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ABSTRACT 
 

Hossain, Md Riyad, Machine Learning tools in the predictive analysis of ERCOT load demand 

data. Master of Science in Engineering (MSE), May, 2022, 90 pp., 5 Tables, 62 Figures, 

references, 81 titles. 

           The electric load industry has seen significant transformation over the last few decades, 

culminating in the establishment and implementation of electricity markets. This transition 

separates electric generation services into a distinct, more competitive sector of the industry, 

allowing for the introduction of greater unpredictability into the system. Forecasting power 

system load has developed into a core research area in power and energy demand engineering in 

order to maintain a constant balance between electricity supply and demand. The purpose of this 

thesis dissertation is to reduce power system uncertainty by improving forecasting accuracy 

through the use of sophisticated machine learning techniques. Additionally, this research 

provides sophisticated machine learning-based forecasting methodologies for the three 

forecasting professions from a variety of perspectives, incorporating several advanced deep 

learning features such as Naïve/default, Hyperparameter Tuning, and Custom Early Stopping. 

We begin by creating long-term memory (LSTM) and gated recurrent unit (GRU) models for 

ERCOT demand data, and then compare them to some of the most well-known supervised 

machine learning models, such as ARIMA and SARIMA, to identify the best set of models for 

long- and short-term load forecasting. We will also use multiple comparison approaches, such as 

the radar chart and the Pygal radar chart, to perform a thorough evaluation of each of the deep 

learning models before settling on the best model. 
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CHAPTER I 

INTRODUCTION 

1.1 Overview 

        The power and electrical industries have seen considerable change in recent decades, 

culminating in the creation and installation of electricity markets. This change separates 

generation services into a separate, more competitive sector of the economy, allowing 

sophisticated techniques like smart grids and the integration of high-penetration renewable 

energy sources to flourish. Modern power systems, on the other hand, face greater 

unpredictability as a result of these new processes. Because, unlike many other industries, the 

power industry cannot store large amounts of electricity, it must be created and delivered as 

quickly as it is consumed.Power system load and renewable energy forecasting have evolved as 

key research subjects in power and energy engineering in order to achieve a balance between the 

electricity supply and demand. 

        The increased penetration of renewable energy and customer engagement in the electricity 

market, together with the advancement of smart grids, have posed significant problems for 

energy and load forecasts in power systems. The data received from the power grid, on the other 

hand, provides new solutions and possibilities for improving forecasting accuracy using 

advanced data-driven methodologies, such as machine learning methods. The purpose of this 
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research is to reduce power system uncertainty by improving the predictive performance of 

Texas ERCOT load demand data through the use of sophisticated machine learning algorithms 

that outperform existing traditional statistical techniques, while also providing power system 

administrators with reliable and widely applicable forecasting services. 

        All parts of the power and energy industry, including production, distribution, transmission, 

and consumption, employ forecasting. Power system projections are used in a variety of 

applications, including power supply systems engineering, sales forecasting, congestion control, 

rate design, and much more. The different activities and operations of the power system follow 

multiple methods of predictive requirements. Electricity providers must manage energy output 

more effectively due to growing demand. A sustainable production plan must be used to better 

understand consumption trends and cut down on electricity use. 

        Data mining algorithms can utilize this information to learn from past data and estimate 

future demand. For example, the Electric Reliability Council of Texas (ERCOT) calculates non-

rotating reserve requirements using net load forecasting from consumption for the previous three 

years. Erroneous forecasting can have not only damaging financial implications but also be the 

reason for equipment failures and system-wide outages. To develop high-quality forecasting, 

powerful machine learning techniques are required. Machine learning (ML), a branch of AI for 

identifying patterns from complex data sets, and it has proven to be an effective tool in various 

fields of research over the past few years [34]. It has already been successful in solving 

thousands of problems that are not limited to image and speech recognition [35], text generation 

[36], voice recognition [37], online fraud detection [38], stock market trading [39], and more 

recently, self-driving cars [40]. ML algorithms are very useful for learning multidimensional 
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predictions from a set of data. It is also very suitable for determining performance analysis, 

defect identification, regression/classification study, etc. [8] 

        Supervised machine learning usually divides a complete dataset into two subdivisions: one 

is the training set, and the other one is the test set. Some scientists may also consider the 

validation set as the third option. An impressive amount of research in machine learning has 

focused on developing a model from a set of previously collected datasets that can later correctly 

identify or predict new datasets from the same population. A taxonomy of the machine learning 

algorithms is provided in table 1. Algorithms for machine learning can be initially categorized 

into four divisions. Supervised machine learning (SL) and unsupervised machine learning (UL) 

are the two most popular and widely used techniques in recent times. 

        Machine learning algorithms can spot trends in enormous amounts of data and produce 

valuable results in a variety of ways. Machine learning is often broken down into three groups 

based on how much input the learning system can get. These groups are supervised learning, 

unsupervised learning, and reinforced learning [36]. 

        1. Supervised Learning: A supervised learning algorithm involves predicting a target or 

result variable using a set of predictors. This suggests that the learning algorithm has a manual 

that describes the output of the procedure ahead of time [37]. The method generates a function 

that links the inputs to the intended results. The model is trained until it achieves the desired 

output and accuracy. Some common ways to learn about things in a supervised way are 

regression and decision trees. KNN (K Nearest Neighbor) and logistic regression are also 

common. 
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        2. Unsupervised Learning: In this technique, the aim or outcome variable to be predicted or 

estimated is unknown. In the training data sets, the algorithm looks for sophisticated processes 

and patterns [37]. The most common application of unsupervised learning is to classify data. 

Unsupervised machine learning approaches include k-means clustering, hierarchical clustering, 

association rules, and others. 

        3. Reinforcement Learning Algorithms: A machine or algorithm is exposed to an 

environment in which it learns to make certain judgments through trial and error [38]. The 

system learns from its past experiences and tries to predict the future based on that knowledge. 

The reinforcement learning algorithm constructs a model from the input features and output 

values of training data, and then uses this model to predict the values of new unseen data. 

Among the numerous types of regression algorithms are linear regression, multivariate 

regression, regression trees, and lasso regression. In contrast to classification algorithms, 

regression produces continuous values. Linear regression, multivariate regression, support vector 

regression, and regression trees are some of the most common ways to do regression. The 

Markov decision process is an example of reinforcement learning. 

        As the taxonomy suggests, the Supervised Learning (SL) algorithm can further be divided 

into two categories: regression and classification. The SL algorithm deals with the data with 

inserted labels. In SL, the output of the model type can be identified ahead of time, and this is 

usually one of the input(s).A simple example of classification is spam filtering, which classifies 

emails as spam or not spam. Various classification algorithms are used, including trees, random 

forests, and support vector machines. 

        The regression problem determines the target variable (output) in continuous values, 

whereas the classification problem expresses them in discrete values. On the other hand, 



5 
 

unsupervised learning (UL) algorithms process data without labels. It determines the 

relationships and similarities within the data and clusters them in a zone based on their individual 

relationships and differences. 

        Recently, another ML category; Reinforcement Learning (RL), is getting more recognition 

and popularity because of its effectiveness in decision making. The purpose of using RL is to 

make decisions in an uncertain environment to maximize the rewards. 

Table 1: Machine learning taxonomy with some of the frequently used algorithms

 

        Load forecasting is an important component of power system planning because it allows 

utilities to estimate future consumption or load demand. Short-term load forecasting assists 

utilities in determining the resources required, such as fuel to operate generating facilities and 

 

 Machine Learning 
Classifications 

 Supervised ML 
(Defined Labels) 

 
Regression 

 
(Predict continuous/real 

values) 

 
Classification  

 
(Predict discrete values) 

 

Common algorithm list 
1. Simple Linear 
Regression 
2. Logistic Regression 
3. Multiple Regression 
Model 
4. Support Vector 
Machine (SVM) 
5. Artificial Neural 
Networks  

 Unsupervised ML 
(No Labels)  

 
Clustering  

 
(Putting similar things together) 

 
Dimensionality Reduction  

 
(Avoiding redundant  

information and emphasizing on crucial features) 

 

Common algorithm list 
1. K-Means Clustering 
2. Mean shift clustering 
3. Density Based clustering 
(DBSCAN) 
4. Agglomerative Hierarchical 
Clustering 
5. Principal Component 
Analysis (PCA) 
6. Feature extraction 
7. Multidimensional Scaling 
(MDS) 
8. Random Projection 

 
Semi supervised ML 

(Mixing of both labels & 
unlabeled data) 

 
Common algorithm list 

1. Self-Training 
2. Graph Based Method 
3. Semi-Supervised SVM 

 Reinforcement Learning  

 Positive Reinforcement 
Learning Algorithm 

 Negative Reinforcement 
Learning Algorithm 

 

Common algorithm list 
1. Q-Learning 
2. Temporal Difference 
(TD) 
3. Deep Adversarial 
Networks 
4. Asynchronous Actor-
critic Agents (A3C) 
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other resources, to ensure uninterrupted and cost-effective generation and distribution of power 

to customers [12]. Different renewable energy resources, such as wind and solar, are being put 

on the distribution side of the power system as part of the smart grid construction. The power 

system's demand will become more unpredictable when these dispersed generation systems are 

integrated from the consumer side [11]. As a result, load forecasting from all individual users is 

required. Furthermore, most short-term load forecasting algorithms rely on historical load data 

and meteorological data as inputs, failing to account for the critical influencing factors for the 

load pattern.

