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ABSTRACT

Hall, Lucas D., Hardware Isolation Approach to Securely using Untrusted GPUs in Cloud

Environments for Machine Learning. Master of Science (MS), May, 2022, 37 pp., 3 tables, 4 figures,

15 references.

Machine Learning (ML) is now a primary method for getting useful information out of the

immense volumes of data being generated and stored in society today. Useful data is a commodity

for training ML models and those that need data for training are often not the owners of the data

leading to a desire to use cloud-based services. Deep learning algorithms are best suited to run on a

graphical processing unit (GPU) which presents a specific problem since the GPU is not a secure or

trusted piece of hardware in the cloud computing environment.

In this paper, we will analyze some current methods of performing ML in the cloud using

untrusted hardware and propose FIGHTE: full isolation of GPU hardware for trusted execution, a

new hardware implementation capable of physical isolation. FIGHTE should allow for securely

using a GPU for ML in the cloud even for various parties involved.
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CHAPTER I

INTRODUCTION

1.1 Background Information

Machine learning has become an integral part of our society. It is used in phones, cars,

drones, robots, and even automated helicopters as well as all sorts of other software applications. At

this time ML is really the driving force behind what is commonly considered Artificial Intelligence

(AI). This has been as much a boon for the tech industry as it has been a liability. Applications and

uses based on ML are regularly the subject of news reports typically covering an issue where an

AI program did something unexpected such as a wrecked self-driving car or wrongfully identified

a person. There have been notable instances in recent news where ML based applications have

created undesired and unexpected outcomes due either to insufficient training data and/or human

error.

What has been missing from reports are incidents of ML being compromised which might

be misleading in that a lack of known security breaches constitutes high security amongst ML. The

reality is that security in ML is quite different than other forms of software security. Certainly, many

aspects are the similar however the nature of ML presents a unique problem set regarding security.

Whereas there are many types of ML, the focus here is on deep learning algorithms which may take

copious amounts of time and resources to complete. Due to amount of time and data required to

complete the model training process, adversarial attacks may take place throughout the training

process affecting either the dataset or the model depending on the nature of the attack. The time

involved in training also leads to using GPUs for training models which can lower training times

drastically compared to central processing units (CPU) but can also exacerbate security issues as
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GPUs do not have the security technology present on many CPUs used in cloud computing. The

attacks occurring during this process generally are done to either steal the dataset, steal the model,

or to poison the model such that once used the results are modified from what is to be expected or

greatly reduce the accuracy.

Xue et al. 2020 provides an in depth look at ML security issues and some of the defenses

against them currently available. Many of the security concerns described are the same that this

paper attempts to solve in the presented solution, though his paper is limited in scope to longer deep

neural network (DNN) processes. The longer processes are vulnerable to specific attacks such as

training data poisoning, data set theft, model theft, and others. The other types of ML may still

benefit from the proposed solution. Many of the defenses described relate to a single type of attack

or simply maintaining privacy of a dataset either though encryption, verification, or detection and

incur considerable overhead which may be costly or unmanageable in practice.

1.2 Problem Overview

The problem with security in the cloud for ML is both multifaceted and unique. Because

the process can take considerable amount of processing resources and requires very large amounts

of data, the process of training a model takes considerable amount of time. As the need for more

accurate models grows, the time needed to train such models grows as well. Furthermore, the

training process is not best performed on CPUs. ML uses a lot of matrix operations that GPUs

are far more efficient at processing than general purpose CPUs; however, GPUs do not have any

advanced security features that are common to modern CPUs.

What makes ML in the cloud a unique problem is that the training of a model takes a lot of

time, days in some cases. This creates a large window of opportunity for an attacker. Given days’

worth of time while a process is running, it would appear to very realistic for an attacker or even

multiple attackers to be to analyze the process and launch successful attacks. The most secure way

currently to run the process is using the CPU and leveraging the various security features of the

CPU. This is of course the slowest way and is still prone to security breaches. In order to greatly

improve runtimes, it seems only natural to use the GPU which leads to inevitable tradeoffs between

2



performance and security leaving no truly secure or full speed method.

Other problematic aspects must also be addressed. The dataset and model must be kept

secure and confidential at all times which generally means encrypted. Yet during training and

testing phases these items need to be at least in part decrypted using most methods leaving data and

model vulnerable particularly if using a GPU. The datasets can be very large, at times possibly in

the terabyte range, creating storage and other hardware considerations while developing a solution.

In summary, GPUs hold the key to efficient ML training in the cloud yet remain an untrusted

piece of hardware. Any solution developed to utilize the GPU in this environment must take into

consideration aspects of ML such as the ability to keep data encrypted and inaccessible while not

encrypted as well as to ensure the hardware has the capacity to house and work with exceedingly

large datasets.
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CHAPTER II

SOFTWARE SOLUTIONS

As with many security issues, it is fast and cost efficient to implement software-based

security solutions ahead of seeking hardware-based solutions. The goal of using an untrusted GPU

for secure ML training is certainly no exception. A plethora of possible solutions have arisen.

To understand the drawbacks of many of the proposed solutions, a non-comprehensive review is

provided for perspective. These solutions include variations of homomorphic encryption schemes,

verification schemes, and other encryption schemes such as multi-party computation. Much of the

works are done using trusted execution environments (TEEs) in some regards.

2.1 Homomorphic Encryption Method

Homomorphic encryption is a method that allows for data to be used while remaining in an

encrypted state. In terms of ML, this means being able to keep a dataset encrypted in such a way

that the model can still be trained and tested on the data without first being decrypted. Immediately

knowing that all data stays in an encrypted state ensures a high level of privacy and it is doubtful

that any additional overhead would be incurred due to using the data in such a state.

Wu, Du, and Yuan 2020 have demonstrated a technique for encrypting data, images in this

study, in such a way that the features are preserved well enough that the images can be used to train

a model with high accuracy. The encryption is strong enough that any adversary would need direct

knowledge of the encryption scheme in order to gain access to protected data. Any leaked data

would still be in an encrypted state and thus highly unusable outside the intended scope. Despite

that this method was not intended to be used specifically for the problem at hand, the method seems

very close to a standalone solution. The data is protected by encryption and the model is useless

4



except without the owner having the encryption key. It would need protection from various other

attacks such as poisoning attacks or bomb attacks.

One drawback may be that the model only works for the encrypted data and not the original

data, for testing and application. It is stated that all usage of the model will need to be done using

data encrypted in the same manner as the data the model was trained and tested with. This means

that the owner of the model will have to encrypt any data to be worked on using the encryption

method and key for that model. With that in mind, it would seem that the encryption method could

become widely known very quickly and could lead to theft of data if the encryption scheme is not

strong enough or keys are leaked. Still the concept is pretty solid and could likely be improved

upon. It may prove useful in particular if combined with other security solutions.

