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ABSTRACT 

Kaish, Md Imrul, Non-negative Discriminative Data Analytics. Master of Science in 

Engineering (MSE), May, 2022, 52 pp., 4 tables, 23 figures, references, 87 titles. 

Due to advancements in data acquisition techniques, collecting datasets representing 

samples from multi-views has become more common recently (Jia et al. 2019). For instance, in 

genomics, a lymphoma patient’s dataset may include data on gene expression, single nucleotide 

polymorphism (SNP), and array Comparative genomic hybridization (aCGH) measurements. 

Learning from multiple views about the same objective, in general, obtains a better 

understanding of the hidden patterns of the data compared to learning from a single view data. 

Most of the existing multi-view learning techniques such as canonical correlation analysis 

(Hotelling et al. 1936) and multi-view support vector machine (Farquhar et al. 2006), multiple 

kernel learning (Zhang et al. 2016) are focused on extracting the shared information among 

multiple datasets.  

However, in some real-world applications, it’s appealing to extract the discriminative 

knowledge of multiple datasets, namely discriminative data analytics. For example, consider the 

one dataset as gene-expression measurements of cancer patients, and the other dataset as the 

gene-expression levels of healthy volunteers and the goal is to cluster cancer patients according 

to the molecular sub-types. Performing a single view analysis such as principal component 

analysis (PCA) on any of the dataset yields information related to the common knowledge 

between the two datasets (Garte et al. 1996). Addressing such challenge, contrastive PCA (Abid 
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et al. 2017) and discriminative (d) PCA in (Jia et al. 2019) are proposed in to extract one dataset-

specific information often missed by PCA. 

Inspired by dPCA, we propose a novel discriminative multi-view learning algorithm, 

namely Non-negative Discriminative Analysis (DNA), to extract the unique information of one 

dataset (a.k.a. view) with respect to the other dataset. This boils down to solving a non-negative 

matrix factorization problem. Furthermore, we apply the proposed DNA framework in various 

real-world down-stream machine learning applications such as feature selections, dimensionality 

reduction, classification, and clustering.
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CHAPTER I 

 

INTRODUCTION 

 

After reading about discriminative analysis and observing its remarkable performance in 

information detection in noisy environments, we became interested in exploring its application 

potential. COVID-19 has been active since March 2020 but raising awareness among the general 

public has been slow. Having information about the pandemic early would allow us to be more 

prepared and prevent its severity. Motivated by this scenario and after a detailed understanding 

of what discriminative analysis can do, we developed a novel discriminative analysis method that 

can detect unique information about the COVID-19 era with respect to previous times. Through 

regular discriminative analysis between two consecutive time periods, it would be possible to 

detect any outbreaks early and take necessary precautions to prevent them as much as possible. 

Due to advancement in data acquisition techniques, it takes a lot of time if we want to train a 

model with all data available. Proposed discriminative analysis method assigns a weight to each 

feature in a dataset which can be very useful in applications like feature selection. Analyzing 

only the most important features reduced the learning time and resulted in better prediction 

performance.  

Multi-view learning is a new approach to machine learning that incorporates learning 

from several perspectives in order to increase generalization performance. Data fusion or data 

integration from several feature sets is another name for multi-view learning. When it comes to 
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web page classification, there are usually two ways to describe a page: the text content of the 

page itself and the anchor text of any web page that links to it. A well-designed multi-view 

learning technique can provide better performance in classification when both information is 

available. From literature, we find three types of multi-view learning algorithms: 1) co-training 

(Yu et al. 2007), 2) multiple kernel learning (Gonen et al. 2011), and 3) subspace learning 

(Hotelling et al. 1936). Canonical Correlation Analysis (CCA) (Hotelling et al. 1936) explore 

basis vectors for two sets of variables by mutually maximizing the correlations between the 

projections onto these basis vectors in order to find the shared latent subspace. CCA has been 

used to find risk factor for recurrence of breast cancer in (Sadoughi et al. 2016), audio visual 

synchronization (Sargin et al. 2007).  

However, CCA only reveals the correlation between pairwise samples, which cannot 

adequately describe the similarity between samples in the same class or evaluate the dissimilarity 

between samples in different classes. Discriminative multi-view learning methods (e.g., 

discriminative CCA) can tackle this problem. It can learn the latent subspace where within-class 

correlation is maximized, and the inter-class correlation is minimized. Discriminative CCA has 

been used for feature extraction for recognition of course categories in Web-KB course dataset in 

(Sun et al. 2007). Also, discriminative Principal Component Analysis (dPCA) has been proposed 

in (Chen et al. 2019) which can provide least-squares optimal in recovering the latent subspace 

specific to target data against background data. In that paper, dPCA has been applied in health 

data to distinguish between two types of body movement: lying down and frontal elevation of 

arms.  