 

Figure 1: Southern Load distribution of Texas ERCOT dataset 

        Different essential influencing factors for residential, commercial, and industrial loads lead 

to accurate forecasting. For an efficient and comprehensive power system, an accurate load 

forecasting model is required to predict demand and be prepared to supply demand ahead of 

time. In order to run basic operations like per unit commitment, load flow, fuel allocation, and 

unit servicing effectively, you need to be able to make a very good guess.For affordable planning 

of electricity production, fuel purchase scheduling, security assessment, and short-term 

maintenance scheduling, short-term predictions from a few hours to a few days are required.    
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Time series data has been widely applied in a range of applications to reduce future uncertainty 

and avoid losses due to a lack of knowledge. A time series is a chronological or time-oriented 

sequence of data points (e.g., x1, x2,..., xn) sampled at successive times in time from the variable 

of interest.  

        For instance, Figure 2 displays the ERCOT Demand Data for various regions of Texas from 

2017–2021. Frequently, the rate variable is selected to be an equally spaced time interval. Time 

series analysis uses statistical methods to find important relationships and characteristics 

between points in a time series.

 

Figure 2: An example of time series. ERCOT Load Data (2017-2021) 

        Time series forecasting extends these analyses by focusing on the development of a model 

for forecasting the future based on previously observed time-series data points. Time series 

forecasting can be beneficial in a variety of areas, including demand forecasting, finance, supply 
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chain management, and others. For time series forecasting, exponential smoothing methods, 

Box-Jenkins models, machine learning models, and neural network models have all been 

developed. Despite the fact that there are numerous time series forecasting models, there is no 

superior model that outperforms others in all circumstances. As a result, assessing and 

comparing multiple models' performance is a vital job. The following section will discuss the 

time series forecasting models that were used in this dissertation. These models incorporate both 

traditional and machine learning-based methods. 

1.2 Time Series Forecasting 

        Time series modeling has been a hot topic in both academia and business for many years, 

and the field has expanded significantly in recent years. In statistics, time series analysis is a 

technique for studying a collection of data points over a specific time period. Time-based models 

are successfully applied in various fields of science, including medicine, meteorology, and 

industrial manufacturing. The term "time series" refers to all data series that have been collected 

in a given period and are generally used in this context. In other words, chronological order is a 

collection of subsequent measurements made over a period of time. One can do this, for 

example, daily, weekly, monthly, or annually, depending on preferences. 

        Time series can be divided into two types: discrete form and continuous form. The discrete 

form is the most common type of time series. In scientific observation, continuous observations 

are those that are made on a continuous basis over an extended period of time. Distinct-time 

series refers to a situation where all of the observations are made at specific points in time [42]. 

         When compared to other types of data collection, time series analyzers collect data at 

defined intervals over a predetermined time period, rather than infrequently or arbitrarily. In 
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contrast, this form of research involves much more than simply collecting data over a period of 

time. Time series data differs from other sorts of data in that it can show how variables change 

over time, but other types of data cannot. For example, time is an important factor in research 

because it shows both how data changes and how that changes the conclusions that can be drawn 

from it. 

         As a result, a large number of data points are typically required in time series analysis in 

order to preserve consistency and reliability. It is important to have a large data collection in 

order to make sure that the represented sample size is large enough to cut through noisy data. 

Additionally, it ensures that newly discovered currents or patterns are not overlooked, as well as 

that seasonal variability is taken into consideration. Time series data, on the other hand, can be 

used to foresee or forecast future data based on historical data. A variety of approaches have 

been developed for time series prediction challenges. In general, the methodologies can be 

divided into two categories: statistically based models and machine learning-based models. 

        Autoregressive models are the statistical procedures that are most extensively utilized (AR). 

In traditional AR models, a condition is imposed on the time series, requiring it to exhibit 

properties such as resistance, normalcy, or independence. As a result, they are frequently 

inadequate for dealing with complex time series or non-linear phenomena. They have a tendency 

to provide inadequate performance or to generate just an approximate representation of complex 

systems found in the real world [43] [44]. 
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Figure 3: A Schematic representation of simple time series graph 

        AR models include autoregressive moving average (ARMA) models, autoregressive 

Integrated Moving Average Model (ARIMA), and seasonal Autoregressive Integrated Motion 

Models (SARIMA). While using the models, it is important to make the basic assumption that 

the time series under study is linear and has a certain statistical distribution. 

1.3 Problem Statement 

         The following data is available for forecasting ERCOT load demand in the short and long 

term for eight distinct regions of Texas, including overall ERCOT load consumption.  

Table 2: ERCOT Hourly Load Data Archives 
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ERCOT is divided into eight zones in general: COAST, EAST, FWEST, NORTH, NCENT, 

SOUTH, SCENT, and WEST.  

 

Figure 4: Distribution of Texas ERCOT Load by Region 

         The hour data is segmented by day, with ERCOT's peak hours being 7:00-22:00 on 

weekdays and 22:00-7:00 on weekends. Because this work is associated with UTRGV and is 

located in Texas's South Zone, we chose to train, test, and validate our model for the South Zone.  

 

Figure 5: A Schematic representation of Southern Load distribution 

         Defining and resolving the dynamics of these types of problems is difficult. The difficulty 

with classic statistical approaches such as autoregressive models (AR) is that their success is 

frequently predicated on an implicit assumption of the observed process's stationarity or 
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linearity. These classical models perform well when the time series are linear or near-linear, but 

they are incapable of capturing the nonlinear patterns inherent in the observed process. That’s 

why Deep learning based Machine Learning knowledge comes handy.  

1.4 Research Objectives 

        To make a sustainable Machine Learning models that can forecast Electricity Load for a 

long-, Short-, and Medium-term basis. 

• Long term forecasts can reduce investment risk 

• Medium term forecasts help in planning fuel purchases and scheduling plant maintenance 

• Short term forecasts are essential in matching electricity generation and demand for grid 

reliability 

1.5 Organization of the work 

        The following sections explain the major components of this thesis, which focuses on 

ERCOT load forecasting using a machine learning approach: 

            A Literature Review. 

            Methodologies 

             Results and Discussion 

            Conclusion & Future Works 

         The first chapter provides an overview of time series analysis and prediction, as well as a 

problem statement, research objectives, and some motivation for its application in the energy and 

power demand forecasting sectors. The second chapter provides an overview of time series 
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prediction strategies based on statistical methods, machine learning techniques based on classic 

supervised learning methods, and deep learning-based neural networks. Chapter three discusses 

the proposed deep learning-based time series prediction algorithm. The fourth chapter discusses 

and illustrates the outcomes of our suggested model, as well as a comparison of each model to a 

radar chart. Chapter five comes to an end with a summary of the main findings and suggestions 

for more research. 
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CHAPTER II 

 
 

LITERATURE BACKGROUND 
 
 
 

2.1 Machine Learning & Its Approaches 
 
         Machine learning is an algorithm that can learn from data and observations and produce a 

classification or prediction without having to manually code the program. So, why is machine 

learning being used now, despite the fact that it was first introduced in the late 1950s? There was 

a lack of computing and processing capacity in the early years after machine learning algorithms 

were invented, as well as a lack of storage resources to perform and maintain such intensive 

computational tasks. Data sets that were relevant to the investigation were also scarce. Machine 

learning algorithms improved as the number of features in a data set grew. Approaches to 

forecasting electrical load can be classified into three categories: statistical, artificial intelligence, 

and hybrid.  

        Time series models such as auto-regressive (AR), auto-regressive moving average 

(ARMA), auto-regressive integrated moving average (ARIMA), seasonal ARIMA (SARIMA), 

linear regression methods, multiple linear regression methods, and exponential smoothing 

methods are all examples of statistical methods. The accuracy of ARIMA-based methods is 

dependent on a number of external variables and can be enhanced further by including 

exogenous variables. They all work well in linear systems, but they don't work well in nonlinear 

systems. Making an accurate prediction of any observable reality is important. It aids in making 

better decisions in ambiguous situations. Predicting exact future values, on the other hand, is 
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extremely difficult. This is because of the uncertainty and nonlinearity that most real-world 

occurrences entail [1]. The widespread use of renewable energy and a variety of uncertain loads 

in power grids, as well as the importance of profitability, complicate short-and long-term load 

forecasting. 

 

Figure 6: Machine learning applications in Load sector 

        In other words, one of the primary challenges facing future networks is load management 

and generation planning using highly uncertain load forecasts and stochastic energy generation. 

It has been said that neural networks and deep learning methods are important in this field as a 

result of recent research. 

2.2 Electric Load Forecasting Techniques 

        Load forecasting is a significant subject in the electrical network, with numerous 

applications. Time series analysis and forecasting can be divided into two categories according to 
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the research methods used: time series analysis and forecasting. [2] proposes a time series short-

term load forecast based on an autoregressive moving average (ARMA) model with non-

gaussian process assumptions. Another time-series load forecasting method for power systems is 

the exponential smoothing model, which is based on the smoothing coefficients [3]. The 

smoothing coefficients determine the model's accuracy.  

 

Figure 7: Electrical Load forecasting techniques 

        The exponential smoothing method was used to find the smoothing coefficient using 

historical load data and other random data. These time series forecasting methods are 

mathematical models that do not take into account aspects such as weather, day type, and other 

variables that have a significant impact on short-term forecasting to calculate energy usage. For 

short-term load prediction, many machine learning approaches have been applied. Kuhba et al. 