2.2 Verification Methods

Several approaches have been made to securely use the GPU for ML by means of verifying

processes. The methods typically rely in part on a CPU provided TEE along with software to

delegate certain aspects of training to an untrusted GPU. The verification aspect serves to ensure a

high degree of integrity in the operations that are being outsourced to the GPU. Indeed, the main

benefit of these methods is to increase performance of the process while maintaining integrity

foremost to ensure that the model is trained accurately.

Tramèr and Boneh 2018 propose Slalom which is a method that outsources the costly linear

computations of the ML process to the GPU and is primarily focused on the testing phase of the ML

process. The authors used Intel SGX as a source of TEE and a method for verifying integrity based

on Freivalds’ Algorithm. Freivalds’ Algorithm is a probabilistic method to determine whether one

matrix is the product of two matrices and has a time complexity of O(n2) whereas regular matrix

multiplication is O(n3). It is a considerably faster method than multiplying 2 matrices together and

allows the ML model to know that the output is correct and that no changes have occurred during

the process using the untrusted GPU. Overall, Slalom proves to be 4 to 20 times faster than pure

TEE methods though it still incurs quite a bit of overhead and appears to require large amounts

of RAM or access to fast storage devices. Combined with privacy protections, it does provide a
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reasonable number of protections for its purpose.

Where the focus in Slalom is the testing phase, GOAT, created by Asvadishirehjini, Kantar-

cioglu, and Malin 2020, is a method that uses random verifications to ensure integrity in the training

phase of the ML process. This serves to detect specific attacks that would occur during the training

phase such as a poisoning attack. In this method, Intel SGX is once again leveraged as a basis

for privacy while outsourcing the dataset in plaintext to the GPU. Privacy is not a major concern

in this approach where the focus is specifically integrity which leaves the TEE usage limited to

administrative tasks in operating GOAT. This method works by sending mini batches of data to

the GPU and tracking the gradients reported from each mini batch. Each mini batch has a chance

of randomly being selected to have a verification check performed. This verification once again

uses Freivalds’ Algorithm to verify the outcomes correctness. If any mini batch is not correct this

is reported, and the model will not be verified as accurate indicating it was attacked. Right away

its clear that this does not provide privacy protections for datasets so this method cannot be used

on any sensitive data which limits the possible applications severely. There is no arguing that the

randomized integrity checking can be an efficient and accurate approach; however, the combined

overhead of this method plus anything else needed to provide other security aspects may be too

great to overcome.

2.3 Multi-party Computation

Multi-Party Computation or Secure Multi-Party Computation (MPC) is a method for which

two or more independent parties can share data for computations while keeping each party’s data

private from the other parties involved. This is a very attractive concept for ML on account of the

fact that many separate parties may own portions of datasets that can be used to train a model but

not a single dataset large enough to accomplish the task. Methods for MPC are purely cryptographic

and the focus is mainly on data privacy.

Falcon introduces a 3-party protocol that has several advantages over other previous methods,

Wagh et al. 2020. It is notably faster than other methods used as comparisons and claim to be the

first to support batch-normalization. The main focus is to allow 3 parties to share data for ML
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without any party getting the data of other parties. In terms of using the GPU for ML, no specific

additional security is employed though they did execute performance tests to compare performance

of CPU versus GPU using Falcon which gives some good performance insight, and the authors

highlight the need to include GPU support for ML. Overall, security is still lacking in terms of the

complexity encountered in a cloud environment.

CrypTen is another approach to MPC which focuses on bringing MPC into mainstream

acceptance, Knott et al. 2021. The advantages here are ease of use and non-specific party numbers.

It is also designed specifically to support use of the GPU in ML. The ability to cater to any number

of cooperating parties is an advantage over other methods that are specific to 2 or 3 parties; however,

the overhead in communication between the parties appears to get out of hand very quickly as

the number of parties involved grows. There is a huge amount of privacy built in but there is not

much mention of other types of attacks or vulnerabilities outside the cooperating parties. It’s not

addressing the issue at hand.

MPC may have great use in ML and seems like it may be a good option for certain use cases

as it allows many parties to work together and keep data private from each other. It may be ideal in

cases where data is coming directly from databases and is not readily available otherwise. There

is nothing to indicate that this is a more secure choice over other methods for using the GPU to

accelerate learning, it simply caters to multiple sources. Theft of model, poisoning attacks, and DoS

attacks would still have the same virulence as in other software methods. In terms of considering

data from multiple parties, there may be other options for this to be completed as well using the

proposed method here which can provide greater levels of security if needed.

2.4 Limitations of Software-based Secure Machine Learning in the Cloud

Software solutions have the advantage of being quicker and more affordable to deploy when

compared to a hardware solution for a great many problems. Dealing specifically with securely

using an untrusted GPU for ML in the cloud, software solutions fall short in a lot of ways.

Each method seen so far is limited to primarily one security aspect, mostly privacy or

integrity. These are issues that are well suited to be solved using just software via encryption,
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hashing, and other methods. In the time required for ML, even these strong software-based concepts

break down. Aside from homomorphic encryption, all the data must be in plaintext somewhere in

the system to do work on which makes it vulnerable, much more so than a shorter process. But even

the homomorphic encryption still needs an integrity check and may be limited in application. Each

method is short of security features. This means that all the overhead added in each method is only a

fraction of the overhead needed to provide a comprehensive software-based security implementation.

This negates the reason to use an untrusted GPU which is to provide much needed performance

increases over the long process of ML.

Software will always be limited to the hardware it runs on. In this sense, it can only be as

secure as the hardware is. Looking at Intel SGX, clearly some serious exploits were found that

allow data to be stolen that otherwise should be guaranteed secure by the hardware TEE. This does

not mean that all TEEs will be insecure but at this time that technology may not be mature enough

to be fully trusted. With software-based solutions, it is always about adding more code or overhead.

Given any ML model to train, it will always be fastest training on a plaintext dataset on the fastest

GPU. In order to secure this with software, more code must be added, a lot more. There will always

be overhead that cannot be overcome except with a hardware-based solution.
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CHAPTER III

HARDWARE SOLUTIONS

There are not a lot of hardware solutions currently available for this specific problem. TEEs

such as ARM TrustZone and Intel Software Guard Extensions (SGX) are certainly hardware-based

solutions except not specific to this situation and these technologies, for the time being, are not

available on GPUs. Thus, solutions involving TEEs are primarily software based such that they

leverage the security of a TEE on the CPU while using the GPU to accelerate the training process.

