(33) <=YY(51) ,-ao (34) <=YY (45) ; 
ao(35)<=YY(33) ;ao (36) <=YY(48) ,-ao (37) <=YY(44) ,-ao (3 8) <=YY(49) ; 
ao(3 9)<=YY(3 9) ,-ao (40) <=YY(56) ,-ao (41) <=YY(34) ,-ao (42) <=YY(53) ; 
ao(43)<=YY(46) ,-ao (44) <=YY(42) ,-ao (45) <=YY (50) ;ao (46) <=YY(3 6) ; 
ao(47) <=YY(29) ,-ao (48) <=YY(32) ; 
end Behavioral; 

xordll.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE. STD_LOGIC_UNSIGNED. ALL; 
use work.ncl_signals.all; 

entity xordll is 
port( ao : in dual_rail_logic_vector(1 to 48); 

bo : in dual_rail_logic_vector(1 to 48); 
el,e2,e3,e4, e5,e6,e7,e8 : out dual_rail_logic_vector (1 to 6) ) ,-

end xordl1; 

architecture Behavioral of xordll is 
signal e : dual_rail_logic_vector(1 to 48); 
component exor 

port( x : in dual_rail_logic; 
y : in dual_rail_logic; 
z : out dual_rail_logic); 

end component; 
begin 

gl : for i in 1 to 4 8 generate 
hi : exor port map (ao(i) ,bo(i) , e (i) ) ,-
end generate; 

el(l to 6)<=e(l to 6);e2(l to 6)<=e(7 to 12); 
e3(l to 6)<=e(13 to 18);e4(l to 6)<=e(19 to 24); 
e5(l to 6)<=e(25 to 30);e6(l to 6)<=e(31 to 36); 
e7(l to 6)<=e(37 to 42);e8(l to 6)<=e(43 to 48); 

end Behavioral; 

sl.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE. STD_LOGIC_UNSIGNED.ALL; 
use work.ncl_signals.all; 

e n t i t y s i i s 
p o r t ( b : i n d u a l _ r a i l _ l o g i c _ v e c t o r ( 1 t o 6) ; 

s : o u t d u a l _ r a i l _ l o g i c _ v e c t o r ( 1 t o 4 ) ) ; 
end s i ; 

a r c h i t e c t u r e B e h a v i o r a l of s i i s 
b e g i n 

p r o c e s s ( b ) 
b e g i n 

if b ( l ) . r a i l 0 = ' 0 ' and b ( l ) . r a i l l = ' 0 ' and b ( 2 ) . r a i l 0 = ' 0 ' and b ( 2 ) . r a i l l = ' 0 ' and 
b ( 3 ) . r a i l 0 = ' 0 ' and b ( 3 ) . r a i l l = ' 0 ' and b ( 4 ) . r a i l 0 = ' 0 ' and b ( 4 ) . r a i l l = ' 0 ' and 
b ( 5 ) . r a i l 0 = ' 0 ' and b ( S ) . r a i l l = ' 0 ' and b ( 6 ) . r a i l 0 = ' 0 ' and b ( 6 ) . r a i l l = ' 0 ' then -- for nu l l values 

s d l . r a i l O <= • 0 • ,-s (2) . ral lO <= ' 0 ' ; s (3) . railO <= • 0 • ; s (4) . rai lO <= ' 0 ' ; 
s(l).raill <= •0•;s(2).raill c= '0';s(3).raill <= '0•;s(4).raill <= '0'; 
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elsif b(l).raill='0' and b(l).railO='1' and b(6).raill='0' and b(6).railO='1' then-- 00" 

if b(2).raill='0' and b(3).raill='0' and b(4).raill='0• and b(5).raill='0' and --"0000" 
b(2).rail0='l' and b(3).rail0=•1' and b(4).rail0='1• and b(5).rail0=•l' then 

s(l).raill <= • 1 • ;s (2) . raill <= • 1' ,-s (3) . raill <= • 1 • ;s (4) . raill <= ' 0 • ,-
sdl.railO <= • 0 ' ,-s (2) . railO <= ' 0 • ;s (3) . railO <= • 0 • ;s (4) .railO <= ' 1 • ,-

elsif b(2).raill='0' and b(3).raill='0' and b(4).raill='0' and b(5).raill='1' and--"0001" 
b(2).railO='l' and b(3).railO='1' and b(4).railO='1• and b(5).railO=•0' then 

s(l).raill <= '0' ;s(2) .raill <= ' 1' ,-s (3) . raill <= ' 0 ' ;s (4) .raill <= ' 0 '; 
sdl.railO <= '1' ;s(2) .railO <= '0 ' ;s (3) . railO <= ' 1 • ,-s (4) .railO <= '1'; 

elsif b(2).raill='0' and b(3).raill="0• and b(4).raill=•1• and b(5).raill='0" and--"0010" 
b(2).railO='l' and b(3).rail0=•1• and b(4).railO='0• and b(5).railO='1• then 

s(l).raill <= •l';s(2).raill <= '1';s(3).raill <= '0';s(4).raill <= • 1' ,-
sdl.railO <= '0';s (2) .railO <:= ' 0 ' ,-s (3) . railO <= ' 1' ;s (4) . railO <= ' 0 • ; 

elsif b(2).raill='0' and b(3).raill='0' and b(4).raill=•1' and b(5).raill='1• and--"0011" 
b(2).railO='l' and b(3).rail0='1' and b(4).railO='0' and b(5).railO='0• then 

s(l).raill <= '0' ;s(2) .raill <= '0 ' ,-s (3) . raill <= ' 0 • ;s (4) . raill <= • 1' ,-
sdl.railO <= • 1' ;s (2) .railO <= ' 1' ,-s (3) . railO <= • 1' ,-s (4) . railO <= • 0 ' ; 

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='0' and b(5).raill=•0' and--"0100" 
b(2).railO='l' and b(3).railO='0' and b(4).railO='1' and b(5).rail0='1' then 

s(l).raill <= '0';s (2) .raill <= '0 ' ,-s (3) .raill <= ' 1' ,-s (4) . raill <= ' 0 • ; 
sdl.railO <= '1';s(2) .railO <= ' 1' ;s (3) .railO <= ' 0 ' ;s (4) . railO <= ' 1' ,-

elsif b(2).raill='0' and b<3).raill='1' and b(4).raill='0• and b(5).raill='1• and--"0101" 
b(2).railO='l' and b(3).railO='0• and b(4).railO='1• and b(5).rail0='0• then 

sdl.raill <= '1' ;s(2) .raill <= • 1' ;s (3) . raill <= • 1' ;s (4) . raill <= ' 1' ; 
sdl.railO <= '0',-s (2) .railO <= ' 0 ' ,-s (3) . railO <= '0 • ,-s (4) . railO <= • 0 • ,-

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='1' and b(5).raill='0' and--"0110" 
b(2).railO='l' and b(3).railO='0• and b(4).rail0=•0' and b(5).railO='1' then 

s(l).raill <= '1' ,-s<2) .raill <= '0 ' ,-s (3) .raill <= ' 1' ,-s (4) .raill <= '1'; 
sdl.railO <= '0';s(2) .railO <= "1' ,-s (3) .railO <= ' 0 ' ; s (4) . railO <= '0'; 