[4] trained a neural net for load prediction using a multi-layer perceptron with a back-

propagation technique. In this method, weather changes, like temperature, humidity, cloudiness, 

and so on, were thought of as important factors that could affect the projected load. 



17 
 

2.3 Support Vector Machine 

        The "Support Vector Machine" (SVM) is a supervised machine learning technique that can 

solve classification and regression problems. It is, however, mostly employed to solve 

categorization difficulties. The support vector machine algorithm's goal is to find a hyperplane in 

an N-dimensional space (where N is the number of features) that distinguishes between data 

points.  

        One of the most frequently utilized machine learning methods in short-term load forecasting 

is the support vector machine [8]. The maximum daily load is predicted using the support vector 

machine (SVM) approach, which takes into account historical load, temperature, and day type 

(e.g., holiday) [9]. Because SVM has poor processing speed, a forecasting approach using 

Support Vector Machine with much less training set and faster processing time has been 

presented in [13]. In [10], a clustering-based SVM for short-term forecasting models was made, 

and it did better than the SVM alone. 

        Ma et al. [15] proposed a support vector machine (SVM) technique for predicting building 

energy usage in China. SVM is built on a foundation of statistical learning theory and 

mathematical optimization. This approach is used in a variety of domains, including time series 

forecasting, regression analysis, pattern recognition, and so on [16].  

 

Figure 8: Hyperplanes in 2D and 3D feature space 
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         The hyperplane's location and orientation are influenced by support vectors, which are data 

points that are closer to the hyperplane. We maximize the classifier's margin by employing these 

support vectors [17]. The hyperplane's location will be altered by deleting the support vectors. 

         The optimal number of training datasets is critical for short-term prediction model 

generalization. As there is no robust method for selecting the number of training datasets to train 

any data-driven model, Paudel et al. [18] took 12 days of training data, i.e. 1,152 sample 

datasets, because 12 days of training data outperforms other training data (5–20), as shown in 

Figure 12. In the Figure, the training datasets are raised from 5 days (480 data samples) to 20 

days (1,920 data samples), and it is obvious from their model that the performance of the 

prediction model is higher with 12 training day datasets (R2 = 0.96 and RMSE = 21). 

Furthermore, this 12-day dataset is subdivided into training/learning and validation, which is 

further subdivided into five-fold cross-validation.  

 

Figure 9: Optimal number of days selection as relevant training days [18] 
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         Ma et al. [15] used multiple parameters, including weather data, such as yearly mean 

outdoor dry-bulb temperature, relative humidity, and global solar radiation as the inputs to 

improve the reliability of SVM in building energy consumption prediction.  

 

Figure 10: Comparison between the predicted value and statistic data through SVM of the china 

national building energy whole  energy consumption [15]. 

         The results of the statistical error tests reveal that their model can accurately estimate 

building energy consumption, with an MSE of less than 1E-3 and an R2 greater than 0.991. 
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2.4 ARIMA & SARIMA 

        ARIMA is a common forecasting model that is an abbreviated form of the Auto-Regressing 

Integrated Moving Average. The word "autoregression" refers to the use of previous values of 

the same variable in the construction of regression models, i.e., the future forecast is a linear 

combination of previous values of the variable under consideration. In addition to providing 

contrasting approaches to the problem, the ARIMA and exponential smoothing models are the 

two most extensively utilized techniques for time series forecasting today. ARIMA models are 

different from exponential smoothing models, which try to capture the trend and seasonality of 

the data. Instead, they try to describe the autocorrelations in the data. 

 

Figure 11: Seasonality vs Stationary modeling (only (b) and (g) are stationary series) [15] 

         An autoregressive integrated moving average (ARIMA) model and a non-linear 

autoregressive neural network (NAR) model are presented by Nichiforov et al. [19] for energy 
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consumption forecasting. ARIMA models include a single dependent variable (Yt), which is a 

function of previous Y values and the standard errors (Et). ARIMA models may accommodate 

any continuous result (such as rates or means) as well as huge counts that are not constrained by 

zero since they assume mistakes are normally distributed. In recent years, generalized linear 

models have been used to show data that is serially correlated [21]. ARIMA can't be used with 

small numbers that follow a Poisson distribution. 

 

Figure 12: Observed values and predicted values in absence of intervention based on ARIMA 

model [21] 

         ARIMA stands for auto-regressive, which means we want to anticipate time series values 

based on previous periods. I is for integrating, which is an upward or downward trend that we 

utilize to eliminate. MA stands for moving average, and it informs the mistakes from one period 

to the next. S—seasonality—is a new concept here. 
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Figure 13: Discovering W-pattern in SARIMA model  

        How do we know that the seasonal ARIMA (SARIMA) model should be used? The above 

illustration depicts seasonality. We find a very distinct W-type pattern repeating, indicating the 

presence of seasonality. m is the seasonal factor in SARIMA (P, Q, and D). It is the number of 

seasonal time steps in a single season. Each year is divided into four quarters in the graph above. 

We now have a m value of 4. 

2.5 History of Neural Networks 

        Neural networks are used in machine learning to teach a computer how to accomplish a task 

by assessing training examples [24]. Typically, samples are pre-labeled by hand. For example, 

thousands of tagged photographs of vehicles, buildings, paper cups, animals, and other objects 

can be sent into an object recognition system, which will look for visual patterns associated with 

specific tags. 



23 
 

         A neural network is a densely connected network with hundreds, if not millions, of simple 

processing nodes that resemble the human brain. Today, the majority of neural networks are 

"feed-forward," which implies that data flows through them in only one direction and that they 

are organized into layers of nodes. A single node can receive data from numerous lower-layer 

nodes and transmit it to several upper-layer nodes. When a neural network receives input 

indicating whether it is accurate or incorrect, it learns. In order to correct any mistakes, the 

network will make adjustments in response to the feedback. Consider a soccer player who misses 

a clear goal opportunity. He'll go back to the dugout and think about what he did wrong. He'll 

remember what he did wrong the next time he has the same opportunity and adjust accordingly. 

Neural networks are very flexible and can learn very quickly [25]. They come in a variety of 

types, which we'll look at next. 

2.5.1 Feed Forward Neural Network 

         This is the most basic and uncomplicated of the neural networks. Data only travels forward 

in one direction from the input to the output. Along the journey, the sum of the inputs' products 

and weights is determined. The completed product is routed to the outputs for processing. An et 

al. [26] combine multi-output FFNN (feedforward neural network) with EMD (empirical mode 

decomposition)-based signal filtering and seasonal adjustment to overcome the limitations of 

commonly used multi-step-ahead forecasting approaches, including error amplification and 

obliviousness to input-output dependency. They have a better model for MFES that predicts 

more accurately than other models that use the half-hour power demand series of New South 



24 
 

Wales, Australia.

 

Figure 14: Feed Forward Neural Network to forecast the electricity demand for New South 

Wales [26] 

        Bhaskar et al. [27] used a feed-forward neural network (FFNN) to transform projected wind 

speed into wind energy prediction. For approximating arbitrary nonlinear functions, Zhang et al. 

[28] proposed this sort of NN as an alternative to the standard FFNN. Due to the local attributes 

of wavelets and the concept of adapting the wavelet form to the training data set instead of the 

parameters of the fixed shape basis function, WNNs provide superior generalization features. 

Function learning [29], nonlinear system identification [31], and time series prediction [32] have 

all been successful with WNNs. Energy prices were projected using an Adaptive Wavelet Neural 

Network (AWNN) by Pindoriya et al. [33]. 
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Figure 15: FFNN for the wind power forecast as a function mapper with wind power and wind 

speed forecasts as inputs [27] 

2.5.2 Multilayer Perceptron 

         A multilayer perceptron (MLP) is a sophisticated artificial feed-forward neural network 

made up of many perceptrons that work together to solve a problem. The input layers receive 

signals, the output layers make decisions or predictions based on the input, and an arbitrary 

number of hidden layers perform true calculations like the true MLP computational engine. 

Making them extremely versatile, MLPs can approximate work on any continuous function with 

a single hidden layer. 

When solving supervised learning problems, this method is used frequently as you train on a 

large number of input and output pairs to learn how to represent the correlation (or 

dependencies) between inputs and outputs. During training, model parameters, such as weights 

and biases, are adjusted to increase the overall accuracy and robustness of the model. It is used to 
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alter the weights and biases in proportion to the error, which can be evaluated in a variety of 

ways, including root mean squared error (RMSE), to improve model accuracy. 

 

Figure 16: A basic MLP model 

        The MLP algorithm works as follows: 

          1. The inputs are pushed forward through the MLP in the same way as in the perceptron by 

taking the dot product of the input with the weights that exist between the input layer and the 

hidden layer (WH). The hidden layer receives a value as a result of this dot product. However, 

we do not handle this value in the same way that we would with a perceptron [22]. 

          2. In each of their calculated layers, MLPs use activation functions. Rectified linear units 

(ReLU), sigmoid function, and tanh are just some of the activation functions to consider. Any of 

these trigger functions can be used to send the calculated output to the current layer. 

         3. Take the dot product with the correct weights and push the calculated output in the 

hidden layer through the trigger function to the next layer in the MLP. 

         4. Continue with steps 2-3 until you reach the output layer. 
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         5. The calculations will be used in the output layer for a backpropagation method that 

corresponds to the MLP trigger function (in the case of training) or a decision based on the 

output (in the test case) will be made. 