A few solutions exist that have explored the options of making minor hardware changes to allow

more secure use of the GPU for ML purposes. These solutions are still not comprehensive and may

be too difficult to be practical.

The general consensus is that major hardware solutions to this problem are likely too

expensive to be done. There is truth to this as the NVidia A100 80GB model is still listed at around

$20,000. The price of such a device is justified by the diverse number of services that the GPU can

provide for the cloud provider. With these things in mind any hardware solution would need to be

very comprehensive while still allowing the same diversity in services without a negative impact.

The following solutions require a form of modification of hardware in order to be implemented. In

both cases, there seems to be no mention of possible ramifications of the implementation on the rest

of the environment which makes them highly suspect to begin with.

3.1 Pure TEE Method

The TEE is a way to isolate data in a system by use of a CPU that is trusted. This is a

hardware solution in because the system must have a CPU that supports TEEs, even though the

TEE was not developed to specifically for use to solve this problem and adds no solution for using

9



the GPU in a trusted manner. For the purpose here we can say that not using the GPU at all is

one solution in and of itself. We assume the processor is trustworthy because the manufacturer

is trusted, and they provide the means of attestation such that the processor is of a known trusted

source. Probably the most common source of TEE recently has been Intel SGX, the details of which

are discussed in detail by Costan and Devadas 2016. Intel SGX allows for the creation of enclaves

which in short are areas of memory that are encrypted and isolated by the CPU. This isn’t physically

isolated, just controlled separately by the CPU so that no data goes in or out of this area in plaintext

and only the CPU can encrypt/decrypt the data. Intel SGX has been used widely in studies related

to the untrusted GPU in ML problem.

Use of a CPU administered TEE is the slowest method for which to train ML models in the

cloud. As such this becomes the baseline by which other methods are measured in terms of how

much better performance is gained using methods involving a GPU rather than a CPU. For example,

SLALOM, Costan and Devadas 2016, shows as much as 20 times increase in throughput compared

to using pure TEE method.

Though it is generally accepted that the CPU will be slower than a GPU for ML this is not

necessarily the case. SLIDE uses two 22 core Intel Xeon CPUs with a modified ML algorithm

based on hash tables and they demonstrate that performance gains of at least 1.5 times over using a

single Nvidia Tesla Volta GPU, Chen et al. 2020. The performance gains are impressive however

there is no discussion of security. If only a CPU is needed, then a TEE security feature could

possibly be leveraged for cloud use. This raises some questions. How much overhead will SLIDE

incur if operating in a TEE? If the overhead doesn’t far exceed the performance gains using this

method, then it seems like this could be a practical solution. It has also been shown that SLIDE

can be further enhanced by leveraging other new technologies available on modern CPUs that were

not used initially. Daghaghi et al. 2021 have shown performance gains over 7 times that of the

non-optimized SLIDE implementation using the same hardware. In terms of performance, this is

hopefully encouraging enough to warrant an investigation into the practicality and usability of the

method. Assuming this could be a legit TEE only solution, then the security of the TEE must be
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considered.

At this time, the most popular TEE encountered is provided by Intel SGX. The answer

to whether Intel SGX is secure enough for ML purposes appears to be a resounding no. Many

vulnerabilities have been identified that make SGX an inadequate source of security. Cache-timing

attacks have been able to successfully retrieve AES keys utilizing the built-in hyperthreading

technology on Intel Processors, Götzfried et al. 2017. One can assume that if the AES key is

retrievable then so is everything inside the enclave. Another cache attack was able to retrieve DNA

sequences capable of personally identifying people from an enclave running preprocessing for

genome sequence analysis, Brasser et al. 2017. This is very concerning considering the nature of

ML and datasets. In a scenario where a pure TEE method is used for security, a cache attack such

as one of these could leak an entire dataset and more.

One other attack which is particularly concerning is the SGX Bomb attack, Y. Jang et al.

2017. This type of attack effectively creates a local denial of service (DoS) attack within the system.

This type of attack creates a situation where the system cannot proceed and is required to reboot.

This in turn means that everything in RAM is lost. In regard to ML which uses large amounts

of RAM and requires a long time to run, this type of attack could cause trouble from delays to

completely rendering the environment unusable for ML purpose. In a competitive marketplace this

type of attack could become a widespread problem. Other forms of attacks have been studied as

well but this should be sufficient to demonstrate that SGX is not nearly as secure as it was meant

to be. This may be why Intel has deprecated the Intel SGX technology from its 11th and 12th

generation processors.

Intel SGX is not the only source of TEEs and going forward others are sure to be deployed.

If Intel SGX is any indication of what to expect from other sourced TEEs, then the CPU must just

be considered another untrusted piece of hardware which doesn’t solve the problem. It leaves the

CPU in the same situation as the GPU. Referring back to the SLIDE method, without the possibility

of using the TEE to secure SLIDE, there is probably no practical advantage in a cloud environment

since it may be unlikely to dedicate multiple CPUs for the process and there is no way to secure it.
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This also means that not only are pure TEE methods insecure, but any method that relies on SGX

for any partial TEE solution has also lost its security.

3.2 Isolation by Modified Interconnect

One proposed solution is the HIX method, I. Jang et al. 2019. This solution requires hardware

modification and corresponding software to use the GPU securely, without any modifications to the

GPU device. It requires the use of two SGX enclaves and a modified system to work. The general

idea is that the drivers for the GPU are removed from the operating system and placed inside an

enclave to operate the GPU from inside the enclave. Then the second enclave serves as a host to the

application to be run using the GPU. Additional SGX instructions are needed and the PCIe root

complex must be modified in this case for this solution to work. There are a lot of issues with this

solution. The solution was tested using virtual machines in which the system could be modified but

in practice modifying the system maybe unrealistic. HIX has a fair number of limitations and would

have to be refactored to work without SGX at this point it seems. It still does not cover enough

security aspects to be a full solution and incurs a fair amount of overhead. They reported a 26% loss

in performance over an unsecured GPU versus HIX implementation which is a considerable loss for

a solution that may still leave a lot of vulnerabilities.