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill-'1' and b(5).raill='1' and --"0111" 
b(2).railO='l' and b(3).railO='0' and b(4).railO=•0• and b(5),railO=•0' then 

s(l).raill <= '1' ,-s (2) .raill <= ' 0 ' ;s (3) .raill <= ' 0 ' ; s (4) .raill <= '0'; 
sdl.railO <= '0',-s (2) .railO <= • 1' ;s (3) .railO <= '1' ,-s (4) .railO <= "1' ,-

elsif b(2) .raill=d' and b (31 . raill= • 0 • and b (4) . raill= ' 0 ' and b (5) . raill= • 0 • and--"1000" 
b(2).railO='0' and b(3).rail0='1' and b(4).railO=•1' and b(5).railO='1 • then 

sdl.raill <= '0';s(2) .raill <= ' 0 • ; s (3) .raill <= d ' ,-s (4) . raill <= ' 1' ,-
sdl.railO <= ' 1 • ,-s (2) .railO <= ' 1 • ,-s (3) .railO <= ' 0 ' ,-s (4) . railO <= ' 0 ' ; 

elsif b(2) .raill=d' and b (3) . raill= • 0 ' and b (4) .raill= ' 0 ' and b (S) .raill= • 1' and--"1001" 
b(2).railO='0' and b(3).railO='1' and b(4).railO='1' and b(5).railO='0' then 

s d ) . raill <= '1';s(2) .raill <= • 0 • ; s (3) . raill <= ' 1' ,-s (4) .raill <= '0'; 
sdl.railO <= '0',-s(2) .railO <= '1 • ,-s (3) .railO <= ' 0 • ,-s (4) . railO <= • 1" ,-

elsif b(2) .raill=d' and b (3) . raill= ' 0 • and b (4) .raill= '1 • and b (5) .raill= ' 0 • and--"1010» 
b(2).rail0='0' and b(3).railO='1' and b(4).railO=•0• and b(5).railO="1• then 

sd).raill <= '0';s(2) .raill <= '1' ;s (3) . raill <= • 1' ; s (4) . raill <= '0'; 
sdl.railO <= '1',-s(2) .railO <= ' 0 ' ,-s (3) .railO <= • 0 • ,-s (4) . railO <= "l'; 

elsif b(2) .raill=d' and b (3) . raill= ' 0 • and b (4) . raill= ' 1 • and b (5) . raill= ' 1' and--"1011" 
b(2).railO='0• and b (3) .railO='1' and b(4).railO='0' and b(S) .railO='0' then 

s(l).raill <= '1' ,-s(2) .raill <= '1' ,-s (3) .raill <= ' 0 ' ; s (4) . raill <= '0',-
sdl.railO <= ' 0 ' ,-s (2) . railO <= • 0 ' ;s (3) .railO <= ' 1' ; s (4) . railO < = ' 1' ,-

elsif b(2) .raill=d' and b (3) . raill= ' 1' and b (4) .raill= ' 0 ' and b (5) . raill= "1 • and--"1101" 
b(2) .railO='0' and b (3) .railO='0• and b(4).rail0='1' and b(5).railO=•0' then 

sd).raill <= '1',-s(2) .raill •:= ' 0 ' ,-s (3) . raill <= '0 ' ,-s (4) .raill <= ' 1' ,-
sdl.railO <= '0',-s(2) .railO <= "1 • ,-s (3) . railO <= ' 1' ; s (4) . railO <= ' 0 ' ; 

elsif b(2).raill='l' and b(3).raill='1' and b(4),raill=•1' and b(5).raill='0' and--"1110" 
b(2).railO='0' and b(3).railO='0• and b(4).railO='0' and b(5).railO="1• then 

sd).raill <= '0' ,-s(2) .raill <= ' 0 • ; s (3) . raill <= ' 0 ' ,-s (4) .raill <= • 0 ' ; 
sdl.railO <= 'I1 ;s(2) .railO <= ' 1 • ,-s (3) . railO <= '1 • ,-s (4) .railO <= ' 1' ; 

elsif b(2).raill='l' and b(3).raill=•1' and b(4).raill='1' and b(5).raill='1' and--"llll" 
b(2).railO='0' and b(3).railO='0• and b(4).railO='0• and b(5).railO='0' then 

s(l).raill <= '0';s(2).raill <= '1';s(3).raill <= '1';s(4).raill <= •1'; 
sdl.railO c= '1',-s(2) .railO <= ' 0 ' ,-s (3) .railO <= ' 0 • ,-s (4) . railO <= '0'; 

elsif b(2).raill='l' and b(3).raill="1' and b(4).raill=•0• and b(5).raill= ' 0 ' and--"1100" 
b(2).rail0='0' and b(3).railO='0• and b(4).railO='1• and b(5).railO='1' then 

sd).raill <= '0';s(2) .raill <= '1' ,-s (3) . raill <= • 0 ' ,- s (4) .raill <= '1' ; 
sdl.railO <= '1' ,-s(2) .railO <= ' 0 • ; s (3) .railO <= ' 1' ; s (4) .railO <= '0'; 

end if; 

elsif b(l).raill='0' and b(1).railO=•1' and b(6).raill='1• and b(6).railO='0' then --"01" 

if b(2).raill='0• and b(3).raill='0' and b(4).raill='0• and b(5).raill='0' and--"0000" 
b(2) .rail0=d' and b(3) .railO=d • and b (4) . railO= '1 • and b (5) . railO= ' 1' then 

sd).raill <= '0' ,-s(2) .raill <= ' 0 ' ,-s (3) .raill <= • 0 ' ; s (4) .raill <= ' 0 • ; 
sdl.railO <= '1' ,-s(2) .railO <= '1 • ; s (3) .railO <= ' 1' ,-s (4) .railO <= '1'; 

elsif b(2).raill='0' and b(3).raill=•0' and b(4).raill='0' and b(5).raill=•1' and--"0001" 
b(2).railO='l' and b(3).railO='1 * and b(4) .railO='1' and b(5).railO='0' then 

s(l).raill <= '1' ,-s(2) .raill <= ' 1' ;s (3) .raill <= '1 • ,-s (4) .raill <= '1' ; 
sdl.railO <= ' 0 ' ,-s (2) . railO <= • 0 ' ,-s (3) .railO <= ' 0 '; s (4) . railO <= ' 0 ' ,• 

elsif b(2).raill-'O1 and b(3).raill='0' and b(4).raill='1' and b(5).raill='0' and--"0010" 
b(2) .railO='l' and b (3) .railO='1' and b(4).railO=•0' and b(5).railO=•1• then 

s(l).raill <= '0' ,-s(2) .raill <= ' 1' ,-s (3) . raill <= '1' ,-s (4) .raill <= "l"; 
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sdl.railO <= ' 1' ; s (2) . railO <= ' 0 ' ;s (3) . railO <= • 0 ' ,-s (4) . railo <= 'O1; 
elsif b(2).raill='0' and b(3).raill='O' and b(4),raill='1• and b(5).raill='1• and--"0011" 

b(2).railO='1' and b(3).railO='1' and b(4).railO='0' and b(5).railO=•0' then 
s(l).raill <= '0';s(2) .raill <= •1';s(3).raill <= •0';s (4) .raill <= '0'; 

s(l).railO <= '1';s(2).railO <= '0';s(3).railO <= •1•;s(4).railO <= '1'; 
elsif b(2).raill='0' and b(3).raill='1• and b(4).raill=•0' and b(5).raill='0' and--"0100" 

b(2).railO='l' and b(3).railO='0• and b(4).railO='1' and b(5).railO='1• then 
s(l).raill <= '1';s(2).raill <= ' 1';s (3) .raill <= '1';s(4).raill <= '0'; 

s(l).railO <= '0';s(2).railO <= •0•;s(3).railO <= '0';s(4).railO <= '1'; 
elsif b(2).raill='0' and b(3).raill='1• and b(4).raill='0' and b(5).raill='1• and--"0101" 

b(2).railO='l' and b(3).rail0='0• and b(4).railO='1' and b(5).railO=•0' then 
s(l).raill <= '0',-s(2) .raill <= ' 0 • ; s (3) . raill <= • 1' ; s (4) . raill <= ' 0 ' ; 