Discriminative analysis is a dimensionality reduction problem in a broad manner.  The 

transfer of data from a high-dimensional space to a low-dimensional space so that the low-
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dimensional representation retains most significant aspects of the original data, is known as 

dimensionality reduction. Feature selection (Kumar et al. 2014), matrix factorization (Lee et al. 

1999) and manifold learning (Cayton et al. 2005) are some areas of application for 

dimensionality reduction. Principal Component Analysis (PCA) (Hotelling et al. 1936) and Non-

negative Matrix Factorization (NMF) (Lee et al. 1999) are among some popular classical 

dimensionality reduction methods. Discriminative analysis is getting more attention recently as a 

dimensionality reduction method. In a 2019 paper (Zhao et al. 2019), leveraging low dimensional 

representation, using discriminative analysis, classification of face data has been performed.  

Discriminative analysis can often be very useful to obtain unique discriminative 

information in between two datasets. For example, in 2019, the word “COVID-19” wasn’t even 

familiar but in 2020 it had shown great domination all over the world. In this case, discriminative 

information can provide knowledge about possible outbreaks in the whole world. On the other 

hand, discriminative analysis is also capable of finding how important each feature is, in order to 

represent the target concept in a particular dataset (Luo et al. 2016). From different experimental 

results it has been shown that only 10 − 20% of the original features actually are responsible for 

the quality of performance (T. Huang et al. 2012). So, if we can rank features in a dataset, it is 

possible to separate important features and reduce the size of the dataset and convergence time of 

the model, in a great extent.  
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In this paper, we developed DNA (Non-negative Discriminative Analysis), a novel non-

negative discriminative principal component analysis, which takes two datasets as inputs: 

background and target dataset and give us discriminative information of target dataset in contrast 

to background dataset. The objective of the thesis is followings: 

1. To propose a novel discriminative analysis model named DNA.  

2. To investigate Google Trends COVID-19 symptoms dataset for year of 2018 to 

2020 and to extract unique information related to COVID-19 using DNA.  

3. To generate feature importance or feature ranking set in some standard datasets 

(e.g., CIFAR10). 

4. To demonstrate the efficacy of feature selection using DNA in supervised and 

unsupervised learning settings.   

This manuscript is organized in five chapters. In chapter one, we discussed background 

of the thesis, motivations, and contributions of the thesis. Chapter two discusses detailed 

literature review of the topics involved in the thesis. Extensive discussion on methodology can 

be found in chapter three. In chapter four we have demonstrated numerical results using different 

datasets. Finally, chapter five concludes our thesis and opens directions for future work.
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CHAPTER II 

 

LITERATURE REVIEW 

 

Multi-view learning is a new approach to machine learning that incorporates learning 

from several perspectives to increase generalization performance. Data fusion or data integration 

from numerous feature sets are other terms for it. As single-view data cannot adequately convey 

the information of all samples, several data are frequently collected through various measuring 

methods. For example, any video with audio can be considered as a multi-view data: one view is 

the video frames, and another view is the audio signal. The title, keywords, and citations in a 

journal's dataset can be thought of as three independent perspectives on a single paper (R. Bro et 

al. 1997). A well-designed multi-view learning technique can help to increase performance of the 

learning model. Multi-view learning has a wide range of applications, including dimensionality 

reduction (Chen X et al. 2012; Hardoon D et al. 2011; White M et al. 2012), semi-supervised 

learning, supervised learning, and clustering. Because the background dataset and the target 

dataset can be regarded as two viewpoints, discriminative learning is a special sort of multi-view 

learning. This chapter gives a quick summary of previous works in dimensionality reduction and 

discriminative analysis from several angles.
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2.1 Dimensionality Reduction 

The dimensionality of real-world data, such as speech signals, digital pictures, or 

functional Magnetic Resonance Imaging (fMRI) scans, is typically high. The dimensionality of 

such real-world data must be decreased to handle it properly. The transformation of high-

dimensional data into a comprehensible representation with decreased dimensionality is known 

as dimensionality reduction. It is the translation of data from a high-dimensional space to a low-

dimensional space in such a way that the low-dimensional representation retains maximum 

amount of the original data's relevant qualities as possible. Working with high-dimensional 

environments can be inconvenient for a variety of reasons. The curse of dimensionality (Xu et al. 

2013) and other undesirable properties of high-dimensional spaces are mitigated via 

dimensionality reduction, which is popular in many disciplines (L.O. Jimenez et al. 1997). 