3.3 Emulated GPU TEE

Graviton, by Volos, Vaswani, and Bruno 2018, is another solution that is somewhat similar

to HIX. In this solution, SGX is once again utilized but in this case only to secure an emulated GPU

TEE. A few modifications are required for this to be achieved. The PCIe control engine and the

GPU command processor need modifications for this to work. The takeaway is that they were able

to implement an emulated GPU TEE on a GPU that has no hardware support for it using modified

drivers and encryption along with the hardware modifications. Many security assumptions are made

with this method, and it does overlook other major security issues. It incurs 17 to 33% overhead

while combined with the necessary modifications to make it work practice make it a less than ideal

solution and certainly not comprehensive.
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3.4 NVIDIA H100 PCIe Gen 5 GPU

The latest GPU solution coming from NVIDIA is the H100 Tensor Core GPU. It’s no

surprise that there are considerable upgrades in performance and scalability which will aid in

increased ML use cases. The real important updates that pertain to the situation here are the new

security features. Of course, this product is not on the market just yet so there is no hard data to

work with but the details from the white paper look promising.

Probably the most major upgrade is the inclusion of support to make a dedicated GPU TEE.

This looks to be the first official support for TEE on a GPU which is a huge advancement as prior

to this TEEs have been exclusively for CPUs. The wording is vague, but it looks as though this is

accomplished by giving the GPU the ability somehow to create its own TEE which may be similar

to how ARM TrustZone works. The exact details about how this will work are still fuzzy at this

point, but this make sense as NVIDIA was recently interested in acquiring ARM from SoftBank

Group which did not happen. NVIDIA is highly invested in ARM technologies and will feature a

CPU + GPU super chip consisting of two ARM CPUs and one H100 GPU combined though this

may not be available on all H100 products.

Other security features include Measured Boot, Root of Trust, Device Attestation, and

AES-GCM-256 Encryption of data between to and from the GPU. Measured Boot provides a

verification that the system is in a secure and ready state by reporting elements of the boot process.

The on-die Root of Trust validates the firmware such that it is authentic and not modified. Device

Attestation further ensures that an authentic NVIDIA GPU is being used with authentic firmware.

The AES-GCM-256 encryption provides fast transfers of encrypted data between the GPU and CPU

ensuring that data is kept private in transit.

All around there is an impressive amount of security built into the H100 and in truth this

may be the total solution already. Almost all of the requirements previously discussed are covered

leaving only interruptibility truly not accounted for in some form. The main question will be how

secure is the provided TEE for the GPU? Intel SGX has already been shown to have many security

flaws and data has been extracted successfully. ARM TrustZone has also had its share of successful
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attacks which, as per given speculation, might be the basis for the TEE on the H100. Once deployed

on real world environments, time will tell if this GPU can provide the necessary security. Regardless

it is certainly a major step in the right direction.

3.4.1 Other H100 Devices

The H100 GPU is or will be used in a variety of other products and forms. These other

devices are out of the scope of this paper. This includes all the devices are not PCIe standard cards

that fit mainstream servers in standard racks. The H100 SXM5 GPU, DGX H100 systems, HGX

H100, and the H100 CNX may all need a different solution if this specific use case for them were to

arise. There are plenty of other services that benefit from the acceleration of using GPUs, so there

are most certainly situations that simply do not require the degree of security, if any, needed for this

specific use case.

3.5 Limitations on Hardware-based Secure ML in the Cloud

As mentioned before, hardware solutions are likely the most expensive solutions and can be

very difficult to implement. Hardware solutions need to be engineered, prototyped, tested, built, and

deployed in a timely fashion such that they are not irrelevant upon hitting the market. All software

is dependent on the hardware to enable its usage so there is likely very few problems that cannot be

solved by using better, newer, or more specific hardware.

The majority of limitations on hardware fall into the category of feasibility issues. Assuming

any needed piece of hardware can be made on a large enough budget then the real limitation is finan-

cial. Hardware solutions need to be financially viable in order to be considered for implementation.

Looking back at some of the examples, different hardware components would need to be replaced in

order to implement the given solutions. To get a better TEE out of Intel SGX, the processor would

need to be replaced with one that has different functionality. Well, to be able to replace a processor,

the socket will need to be updated. This means that all the main boards need to be replaced with

new boards with updated sockets. It is inevitable that all data centers would eventually need do

this, but not until the end-of-life cycle of the hardware components. Modifying something like the
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PCIe bus may take even longer. That is a standardized bus that is held to tight specifications and

the processor must be able to support that version of PCIe. To implement a hardware solution to a

single specific problem like using an untrusted GPU for ML, that solution must require the minimal

number of modifications possible and limit those changes to devices that can be easily added to a

system otherwise the changes to the server hardware environment would be far too costly. Sure,

companies can wait till the inevitable hardware upgrades are required but that isn’t how business

works most of the time.

One severe limitation on hardware is that, in most cases, in order to do work on any data,

that data will need to be in plaintext at some point. Whether it be just in a cache or in registers. This

is unavoidable and probably the lowest level of security issues. Intel SGX does not work well with

Intel Hyper-Threading Technology which creates an easy path to get data from an enclave because

in cache that data is in plaintext as it must be. This shows that another level of isolation is needed to

truly keep that data safe. Despite any of these limitations, hardware-based solutions are going to be

the best option. It just needs to be done correctly.
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CHAPTER IV

FIGHTE: FULL ISOLATION OF GPU HARDWARE FOR TRUSTED EXECUTION

4.1 Introduction

With all the current options for securely using a GPU in a cloud environment for ML, none of

them so far offer a truly comprehensive plan for security while also being a feasible implementation.

Many of these solutions lean heavily towards privacy while not addressing other issues present in

the environment. These solutions may have their application in some situations but with the growth

of data sets and the rising need for greater accuracy the need for truly secure and trustworthy cloud

ML options is culminating. Evidence to this can be seen in the newly announced GPU from Nvidia,

The Grace-Hopper Superchip NVIDIA 2022, which brings a new level of security to ML along

with an impressive number of enhancements all around. Though this has not reached the market yet,

it looks to be a major advancement towards a solution to this particular problem. It may have its

shortcomings as well, but it certainly is a leap forward in terms of security and already has major

features that FIGHTE would require to make possible.

In short, the solution here is to provide physical isolation by creating or modifying an

existing GPU card such that a subsystem on a card can be created and run independent of the main

system. The subsystem will have all the necessary components needed to perform the tasks given

and will be able to run without any other form of security once isolated thus ensuring the highest

performance achievable. There is no arguing the security of isolation which is why TEEs are a

popular idea. This is the same ideology in that data is encrypted in and encrypted out but not

software implemented so there is a level of isolation that software cannot obtain. Obviously, no one

cannot go and physically remove devices in a data center that have running processes on them, so
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the goal is to add physical disconnects and security checks to the GPU cards in order to verify the 

hardware is isolated.