s(l).railO <= '1';s(2) .railO <= • 1' ,-s (3) . railO <= • 0 • ;s (4) .railO <= '1'; 
elsif b(2).raill='0' and b(3).raill=•1' and b(4).raill=•1' and b(5).raill=•0' and--"0110" 

b(2).rail0='l' and b(3).railO='0' and b(4).railO=•0• and b(5).railO=•1' then 
s(l). raill <= '1' ;s (2) .raill <= ' 1' ,-s (3) . raill <= ' 0 •; s (4) . raill <= ' 1' ; 

sdl.railO <= ' 0 ' ; s (2) . railO <= • 0 • ,-s (3) . railO <= • 1' ;s (4) .railO <= • 0 • ; 
elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='1• and b(5).raill=•1• and--"0111" 

b(2).railO='l' and b(3).railO='0' and b(4).railO=•0• and b(5).railO='0' then 
s(l).raill <= '0' ;s(2) .raill <= •0•;s(3).raill <= '0';s(4) .raill c= '1'; 

s(l).railO c= 'I1;s(2).railO <= '1';s<3).railO <= •1';s(4).railO <= '0'; 
elsif b(2) .raill='l' and b(3),raill='0' and b(4).raill='0• and b(S).raill= ' 0" and--"1000" 

b(2).railO='0' and b(3).railO='1' and b(4).railO='1• and b(5).railo="1' then 
s(l).raill <= '1';s(2).raill <= •0';s(3).raill <= '1';s(4).raill <= '0'; 

sdl.railO <= '0' ;s(2) .railO <= ' 1' ;s (3) . railO <= ' 0 • ;s (4) . railO <= ' 1' ; 
elsif b(2).raill='l' and b(3).raill='0' and b(4).raill='0' and b(S).raill='1' and--"1001" 

b(2).railO='0' and b(3).railO='l• and b(4).railO=•1' and b(5).railO=•0• then 
s(l).raill <= '0' ,-s(2) .raill <= ' 1' ;s (3) .raill <= • 1' ,-s (4) .raill <= ' 0 • ; 

sdl.railO •;= • 1' ,-s (2) .railO < = • 0 ' ; s (3) . railO <= ' 0 • ; s (4) . railO <= ' 1' ,-
elsif b(2).raill='l' and b(3).raill='0• and b(4).raill=•1' and b(5).raill=•0' and--"1010" 

b(2).railO='0' and b(3).railO=•1• and b(4).railO-'0' and b(5).railO='1• then 
s(l).raill <= '1' ,-s(2) .raill <= '1';s(3).raill <= ' 0 ' ,-s (4) . raill <= '0'; 

sdl.railO <= '0' ,-s (2) .railO <= • 0 ' ; s (3) .railO <= ' 1' ; s (4) . railO <= • 1' ; 
elsif b(2).raill='l' and b(3).raill='0' and b(4).raill='1' and b(5).raill=•1' and--"1011" 

b(2).rail0='0' and b(3).railO='1• and b(4).railO='0' and b(5).railO='0• then 
s(l).raill <= '1' ;s(2) .raill <= •O ' ,-s (3) .raill <= • 1' ;s (4) . raill <= '1'; 

s(l).railO <= '0',-s (2) .railO <= ' 1' ;s (3) .railO <= '0 '; s (4) . railO <= • 0 ' ; 
elsif b(2).raill='l' and b(3) .raill='1• and b(4).raill='0' and b(5) .raill=•1' and--"1101" 

b(2).railO='0' and b(3).rail0=•0' and b(4).railO='1' and b(5).railO='0• then 
s(l).raill <= '0' ;s(2) .raill <= ' 1' ,-s (3) . raill <= * 0 • ;s (4) .raill <= • 1' ; 

sdl.railO <= '1';s (2) .railO <= ' 0 ' ;s (3) .railO <= ' 1' ; s (4) .railO <= • 0 ' ; 
elsif b(2).raill='l' and b(3).raill='1' and b(4).raill='1' and b(5).raill=•0' and--"1110" 

b(2).railO='0' and b(3).railO='0• and b(4).railO='0' and b(5).railO='1• then 
s(l). raill <= '0' ,-s(2) .raill <= ' 0 ' ;s (3) .raill <= '1 • ,-s (4) .raill <= ' 1' ; 

sdl.railO < = •1';s(2) .railO <= ' 1 • ;s (3) . railO <= • 0 ' ;s (4) . railO <= ' 0 ' ; 
elsif b(2).raill='l' and b(3).raill=•1' and b(4).raill="1' and b(5).raill='1> and--"llll" 

b(2).railO='0' and b(3).railO='0' and b(4).railO=•0' and b(5),railO='0• then 
s(l).raill <= '1';s(2).raill <= •0•;s(3) .raill <= •0';s (4) .raill <= '0'; 

sdl.railO <= '0';s(2) .railO <= ' 1 • ;s (3) . railO <= • 1 • ,-s (4) .railO <= '1'; 
elsif b(2).raill='l' and b(3).raill='1' and b(4).raill=•0• and b(5).raill='0' and--"1100" 

b(2).railO='0' and b(3).railO='0' and b(4).railO=•1' and b(5).railO=•1' then 
s(l).raill <= '1' ,-s(2) .raill <= ' 0 ' ;s (3) .raill <= ' 0 ' ; s (4) . raill <= ' 1' ; 

sdl.railO <= '0 ' ;s(2) .railO <= ' 1" ;s (3) . railO <= • 1 • ;s (4) .railO <= '0'; 
end i f; 

elsif b(l).raill='l' and b(l).railO='0' and b(6).raill='0' and b(6).railO='1' then --"10" 

if b(2).raill='0' and b(3).raill='0' and b(4).raill='0' and b(5),raill='0' and--"0000" 
b(2).railO='l' and b(3).railO='1' and b(4).railO='1' and b(5).rail0='1' then 

s(l).raill <= '0' ;s(2) .raill <= • 1' ; s (3) . raill <= • 0 ' ,-s (4) .raill <= '0'; 
sdl.railO <= '1';s(2) .railO <= • 0 ' ;s (3) . railO <= ' 1' ,-s (4) . railO <= ' 1' ; 

elsif b(2).raill='0' and b(3).raill='0' and b(4).raill='0' and b(5).raill=•1• and--"0001" 
b(2).rail0='l' and b(3).railO='1• and b(4).railO='1 * and b(5).railO='0' then 

s(l). raill <= '0' ,-s(2) .raill <= ' 0 ' ;s (3) .raill <= ' 0 • ;s (4) . raill <= ' 1 • ; 
sdl.railO <= '1' ,-s(2) .railO <= ' 1 •; s (3) .railO <= ' 1' ; s (4) . railO •;= '0'; 

elsif b(2).raill='0' and b(3).raill=•0• and b(4).raill=•1' and b(5).raill='0' and--"0010" 
b(2).railO='l' and b(3).railO='1• and b(4).railO='0' and b(5).railO='1' then 

s(l).raill <= '1' ;s(2) .raill <= ' 1" ;s (3) .raill <= ' 1' ,-s (4) . raill <= ' 0 ' ,• 
sdl.railO <= '0',-s(2) .railO <= '0 ' ; s (3) .railO <= ' 0 ' ,-s (4) .railO <= '1'; 

elsif b(2),raill='0' and b(3).raill='0' and b(4).raill='1' and b(5).raill='1' and--"0011" 
b(2).railO='l' and b(3).railO='1' and b(4).railO=•0' and b(5).rail0='0' then 

s(l).raill <= •l';s(2) .raill •== ' 0 • ;s (3) . raill c= ' 0 •; s (4) . raill <= ' 0 ' ; 
sID.railO <= • 0 ' ;s 12) . railO <= ' 1' ;s (3) . railO •:= ' 1' ,-s (4) .railO <= '1'; 