Dimensionality reduction makes it easier to classify, visualize, and compress high-dimensional 

data. Traditionally, linear techniques such as Principal Components Analysis (PCA) (K. Pearson 

et al. 1901), factor analysis (C. Spearman et al. 1904), and classical scaling (W.S. Torgerson et 

al. 1952) were used to reduce dimensionality. Signal processing, speech recognition, neuro-

informatics, and bioinformatics are among domains that use dimensionality reduction to deal 

with huge numbers of observations and/or variables. 

2.1.1 Principal Component Analysis 

Among variety of approaches have been developed for dimensionality reduction, 

principal component analysis (PCA) is one of the oldest and most utilized. The goal is to 

minimize a dataset's dimensionality while keeping as much variability (i.e., statistical 

information) as possible. This means that, keeping as much variety as feasible, involves 
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identifying new variables that are linear functions of the original dataset's variables, maximize 

variance sequentially, and are uncorrelated with one another. Finding correlation manually in 

thousands of features is nearly impossible, frustrating, and time-consuming. PCA does this 

efficiently. Also, PCA helps in overcoming the overfitting issue by reducing the number of 

features as overfitting occurs when there is a lot of features. After implementing the PCA on the 

dataset, all the Principal Components (PCs) are independent of one another. In (S. Zhang et al. 

2013), PCA has been used for Speech Emotion Recognition (SER) to transform the high 

dimensional feature space to a lower dimension. The principal components are a type of new 

variable that can be discovered by solving an eigenvalue/eigenvector issue. (Pearson K. et al. 

1901) and (Hotelling H. et al. 1933) are the first papers on PCA, but it wasn't until electronic 

computers became widely available that it was computationally practical to utilize it on datasets 

that weren't trivially small. It performs a linear mapping of the data to a lower-dimensional space 

to maximize the data's variance in the low-dimensional representation. In practice, the covariance 

(and, on rare occasions, correlation) matrix of the data is constructed, and the eigenvectors are 

computed on this matrix. The principal components (eigenvectors that correspond to the biggest 

eigenvalues) can now be utilized to recover a significant percentage of the original data's 

variance. Furthermore, because the first few eigenvectors commonly contribute most of the 

system's energy, particularly in low-dimensional systems, they can frequently be interpreted in 

terms of the system's large-scale physical behavior. 

2.1.2 Non-negative Matrix Factorization 

Non-negative matrix factorization (NMF) is a matrix decomposition technique that splits 

a non-negative matrix into two low-rank non-negative matrices (Lee et al. 1999; Suvrit et al. 

2006). It has been a promising tool in fields where only non-negative signals exist, such as 
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astronomy. The nonnegativity of NMF, as opposed to other factorization methods such as 

Singular Value Decomposition (SVD), enables only additive combinations of intrinsic 

components (i.e., hidden features). This is shown in (Lee DD et al. 1999) where NMF learns face 

pieces and a face is naturally represented as an additive linear combination of distinct parts 

(Paatero et al. 1997; Tapper et al. 1994). Negative combinations might not feel as natural or 

intuitive as positive combinations. The resulting decomposed matrices have less entries than the 

original matrix, hence NMF is also a dimension reduction approach. This suggests that a 

decomposition does not require all the entries in the original matrix, hence NMF should be able 

to accommodate missing items in the target matrix. If the desired loss function is a sum of per-

entry losses, such as mean square error (MSE) or Kullback-Leibler (KL) divergence, 

factorization can be achieved by deleting the loss items corresponding to the missing entries. 

NMF has become an essential tool in multivariate data analysis and has been widely used in the 

fields of machine learning (A. Cichocki et al. 2009), data mining (M. Berry et al. 2007), signal 

processing (I. Buciu et al. 2008), image engineering and computer vision (I. Buciu et al. 2008) 

due to the enhanced semantic interpretability provided by nonnegativity and the resulting 

sparsity. 

2.2 Feature Selection 

(Girish Chandrashekar et al. 2014) gives a complete overview of feature selection with 

filter, wrapper, and embedded approach. They also talked about applications of feature selection 

in the real world in text categorization, remote sensing, intrusion detection, genomic analysis, 

and image retrieval. In addition to that, the benefits, and drawbacks of feature selection methods 

for dealing with the various aspects of real-world applications, have been discussed. More 

information is not always better in machine learning applications, as feature selection techniques 
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demonstrate. To compare feature selection approaches, the classifier accuracy and the number of 

decreased features has been used in (Kumar et al. 2014). Four categories of feature selection 

methods have been discussed in (Jundong et al. 2017): similarity-based, information theoretical-

based, sparse-learning-based, and statistical-based methods. Recent feature selection research on 

conventional data, structured data, heterogenous data and streaming data, have been discussed in 

that paper. Thirty-two existing feature selection methods have been discussed in (Dash et al. 