         Pelka et al. [23] proposed a neural network based on MLPs for evaluating real-world data, 

including monthly power demand for four European countries: Poland (PL), Germany (DE), 

Spain (ES), and France (FR) (FR). The data is drawn from the ENTSO-E repository, which is 

open to the public (www.entsoe.eu). They span the years 1998 to 2014 for Poland and 1991 to 

2014 for the other countries. They use previous data to develop forecasting models for 2014. 

 

Figure 17: MLP model to Real and forecasted monthly demand prediction for A1 variant [23] 
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2.5.3 Convolution Neural Network 

         Convolutional neural networks are comparable to traditional neural networks in that they 

are made up of neurons with learnable weights and biases. Each neuron receives some inputs, 

does a dot product, and perhaps responds with a non-linear function. From raw picture pixels on 

one end to class scores on the other, the complete network continues to represent a single 

differentiable scoring function. They also keep a loss function (e.g., SVM/Softmax) on the final 

(fully-connected) layer, as well as all of the tips/tricks we developed for learning regular neural 

networks. A ConvNet's architecture is similar to the connecting pattern of neurons in the human 

brain and was inspired by the arrangement of the visual cortex. Individual neurons only respond 

to stimuli in a narrow section of the visual field known as the receptive field [30]. A group of 

similar fields will encompass the full visual region if they overlap. 

Figure 18: The Regressive Convolution Neural Network to predict Electricity demand 

forecasting [34] 
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        Zhang et al. [34] suggested an RCNN (Regressive Convolution Neural Network) model 

with a substantial computation overhead. Then, to estimate power use, they use RCNN to extract 

features from the data and a Regression Support Vector Machine (SVR) trained with those 

features. Their RCNN structure only has eight layers (to avoid overfitting with insufficient data), 

with the input layer being an influential factor. Electricity consumption values are generated by 

the regression layer. The RCNN extracts characteristics of the influential elements during the 

training stage and checks if the MSE is convergent. It is possible to forecast the electricity 

consumption values of test data using the trained RCNN classifier. NA stands for normalization, 

FC stands for fully connected, and Conv stands for convolution layers. 

 

Figure 19: CNN for Real-Time Energy Management of Multi-Microgrid [35] 

         Samuel et al. [35] used a deep CNN in their research to do a one-step estimate of the 

aggregated energy cost for short-term applications. In their proposed deep CNN, they apply a 
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conditional Restrained Boltzmann machine (CRBM) to improve the fully linked layer. Their 

suggested deep CNN, which consists of three layers, is seen in Figure 9. The input layer is the 

initial layer, and it accepts data in sequential order. The second layer is the feature learning layer, 

which extracts features from the input data. By learning features from small squares of input 

data, convolution maintains the input. By employing small squares of data, a rectified linear unit 

(ReLU) compensates for the interaction effects between expected and actual data. Nonlinear 

effects are also taken into account. ReLU is a function that, by convention, returns 0 if it receives 

any negative input and the same value if it receives any positive input. In addition, the second 

layer is max-pooling, which has one for each convolution. Each pooling returns the greatest 

value of the predicted output of the convolution. The third layer is the fully connected layer. Its 

name refers to the fact that the k-neurons are connected to the max-pooling neurons. 

         Huang et al. [46] propose a deep learning architecture based on an ensemble of 

convolutional blocks acting on subsets of the input data. The algorithm is used to anticipate 

individual residential demands for the day ahead using data from an Irish smart metering 

electricity customer behavior trial (CBT). The work focuses on attaining a short training period 

while maintaining a high level of accuracy, with the proposed model getting the best of both with 

an MAE of 0.3469. Khotanzad et al. [47] describe a straightforward MLP regressor that 

incorporates a sophisticated feature selection algorithm based on prior consumption and weather 

data. Farsi et al. [48] propose a Short Term Load Forecasting (STLF) model that combines CNN 

and LSTM layers. Atef et al. [49] provide a comparison of recurrent neural networks (LSTM) 

and support vector regression (SVR), demonstrating that the bidirectional LSTM model 

outperforms both the unidirectional LSTM and SVR models. Numerous studies have used 

machine learning to improve STLF results in order to overcome the disadvantages of this 
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statistical method. Jain et al. [63] used SVR to make a model for predicting how much energy a 

building will use in the future. 

2.5.4 Recurrent Neural Network 

         A recurrent neural network (RNN) is a kind of artificial neural network that operates on 

sequential or time-series data. These deep learning algorithms are frequently used to solve 

ordinary or temporal issues like language translation, natural language processing (NLP), speech 

recognition, and image captioning; they are embedded in popular apps such as Siri, voice search, 

and Google Translate. Recurrent neural networks, like feedforward and convolutional neural 

networks (CNNs), learn from training input. They are distinguished by their "memory," which 

allows them to modify the current input and output based on information from previous inputs. 

While conventional deep neural networks presume that their inputs and outputs are independent, 

recurrent neural networks' outputs are dependent on the sequence's prior parts. While future 

events can also be used to forecast the output of a series, unidirectional recurrent neural networks 

cannot account for them in their predictions. 

 

Figure 20: The architecture of a simple RNN unit 
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        In Zhang et al. [69], they came up with a way for RNNs to predict short-term load by taking 

into account multiple time series (MTS) that had four information sequences (short-term, cycle, 

long short-term, and cross long short-term). 

        The fundamental premise of recurrent neural networks is that traditional ANNs are 

incapable of making a direct connection between previous and subsequent data and correcting 

errors. Backpropagation can address this shortcoming of the conventional ANN. These networks, 

dubbed recurrent neural networks (RNN), employ backpropagation to compare the error between 

the network's input and output until the error falls below a predefined threshold. A common 

application of such networks is in text prediction software, where the network is trained to 

predict subsequent words based on previously typed words. Backpropagation is accomplished 

via network loops. Previous timestamps' output is used as the input for current timestamps. Fig. 3 

illustrates the basic structure of an RNN where xt is the input at timestamp t, and Yt is the output 

at timestamp t. 

         In [55], a deep neural network model was utilized to forecast the weather using large 

amounts of data. Instead of stacked auto-encoders, a deep belief network was utilized to develop 

a hybrid model for the joint distribution of the weather predictor variables. Chen et al. also 

employed a deep belief network model to forecast the Huaihe River Basin's short-term drought 

index [54]. In this study, the accuracy and efficiency of the deep learning-based neural network 

model were found to be better than those of the backpropagation neural network, which is what 

most people know. 
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2.6 RNN vs Feed Forward Neural Network 

        The information in a feed-forward neural network only flows in one direction: from the 

input layer to the output layer, passing through the hidden layers. The data travels in a straight 

line through the network, never passing through the same node twice. 

         Feed-forward neural networks have no recollection of the information they receive and are 

poor predictors of what will happen next. A feed-forward network has no concept of time order 

because it only analyzes the current input [39]. Except for its training, it has no recollection of 

what transpired in the past. The information in an RNN cycles via a loop. When it makes a 

judgment, it takes into account the current input as well as what it has learnt from prior inputs. 

Another distinctive feature of recurrent networks is that they share parameters across all network 

layers. Unlike feedforward networks, which have different weights for each node, recurrent 

neural networks have the same weight parameter shared by each layer of the network [40]. 

However, these weights are still changed in the backpropagation and gradient descent processes 

to help the computer learn from its mistakes. 

 

Figure 21 : An unrolled recurrent neural network [57] 

         Short-term memory is a problem for recurrent neural networks (RNN). Unless a sequence 

is sufficiently long, they will have difficulty transmitting information from older time steps to 
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later time steps. RNNs, for example, may not include important information at the start of the 

process when they process text. 

         The vanishing gradient problem is a challenge that recurrent neural networks encounter 

during back propagation. Gradients are values that are used to update the weights of a neural 

network. When a gradient shrinks as it propagates back through time, this is referred to as the 

vanishing gradient problem [56]. When a gradient value becomes incredibly small, it is not able 

to contribute much to learning. LSTMs and GRUs were developed to address the problem of 

short-term memory storage. It's a process called a gate inside them that can control the flow of 

information. 

2.7 Long Short Term Memory Network (LSTM) 

        An LSTM behaves in a very similar way to an RNN cell. The LSTM is composed of three 

sections, each of which performs a distinct purpose. The components are various neural networks 

that determine which information about the cell's state is allowed to be transmitted. During 

training, these components might learn which knowledge is important to retain and which 

information is not. The first portion determines whether the information derived from the 

previous timestamp should be remembered or whether it is irrelevant and should be discarded 

entirely [58]. In the second section, the cell attempts to learn new information from the 

information that has been sent to it. Finally, in the third section, the cell moves the information 

from the current timestamp to the next timestamp, ending the cycle. 

The gates of an LSTM cell are the three components that make up the cell. The first section is 

referred to as the "forget gate," the second section is referred to as the "input gate," and the final 
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section is referred to as the "output gate."

 

 

Figure 22:  Four interacting layers based LSTM [57] 

2.8 Gated Recurrent Unit (GRU) 

        The GRU is the most recent version of recurrent neural networks, and it functions similarly 

to the LSTM. Instead of using the cell state, they used the concealed state to transfer information. 