4.2 Requirements

A number of security issues have already been highlighted and each will need to be covered 

to provide comprehensive security. This includes side channel or cache attacks as well as DoS 

type attacks. Other possible scenarios that have not been discussed may benefit from this method 

also. Hardware trojans have been a hot topic in security recently as this may be something difficult 

to detect or protect against if deployed. Here, a list of general requirements to create a highly 

trustworthy environment for which to run long ML processes is given and discussed. A summary of 

the requirements can be seen in Table 4.1.

Table 4.1: List of Security Requirements

Requirement: Reasoning:
Must protect data privacy at all times. Prevent theft of data or private information

contained in data.
Data and model must not be modified. Maintain integrity of the model and data.
Hardware component must be verifiable. Must verify the legitimacy of the compo-

nent for trust.
Must not be interruptible. Denial of service attacks could lead to lost

time and possible other damages.
Modifications contained to one piece of
hardware.

Replacing too many components is not
feasible.

4.2.1 Basic Requirements

Some of the security requirements of course are the same for security in general. The goal

is to follow the CIAA ideology; being Confidentiality, Integrity, Availability, and Auditing, without

being concerned about availability as that is not in within the scope. Maintaining data privacy, as

seen in earlier examples, has many possible solutions. Generally, modern encryption standards

should be suitable to prevent any breach of privacy. Maintaining and testing for data and model

integrity is another rather trivial issue. Combining cryptographic schemes with hash value testing to
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ensure that nothing has been modified at various points will ensure no modifications are made to the

data set prior to or during the training and testing process. The model of course will be expected to

weather changes, but integrity checks may still be an option particularly for transit purposes.

4.2.2 Attestation

Hardware verifiability is needed to ensure that the hardware components expected are indeed

the ones being used. Attestation is the method to which the hardware can be verified as legitimate.

This is achieved by using public-key cryptography. Each GPU device will have a serial number

or a similar device identification (ID) to identify it uniquely. With each uniquely created piece of

hardware, a private key is issued that is hard programmed onto the device. The public keys for all

devices are then made available to clients that will be using the devices. Using a device ID such as

a serial number, the client should be able to obtain the public key for the device which will verify

that it is indeed the expected piece of hardware. Combined with integrity and verification of the

firmware or software of the device, this will provide significant evidence for trustworthiness of the

environment to perform the ML task in.

4.2.3 Modification and Design Requirements

These requirements are designed to minimize the costs and impacts of implementing a

solution. The data center hardware environment is complex and expensive. It is very precisely

engineered. Every component has its size and shape, and these tend to stay the same through various

hardware iterations. It bodes well for any solution such as this which addresses one specific problem

directly to follow suite.

Restricting changes to one piece of hardware will prevent the need for overly drastic changes

to be made which would likely shelve any idea of a hardware-based solution. In this case, the entire

solution should be on card with the GPU. This allows for upgradeability and scalability with current

hardware in any environment without changing or modify servers entirely.

Keeping with current design formats will assist in making this solution acceptable. If the

modifications are only made to the GPU card, then the GPU card needs to stay basically the same
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dimensions as current cards. Typically, in a data center there are clusters of GPUs mounted together

so each cluster of these modified GPU cards needs to be the same as any cluster it would replace.

This may seem obvious but when considering adding considerable new functionality to a component,

it may be difficult to fit all the necessary new components on the one card in its current size and

shape.

4.2.4 Interruptibility Requirements

Though this may be something difficult to guarantee, it is still an issue that needs to be

addressed. As mentioned previously, the ML process can take considerable amounts of time. Days,

weeks, and even possibly months in some extreme cases. Considering that there are already DoS

attacks on a hardware level as seen in Y. Jang et al. 2017 where the system is forced to reboot to

recover from an attack, it would be wise to expect that such an attack could be carried out against

a co-processor or GPU. If this were to be the case, then considerable amount of time could be

lost in order to recover from such a reboot, or worse, data corruption could occur. Whereas it is

never guaranteed that an interruption cannot occur, it can certainly be minimized substantially by

eliminating as much as possible the threat of this occurring maliciously.

4.3 Isolation Concept

As mentioned previously, the goal is to provide physical isolation for a GPU to perform ML

tasks in the cloud. There are different possibilities for which this could be accomplished. Here the

focus is to provide a single PCIe card-based GPU that has the capabilities needed to isolate itself

physically while still remaining physically attached to the rest of the system. In this manner we

reduce all the modifications in hardware to a single card that can be added to a system or replace a

current GPU device. No other system modifications should be needed.

4.3.1 GPU Modifications

Quite a few devices will need to be added to any current GPU in order to make this possible.

A summary of these devices along with the purpose for each is available in Table 4.2. Also, power

will need to be a consideration as we are trying to physically isolate the GPU but still keep it
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Figure 4.1: Concept View of Modified GPU Card to Act as a Standalone Subsystem

operating. Most GPU cards get power from both the PCIe card slot and a power cable from the 

power supply. PCIe card slots can provide approximately 75w of power where most cards will 

require around 350w. It may be prudent to simply remove any reliance on power from the PCIe 

slot altogether for this usage though that might be a challenge. Fortunately, PCIe is very general 

purpose. A lot of different devices can be run in PCIe slots. In a typical system, GPU cards, sound 

cards, networking cards, storage SSD cards, and many others operate in the same PCIe slots. With 

that, there is no reason that any changes should need to be made outside of the GPU card itself. A 

quick view of the changes needed to the PCIe card can be seen in Figure 4.1.

Table 4.2: List of Devices for GPU card

Device: Purpose:
CPU Control the GPU and other general pur-

pose usage
RAM Need main memory for on-board CPU
Storage Device Must have rather large capacity storage

device to store dataset
Physical disconnect device Create the isolation of the hardware sub-

system
Physical hardware environmental sensors Detect tampering of the hardware

There are certainly cases where multiples of GPUs are used to accelerate ML processes. In

this solution, the goal is to solve the problem simply for one GPU. Scalability is very important but

if the solution works for one instance it can be reused and redesigned to adapt to the scale needed.
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So, the focus is to build a PCIe GPU card with everything needed to be a standalone subsystem

that can be set to task and not be susceptible to attacks of near any kind. A typical GPU card does

not have the devices built on to handle this. Generally, a GPU is controlled by the system CPU. It

has its own VRAM, which is used for GPU processing, but it gets its data from the main memory

via direct memory access (DMA). In order to change this, those main devices located on the main

board will need to be added to the GPU card along with the other supporting devices.