1997) which are categorized based on the combinations of generation procedure and evaluation 

function. Feature selection techniques used in bioinformatics are discussed in (Yvan et al. 2007). 

Bioinformatics researchers face two major problems dealing with related datasets: large input 

dimensionality and small sample size. Researchers in bioinformatics, machine learning, and data 

mining have devised a plethora of feature selection strategies to address these issues. Relief (Kira 

et al. 1992), a new algorithm was proposed which can pick relevant features using a statistical 

manner. Relief is noise-tolerant, does not rely on heuristics, and is accurate even when features 

are interrelated.  

2.3 Shared Information Extraction using Multi-View Learning 

Subspace learning-based approaches try to obtain a latent subspace shared by numerous 

views by assuming that the input views are derived from that latent subspace. It is especially 

effective in lowering the curse of dimensionality since the dimensionality of the latent subspace 

is lower than any input view (Xu et al. 2013). Given this subspace, it is very beneficial to carry 

out classification and clustering objectives. Canonical Correlation Analysis (CCA) and some 

tensor methods on finding latent subspace have been discussed in this section.  
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2.3.1 Canonical Correlation Analysis 

The challenge of identifying basis vectors for two sets of variables such that the 

correlation between the projections of the variables onto these basis vectors is mutually 

maximized was proposed in (Hotelling et al. 1936; Borga et al. 1999). They represented the 

eigenproblem as two eigenvalue equations, because this reduces the calculation time and size of 

the eigenvectors. Kernel canonical correlation analysis (KCCA) (Akaho et al. 2001; Melzer et al. 

2001) is an extension of Canonical Correlation Analysis (CCA) in which maximally correlated 

nonlinear projections are discovered, which CCA is unable to perform. Deep canonical 

correlation analysis (DCCA) has been proposed in (Andrew et al. 2013) which serves similar 

purpose like KCCA, but it does not require an inner product and has the benefits of a parametric 

method: training time scales well with data size, and the training data does not need to be 

referred when computing representations of unseen instances. CCA, KCCA, DCCA can only 

find correlation between two datasets. Deep Generalized Canonical Correlation Analysis 

(DGCCA) has been proposed in (Benton et al. 2017) which is the first multi-view representation 

learning technique based on CCA that combines the flexibility of nonlinear (deep) representation 

learning with the statistical power of combining data from several independent sources. 

2.3.2 Tensor Methods 

More recently, tensor decompositions for learning latent variable models, particularly 

topic models, have received a lot of attention. A general introduction to tensor decomposition is 

presented in (Bro et al. 1997). The application of Canonical Polyadic (CP) to sensor array 

processing was studied by Sidiropoulos, Bro, and Giannakis (N. Sidiropoulos et al. 2000). We 

explored Parallel Factor Analysis (PARAFAC) (Bro et al. 1997) algorithm for tensor 
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decomposition which is a generalization of PCA to higher order arrays. The PARAFAC2 tensor 

decomposition is a generalization of the PARAFAC/CP tensor decomposition which is proposed 

in (Harshman et al. 1972). This tensor decomposition represents a collection of related matrix 

decompositions with one mode in common, i.e., one of the components varies along the set of 

matrices (tensor slices), while the other remains constant. However, the lack of efficient 

algorithms that can handle large-scale datasets has been its principal drawback to date. 

SPARTan: Scalable PARAFAC2 for Large & Sparse Data was proposed in (Perros et al. 2017) 

that bridges this gap by creating a scalable approach for computing the PARAFAC2 

decomposition of large, sparse datasets. In the 1990s, signal processing became prominent, but it 

wasn't until about a decade ago that the computer science community (particularly those working 

in machine learning, data mining, and computing) realized the value of tensor decompositions 

(T. G. Kolda et al. 2005; E. Acar et al. 2005). There has been a lot of work on 

tensors decompositions recently, for learning latent variable models specially on Topic models 

(A. Anandkumar et al. 2014; Blei et al. 2003) discusses about the connections between 

orthogonal tensor decomposition and the method of moments for computing the Latent Dirichlet 

Allocation (LDA – a widely used topic model).  