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='0• and b(5).raill='0' and--"0100" 
b(2) .railO=d' and b (3) .railO= '0 ' and b(4) .railO= • 1' and b (5) .railO= • 1' then 

s(l).raill <= '1';s(2) .raill <= ' 1' ,-s (3) . raill <= • 0 ' ,-s (4) . raill <= ' 1' ; 
sID.railO <= ' 0 ' ,-s (2) . railO <= ' 0 ' ,-s (3) .railO <= ' 1' ,-s (4) . railO <= '0'; 

elsif b(2).raill='0' and b(3) .raill="1 * and b(4).raill=•0• and b(5).raill='1' and--"0101" 
b(2).railO='l' and b(3).rail0='0' and b(4).railO='1' and b(5).railO=•0' then 

s(l).raill <= '0' ;s(2) .raill <= '1',-s (3) .raill <= • 1' ; s (4) . raill <= ' 0 ' ; 
sdl.railO <= '!';s(2) .railO <= ' 0 • ,-s (3) .railO <= ' 0 ' ,-s (4) .railO <= '1'; 



elsif b(2).raill='0' and b(3),raill=•1• and b(4).raill='1' and b(5).raill='0' and--"0110" 
b(2).railO='l' and b(3).railO='0' and b(4).rail0=•0• and b(5).rail0='1' then 

sd).raill <= * 0';s(2).raill <= '0';s(3).raill <= '1•;s(4) .raill <= '0'; 
sdl.railO <= '1';s(2).railO <= '1';s(3).railO <= •0';s(4).railO <= •1•; 

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='1' and b(5)-raill='1' and--"0111" 
b(2).railO='l' and b(3).railO='0' and b(4),rail0='0' and b(5).railO='0' then 

s(l).raill <= '1';s(2).raill <= •0•;s(3).raill <= '1';s(4).raill <= ' 1' ,-
sdl.railO <= '0',-s (2) .railO <= ' 1 • ;s (3) . railO <= ' 0 • ;s (4) . railO <= '0'; 

elsif b(2).raill='l' and b(3).raill='0• and b<4).raill=•0• and b(5).raill='0' and--"1000" 
b(2).railO='0' and b(3).railO='1• and b(4).railO='1' and b(5).railO='1' then 

s(l).raill <= '1';s(2).raill <= '1';s(3).raill <= '1•;s(4).raill <= '1'; 
s(l).railO <= •0•;s(2).railO <= '0•;s(3).railO < = '0';s(4).railO <= '0'; 

elsif b(2).raill='l' and b(3).raill='0' and b(4).raill=•0• and b(5).raill=•1• and--"1001" 
b(2).railO='0' and b(3).railO='1• and b(4).railO='1' and b(5).railO=•0• then 

s(l).raill <= 'l';s(2).raill <= '1';s (3) .raill <= '0';s(4).raill <= '0'; 
sdl.railO <= '0',-s(2) .railO <= ' 0 • ,-s (3) . railO <= ' 1' ; s (4) . railO <= ' 1' ; 

elsif b(2).raill='l' and b(3).raill='0' and b(4).raill='1' and b(5).raill='0• and--"1010" 
b(2).railO='0' and b(3).railO='l• and b(4).railO='0' and b(5).railO=•1• then 

s(l).raill <= •l';a(2).raill <= '0';s(3).raill <= '0•;s(4).raill <= '1•; 
s(l).railO <= '0 ' ;s (2) . railO <= • 1'; s (3) . railO <= ' 1' ,-s (4) . railO <= ' 0 ' ; 

elsif b(2).raill='l' and b(3).raill='0' and b(4).raill='1' and b(5).raill=•1• and--"1011" 
b(2).railO='0' and b(3).railO=•1• and b(4).railO='0' and b(5).railO=•0' then 

s(l).raill <= '0';s(2) .raill <= ' 1' ;s (3) . raill <= • 1' ;s (4) .raill <:= ' 1' ,-
sdl.railO <= '1' ;s(2) .railO <= ' 0 '; s (3) . railO <= '0 • ,-s (4) . railO <= '0'; 

elsif b(2).raill='l' and b(3).raill='1' and b(4).raill='0' and b(5).raill='1' and--"1101" 
b(2).railO='0' and b(3).railO='0' and b(4).rail0='1' and b(5).railO='0' then 

s(l).raill <= '1';s(2) .raill <= '0 ' ,-s (3) .raill <= ' 1' ; s (4) . raill <= ' 0 ' ; 
sdl.railO <= '0',-s(2) .railO <= "1' ,-s (3) .railO <= • 0 ' ;s (4) .railO <= "l"; 

elsif b(2).raill='l' and b(3).raill='1' and b(4),raill='1• and b(5).raill='0' and--"1110" 
b(2).railO='0' and b(3).railO='0' and b(4).rail0='0• and b(5).railO='1' then 

s(l).raill <= '0',-s (2) .raill <= ' 1' ,-s (3) .raill <= ' 0 ' ; s (4) . raill <= '1'; 
sdl.railO <= '1' ,-s(2) .railO <= ' 0 • ,-s (3) .railO <= "1' ,-s (4) .railO <= ' 0 ' ; 

elsif b(2).raill='l' and b(3).raill='1' and b(4).raill="1• and b(5).raill='1' and--"llll" 
b(2).railO='0' and b(3).railO='0' and b(4).railO='0' and b(5).railO='0' then 

s(l).raill <= '0';s(2) .raill <= • 0 '; s (3) .raill <= • 0 ' ; s (4) . raill <= ' 0 • ,-
sdl.railO <= ' 1' ,-s (2) . railO <= '1 • ,-s (3) . railO <= ' 1 • ,-s (4) . railO <= ' 1' ; 

elsif b(2).raill='l' and b (3) .raill=•1' and b(4).raill='0' and b(5).raill='0• and--"1100" 
b(2).rail0='0' and b(3).railO='0' and b(4).railO='1' and b(5).railO='1' then 

s(l).raill <= •0';s(2) .raill <= ' 0 ' ; s (3) .raill <= • 1' ,-s (4) .raill c= ' 1' ,-
sdl.railO <= "l" ,-s (2) .railO <= • 1 • ,-s (3) . railO <= ' 0 ' ,-s (4) . railO <= ' 0 ' ; 

end if; 

if b(l).raill='l' and b (1).railO=•0• and b (6) . raill=•1' and b(6).railO='0' then --"11" 

if b(2).raill='0' and b(3).raill='0' and b(4).raill=•0' and b(5).raill=•0• and--"0000" 
b(2) .rail0=d' and b (3) .railO= • 1' and b (4) . railO= ' 1' and b (5) .railO= ' 1 • then 

s(l).raill <= '1',-s (2) .raill <= ' 1' ; s (3) . raill <= '1 • ,-s (4) . raill <= '1'; 
sdl.railO <= ' 0 • ,-s (2) . railO <= ' 0 ' ,- s (3) . railO <= ' 0 ' ; s (4) . railO <= ' 0 • ,-

elsif b(2) .raill=,0' and b (3) .raill='0' and b(4) .raill=•0• and b(5) .raill="1• and--"0001" 
b(2).railO='l' and b(3).rail0='1• and b(4).railO="1' and b(5).railO=•0• then 

s(l).raill <= •l,;s(2) .raill <= ' 1'; s (3) . raill <= ' 0 • ,-s (4) . raill <= " 0 ' ; 
s(l).railO <= '0',-s(2) .railO <= ' 0 ' ;s (3) . railO <= ' 1' ,- s (4) . railO <= ' 1 • ; 

elsif b(2) .raill='0' and b (3) .raill='0' and b(4) .raill='1' and b(5) .raill='0• and--"0010" 
b(2).railO='l' and b(3).rail0='1' and b(4).railO='0' and b(5).railO="1• then 