Addition of CPU and RAM Adding the CPU and RAM for the CPU are the most critical

additions for standalone functionality. This will allow the PCIe card to be a system by itself. A

CPU cannot function without RAM, these two go hand in hand. Getting this onto the card may be

an engineering challenge but considering smart phones now have up to 12gb of LPDDR5 RAM its

reasonable to expect that a decent amount of ram can be added to a device so much larger than a

smartphone. The CPU itself should be relatively small. The ideal choice would be an ARM, which

we already know pairs well with LPDDR5 RAM and is a very low power device, compared to other

choices such as Intel or AMD. The focus is to have the GPU do the workload and the CPU take on

the supporting role.

Storage Device Another necessary component will need to be a storage device to hold all

the data needed. Ideally this should be an SSD. Fortunately, recent SSDs are relatively small and

are available in multi-terabyte capacities. Non-Volatile Memory Express (NVMe) is the current

standard for the fastest SSDs and is basically a type of PCIe interface. There are various form

factors in use for NVMe SSDs but in this application an M.2 slot SSD should be able to provide

several terabytes of storage in a small space. In the even that much more memory is needed an E1.L

slot SSD could be used which could provide over 10 terabytes of storage and still be small enough

to fit on a GPU card. Overall, it should be very possible to add an SSD to a GPU card without

increasing the size just using the available slots, not considering the possibility of adding the SSD

directly to the card.

21



PCIe Disconnect In order to achieve isolation, some form of disconnection must be made.

A possible method would be to build a switch onto the GPU card that is controlled by the onboard

CPU. This switch would allow the CPU to set the isolation once all data is received and maintain

the isolation throughout the training process. This switch may disconnect all or some of the PCIe

lanes. It would seem than an efficient approach would be to only disconnect the lanes that may

allow input and output of data such that only data isolation is achieved. However, total isolation

is achieved then the ability to weather through situations where the main board reboots while the

GPU is running without interruption. Ideally then, the best approach is completely switch of all

PCIe lanes. This also would mean that any reliance of power from the PCIe should be removed as

well. Most GPU cards require additional power source outside of the PCIe anyways so it may be

reasonably easy to simply get all power from the power plugs.

Environmental Sensors These sensors should simply be switches used to detect tampering.

Some devices may already use these types of sensors. The goal is to detect tampering of the device

while the hardware is isolated. A typical GPU card in the cloud environment has only the PCIe male

port and a link to connect to other GPU cards such as NVIDIA’s NVLink. There are no HDMI or

DisplayPort connections built into these GPU cards. This means there are minimal ways for data to

get in or out of the card and these paths need to be monitored. A built-in series of switches should

be able to detect if a device is added or removed from the link port, or if the card is removed from

the PCIe port. These switches could alert the card of a breach so that it can react and protect data.

Other switches may be located on other devices such as the

4.4 Data Flow Through Hardware

Since this solution requires that all the data be located in the isolated card, a fair amount of

data transferring must occur. The flow of data through the hardware components is a reasonably

simple concept itself as can be seen in Figure 4.2. All the data will be located in the main system

storage or in transit to the main system and will be encrypted. It will stay encrypted until it is

completely transferred to the subsystem and completely isolated. Once there and verified, all tasks
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will be performed in isolation. At the end of the training and testing of the model, the data set can

be deleted, assuming it was only a copy, and the model can be encrypted for return to the client.

Then the card can reestablish a connection with the main system and deliver the model.

Figure 4.2: Flow of Data through the Hardware

One thing that stands out from this is that there may be multi-terabyte data sets being 

transferred across the system and subsystem card. This raises the concerns over how much time 

might be needed to transfer this data and where the bottlenecks might occur in data transfer. In the 

past, the idea of transferring a TB of data might have sound absurd but with today’s technology 

transfer speeds have increased dramatically. Looking at Table 4.3, a comparison of various bus 

speeds, the slowest given is the 1 gigabit ethernet LAN. This is the slowest point and actually a lot 

faster than most business and household internet services available from providers. Certain regions 

with access to fiber optic infrastructure may see speeds this high or higher but not the vast majority 

of users. This however is just getting the dataset to the cloud provider and the dataset may come 

from different sources so that does not affect the times of the service itself. Looking at the other 

speeds listed, any modern data center should be using PCIe based SSDs. M.2, U.2, and other form 

factors can be implemented on the PCIe bus and use PCIe speeds, typically at PCIe x4. There will 

likely be a bit more time to transfer data in the real world than the theoretical max speeds of these 

busses, but the internal bus speeds show that that the time to transfer large data sets can be measured 

in minutes emphasizing that this isn’t the time-consuming task it would have been in years past.
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Table 4.3: Comparison of Various Common Speeds

Transfer Bus: Theoretical Speed: Transfer Time of 1 TB of Data
1Gb ethernet LAN 125 MB/s 2 hours, 13 min, 20 sec
SATA SSD read speed 500 MB/s 33 min, 20 sec
SATA SSD write speed 500 MB/s 33 min, 20 sec
M.2 SSD read speed 7 GB/s 2 min, 22 sec
M.2 SSD write speed 5 GB/s 3 min, 20 sec
USB 3.2 2x2 2.5 GB/s 6 min, 40 sec
PCIe 4 x4 4 GB/s 4 min, 10 sec
PCIe 4 x16 32 GB/s 31 sec

4.5 Software Implementation

In order to utilize the modified hardware, management software will have to be written to

accommodate the isolation aspect. There will need to be 2 parts to the software that will work

together. The first part will remain on the main system as the primary component. This will be the

program that communicates with the client, gathers data, and prepares and verifies the subsystem to

do the training. The secondary part will be what operates on the subsystem card. This portion will

lockdown the subsystem, maintain the isolation, and perform the ML training. Once the training is

completed it will re-connect with the primary program.

4.5.1 Primary Software

The primary program will take on most of the responsibilities of the overall process. This part

of the program will communicate with the clients, prepare data for processing, and verify the initial

setup of the hardware as well as the legitimacy of the hardware involved. These responsibilities

should include verifying that data used for training is from a trusted source, is encrypted, and has an

accompanying encrypted key and hash value, as well as collecting all the parameters needed for the

training to run to completion.

With all the data received and parameters set, the program should run the attestation to

verify the hardware and firmware of the subsystem card. Once verified, the program will load the

data to the card and configure the secondary program on the card. A final verification should be
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performed to verify the subsystem is configured correctly, then if verified, the primary program will

hand off control of the subsystem to the secondary program. The primary program will wait for

the secondary program to re-establish communications. After the secondary program is finished

the primary program will regain control and establish or wait to establish communications with the

client to deliver the trained model. A general flow of the primary program is shown in Figure 4.3.