It also only has two gates: a reset gate and an update gate, both of which are identical. The 

update gate works similarly to the forget and input gates when used with an LSTM. It determines 

what data should be kept and what data should be discarded [56]. The reset gate is another gate 

that determines how much earlier data should be wiped. Each time, there are two input features: 

the input vector x(t) and the preceding output vector h(t-1). Each gate's output can be derived by 

performing logical operations on its inputs and performing nonlinear transformations on them. 

The following table summarizes the relationship between input and output: 
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         where z(t) is the vector of the update gate, r(t) is the vector of the reset gate, and W & U are 

the parameter matrices and vectors, respectively. 𝜎𝜎𝑔𝑔 denotes the sigmoid function, while 

𝜎𝜎ℎdenotes the hyperbolic tangent [59]. GRUs do somewhat more tensor operations than LSTMs, 

making them marginally faster to train. When it comes to determining which is superior, there is 

no clear winner. Typically, researchers and engineers examine both methodologies to determine 

which is more effective for their specific application. 

 

Figure 23: The structure of gated recurrent unit (GRU) network [59] 

         There is some extensive use of Neural Networks for short-term load forecasting in the 

literature. To mention a few: In [5], with the deep learning neural network and decision tree 

strategy short-term forecasting was measured and the final models is formulated as a mixed 
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regression method to determine a preliminary load forecast and a fuzzy inference system to 

minimize prediction error [6] [7].  

         Hernández et al. [45] describe an ANN model that forecasts electric demand 24 hours in 

advance using previously aggregated usage trends. The patterns are generated using a self-

organizing map (SOM) and then clustered using the k-means algorithm. Gerossier et al. [60] 

developed a forecasting model for hourly household electric load using quantile smoothing 

spline regression and three input variables: the previous day's hourly load, the previous week's 

mid-load, and temperature. They estimated the predicted quantile distribution's mean and used it 

as a single-point forecast. These statistical approaches perform well for simple demand patterns 

but are somewhat inaccurate for complex demand patterns. Using linear regression analysis, it 

can be hard to give the right weight to variables that have a nominal or nonlinear correlation with 

the input variable [61,62]. 

         Energy consumption data was gath ered from multi-family residential buildings on the New 

York City campus of Columbia University. Their predictions included those examining the 

effects of time (daily, hourly, 10-minute intervals) and spatial granularity (the entire building, by 

floor, by unit). The most efficient models were constructed using hourly consumption data at the 

floor level. Spatial granularity, in particular, was shown to have a significant effect on the 

predictive power of sensor-based forecasting models, as granular data at the floor and individual 

unit levels produced more accurate predictions.  

         Amber et al. [64] used MR and genetic programming (GP) to forecast the daily electric 

load of an administration building on the London South Bank University's Southwark campus. 

Although the GP model had a lower total absolute error (TAE) of 6% compared to the MR 

model's 7%, its training time was longer. Deep learning has since been applied to a variety of 
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challenges, consistently outperforming the state-of-the-art in a variety of applications, including 

robotic processing, object recognition, speech and handwriting recognition, picture classification, 

and natural language processing. Due to its success in these diverse applications, it has been 

expanded to time series issues, primarily in a semi-supervised fashion to enhance learning 

performance.  

         There are a few distinct deep learning algorithms for completing time series forecasting 

tasks in the literature, which may be found in many publications. For example, [50] employed a 

Deep Belief Network (DBN) to forecast time series using a DBN model refined by particle 

swarm optimization. So the new model outperformed other neural network models, like MLPs, 

SOFNNs, and ARIMAs, which are already used in the world of computer science. 
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CHAPTER III 

METHODOLOGY 

 

3.1 Electric Demand in Texas ERCOT 

         The dataset studied in the experimental investigation spans from 2017-01-01 H01:00 to 

08/31/2021 H24:00. During this time, the consumption was measured every hour, resulting in a 

time series of 40850 measurements. The data was given by the Electric Reliability Council of 

Texas and is accessible for public use at [41].  

 

Figure 24: Distribution of Texas ERCOT Load by Region [80] 
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         The dataset was divided into two sets: the training set contains 35000 samples from 2017-

01-01 H01:00 to 12/29/2021 H07:00, and the test set has 5895 samples from 12/29/2021 H08:00 

to 08/31/2021 H23:00. 

3.2 Data Decomposition 

         Figure 25 provides statistics on electric demand at different scales. As can be seen, the time 

series exhibits both daily and weekly seasonality. In general, demand is higher during the week 

than on weekends, and it drops significantly at night on a daily basis.We conducted this in R to 

discover an interesting trend in the data. 

 

Figure 25:  Line graphs showing the electric demand time series data at various scales (daily 

basis) 
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Figure 25 depicts line graphs presenting data from the southern demand at various scales. The 

breakdown is hazy. A cyclical trend is not a positive thing. It will be used in the annual rerun to 

show how to make a strong trend from the same data set. The period = 24 * 265 will be used. 

 

Figure 26: Line graphs showing the electric demand time series data at various scales (Yearly 

basis) 
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3.3 ARIMA 

         The future value of a time series is considered to be a linear function of multiple prior 

values of the original series and random mistakes in an ARIMA model [19]. 

         The ARIMA Model consists of four steps [20]: 

         (1) The original sequence's stationary test. If the initial sequence is not stationary, the    

differential transform is used to modify it to fulfill the stability requirements. 

         (2) The parameters p and q in the ARIMA model will be determined by calculating the 

statistics that characterize sequence features (i.e. auto-correlation coefficient and partial auto-

correlation coefficient). 

        (3) The model's unknown parameters are estimated, and the model's logic is examined. 

         (4) Diagnostic analysis to ensure that the model generated is compatible with the data 

features observed. 

3.4 Neural Networks 

          The term "neural networks" refers to a subset of machine learning algorithms that are 

inspired by the biological neural networks found in the human brain. The human brain is divided 

into three distinct regions: the temporal lobe, the occipital lobe, and the frontal lobe. It was 

through the combination of these components and neurons that the numerous types of neural 

networks available today were discovered. In 1958, psychologist Frank Rosenblatt invented the 

first artificial neural network, the Preceptron. Its objective was to mimic the way the human 

brain processes information and train it to recognize objects. Preceptrons, like neurons, are 

modeled after the human brain. The perceptron algorithm is a supervised learning approach for 
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binary classifiers in machine learning. A binary classifier is a function that determines whether 

the numbers contained in an input vector are members of a particular class. The concept was to 

perform complex tasks with a group of simple mathematical neurons. Afterwards, the general 

feed-forward process was done, which involved layering a group of preceptrons as an input layer 

as well as hidden layers and an output layer over each other. 

         Recent years have seen an explosion of research into neural networks. This is largely due to 

recent breakthroughs in deep neural networks. These improvements have had a significant 

impact on computer vision, natural language processing, and speech recognition. Prior to the 

advent of deep learning, the discipline was dominated by single layer neural networks using 

hand-designed features. In terms of learning and accuracy, deep neural networks have been 

demonstrated to outperform single-layer neural networks. The availability of low-cost storage 

and massive data sets contributes to the proliferation of neural network research.  

 

Figure 27: A simple Neural Network Architecture with 2 hidden layers 
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        The more data is fed into a neural network, the more it can be modified to account for and 

generalize that data point. By increasing our resources for data collection, we may enhance the 

intelligence of our systems. This will be evident in the next few years as smart grids are 

implemented, which will collect data from the user's electric meter.  

        The Neural Network is composed of three layers: The initial data of the neural network is 

stored in the input layer. Hidden layers are layers that sit between the input and output layers and 

are where all computation occurs. In the output layer, you generate a result for the given 

inputs.The weights are initially set to zero for a simple preceptron before being passed through 

the layers. The unit step activation function then produces an output for each training sample. 

With the goal of minimizing errors, the weights are then updated based on the output values. In a 

layer, all of the weights are updated at the same time.  

        The capacity to run larger models with increased processing power has significantly 

improved the results we can achieve. With more neurons in the model, the fit can get more 

difficult. The size of modern neural networks is still an order of magnitude lower than the size of 

the human brain. While modern artificial neurons don't look like the neurons in the brain, this 

comparison shows how well they can do math. 

3.4.1 Backpropagation 

         Although backpropagation was introduced in the 1970s, its importance was not fully 

appreciated until 1986, when David Rumelhart, Geoffrey Hinton, and Ronald Williams [70] 

published a seminal paper. This article describes several neural networks in which 

backpropagation performs significantly better than previous learning methods, allowing neural 

nets to solve previously unsolvable problems. Backpropagation is now the algorithm of choice 
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for neural network learning. The basic learning approach of backpropagation is to start with 

untrained networks, present a training pattern to the input layers, pass the signals through the net, 

and determine the output at the output layer. When the network outputs match the desired 

outputs, the error function is minimized, which is some scalar function of the weights. As a 

result, the weights are adjusted in order to reduce the error. 

3.4.2 Activation Functions 

         A neuron in a neural network computes the weighted sum of input and adds a bias before 

passing into the activation function, which then decides whether to send that value to the next 

neuron or not. The activation function maps the resulting values between 0 and 1 or -1 to 1, 

depending on the function used.The Activation Functions can be basically divided into 2 types: 

linear Activation Functions and non-linear Activation Functions. The output of a line or linear 

function is not restricted to a specific range. As a result, it isn't very good at dealing with the 

complexity or different parameters of the typical data that neural networks get. Some of the 

common non-linear activation functions are: (1) Sigmoid or Logistic Activation Function (2) 

Tanh or hyperbolic tangent Activation Function (3) ReLU (Rectified Linear Unit) Activation 

Function etc. 