2.4 Discriminative Information Extraction using Multi-View Learning 

In this section, we have discussed two discriminative multi-view analysis methods: 

contrastive Principal Component Analysis (cPCA) and discriminative Principal Component 

Analysis (dPCA). Purpose of these algorithms to extract latent subspace where discriminative 

information from multiple datasets is available.  
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2.4.1 Contrastive Principal Component Analysis          

In order to find hidden patterns in one dataset relative to another dataset, contrastive PCA 

with one free parameter, alpha, has been proposed in (Abid et al. 2017). A wide variety of 

experiments was conducted in that paper using cPCA to find directions in which the target data 

varies significantly, but the background data does not. While PCA aims for identifying 

dominating trends in just one dataset, cPCA can find it in two datasets. The principal 

applications of cPCA are the same as those for which PCA is commonly used: efficiently 

reducing dimensions to enable visualization and exploratory data analysis. It takes about the 

same amount of time to compute a specific cPCA as it does to compute a standard PCA. cPCA 

does not attempt to classify individual data points; instead, it aims to display patterns unique to 

the target. Geographic ancestry clusters within Mexico have been visualized using cPCA using 

genotyping data (Abid et al. 2017). Subgroup discovery in protein expression data, single cell 

RNA-Seq data has been performed in another paper (Abid et al. 2018). An automatic scheme 

based on clustering of subspaces for selecting the most informative values of contrast parameter, 

alpha, has been proposed in that paper.  

2.4.2 Discriminative Principal Component Analysis 

Discriminative Principal Component Analysis (dPCA), proposed in (Jia et al. 2019), is 

least-squares optimal in recovering the latent subspace vector unique to the target data compared 

to background data under specific conditions. dPCA models for one or more background datasets 

are generalized using kernel-based learning to account for nonlinear data correlations.  It can 

extract low-dimensional discriminative structure that is unique to the target data but not to 

numerous sets of background data. This is accomplished by increasing the variation of 
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anticipated target data while lowering the sum of all projected background data variances.  

Applications of dPCA in classification of applied health data, sensor data, and face picture 

datasets, presented in (Jia et al. 2019). dPCA has also been used in near-infrared (NIR) 

spectroscopy datasets and performed multi-class classification (Liu et al. 2020). Discriminative 

properties have been used for wrist-hand movement detection for standalone, battery-powered 

EMG wearables in (Raurale et al. 2020). 
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CHAPTER III 

 

PROPOSED WORK 

 

In this chapter we have discussed about the problem statement of the thesis and our 

proposed model. Algorithm for the model and explanation on how we get unique information or 

feature importance set from a dataset, has been provided.  

3.1 Problem Statement 

Principal Component Analysis (PCA) (Hotelling H. et al. 1933) projects the data onto low 

dimensions and is especially powerful as an approach to visualize patterns, such as clusters and 

clines, in a dataset (Jolliffe et al. 2002). For this task, it is important to find out the correlation 

among the features (correlated variables). In contrast to PCA, the projected coefficients that are 

obtained using the Non-negative Matrix Factorization (NMF) method are only positive. The parts-

based representation may be holistic, rather than local, depending on the type and nature of the 

data being studied. It is also possible that a parts-based, local representation may require fully 

hierarchical models with multiple levels of hidden variables rather than the single level used in 

this approach. When an analyst has multiple datasets (or multiple conditions in one dataset to 

compare), then the current state-of practice is to perform PCA (or t-distributed Stochastic Neighbor 

Embedding, Multi-dimensional Scaling, etc.) on each dataset separately, and then manually 

compare the various projections to explore if there are interesting similarities and differences 

across datasets (Chen et al. 2016; Zhou et al. 2007). Unlike PCA or NMF, discriminative analysis 
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is not only capable of finding better representation of data but also it can extract unique information 

of one dataset relative to another. For example, in a genomics context, the foreground data could 

be gene expression measurements from patients with a disease, and the background data could be 

measurements from healthy patients (Twine et al., 2011; Zheng et al., 2017; Young et al., 2018). 

Clearly, PCA is not suitable in this contrastive setting because PCA only identifies structure that 

exists across the union of the two groups or structure in each group in isolation. Then the goal can 

be informally stated as finding directions in which the target data varies significantly, but the 

background data does not, and it efficiently identifies lower-dimensional subspaces that capture 

structure specific to the target data. Contrastive PCA is a good approach which can offer 

discriminative information in low dimensional structure. If the involved hyper-parameter is 

properly selected, which is carried out via singular value decomposition (SVD), cPCA can disclose 

dataset-specific information that is often ignored by normal PCA. Though it is possible to 

determine the optimum hyper-parameter from a list of potential values automatically, executing 

SVD numerous times in large-scale situations can be computationally intensive. Moreover, it fails 

to obtain unique information from real data in some cases (e.g., COVID-19 google trends data) 

(Md et al. 2021). It is worthy of investigation on a novel discriminative analysis method which can 

provide solutions to the existing problems and good performance in real data. We proposed non-

negative discriminative analysis (DNA) which is well capable of finding unique information from 

one dataset relative to another dataset in real world setting and can perform feature selection 

efficiently. 