Figure 4.3: Workflow of Primary Program.
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4.5.2 Secondary Software

The secondary program will be only on the subsystem card. This will be responsible for

maintaining the isolation of the card as well as coordinating the training and testing of the ML

model in isolation. The general flow of the secondary program can be seen in Figure 4.4

Once the primary program reaches waiting stage, the secondary program running only on

the GPU card will lock down the card and initiate a monitoring process to make sure the card is not

tampered with during the training and testing of the ML model. At any point, if tampering is detected,

the data can be wiped or encrypted, and the entire training process aborted, and control returned

to the primary program. After the card is successfully isolated, another verification should be run

internally to verify no changes were made prior to locking it down. After the isolated environment

is confirmed internally, the process of training the ML model can commence at native speeds in a

physically isolated environment. Once the training is finished, the model can be encrypted, and the

dataset discarded as it should only be a copy of the dataset. Memory can be wiped such that the

data anything sensitive that had been decrypted is surely gone. Once all training is completed based

on given parameters and transit level security restored, the secondary program will return the card

to an unlocked state and control can be returned to the primary program. Once control is returned to

the primary program, the subsystem card can be wiped clean of all data and set to a ready state.

4.6 Implementations and Testing

The costs and time frame for manufacturing an actual device to test for this solution are

obviously prohibitive. No such devices readily exist or are easily modified to use a placeholder for

testing therefore no tests have been performed. This is likely a solution that would best be given to

a major GPU manufacturer that has the resources to prototype and test such devices. That does not

mean it cannot be done by other entities. Certainly, GPU manufacturers sell the GPUs for use on

PCIe boards that are manufactured by various other companies that do not directly manufacture

GPUs, so it would be quite possible for a company to take this solution and apply it to an existing

GPU on a custom made PCIe card.
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Figure 4.4: Workflow of Secondary Program

There would be quite a few engineering challenges to get this done. Placement of all the 

components on the board with adequate connections and cooling capabilities would be one challenge 

certainly, though probably not the most difficult. Maybe the biggest challenge would be able to 

create the physical disconnection. Physically switching off the lanes is as easy as installing a switch, 

but the device needs to be able to switch off the PCIe lanes without disrupting the system. The 

question becomes how can this be done in a manner that is supported by PCIe or does not cause 

any issues with the interconnect? On a typical computer, PCIe resources are allocated when the
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computer is booted and really that can’t be changed without modifying the operating system and/or

the BIOS/UEFI on the motherboard. However, PCIe on server boards should typically support hot

swap or hot plug capabilities and these would be the first options to explore. In essence, set the

card to be swapped, switch the card into isolation mode, run the ML programming, and then switch

back on the PCIe lanes and add the card back to the system. If that were to prove to not be a viable

solution, then some sort of PCIe spoofing should be doable that keeps the system informed that the

card is still there, but the processors are physically isolated on the card behind the switch.

Another challenge to get this implemented will be all the software needed to support the

device. A new set of device drivers will surely need to be written to support the card as well

as a new application programming interface (API). Depending on the devices used some of this

may be created from existing drivers and API that need only be modified and updated for use in

this application. These may not be exceedingly challenging but will certainly add to the costs of

implementation.

4.7 Security Implications

Testing an actual GPU card for results would be unnecessary to accept the validity of the

security concept provided by this solution. Physically isolated devices provide a degree of security

that cannot be matched in software methods. Other issues such as encrypting data and passing

encryption keys securely are trivial in that they are widely performed already indicating that the

security presented is mature and easily trustworthy.

A few assumptions are made about security. It is assumed that cryptographic keys will be

enough to keep data secure and while used alongside hash values the integrity can be verified as

well to ensure no changes are made in transit or otherwise while not isolated. Another assumption is

that all parties that provide data are trustworthy. In the event that there is a malicious party declaring

itself as being trustworthy, FIGHTE is not going to be able to defend against that. These are details

that should be worked out prior to attempting this task by all parties involved. Of course, with

proper use of certificate authorities and other identity verifications, there should be plenty of protect

from outright adversaries posing as a known trusted party. Since a great part of the security relies
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on the hardware manufacturer, it is also assumed that they will manufacture and provide attestation

services in good faith such that no designs are made that would allow the manufacturer to steal data.

There is also the possibility of a hardware trojan. Since this level of security would be very difficult

to beat, it could make an isolation device a prime target for a hardware trojan. This calls for a

further assumption that any part of this device is manufactured by a trustworthy source. Ultimately,

construction of such devices would have to be under great scrutiny.

In regard to specific threats against using an untrusted GPU for ML in the cloud, we can

clearly see the level of security this will provide. Facing the issue of data leakage or theft of

data, this is heavily prevented. All data remains encrypted until it is isolated physically. Even

theft of the encryption key would be extremely unlikely. Given that a GPU card matching the

given requirements is created, it would certainly use public-key encryption to encrypt a symmetric

encryption key used to decrypt the data for use in training. The card would have a specific private

key built in unique to that card and the public would have the public key to encrypt other keys with.

Theft of model is prevented as the model is kept encrypted as well. There could be no opportunity

for side-channel attacks or cache attacks. The co-processor and GPU are isolated so no adversary

can view the cache or share threads on a core. Certainly, all the data in the RAM and VRAM could

be in plaintext but no one could see it. No one would not be able to physically steal the card and

get that data from it because once power is removed that data in RAM is lost and data in storage is

going to be still encrypted. If implemented with no dependency on the PCIe bus for power, then

there is a huge protection from interruptions based on DoS attacks. While maintaining independent

power and isolation from the main system, its quite possible for the main system to be rebooted,

multiple times even, and the main program recover back to the waiting state. Clearly, physical

isolation of a process like this is a very robust solution.

4.8 Performance Implications

Performance of this method should be unmatched compared to other methods. The only

additional overhead incurred for this method is additional transfer of data onto the subsystem card

and the verification checks. The data transfer times have been shown to be trivial amounts of time
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and it would be difficult to even measure how little time the verification checks might add to the

process. If we factor time for decryption this should be neutral time increase as other methods

require data to be decrypted as well and decryption should not be a time factor as is since the data

arrives encrypted and needs only be decrypted as the training process commences. In this scenario,

the performance of training the ML model is only restricted by the performance of the hardware

itself without any additional overhead required for security purposes.

4.9 Other Challenges and Limitations

A number of limitations may exist for FIGHTE. In particular, this method may not be able

to be applied to all types of ML in the cloud. The focus in FIGHTE is to provide security to deep

learning processes where the data is fully available in terms of how it is delivered. This means

that all the data needed can be packaged and delivered to the GPU card where it is then isolated,

and no other data is needed to proceed with training. This in practice might need to be changed

to accommodate bringing in new data at intervals. In the case that a model needs a direct stream

of data another solution will need to be found. It may be that there are models that are constantly

changing to adapt to new data as it is created or becomes available which may place high availability

constraints on the model preventing it from being capable of being isolated. This would create

significantly more difficult security situation for ML in the cloud altogether.