3.4.3 Sigmoid Functions 

         The sigmoid function is a continuous, monotonically increasing function with a "S"-shaped 

curve. It possesses a number of intriguing properties, making it an obvious choice for nodes in 

artificial neural networks [71]. The domain of the sigmoid function is defined as the set of all 

real numbers, R, and it is defined as: 
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        We use the sigmoid function because it exists between two points (0 and 1). As a result, it is 

particularly useful in models where the probability must be predicted as an output. Because the 

probability of anything only exists between 0 and 1, sigmoid is the best option. 

 

Figure 28: Sigmoid or Logistic Activation Function [77] 

3.4.4 Tanh Activation Function 

        The Tanh (also "tanh" and "TanH") function is another name for the hyperbolic tangent 

activation function. It is visually similar to the sigmoid activation function and even has the same 

S-shape. It accepts any real value as an argument and returns a value between -1 and 1. The 

greater the input (the more positive), the closer the output is to 1.0; the smaller the input (the 

more negative), the closer the output is to -1.0 [72]. 
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Figure 29: Tanh Activation Function [76] 

3.4.5 ReLU Activation Function 

         In deep learning models, the Rectified Linear Unit is the most commonly used activation 

function. If the function receives any negative input, it returns 0. However, if the function 

receives any positive value, x, it returns that value.  

 

Figure 30: ReLU Activation Function [77] 
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As you can see from the figure 30, the ReLU is half rectified. When z is less than zero, f(z) is 

zero, and when z is greater than or equal to zero, f(z) is equal to z. 

3.4.6 Loss Function 

         Starting with an untrained network, setting a training pattern on the input layer, passing the 

signals through the net, and determining the output at the output layer is the basic approach to 

learning. These outputs are compared to the target values, and any discrepancy is considered an 

error. To reduce the measurement error, the weights are then adjusted. A loss function must be 

defined to calculate the model error in neural networks. Mean squared error, mean absolute error, 

mean absolute percentage error, root mean squared error, and other loss functions are commonly 

used loss functions in neural network models. 

             (1) Mean Squared Error: An MSE is a measure of how close a fitted line is to data 

points. For every data point, we take the distance vertically from the point to the corresponding y 

value on the curve fit (the error) and square the value. 

 

              (2) Mean Absolute Error: MAE is the difference between the predicted value and the 

"true" value. For example, if a scale states 90 KW but you know your true load is 89 KW, then 

the scale has an absolute error of 90 KW – 89 KW = 1 KW. 
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          (3) Mean Absolute Percentage Error: MAPE is a metric that measures how accurate a 

forecasting system is. It can be calculated as the average absolute percent error for each time 

period minus the actual values divided by the actual values.  

 

           (4) Root Mean Squared Error: RMSE/RMSD is the square root of the mean of the 

square of all of the errors. The use of RMSE is very common, and it is considered an excellent 

general-purpose error metric for numerical predictions.  

 

3.4.7 Optimizers 

        Optimizers are algorithms or methods for reducing losses by altering the characteristics of 

your neural network, such as weights and learning rate. Gradient Descent, Stochastic Gradient 

Descent, Mini-Batch Gradient Descent, Nesterov Accelerated Gradient, Adagrad, AdaDelta, and 

Adam are some of the optimization algorithms that can be used. The general but not obvious 

rules of neural networks are [73]: 

 Adam is the best optimizer for training the neural network in less time and more 

efficiently. 

 Use optimizers with dynamic learning rates for sparse data. 

 If you want to use a gradient descent algorithm, min-batch gradient descent is the 

best option. 

 



50 
 

3.5 Recurrent Neural Network 

        Recurrent neural networks (RNNs) are distinguished by their topological connections, 

which allow them to handle sequential input while maintaining a recurrent hidden state. Many 

machine learning applications, such as video action identification [77], picture analysis and 

classification [78], machine deterioration prognosis, and remaining usable life prediction, have 

demonstrated promising results using RNN. RNN is well suited to learning variable-length 

features from sequence data. In the diagram, x is the model's primary input, o is the output 

matrix, xt and xt+1 are the inputs for the next sequential hidden state, and U, W, and V are the 

weight matrices that are identical. The benefit of this structure is that the model output is tied not 

just to the present time input, but also to an earlier arbitrary moment's input. 

 

Figure 31: The schematic diagram of recurrent neural network model [77] 

         The normal RNN is incapable of retaining long-term memory information due to the 

tendency of gradients to vanish or erupt. Training the RNN model using a gradient-based 

optimization method (for example, the backpropagation algorithm) presents difficulties. RNN 
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variations have been designed to overcome this issue. Among these, long- and short-term 

memory, as well as closed recurrent drive, receive considerable attention. 

3.6 Long short-term memory 

         Long-Short Term Memory (LSTM) is a sort of recurrent neural network that uses a unique 

structure called a memory cell and gate unit to overcome the basic RNN's long-term dependence. 

LSTM has been demonstrated in applications involving sequential data, including video analysis, 

traffic forecasting, stock price prediction, and remaining usable life prediction. LSTM can be 

thought of as an RNN extension with three gates added to keep track of state values over an 

arbitrary period of time. 

 

Figure 32: The schematic diagrams of LSTM [79] 
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         The critical aspect of LSTM is controlling the long-term state c. Three control gates are 

used in this case to implement the LSTM. The first gate controls whether the long-term state c is 

saved indefinitely; the second gate controls the input of the immediate state to the long-term state 

c; and the third gate controls whether the long-term state c is the output of the current LSTM. 

3.6.1 Forward calculation of LSTM 

          The gate is essentially a stack of fully linked layers with a vector as its input and a real 

vector between 0 and 1 as its output. In this example, if W is the gate's weight vector and b is an 

offset term, the gate can be shown this way: 

𝑔𝑔(a) = 𝜎𝜎(𝑊𝑊a + 𝑏𝑏) 

           The gate multiplies the element's output vector by the vector we desire to control. Because 

the gate output is a real vector between 0 and 1, when the gate output is 0, multiplying any vector 

by itself produces a 0 vector, which is equivalent to nothing passing; when the gate output is 1, 

multiplying any vector by itself produces a 1 vector. Multiplication continues indefinitely, which 

is equivalent to passing. Due to the fact that x (the sigmoid function) has a value range of (0, 1), 

the gate is in a half-open/half-closed state. 
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         Two gates in the LSTM regulate the contents of the unit state c. The forget gate controls 

how much of the unit state Ct-1 is retained at the current moment Ct from a previous time; the 

input gate controls how much of the network's input Xt is saved in the unit state Ct at the current 

instant. An output gate is used to adjust the quantity of unit state output to the LSTM's current 

output value. 

3.7 Gated Recurrent Unit 

          Numerous modifications have been developed to handle the vanishing-exploding gradient 

problem that typically happens during the operation of a basic recurrent neural network. One of 

the most well-known variants is the Long Short Term Memory Network (LSTM). A lesser 

known but equally strong variant is the Gated Recurrent Unit Network (GRU). Gated recurrent 

unit (GRU) can be regarded as an updated version of LSTM with a simple structure and has 

gained popularity in many applications [79].  

 

Figure 33: The schematic diagrams of GRU [79] 
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         GRU merges the input gate and the forgotten gate into the update gate while the memory 

units and hidden units are combined. The gating units in GRU modulate the information flow 

inside the units without having to separate memory cells. 

The mathematic formulation of GRU is described as: 

 

        However, because GRU does not have any mechanism to control the degree of its state 

being exposed, it exposes the whole state each time. 

         In comparison to LSTM, it has only three gates and does not maintain track of the cell's 

internal state. The information stored in the internal cell state of an LSTM recurrent unit is 

incorporated into the hidden state of the gated recurrent unit. This pooled information is sent on 

to the next gated recurrent unit. A GRU's multiple gates are as follows: 

 Update Gate specifies the amount of historical data that must be transferred into the 

future. It is equivalent to the output gate of an LSTM recurrent unit. 

 Reset Gate specifies the extent to which prior information is to be discarded. Similar to 

an LSTM unit with the Input Gate and the Forget Gate together, this is how it works: 

 Current Memory Gate is a feature that is sometimes overlooked in discussions of 

gated recurrent unit networks. It is a sub-component of the reset gate, much like the 

input modulation gate is a sub-component of the input gate, and it is used to introduce 
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non-linearity into the input while maintaining its zero-mean value. Adding it as a 

subcomponent to the reset gate is another way to keep old data from having an effect on 

the data that comes in the future. 

3.8 Hyperparameter Tuning Approach 

         Finding the best machine learning parameters necessitates hyper-parameter adjustment. It 

takes a long time to find the appropriate hyper-parameters, especially when the objective 

functions are difficult to establish or there are a lot of parameters to adjust. In contrast to 

traditional machine learning methods, neural networks require more tuning hyper-parameters 

since they must handle many parameters simultaneously, and the model's accuracy can range 

from 25% to 90% depending on the fine tuning. Grid search, random forest, Bayesian 

optimization, and other strategies for tweaking hyper-parameters in deep learning algorithms are 

among the most effective.  

        Every method has its own set of benefits and drawbacks. Grid search, for example, has been 

found to be a good way to change hyper-parameters, even though it has some drawbacks, like 

testing too many permutations and not being good at changing multiple parameters at the same 

time [74]. Parameters that cannot be altered during the machine learning training process are 

known as hyper-parameters. How quickly and precisely a model can be taught depends on the 

stochastic gradient descent learning rate, batch size, and optimizer.  