3.2 Non-negative Discriminative Analysis 

In this section, we have discussed our proposed algorithm for discriminative analysis. 

Consider two datasets: background dataset (denoted as { 𝑦𝑦𝑖𝑖  ∈  ℝD }𝑖𝑖=1𝑛𝑛  ) which contains the 
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information of Flu, e.g., Google Trends data in 2019 or 2018 when there was no COVID-19 but 

Flu, and target dataset (denoted as { 𝑥𝑥𝑖𝑖  ∈  ℝD }𝑖𝑖=1𝑚𝑚 ) having the information of both Flu and 

COVID-19, e.g., Google Trends data in 2020. Here, 𝐷𝐷 denotes the number of searched 

symptoms and 𝑖𝑖 is time index. In literature, discriminative (d) principal component analysis 

(PCA) (Jia et al. 2018) and contrastive (c) PCA (Abid et al. 2017) performing such 

discriminative analysis on both the target and background datasets. Discriminative PCA seeks a 

projection matrix so that the ratio of the projected target data variance over that of the 

background data is maximized, while cPCA maximizes the difference between the target data 

variance and the background data variance.  

Specifically, dPCA approach searches for subspace vectors, namely the columns of 𝑈𝑈 ∈

 ℝD×d with number of dimensions, 𝑑𝑑 ≤ 𝐷𝐷 by solving equation 8 (Jia et al. 2018).  

[�𝑈𝑈𝑇𝑇𝐶𝐶𝑦𝑦𝑈𝑈�
−1𝑈𝑈𝑇𝑇𝐶𝐶𝑥𝑥𝑈𝑈]𝑈𝑈

𝑀𝑀𝑀𝑀𝑀𝑀 𝑇𝑇𝑇𝑇                  (8) 

where 𝐶𝐶𝑥𝑥 ∶=  1
𝑚𝑚

 ∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑥𝑥) (𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑥𝑥)𝑇𝑇 𝜖𝜖 ℝ𝐷𝐷 ×𝐷𝐷𝑚𝑚
𝑖𝑖=1  representing the sample covariance of the 

target data with 𝜇𝜇𝑥𝑥 denoting the corresponding sample mean; 𝐶𝐶𝑦𝑦 is the sample covariance of the 

background data. This is ratio trace maximization problem, and the columns of the optimal U are 

the right eigenvectors of 𝐶𝐶𝑦𝑦−1𝐶𝐶𝑥𝑥 associated with the top-𝑑𝑑 eigenvalues. The projections { 𝑈𝑈𝑇𝑇𝑥𝑥𝑖𝑖 ∈

 ℝ𝐷𝐷 } are the sought lower-dimensional representations of { 𝑥𝑥𝑖𝑖 }, where the (𝑟𝑟, 𝑙𝑙)𝑡𝑡ℎ entry of U 

reveals the importance of the 𝑟𝑟-th feature/symptom to the 𝑙𝑙-th projected dimension. The 

challenge of using dPCA directly to uncover such symptom importance (in other words uncover 

discriminative symptoms of COVID-19 w.r.t. Flu) is the sign ambiguity. To bypass this 

challenge, we propose a novel nonnegative discriminative analysis, namely DNA, by performing 
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nonnegative matrix factorization (NMF) on 𝐶𝐶𝑦𝑦−1𝐶𝐶𝑥𝑥. Specifically, we learn two nonnegative 

factorization matrices 𝑊𝑊 ∈ ℝ𝐷𝐷 × 𝑑𝑑and 𝐻𝐻 ∈  ℝ𝑑𝑑 × 𝐷𝐷 so that 

𝐶𝐶𝑦𝑦−1𝐶𝐶𝑥𝑥  ≈ 𝑊𝑊𝐻𝐻          (9) 

Table 1: Algorithm for DNA 

Algorithm 1: DNA. 

1: Input: Nonzero-mean target and background data {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑚𝑚  and {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑛𝑛 ; number of 

dimensions 𝑑𝑑. 

2: Construct covariance matrices of {𝑥𝑥𝑖𝑖} and {𝑦𝑦𝑖𝑖} to obtain 𝐶𝐶𝑥𝑥 and 𝐶𝐶𝑦𝑦. 

3: Perform non-negative matrix decomposition on 𝐶𝐶𝑦𝑦−1𝐶𝐶𝑥𝑥 to obtain the two factorization 

components W and H. 

4: Output: W and H. 

 

One popular approach to solve (9) is to use the Kullback–Leibler (KL) divergence metric. 