s(l).raill <= "l1 ,-s (2) .raill <= • 0 • ;s (3) . raill <= ' 0 '; s (4) . raill <= ' 0 ' ; 
sdl.railO •;= • 0 • ,-s (2) . railO <= ' 1 > ;s (3) . railO <= ' 1' ; s (4) . railO <= ' 1' ; 

elsif b(2).raill=,0' and b(3).raill='0' and b(4).raill='1' and b(5).raill='1' and--"0011" 
b(2).railO='l' and b(3).railO='1' and b(4).rail0='0' and b(5).railO='0' then 

s(l).raill <= '0';s(2) .raill <= ' 0 ' ; s (3) .raill <= ' 1' ;s (4) .raill <= ' 0 ' ,-
sdl.railO <= "l" ,-s (2) .railO <= • 1' ,-s (3) .railO <= ' 0 • ,-s (4) . railO <= 'l'; 

elsif b(2).raill='0' and b(3).raill=•1' and b(4).raill='0' and b(5).raill='0' and--"0100" 
b(2).railO='l' and b(3).railO='0• and b(4).rail0='1• and b(5).railO=•1' then 

sd).raill <= '0';s(2) .raill <= • 1 • ,-s (3) .raill <= ' 0 ' ; s (4) .raill <= ' 0 • ,-
sdl.railO <= '1';s (2) .railO <= ' 0 • ,-s (3) .railO <= '1' ,-s (4) . railO <= 'l'; 

elsif b(2).raill='0' and b(3).raill='1' and b(4).raill='0' and b(5).raill=•1• and--"0101" 
b(2).railO='l' and b(3).railO='0' and b(4).railO='1' and b(5).railO='0' then 

sd).raill <= '1' ;s(2) .raill <= ' 0 • ,-s (3) . raill <= ' 0 ' ;s (4) .raill <= ' 1' ,-
s(l).railO <= • 0 ' ,-s (2) .railO <= '1 • ,- s (3) . railO <= ' 1' ,-s (4) . railO <= ' 0 • ,-

elsif b(2) .raill='0' and b (3) .raill='1' and b(4).raill='1• and b(5) .raill='0• and--"0110" 
b(2).rail0='l' and b(3).railO='0' and b(4).railO='0' and b(5).railO='1• then 

s(l).raill <= •0,;s(2) .raill <= ' 0 ' ;s (3) . raill <= ' 0 • ,-s (4) . raill •:= • 1'; 
sdl.railO <= '1' ;s(2) .railO <= ' 1' ,-s (3) . railO <= ' 1' ; s (4) . railO <= • 0 ' ; 

elsif b(2).raill='0' and b (3) .raill='1• and b(4) .raill="1• and b(5) .raill='1' and--"0111" 
b(2).railO='l' and b(3).rail0=•0' and b(4).railO=•0' and b(5).railO='0' then 

s(l).raill e= '0';s(2) .raill <= ' 1' ,-s (3) . raill <= ' 1'; s (4) . raill <= '1' ; 
sdl.railO e= '1';s(2) .railO <= ' 0 ' ,-s (3) . railO <= • 0 ' ;s (4) .railO <= ' 0 • ,-

elsif b(2).raill='l' and b(3).raill=•0• and b(4).raill='0' and b(5).raill='0• and--"1000" 
b(2) .railO='0' and b (3) .railO='1' and b(4) .railO='1' and b(5).railO='1' then 

sd).raill <= '0' ,-s (2) .raill <= ' 1' ,-s (3) .raill <= • 0 ' ; s (4) .raill <= ' 1 • ,-
sdl.railO <= '1' ,-s(2) .railO <= • 0 • ,-s (3) .railO <= ' 1 • ,-s (4) . railO <= ' 0 ' ; 

elsif b(2).raill='l' and b(3).raill='0' and b(4).raill='0' and b(5).raill=•1• and--"1001" 



b(2).railO='0' and b(3).railO='1' and b(4).railO='1' and b(5).railO='0• then 
sdl.raill <= '1';s(2).raill <= ' 0 ' ; s (3) . raill <= • 1' ; s (4) .raill <= '1'; 

s(l).railO <= '0';s(2).railO <= '1';s(3).railO <= '0';s(4).railO <= '0•; 
elsif b(2).raill='l' and b(3).raill='0• and b(4).raill=•1' and b(5).raill='0' and--"1010" 

b(2).railO='0' and b(3).railO='1' and b(4).railO='0' and b(5).railO=•1' then 
sdl.raill <= '0';s(2) .raill <= • 0 '; s (3) . raill <= • 1' ; s (4) . raill <= ' 1 • ; 

sdl.railO <= '1';s(2).railO <= > 1' ,-s (3) . railO <= ' 0 ' ,-s (4) . railO <= ' 0' ; 
elsif b(2).raill='l' and b(3).raill='0• and b(4).raill=•1• and b(5).raill=•1' and--"1011" 

b(2).railO='0' and b(3),railO='1' and b(4).railO='0• and b(5).railO='0' then 
s(l).raill <= •l,;s(2).raill <= •1';s(3).raill <= •1';s(4).raill <= '0'; 

sdl.railO <= '0',-s (2) .railO <= ' 0 • ;s (3) . railO <= ' 0 ' ;s (4) .railO <= ' 1 • ; 
elsif b(2).raill='l' and b(3).raill='1• and b(4).raill='0• and b(5).raill='1' and--"1101" 

b(2).railO='0' and b (3) .railO=•0' and b(4) .railO='1• and b(5).railO='0• then 
sdl.raill <= '0';s(2) .raill <= '0 ' ,-s (3) .raill <= ' 0 • ;s (4) . raill <= • 0 ' ,-

sdl.railO <= '1' ;s(2) .railO <= ' 1' ;s (3) .railO <= ' 1' ,-s (4) . railO <= '1'; 
elsif b(2).raill='l' and b(3).raill=•1• and b(4).raill='1' and b(5).raill='0' and--"1110" 

b(2).railO='0' and b(3).railO='0' and b(4),rail0=•0' and b(5).railO='1• then 
sdl.raill <= '0';s(2) .raill <= • 1 •; s (3) .raill <= • 1' ,-s (4) .raill <= '0'; 

sdl.railO <= ' 1' ;s (2) .railO <= • 0 ' ,-s (3) . railO <= ' 0 ' ;s (4) . railO <= '1'; 
elsif b(2).raill='l' and b(3).raill='1' and b(4).raill='1' and b(5).raill='1' and--"llll" 

b(2).railO='0' and b(3).railO='0' and b(4).railO='0' and b(5).railO='0' then 
sdl.raill <= '1';s(2) .raill <= • 1 •; s (3) . raill <= • 0 ' ; s (4) . raill <= '1'; 

sdl.railO <= '0';s(2) .railO <= ' 0 ' ,-s (3) . railO <= ' 1' ; s (4) . railO <= ' 0 • ; 
elsif b(2).raill='l' and b(3).raill='l' and b(4).raill=•0• and b(5).raill=•0' and--"1100" 

b(2).railO='0' and b (3) .railO='0' and b(4).railO='1' and b(5).rail0='1' then 
sdl.raill <= '1',-s (2) .raill <= ' 0 • ; s (3) . raill <= ' 1' ,-s (4) . raill <= '0'; 
sdl.railO <= '0';s (2) .railO <= ' 1 • ,-s (3) . railO <= '0 ' ;s (4) .railO <= ' 1 • ; 

end i f ; 

end if; 

end process; 
end Behavioral; 

fp.vhd 
library IEEE; 
use IEEE.STD_L0GIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE. STD_LOGIC_UNSIGNED. ALL; 
use work.ncl_signals.all; 