        They can also influence the number of hidden layers and the activation function in a model. 

HPO dates back to the early 1990s, and as machine learning becomes more prevalent, the 

technology is increasingly being used for neural networks. HPO is the last step in the model 

creation process and the first step in neural network training. Given the importance of hyper-
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parameters in terms of training accuracy and speed, they must be configured with experience 

before the training process begins. HPO automatically optimizes the hyperparameters of a 

machine learning model, removing humans from the machine learning system's loop. It takes a 

lot of computer power to run the HPO, especially when a lot of hyper-parameters are optimized 

at the same time. 

 

Figure 34: (a) Manual tuning (b) Random tuning (c) Grid tuning approach [From left to Right] 
[74] 

 
3.8.1 Grid Search 

        Grid search is a method of exhaustively searching a manually defined portion of the target 

algorithm's hyperparameter space. Doing a grid search, for example, to perform tests or 

processes on a variety of conditions is a traditional way of discovering the optimal. If there are 

three components, for example, a 15 × 15× 15 would imply completing 3375 trials under various 

situations. When you need to find anything quickly, grid search is the way to go [74]. (1) The 

model's total number of parameters is small, say M <10. Because the grid is M-dimensional, the 

number of test solutions is proportional to LM, where L is the number of test solutions along each 

of the grid's dimensions. (2) The solution falls inside a certain range of values, which can be used 

to determine the grid's boundaries. (3) The direct problem d = g (m) can be solved rapidly 
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enough that LM can be solved from it in a reasonable amount of time. (4) Because the error 

function E (m) is uniform on the scale of the grid spacing, m, the minimum is not lost due to the 

coarse grid spacing. 

 

Figure 35: Grid Search Technique [75] 

         Only a small percentage of candidates "survive" until the final iteration, as shown in the 

figure above. These are the candidates who have consistently placed among the top scorers in all 

editions. Each time, more resources, such as the quantity of samples, are allocated to each 

candidate. 

3.8.2 Random Search 

         A basic enhancement to grid search is random search. It began with a randomized search 

for hyper-parameters from certain distributions with approximate parameter values. This process 
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continues until the predetermined budget is depleted, or until the desired level of precision is 

achieved. These are the most basic stochastic optimization methods, and they're great for 

challenges like tiny search areas and fast-running simulations. Prior to the probability 

distribution function, RS finds a value for each hyperparameter. The cost measure is estimated 

by both the GS and the RS using the obtained hyperparameter sets [75]. RS has been found to be 

more effective than grid search in many situations, even though it is simple. 

        Because of various advantages, a random search has been found to produce superior results: 

First, based on the distribution of the search space, the budget can be determined independently. 

Random search strategies, on the other hand, can be more effective when the many hyper-

parameters aren't spread out evenly across the screen. 

 

Figure 36: Minimizing a function with many local minima using random search [76] 

        In this example, Authors [76] shows what one may need to do in order to find the global 

minimum of a function using (normalized) random local search. They initialize two runs - at  

w0=4.5  and  w0=−1.5 . For both runs they use a steplength of  α=0.1  fixed for all 10 iterations. 
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As we can see from the result depending on where we initialize we may end up near a local or 

global minimum - here resulting from the first and second initialization respectively. 

        As a result of advancements in IoT and hardware [65,66], DNN has been used in a variety 

of research fields recently, including forecasting electric load. Ryu et al. [67] developed and 

compared two DNN-based electric load forecasting models without pre-training using RBM and 

ReLU. They confirmed that models constructed with ReLU were easier to learn and performed 

better than models constructed with SNN. Kuo and Huang [68] developed a novel model for 

forecasting electric load using 1D-CNN and a pooling layer. They came up with a new way to 

figure out how much electricity will be used in the future by comparing traditional machine 

learning methods with MLP. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

 
 

         The Electric Reliability Council of Texas (ERCOT) is a self-contained system operator that 

is responsible for approximately 90% of the state's electric load. ERCOT has made considerable 

investments in renewable energy, notably wind energy, and continues to be the leading wind 

generator in the United States. ERCOT's website contains sufficient market and grid information 

that can be easily viewed and downloaded [80]. If you require data that is not available on the 

website, you may contact ERCOT via the information request form [81]. ERCOT is willing to 

assist and reacts promptly. 

        This thesis was forecasted by using ARIMA, SARIMA, Default LSTM, Custom Stopped 

LSTM, LSTM tuned, GRU, and GRU tuned algorithms, and then the result was compared to see 

which model performed the best in practice. The next subsections will detail the outcomes and 

comparisons. 

 
4.1 ARIMA & SARIMA 

        Due to the fact that the Texas ERCOT dataset is updated every hour, a shift of 1 will be 

used in ARIMA and SARIMA modeling to account for this. 

Table 3: Load differences & Seasonal differences for the ARIMA & SARIMA Model 

Hour Ending South Load First Difference Seaonal First Difference 

01/01/2017 01:00 2366.632745 NaN NaN 
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01/01/2017 02:00 2332.744630 -33.888115 -33.888115 

01/01/2017 03:00 2237.506202 -95.238428 -95.238428 

01/01/2017 04:00 2178.102265 -59.403937 -59.403937 

01/01/2017 05:00 2133.953870 -44.148395 -44.148395 

 

The absolute value of AIC can be interpreted in a number of ways. (It is possible that various 

software packages will produce radically different AICs when given the same data for the same 

model.) The difference in AIC between various models applied to the same data can be 

interpreted as a difference in AIC between different models applied to different data. 

 

 

 

Figure 37: Autocorrelation & Partial Autocorrelation of ARIMA model 
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        In the graphs above, each spike which is above the dashed area considers to be statistically 

significant. Whereas, Generally, a difference of 2 indicates that both models are essentially equal 

in quality; a difference of 5 indicates that the model with the lower AIC is slightly better; and a 

difference of 10 or more indicates that the model with the lower AIC is significantly better.  

Table 4: ARIMAX Results: 

ARIMAX Results 
Dep. Variable: SOUTH No. Observations: 40895 

Model: ARIMA(1, 1, 1) Log Likelihood -237061.806 
Date: Sat, 06 Nov 2021 AIC 474129.613 
Time: 22:00:17 BIC 474155.469 

Sample: 0 HQIC 474137.789 
 

- 40895   

Covariance Type: opg   

 

        There are different AIC values for different models. The model with a lower AIC value than 

the other is thought to be better than the other because it is less complicated and still fits the data 

better than the other model. A density plot can also be drawn from the residuals.

 

Figure 38: Residual’s plot of ARIMA model 
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Figure 39: Summary stats of residuals 

         As observed above, the mean is not exactly zero, which means there is some bias in the 

data.

 

Figure 40: Forecasting next 6 months ERCOT Load through ARIMA model 
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Table 5: SARIMAX Results: 

SARIMAX Results 

Dep. Variable: SOUTH No. Observations: 40895 

Model: SARIMAX(1, 1, 1)x(1, 1, 1, 24) Log Likelihood -208352.440 

Date: Sat, 06 Nov 2021 AIC 416714.879 

Time: 22:03:24 BIC 416757.970 

Sample: 0 HQIC 416728.505 
 

- 40895 
  

 

        When looking at the forecast graphs made by ARIMA and SARIMA, it can be seen that 

SARIMA produces better results effectively over a specific period than ARIMA because of the 

presence of seasonality in the dataset. 

 

                      

  Figure 41: Forecasting next 6 months ERCOT Load through SARIMA model 
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4.2 Long-Short Term Memory Network 

        The objective of this section was to assess the suitability of the different Long Short-Term 

Memory Network models for load forecasting. In this section, the performance metrics of the 

various models used in this study will be discussed in great detail. 

        All metrics have values greater than zero and no upper limit, with the exception of R2, 

which has an upper limit of 1 and no lower limit. The smaller the value of the R2 metric, where 

the relationship is inverse, the better the result. The R2 value represents the amount of variance 

that the model can explain. A value of 1 indicates that the model fits the real data perfectly; a 

value of zero indicates that the dummy prediction always uses the mean value; and a negative 

value indicates that the prediction is worse than always using the mean. The remaining metrics 

(MSE, MAE, MAPE, and RMSE) are always positive error metrics, with zero being the best 

result. The metric MSE was valued most in this work is because it shows how much of a 

difference there is between the error and the real values. 

 

4.2.1 Naïve Long Short-Term Model 

        The best results for the Naive LSTM models were achieved when using only recurring 

networks, while the inclusion of convolutional layers deteriorates the forecast. Naïve LSTM 

models (Figures 42 and Figure 43) present some of the best results for very short-term forecasts 

and the worst for average and long-term forecasts. These models have difficulty of converging 

with a best result can be achieved after 38 epochs.  
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Figure 42: MSE & MAE training history for Naïve LSTM model (Epochs=50, validation 

split=0.20, batch size=512, verbose=2) 

 

        Additionally, it may be worthwhile to examine the evolution of the loss function during 

training & testing. The evolution of the Naive LSTM method is shown in Figure 43, using the 

mean absolute error, and R2 values. 

 

 

Figure 43: MAPE & R2 training history for Naïve LSTM model 
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In general, it is observed that the majority of models converged smoothly after 30–40 epochs. 