The sought W will be used to estimate the importance of each symptom. Our DNA for 

nonnegative discriminative analytics of two datasets is summarized in Algorithm 4.  
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CHAPTER IV 

 

NUMERICAL TESTS 

 

In this section, we have demonstrated our results and findings we got from our study on 

unique information extraction and feature selection using DNA. Feature selection procedure is 

verified in both supervised and unsupervised learning environment. At first, we have discussed 

about the datasets used and then results obtained using those datasets.  

4.1 Datasets 

In this thesis, we have used three datasets to satisfy our works. Brief description of each 

dataset is provided here. For each case, there is a target dataset and a background dataset. Three 

datasets are Covid-19 google trends symptoms dataset, MNIST handwritten digits dataset and 

Cifar10 object images dataset.  

4.1.1 Google Trends Covid-19 Symptom’s Dataset 

Google Trends is a free and easy-to-use dataset provided by Google (Google LLC. 2021). 

This anonymized, aggregated dataset depicts trends in symptom search patterns and is meant to 

aid academics in better understanding COVID-19's impact. Trends in search behaviors, 

according to public health specialists, may be useful in gaining a better understanding of how 

COVID-19 affects communities and perhaps in spotting epidemics sooner. It is not possible to 

presume that the data is a record of real-world clinical events or to use it for medical diagnosis, 
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prognosis, or therapy. This information shows the number of Google searches for a wide range 

of symptoms, indications, and illnesses. We'll refer to all of them as symptoms in this paper to 

make things easy. The data covers hundreds of symptoms, including fever, difficulty breathing, 

and stress, and is based on the following factors: the prevalence of a symptom in Google 

searches, data quality, and privacy concerns. Number of searches linked to each of these 

symptoms are counted on a daily basis and categorize the data by geographic location. The 

generated dataset is a daily or weekly time series for each location that shows the relative 

frequency of symptom queries. A single search query can be associated with multiple symptoms. 

A search for "acid reflux with coughing up mucus," for example, yields three symptoms: cough, 

gastroesophageal reflux disease, and heartburn. Even though the dataset is being released in 

English, searches are being counted in other languages. 

4.1.2 MNIST Handwritten Digits Dataset 

A training set of 60,000 samples and a test set of 10,000 examples are available in the 

MNIST database of handwritten digits. It's a subset of the NIST's larger collection. In a fixed-

size image, the digits have been size-normalized and centered. The original NIST black and 

white (bilevel) photos were size adjusted to fit in a 20x20 pixel box while maintaining the aspect 

ratio. By determining the center of mass of the pixels and translating the image to position this 

point at the center of the 28x28 field, the images were centered in a 28x28 image. When the 

digits are centered by bounding box rather than center of mass, the error rate improves with 

various classification methods (especially template-based approaches like Support Vector 

Machines (SVM) and K-nearest Neighbors (KNN)). The MNIST database was built using binary 

pictures of handwritten numbers from NIST's Special Database 3 and Special Database 1. SD-3 

was originally designated as the training set, while SD-1 was designated as the test set by NIST. 
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SD-3 is far cleaner and easier to distinguish than SD-1 because SD-3 was obtained from Census 

Bureau personnel, whereas SD-1 was acquired from high school students. The MNIST training 

set consists of 30,000 SD-3 patterns and 30,000 SD-1 patterns. 5,000 patterns from SD-3 and 

5,000 patterns from SD-1 made up the test set. Around 250 writers were represented in the 

60,000-pattern training set. It was made sure that the training and test sets of writers were not the 

same. The training set was supplemented with purposely distorted replicas of the original 

training data. Shifts, scaling, skewing, and compression are used to create the distortions. 

4.1.3 Cifar10 Object Image Dataset 

The CIFAR-10 dataset is a well-known computer vision dataset for object recognition. It 

contains 60,000 32x32 color images divided into ten classes, each with 6,000 images. There are 

50,000 images for training and 10,000 images for testing. Complete dataset is divided into five 

training batches and one test batch, each with 10,000 images. The test batch contains exactly 

1000 photographs from each class, chosen at random. The remaining photographs are distributed 

in training batches in a random order; however, some batches may contain more images from 

one class than others. The training batches contain exactly 5,000 photos from each class between 

them. The classes are mutually exclusive in every way. Automobiles and trucks are not 

interchangeable. Sedans, SUVs, and other vehicles fall under the umbrella of "automobile." Only 

large trucks are classified as "trucks." Pickup trucks aren't included in either of these categories. 