entity fp is 
port ( yl,y2,y3,y4,y5,y6,y7,y8 : in dual_rail_logic_vector(1 to 4 ) ; 

f : out dual_rail_logic_vector(1 to 32)); 
end fp; 

architecture Behavioral of fp is 
signal ww : dual_rail_logic_vector(1 to 32); 
begin 

ww(l to 4)<=yl(l to 4) ;ww(5 to 8)<=y2(l to 4);ww(9 to 12)<=y3(l to 4 ) ; 
ww(13 to 16)<=y4(l to 4);ww(17 to 20)<=y5(l to 4) ; 
ww(21 to 24)<=y6(l to 4);ww(25 to 28)<=y7(l to 4 ) ; 
ww(29 to 32)<=y8(l to 4 ) ; 

f (l)<=ww(16) ;f (2) <=ww(7) ; f (3 ) <=ww (20) ; f (4) <=ww (21) ; f (5) <=ww (29) ; 
f(6)<=ww(12);f(7)<=ww(28);f(8)<=ww(17);f(9)<=ww(l);f(10)<=ww(15); 
f(ll)<=ww(23);f(12)<=ww(2S);f(13)<=ww(5);f(14)<=ww(18);f(15)<=ww(31); 
f (16)<=ww(10) ;f (17)<=ww(2) ;f (18)<=ww(8) ; f (19) <=ww (24) ; f (20) <=ww (14) ; 
f (21)<=ww(32) ;f (22)<=ww(27) ; f (23) <=ww (3) ; f (24) <=ww (9) ; f (25) <=ww (19) ; 
f (26)<=ww(13) ;f (27)<=ww(30) ; f (28) <=ww (6) ; f (2 9) <=ww (22) ; f (3 0) <=ww (11) ; 
f (31)<=ww(4) ;f (32)<=ww(25) ; 
end Behavioral; 

xordl2.vhd 
library IEEE; 
use IEEE . STD_LOGIC_1164 . ALL; 
use IEEE . STD_LOGIC_ARITH . ALL ; 
use IEEE . STD_LOGIC_UNSIGNED . ALL ; 
use work.ncl_signals.all; 

entity xordl2 is 
port( ao : in dual_rail_logic_vector(1 to 32); 

bo : in dual_rail_logic_vector(1 to 32); 
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z : out dual_rail_logic_vector(1 to 32)); 
end xordl2; 

architecture Behavioral of xordl2 is 
component exor 

port( x : in dual_rail_logic; 
y : in dual_rail_logic; 
z : out dual_rail_logic); 

end component; 
begin 

g2 : for i in 1 to 32 generate 
h2 : exor port map(ao (i) ,bo(i) , z (i) ) ; 
end generate; 

end Behavioral; 

round 1 to 14sl.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE . STD_LOGIC_ARITH . ALL ; 
use IEEE.STD_LOGIC_UNSIGNED.ALL; 
use work.ncl_signals.all; 

entity roundltol4sl is 
port ( Li : in dual_rail_logic_vector(1 to 32); 

Ri : in dual_rail_logic_vector(1 to 32) ; 
Ci : in dual_rail_logic_vector(1 to 28); 
Di : in dual_rail_logic_vector(1 to 28); 
Lo t out dual_rail_logic_vector(1 to 32) 
Ro : out dual_rail_logic_vector(1 to 32) 
Co : out dual_rail_logic_vector(1 to 28) 
Do : out dual_rail_logic_vector(1 to 28)); 

end roundltol4sl; 

architecture Behavioral of roundltol4sl is 
signal L,R,f : dual_rail_logic_vector(1 to 32); 
signal C,D : dual_rail_logic_vector(1 to 28); 
signal ao,bo : dual_rail_logic_vector(1 to 48); 
signal el,e2,e3,e4,e5,e6,e7,e8 : dual_rail_logic_vector(1 to 6); 
signal yl,y2,y3,y4,y5,y6,y7,y8 : dual_rail_logic_vector(1 to 4); 
component shifterl 

port ( CO : in dual_rail_logic_vector(1 to 28); 
DO : in dual_rail_logic_vector(1 to 28) ; 
CI : out dual_rail_logic_vector(1 to 28); 
Dl : out dual_rail_logic_vector(1 to 28)); 

end component; 
component expl 

port ( RO : in dual_rail_logic_vector(1 to 32); 
bo : out dual_rail_logic_vector(1 to 48)); 

end component; 
component pc2 

port( CI : in dual_rail_logic_vector(1 to 28); 
Dl : in dual_rail_logic_vector(1 to 28); 
ao : out dual_rail_logic_vector(1 to 48)); 

end component; 
component xordll 

port ( ao : in dual_rail_logic_vector(1 to 48); 
bo : in dual_rail_logic_vector(1 to 48); 
el,e2,e3,e4,e5,e6,e7,e8 : out dual_rail_logic_vector(1 to 6)), 

end component; 
component si 

port ( b : in dual_rail_logic_vector(1 to 6); 
s : out dual_rail_logic_vector(1 to 4)); 

end component; 
component s2 

port ( b : in dual_rail_logic_vector(1 to 6) ; 
s : out dual_rail_logic_vector(1 to 4)); 

end component; 
component s3 

port ( b : in dual_rail_logic_vector(1 to 6); 
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s : out dual__rail_logic_vector (1 to 4) 
end component; 
component s4 

port ( b : 
s : 

end component; 
component s5 

port ( b : 
S : 

end component; 
component s6 

port ( b : 
s 

end component ; 
component s7 

port ( b 

S : 
end component ; 
component s 8 

port ( b : 
s 

end component; 
component fp 

port ( yl,y2,y3,y4,y5,y6,y7,y8 : in dual_rail_logic_vector(1 to 4) 
f : out dual_rail_logic_vector(1 to 32)); 

end component; 
component xordl2 

port ( ao : in dual_rail_logic_vector(1 to 32); 
bo : in dual_rail_logic_vector(1 to 32); 
z : out dual_rail_logic_vector(1 to 32)); 

end component; 

in dual_rail_logic_vector(1 to 6); 
out dual_rail_logic_vector(1 to 4)); 

in dual_rail_logic_vector(1 to 6); 
out dual_rail_logic_vector(1 to 4)); 

in dual_rail_logic_vector(1 to 6); 
out dual_rail_logic_vector(1 to 4)) 

in dual_rail_logic_vector(1 to 6); 
out dual_rail_logic_vector(1 to 4)); 

in dual_rail_logic_vector(1 to 6) ; 
out dual_rail_logic_vector(1 to 4)); 

begin 
compl : shifterl port map(Ci,Di,C,D); 
Co <= C; Do <= D; 
L <- Li; R <= Ri; 
Lo <= R; 
comp2 
comp3 
comp4 
comp5 
comp6 
comp7 
comp8 
comp9 
complO 
compll 
compl2 
compl3 
comp!4 

expl port map(R,bo); 
pc2 port map(C,D,ao); 
xordll port map(ao,bo,el,e2,e3,e4,e5,e6,e7,e8) 
si port map(el,yl); 
s2 port map(e2,y2); 
s3 port map(e3,y3); 
s4 port map(e4,y4); 
s5 port map(e5,y5); 
S6 port map(e6,y6); 
s7 port map(e7,y7); 
s8 port map(e8,y8); 
fp port map(yl,y2,y3,y4,y5,yS,y7,y8,f); 
xordl2 port map(f,L,Ro); 

end Behavioral; 

finalround.vhd 
library IEEE; 
use IEEE.STD_LOGIC_1164.ALL; 
use IEEE.STD_LOGIC_ARITH.ALL; 
use IEEE . STD_LOGIC_UNSIGNED . ALL ; 
use work.ncl_signals.all; 

entity finalround is 
port ( L16 : in dual_rail_logic_vector(1 to 32); 