 

 

 

Figure 44: Actual Load vs Predicted Load for Naïve LSTM model 

        To demonstrate the forecast's accuracy, Figure 44 compares actual load values to forecasted 

load values as the forecast time horizon is extended. The blue color represents the ground truth 

or actual values, while the red color represents forecasted values. The diagram depicts time 

windows of 1000 hours taken at random points throughout the test set. Until the forecast begins 

to drift, the forecast nearly perfectly replicates the real signal. The drift point varies according to 

sample size, with some signals being followed almost perfectly all of the time and others drifting 

apart during initial forecasts. The forecast signal is a smoothed representation of the actual signal 

in each case. The root mean squared error of Naïve LSTM model was found 90.824. 
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4.2.2 Default Early Long Short-Term Model 

        Figure 45 demonstrates forecast accuracy by comparing actual load values to forecasted 

load values. We can see the huge drift between actual load and forecasted load in the figure 

because our model has to stop predicting because of the default early stopping features in the 

model. Furthermore, through this method, it is seen that by including a custom early-stop feature 

in the model, the overall forecasting results can be improved. 

 

 

Figure 45: Actual Load vs Predicted Load for Default early stopped LSTM model 

       The root mean squared error of the LSTM with the default early stopping feature model was 

found to be 434.161. 
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4.2.3 Custom Early Stopped Long Short-Term Model 

        The best results for the LSTM models with stopping features can be achieved by 

customizing our model to some extent. With the custom early stopping features, our LSTM 

models (Figures 46 and 47) present some of the best results for very short-term forecasts and for 

certain long-term forecasts. These models converged, with the best result being achieved after 43 

epochs. 

 

Figure 46: MSE & MAE training history for Custom Early Stopped LSTM 

 

Figure 47: MAPE & R2 training history for Custom Early stopped LSTM model 
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        For the Custom Early Stopped LSTM model, Figure 48 compares actual load values to 

forecasted load values. The ground truth or actual values are represented by the blue color in the 

graphic, whereas forecasted values are represented by the red color. The graphic depicts the same 

as1000-hour time windows taken at random intervals throughout the test set. The forecast 

virtually exactly mirrors the real signal until it starts to deviate.  

 

 

Figure 48: Actual Load vs Predicted Load for Custom early stopped LSTM model 

        The drift point varies depending on sample size, with some signals being practically exactly 

tracked all of the time and others slipping apart during early forecasts. In each scenario, the 

prediction signal is a smoothed version of the actual signal. The root mean squared error of the 

custom early stopping LSTM model was found to be 83.299. 
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4.2.4 Tuned Long Short-Term Model 

         Tuning the LSTM model yields the greatest results out of all of the LSTM models. The 

models that are depicted in Figures 49 and 50 provide some of the best results for both extremely 

short-term and long-term forecasting, thanks to the tailored hyperparameter features of the 

LSTM model. 

 

Figure 49: MSE & MAE training history for Tuned LSTM model 

Figure 50: MAPE & R2 training history for Tuned LSTM model 
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        Figure 51 shows the difference between actual and anticipated load values for the tuned 

LSTM model. The blue color in the figure represents actual values, while the red color represents 

anticipated values. As with the other two models, this one use 1000-hour time periods gathered 

at random locations across the test set. For as long as it takes for the forecast to end, the signal 

almost closely matches the forecast.  

 

 

Figure 51: Actual Load vs Predicted Load for Tuned LSTM model 

        The root mean squared error of the tuned LSTM model was found to be 52.869, which is 

lower than the root mean squared error of all preceding models. 
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4.3 Gated Recurrent Unit 

 

4.3.1 Naive Gated Recurrent Unit 

         The hyperparameter tuning strategy can be used to produce the best results for gated 

recurrent unit models. Except for the tuned LSTM model, GRU models (Figures 52 and 53) can 

outperform the other two LSTM models (Naive and Custom Early Stopped) using default GRU 

approaches.  

 

Figure 52: MSE & MAE training history for Naive GRU model 

 

 

Figure 53 MAPE & R2 training history for Naive GRU model 
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        This model can also be used to predict some of the best results for both short-term and long-

term forecasting. With the default GRU technique, the best result was reached after 40 epochs.  

        The disparity between the actual and forecasted load numbers for the Naive GRU model is 

depicted in Figure 54. This model does better than the Naive LSTM and the custom stopped 

LSTM models, but it doesn't do as well as the tuned LSTM model shown in the previous 

illustration. 

 

Figure 54: Actual Load vs Predicted Load for Naïve GRU 

The root mean squared error of Naïve GRU model is 67.768. 
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4.3.2 Tuned Gated Recurrent Unit 

         Tuning the GRU model produces the best results of any model. The GRU model's 

outcomes shown in Figures 55 and 50 provide some of the best results for forecasting extremely 

short and extremely long time periods, owing to the GRU model's adjusted hyperparameter 

features. 

 

Figure 55: MSE & MAE training history for Naive GRU model Tuned GRU model 

 

 

Figure 56: MAPE & R2 training history for Naive GRU model Tuned GRU model 
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         The discrepancy between actual and projected load values for the tuned GRU model is 

shown in Figure 57. Actual values are represented by the blue color in the graph, whereas 

forecasted values are represented by the red color.  

 

Figure 57: Actual Load vs Projected Load for Tuned GRU 

        When comparing the tuned GRU model to other models, the tuned GRU model gives the 

best result as it can be seen that there are fewer significant differences between the colors of the 
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actual load and the colors of the load in this model. The root mean squared error for the tuned 

GRU model is found to be 49.758. 

4.4 Root Mean Squared Error Comparison 

        An illustration of a Root Mean Squared error bar chart generated by Minitab is displayed in 

Figure 58, and it demonstrates that the GRU model has the lowest RMSE of the models, at 

49.76, while the Nave LSTM model has the greatest RMSE, at a substantially higher value of 

90.82. 

 

Figure 58: Chart comparison of RMSE for various DL model  

4.5 MSE comparison 

        The MSE comparison graph in Figure 59 shows the MSE for each epoch for the two best 

models: (1) tuned GRU and (2) tuned LSTM. As time spent on training the model increased, the 
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MSE value went down even more for both models, but tuned GRU outperformed tuned LSTM 

most of the time. 

 

Figure 59: MSE comparison of Tuned GRU vs Tuned LSTM  

4.6 Radar Chart for Model Comparison 

        Radar chart is a visual representation of numerous quantitative data points. Because radar 

charts make it easy to observe which variables in a dataset are performing well or poorly, they 

are useful for determining how well a group performed on a test. 

        Each variable has an axis that begins at the center. All axes are radially oriented, with equal 

spacing between them while preserving the same scale. Grid lines that link the axes are 
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frequently used as guides. Each variable's value is shown on its own axis, and the values of all 

variables in a dataset are linked to form a polygon. 

        Figure 60 depicts a radar chart using six models and the six error values generated for each 

model using our models. To find out the comparison, six error functions were utilized: the loss 

function MSE, the mean absolute error, the mean absolute percentage error, the validation loss, 

the RMS values, and the validation R2 values. 

 

Figure 60: Radar chart for error comparison  
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        Whichever area is covered, the model with the least area will be the best model, as, except 

for the R2 values, our loss function indicates that the lower the number, the better the model 

performs. 

 

Figure 61: Final Radar chart for error comparison  

        Figure 61 is an extended version of previous radar chart to aid in comprehension of the area. 

As shown in Figure 60, the SARIMA model covered the biggest area, while tuned GRU covered 

the least area, followed by LSTM tuned and other models. 
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4.7 Pygal Radar Chart 

       Pygal is a Python package that is mostly used to create graphs and charts in Scalar Vector 

Graphics. SVG is a vector-based visual formatted in XML that is editable in any text editor. 

Pygal can generate simple-to-understand graphs with a few lines of code. 

 

Figure 62: Pygal Radar chart for error comparison  

        Figure 62 is a Pygal Radar chart that shows how many areas each model error covers. The 

tuned GRU, which is shown in orange, covers the least area and is our best model, while the 

tuned LSTM model, which covers slightly less area, is found to be the second best model. 
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CHAPTER V 
 

CONCLUSIONS & FUTURE WORKS 
 
 
 

        This work is primarily performed through the analysis of five deep learning models for 

forecasting hourly ERCOT load in Texas: Naive LSTM, Early Stopped LSTM, Tuned LSTM, 

Naive GRU, and Tuned GRU. It turns out that a GRU model with the right hyperparameters is 

better than other deep learning-based neural networks, like the well-known LSTM network, at 

predicting the next hour's load.  

        Contrary to recent academic findings that LSTMs outperform other deep learning 

techniques for forecasting short-term loads, with this work, it is safe to conclude that tuned GRU 

models outperform all other DL techniques. As a result, this work's final recommendation will be 

to employ tuned GRU for hourly, short-term, and long-term load forecasting. 

        Researchers could merge multiple distinct deep learning model methodologies, such as 

convolutional neural networks and recurrent neural networks, to develop a superior model as a 

future avenue of research. Integrating weather data into the problems in order to develop a more 

sustainable model will also be a future objective of this work, as this work was unable to 

incorporate weather data into the model during this study due to a lack of reliable, publicly 

available hourly weather data for Southern Texas. Another future study will be examining a 

more effective strategy for modifying the problem's hyperparameters. For this work, random 

search tuning techniques were employed to tune hyperparameters. 
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