One challenge may be to include catering to multi-tenant usage. In the cloud, there are lots

of tenants on the same hardware including the GPU. In this case we are isolating an entire GPU

for one purpose. It is assumed that the entire GPU would be needed but this may not be the case.

Since FIGHTE is isolating the entire GPU, it will not be available to any other tenant for any other

purpose until this process is complete. Of course, there would likely be other GPU devices available

from the provider which can serve other tenants it may be a consideration that too much demand

on GPUs that are isolating may leave other services under served. It would not be a trivial task

to try and serve multiple tenants on one GPU that is physically isolated even if this were to be a

possibility to load up multiple of datasets and models for various clients to train concurrently using

a single GPU device.
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4.10 Possible Drawbacks of this Method

Certainly, one of the most formidable drawbacks is the expensive of manufacturing the card.

A large degree of design and engineering will need to be done to produce the card and then testing

will need to be done to ensure proper functionality. Whereas the cost alone would not rule this out

as these cards are exceedingly expensive already, there must be a demand for this level of security.

The price paid for the GPU cards may be justified by the number of services that can be provided

or benefit from the acceleration provided by the GPU. Cloud based Gaming, Data Analytics, and

Scientific Computing are just a few of the other services this type of device caters to. In the sense

that this modified card may be overly application specific, it might be the case that a lack of diverse

uses cases renders the cost insurmountable.

4.11 Comparison with NVIDIA H100

The NVIDIA H100 is set to be released in 2023. There are still a lot of details missing such

as exactly how the TEE will be implemented for the GPU. The descriptions and specifications given

so far are very general. It appears that the TEE is handled by the GPU itself, though it’s likely a CPU

on the main board handles another TEE of some sorts for other aspects. It is stated that the H100 will

be usable with current x86 architectures so assumingly it can be paired with other CPUs using other

technologies such as AMD’s Secure Encrypted Virtualization (SEV). What is known for certain is

that there will be a Grace-Hopper Superchip that uses NVLink-C2C (chip-to-chip) interconnect to

connect 2 Grace ARM based CPUs with a Hopper GPU. Whether or not NVIDIA places a CPU

onboard the PCIe Card for the H100, it is known that this configuration can be done, possibly with

a single less powerful CPU. The NVLink-C2C technology solves at least one technical issue of

making it possible to have the CPU collocated with the GPU on a card that could be physically

isolated. NVIDIA advertises NVLink-C2C as an interconnect for custom and semi-custom designs.

In terms of security, the goal of the Nvidia H100 is the same as FIGHTE in that the end

result is the isolation of the data in use. Also, both methods are concerned with isolating the entire

GPU for the duration of the training process. NVIDIA uses the TEE option and extends this to the
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GPU offering the ability to isolate an entire GPU for one TEE or allow multiple tenants to use the

same GPU in TEEs. Certainly, scalability is prized and for such times that clients do not need the

full strength of this exceptionally powerful GPU this is a big plus for the TEE method. Of course,

in cases that do or do not need the full GPU but need the full isolation to reduce risks, NVIDIA has

the option to isolate the GPU entirely as well. FIGHTE obviously isn’t factoring in scalability. If

scalability were a factor for FIGHTE, the scale would start at isolating a single GPU and then scale

up only in terms of number of GPUs. There would be no way to serve multiple clients on the same

GPU because it requires the entire GPU to be physically isolated. The level of security in FIGHTE

is intrinsic, physical isolation need not be proven excessively to be accepted. TEE isolation is based

primarily on cryptography which is very secure but may be compromised if the encryption key is

lost. This has happened on Intel SGX already. The TEE isolation will need substantial real-world

testing to prove it can create a legitimate degree of isolation that cannot be defeated.

The Device Attestation feature NVIDIA has included on the GPU as well as the On-Die Root

of Trust provide key features that would be needed for an implementation using FIGHTE as well.

As discussed previously, it is critical to FIGHTE to be capable of verifying that the hardware and

software on the physical device to be isolated are legitimate devices running known safe software

and drivers. NVIDIA’s Device Attestation and On-Die Root of Trust do just that. The H100 will

also feature Measured Boot, which ensures that the GPU device is booted using only approved code

and firmware to boot into a secure state. NVIDIA has a list of other security related enhancements

included on the H100 that have not been discussed in detail as of yet.

Overall, it seems that NVIDIA is making a massive effort to solve the problem of using

GPUs securely in the cloud for any purpose, especially ML, while at the same time bringing huge

performance enhancements. It may be too soon to tell if the security enhancements will be enough.

Specifically, the question is how robust these new TEEs on the GPU will be when up against attacks.

If all goes well for the H100, it may very well be the end of this problem. If not then another more

secure option may be needed, which FIGHTE certainly could provide.
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CHAPTER V

CONCLUSION AND FUTURE RESEARCH DIRECTIONS

5.1 Conclusion

The proposed method allows for full speed usage of a GPU in a cloud environment where

the attack surface is broad due to the complexity of the multi-tenant environment. If implemented

correctly, the isolation will guarantee that no theft of data, or tampering or poisoning of the ML

model in anyway can occur during the lengthy training process. It also provides a new layer of

protection from interruptions that occur due to malicious behaviors such as denial of service attacks.

The concept of physically isolated hardware components is undoubtably an insurmountable layer

of security and should represent the apex of security in any computer system. With upcoming

advancements in security related to GPU devices, it is clear that major hardware manufacturers are

aware of this problem and are looking to for solutions that will enable them to tap into a growing

ML and AI market that requires exceptional security and trustworthiness to handle sensitive and

valuable data.

5.2 Future Research

One certain aspect for future work is to research devices that can be used for or modified

easily to be used as a proof of concept for this approach. Time and financial constraints have

rendered this not possible for this paper but with some creativity a testable solution is sure to be

found.

With the newly announced upgrades in hardware coming from NVIDIA, it will certainly

be a primary focus to follow up with news and information relating to all the H100 products

up to and beyond the release of the products. Most notably it will be of great interest to follow
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up with evaluations of the level of security provided by the GPU TEEs and possibly test that

security firsthand. If any major security breaches occur, then the concept of the trusted execution

environment may have to be revised or replaced with something more fundamental with concrete

guarantees such as the approach given here. With that in mind, seeking new methods to apply

this concept of hardware isolation to other related devices in the cloud infrastructure that might

be performing the same tasks such as the variants of the H100 will be a focus as well in order to

present this concept in as much of a realistic manner as possible.
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