R16 : in dual_rail_logic_vector(1 to 32); 
ct : out dual_rail_logic_vector(1 to 64)), 

end finalround; 

architecture Behavioral of finalround is 
signal uu : dual_rail_logic_vector(1 to 64) 
begin 
-- process(uu) 

http://IEEE.STD_LOGIC_ARITH.ALL
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-- begin 
uu(l to 32) <= L16; uu(33 to 64) <= RIG; 

ct(l)<=uu(40) 
ct(5)<=uu(56) 
ct(9)<=uu(39) 
ct(13)<=uu(55 
ct(17)<=uu(38 
ct(21)<=uu(54 
ct(25)<=uu(37 
Ct(29)<=uu(53 
Ct(33)<=uu(36 
ct(37)<=uu(52 
ct(41)<=uu(35 
ct(45)<=uu(51 
ct(49)<=uu(34 
ct(53)<=uu(50 
Ct(57)<=uu(33 
ct(61)<=uu(49 
-- end process 
end Behavioral 

ct(2)< 
ct (6)< 
ct(10) 
ct (14 
ct (18 
ct(22 
ct(26 
ct(30 
ct(34 
ct (38 
ct(42 
Ct(46 
Ct(50 
ct(54 
ct(58 
Ct(62 

=uu(8) ;ct(3)<=uu(48) ;ct(4)<=uu(16) ; 
=uu(24) ;Ct(7)<=uu(64) ;ct(8)<=uu(32) ; 
:=uu(7) ;ct(ll)<=uu(47) ;Ct (12) <=uu(15) ; 
<=uu(23) ;Ct(15)<=uu(63) ;ct(16)<=uu(31) 
<=uu(6) ;ct(19)<=uu(46) ; ct (20) <=uu (14) ; 
<=uu(22) ;Ct(23)<=uu(62) ; ct (24) <=uu (30) 
<=uu(5) ;Ct(27)<=uu(45) ; Ct (28) <=UU (13) ; 
<=uu(21) ;ct(31)<=uu(61) ;Ct(32)<=uu(29) 
<=uu(4) ;Ct(35)<=uu(44) ;Ct(3 6)<=uu(12) ; 
<=uu(20) ;Ct(3 9)<=uu(60) ; ct (40) <=uu (28) , 
<=uu(3) ,-ct(43)<=uu(43) ; Ct (44) <=uu (11) ; 
<=uu(19) ;ct (47) <=uu(59) ;Ct (48) <=uu(27) 
<=uu(2) ;ct(51)<=uu(42) ; ct(52)<=uu(10) ; 
<=uu(18) ;Ct (55)<=uu(58) ; ct (56) <=uu (26) 
<=UU(1) ;Ct (59)<=UU(41) ;ct(60)<=uu(9) ; 
<=uu(17) ,-ct (63)<=uu(57) ,-ct (64) <=uu (25) 

VHDL Files for Soft Error Tolerant Designs 

asyncfulladder.vhd 
library ieee; 
use ieee.std_logic_1164.all; 
use work.ncl_signals.all; 

entity asyncfulladder is 
port( elk : in std_logic; 

rst : in std_logic; 
Qi : out dual_rail_logic_vector(1 to 2) ; 
Qo : out dual_rail_logic_vector(1 to 2)); 

end asyncfulladder; 

architecture behavior of asyncfulladder is 
signal D : dual_rail_logic_vector(1 to 3); 
signal Ipul : std_logic; 
component signal_genl 

port( clock : in std_logic; 
Di : out dual_rail_logic_vector(1 to 3); 
strk : out std_logic); 

end component; 
component asyncfa 

port ( Di 
I : 
rst 
Qi 
Qo 

end component; 
begin 
cl : signal_genl port map (elk, D, Ipul) ,-
c2 : asyncfa port map(D,Ipul,rst,Qi,Qo) 
end behavior; 

in dual_rail_logic_vector(1 to 3); 
in std_logic; 
: in std_logic; 
out dual_rail_logic_vector(1 to 2) 
out dual_rail_logic_vector(1 to 2)\ 

signal_genl.vhd 
library ieee; 
use ieee.std_logic_1164.all; 
use work.ncl_signals.all; 

entity signal_genl is 
port ( clock : in std_logic,-

Di : out dual_rail_logic_vector(1 to 3) 
strk : out std_logic 
) ; 

end signal_genl; 
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architecture behavior of signal_genl is 
begin 
incrementer: process is 
variable count_value: natural:=0; 

begin 
wait until clock = '1'; 
count_value := (count_value+l) mod 16; 
Di(3),railO<='0';Di(2).raill<='0';Di(1).raill<='0'; case count_value is 

when 1 to 8 => 
Di(3).raill <=•!•; 

when others => 
Di(3).raill <='0'; 

end case; 

case count_value is 
when 3 to 10 => 

Di(2).railO <='l'; 
when others => 

Di(2).railO <='0'; 
end case; 

case count_value is 
when 5 to 12 => 

Di(l).railO <='l'; 
when others => 

Di (1) .railO <='0'; 
end case; 
case count_value is 

when 3 => 
strk <='l'; 

when others => 
strk <='0' ; 

end case; 

end process incrementer; 

end behavior; 

asyncfa.vhd 
Library IEEE; 
Use IEEE.std_logic_1164.all; 
Use work.ncl_signals.all; 

entity asyncfa is 
port ( Di : in dual_rail_logic_vector(1 to 3); 

I : in std_logic; 
rst : in std_logic; 
Qi : out dual_rail_logic_vector(1 to 2); 
Qo : out dual_rail_logic_vector(1 to 2) ) ; 

end asyncfa; 

architecture behavioral of asyncfa is 
signal se,kf,kro,ki,kri,kfo : std_logic; 
signal Qia,Qic : dual_rail_logic_yector(1 to 3); 
signal sc.Qins : dual_rail_logic_vector(1 to 2) ; 
component initreg is 

port ( D : in dual_rail_logic_vector(1 to 3); 
ki : in std_logic; 
rst : in std_logic; 
Q : out dual_rail_logic_vector(1 to 3); 
ko : out std_logic); 

end component; 
component finalreg is 

port ( D : in dual_rail_logic_vector(1 to 2) ; 
ki : in std_logic; 
rst : in std_logic; 
Q : out dual_rail_logic_vector(1 to 2); 
ko : out std_logic); 

end component; 
component fulladder is 
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port ( a : in dual_rail_logic_vector(1 to 3); 
strk : in std_logic; 
s : out dual_rail_logic_vector(1 to 2) ) ; 

end component; 
component andgates is 

port ( data : in dual_rail_logic_vector(1 to 3); 
q : in std_logic; 
output : out dual_rail_logic_vector(1 to 3)); 

end component; 
component rstcircuit 

port ( faout : in dual_rail_logic_vector(1 to 2); 
kinsout : in std_logic; 
kinitial : in std_logic; 
kinsin : out std_logic; 
q : out std_logic); 

end component; 
component agate 

port ( a : in std_logic; 
b : in std_logic; 
c : out std_logic); 

end component; 
begin 
regl : initreg port map(Di,kf,rst,Qia,ki); 
al : andgates port map(Qia,se.Qic); 
combil : fulladder port map(Qic,I,sc); 
Qi<=sc,-
a2 : rstcircuit port map(sc,kro,ki,kri,se); 
regi : finalreg port map(sc,kri,rst,Qins,kro); 
reg2 : finalreg port map(Qins,kfo,rst,Qo,kf) ; 
a3 : agate port map (kf, se, kfo) ,-
end behavioral; 

initreg.vhd 
Library IEEE; 
Use IEEE.std_logic_1164.all; 
Use work.ncl_signals.all; 

entity initreg is 
port ( D : in dual_rail_logic_vector(1 to 3); 

ki : in std_logic; 
rst : in std_logic; 
Q : out dual_rail_logic_vector(1 to 3); 
ko : out std_logic); 

end initreg; 

architecture behavioral of initreg is 
signal ao : std_logic_vector(1 to 3); 
component ncl_register_D 

generic(width : integer;initial_value: integer); -- 1=DATA1, 0=DATA0, -4=NULL 
port(D: in dual_rail_logic_vector(width-1 downto 0); 

ki: in std_logic; 
rst: in std_logic; 
Q: out dual_rail_logic_vector(width-1 downto 0); 
ko : out std_logic_vector(width-1 downto 0)); 

end component; 
component th3 3x0 

port(a: in std_logic; 
b: in std_logic; 
c: in std_logic; 
z: out std_logic); 

end component ,-
begin 
regi : ncl_register_D generic map(width=>3,initial_value=>-4) 

port map(D,ki,rst,Q,ao); 
cdi : th33x0 port map(ao(3),ao(l),ao(2),ko); 
end behavioral; 

finalreg.vhd 
Library IEEE; 
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Use IEEE. std_logic_HS4. all; 
Use work.ncl_signals.all; 

entity finalreg is 
port ( D : in dual_rail_logic_vector(1 to 2); 

ki : in std_logic; 
rst : in std_logic; 
Q : out dual_rail_logic_vector(1 to 2); 
ko : out std_logic); 

end finalreg; 

architecture behavioral of finalreg is 
signal ao : std_logic_vector(1 to 2); 
component ncl_register_D 

generic(width : integer;initial_value: integer); -- 1=DATA1, 0=DATA0, -4=NULL 
port(D: in dual_rail_logic_vector(width-1 downto 0) ; 

ki: in std_logic; 
rst: in std_logic; 
Q: out dual_rail_logic_vector(width-1 downto 0); 
ko : out std_logic_vector (width-1 downto 0) ) ,-

end component; 
component th22x0 

port(a: in std_logic; 
b: in std_logic; 
z: out std_logic); 

end component; 
begin 
regi : ncl_register_D generic map(width=>2,initial_value=>-4) 

port map(D,ki,rst,Q,ao); 
cdi : th22x0 port map(ao(2),ao(l),ko); 
end behavioral; 

fulladder.vhd 
Library IEEE; 
use IEEE. STD_LOGIC_1164. ALL; 
use work.ncl_signals.all; 

entity fulladder is 
port ( a : in dual_rail_logic_vector(1 to 3); 

strk : in std_logic; 
s : out dual_rail_logic_vector(1 to 2) 

); 
end fulladder; 

architecture beh of fulladder is 
signal cO,cl,cstrk : std_logic; 
component strike is 

port ( data : in std_logic; 
i : in std_logic; 
ipulse : out std_logic); 

end component; 
component th23x0 is 

port( a: in std_logic; 
b: in std_logic; 
c: in std_logic; 
z: out std_logic ); 

end component; 
component th34w2x0 is 

port(a: in std_logic; -- weight 2 
b: in std_logic; 
c: in std_logic; 
d: in std_logic; 
z: out std_logic ); 

end component; 
begin 
gO : strike port map(a(1).raill,strk,cstrk); 
gl : th23x0 port map (a (1) .railo, a (2) .railO, a (3) .railO, cO) ,-
g2 : th23x0 port map(cstrk,a(2).raill,a(3).raill,cl); 
s(l) .railO<=cO,-s(l) .raill<=cl; 
g3 : th34w2x0 port mapfcl,a(1).railO,a(2).railO,a(3).railO,s(2).railO); 
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g4 : th34w2x0 port map(cO,cstrk,a(2).raill,a(3).raill,s(2).raill); 
end beh; 

strike.vhd 
library ieee; 
use ieee.std_logic_1164.ALL; 

entity strike is 
port( data : in std_logic; 

i : in std_logic; 
ipulse : out std_logic); 

end strike; 

architecture beh of strike is 
begin 

process(data,i) 
begin 

if i = '1' then 
ipulse <= i; 

else 
ipulse <= data; 

end i f; 
end process; 

end beh; 

andgates.vhd 
Library IEEE; 
use IEEE . STD_LOGIC_1164 . ALL; 
use work.ncl_signals.all; 

entity andgates is 
port ( data : in dual_rail_logic_vector(1 to 3); 

q : in std_logic; 
output : out dual_rail_logic_vector(1 to 3) 

); 
end andgates; 

architecture beh of andgates is 
begin 
process(data,q) 

begin 
for i in 1 to data'length loop 

output(i).railO <= data(i).railo and q; 
output(i).raill <= data(i).raill and q; 

end loop; 
end process; 

end beh; 

rstcircuit.vhd 
Library IEEE; 
Use IEEE.std_logic_1164.all; 
Use work.ncl_signals.all; 

entity rstcircuit is 
port ( faout : in dual_rail_logic_vector(1 to 2); 

kinsout : in std_logic; 
kinitial : in std_logic; 
kinsin : out std_logic; 
q : out std_logic); 

end rstcircuit; 
architecture behavioral of rstcircuit is 
signal qs,ka : std_logic; 
component sedetect is 

port( sc : in dual_rail_logic_vector(1 to 2) ; 
se : out std_logic); 

end component; 
component doorl is 

port( si : in std_logic; 



s2 : in std_logic; 
t : out std_logic) ,-

end component; 
component door2 is 

port( ml : in std_logic; 
m2 : in std_logic; 
n : out std_logic); 

end component; 
begin 
si : sedetect port map(faout,qs); 
q<=qs; 
al : doorl port map(kinitial,kinsout,ka); 
a2 : door2 port map(ka,qs,kinsin); 
end behavioral ; 

sedetect. vhd 
Library IEEE; 
Use IEEE.std_logic_1164.all; 
Use work.ncl_signals.all; 

entity sedetect is 
port( sc : in dual_rail_logic_vector(1 to 2) 

se : out std_logic); 
end sedetect; 
architecture beh of sedetect is 
signal det,detl,det2 : std_logic; 
component th22x0 

port ( a : in std_logic; 
in std_logic; 
out std_logic); 

end component; 
component thl2bx0 

port ( a : in std_logic; 
b : in std_logic; 
zb : out std_logic); 

end component; 
begin 

gi 
g2 
g3 
end beh 

th22x0 port map(sc(1).railO,sc(1).raill,detl), 
th22x0 port map(sc(2) .railO,sc(2) .raill,det2) , 
thl2bx0 port map(detl,det2,se); 

doorl .vhd 
Library IEEE; 
Use IEEE.std_logic_1164.all; 

entity doorl is 
port( si : in std_logic; 

s2 : in std_logic; 
t : out std_logic); 

-- kl : out std_logic);--test 
end doorl; 
architecture beh of doorl is 
signal si,ti : std_logic; 
begin 

process(si,s2) 
begin 

si <= not si; 
t <= si and s2; 

end process; 
end beh; 

door2.vhd 
Library IEEE; 
Use IEEE.std_logic_1164.all,• 

entity door2 is 
port( ml : in std_logic; 
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m2 : in std_logic; 
n : out std_logic) ,• 

end door2; 
architecture beh of door2 is 
begin 

process(ml,m2) 
begin 

n <= ml and m2; 
end process; 

end beh; 

agate.vhd 
library IEEE; 
Use IEEE.std_logic_1164.all; 

entity agate is 
port ( a : in std_logic; 

b : in std_logic; 
c : out std_logic); 

end agate; 

architecture behavioral of agate is 
begin 

process(a,b) 
begin 

c<=a and b; 
end process; 

end behavioral; 
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