4.2 Unique Information Extraction from Google Trends Dataset 

In this section, we used a subset of the COVID-19 Search Trends symptoms dataset to 

test the effectiveness of our proposed method. We selected the number of searches of three 

symptoms unique for COVID-19 including ageusia, shortness of breath, and anosmia and six 
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symptoms which are shared by COVID-19 and Flu including vomiting, diarrhea, cough, fever, 

fatigue, and headache from all the 51 US states, on a daily basis in years 2018, 2019, and 2020. 

Our goal is to identify these three distinct symptoms in order to give evidence to substantiate the 

COVID-19 epidemic. Note that there was known spread of the COVID-19 virus in 2020 but not 

in 2018 or early 2019. In figure 1, we have shown time series data of some relevant symptoms 

(two unique COVID-19 symptoms and two symptoms shared by COVID-19 and Flu) from 

Google Trends that represents relative frequency of searches. Clearly, we can see that there is a 

rapid increase of those symptoms’ searches when COVID-19 started to hit in March 2020.  

 

Figure 1: Covid-19 symptoms in Google trends data 
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Figure 2 shows Google trends data for four symptoms from year 2019 and 2020 side by 

side to demonstrate the growing search trend in 2020 with respect to 2019. 2020 data was chosen 

as the target data due to an increase in the number searches for COVID-19 symptoms within that 

period, whereas 2019 data was used as the background data because COVID-19 symptoms were 

not prevalent at that time. 

 

Figure 2: Generating Target and Background Data 

4.2.1 Symptoms coefficients using DNA 

Background data and target data have been denoted as {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑛𝑛  and {𝑥𝑥𝑖𝑖}𝑖𝑖=1𝑚𝑚  respectively 

with number of symptoms considered: 𝐷𝐷 = 9, number of examples for target data: 𝑚𝑚 = 19, 032 

and number of examples for background data: 𝑛𝑛 = 18, 980. The resulting mean and standard 

derivation of the symptom coefficients (a.k.a., the column values of W) after running the 

proposed DNA for 200 Monte Carlos tests which are shown in figure 3. We discovered that the 
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mean of symptom coefficients for unique COVID-19 symptoms were 0.45, 0.36, and 0.68 

respectively, but symptom coefficients for shared ones between COVID-19 and Flu symptoms 

were 0.020, 0.006, 0.001, 0.120, 0.005, and 0.018, respectively. COVID-19 symptoms have 

89.76% contribution to the total symptom coefficients. Similarly, we set the 2018 search data as 

background data and 2020 searches as target data and plotted the results in figure 3 (right). 

Similar to the case when background was 2019 data, DNA can discover the unique symptoms of 

COVID-19 relative to those associated with Flu as unique symptoms have 90.18% contribution. 

It’s worth to mention that the standard derivations of the symptoms with high coefficients in 

figure 3 are high because DNA doesn’t admit unique solution and the order of the top symptoms 

vary a lot during different experiments. 

 

Figure 3: Symptom coefficients using DNA on 2020 data as target 
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Furthermore, when we set 2019 searches as the target data and 2020 and 2018 searches as 

the background data; see the results in the figure 4, as expected, DNA doesn’t fully return the 

unique symptoms. This is because the unique COVID-19 symptoms are not the discriminative 

information of 2019 data relative to 2020 data. When background is 2020 data, contribution of 

unique symptoms is only 29.47%.  

 

Figure 4: Symptom coefficients using DNA on 2019 data as target 

In figure 5, we have considered 2018 searches as target data and 2019/2020 searches as 

background data.  Like the previous case, it was expected to see that DNA doesn’t return unique 

COVID-19 symptoms as 2018 is the year when we didn’t even hear about COVID-19 and 
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number of searches on unique symptoms was as usual during that period. Contribution of unique 

symptom coefficients is low here.  

 

Figure 5: Symptom coefficients using DNA on 2018 data as target 

4.2.2 Symptoms coefficients using NMF and PCA 

As comparison, the alternative methods such as Principal Component Analysis (PCA) 

and Non-negative Matrix Factorization (NMF) are also tested using 2018, 2019, or 2020 dataset. 

In figure 6, we have shown symptoms coefficients using PCA and NMF on 2020 searches data. 

Unlike DNA, PCA and NMF cannot find uniqueness of COVID-19 symptoms. Both algorithms 

put more emphasis on symptoms those are shared between COVID-19 and Flu, and they are 
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unable to extract discriminative information effectively. Using NMF and PCA, unique symptom 

coefficients have only 4.67% and 3.49%. 

 

Figure 6: Symptom coefficients using NMF and PCA on 2020 data 

In figure 7, we have shown symptom coefficients obtained using NMF and PCA on 2019 

data. Similar to the analysis on 2020 data, NMF and PCA cannot find unique COVID-19 

symptoms rather focus on shared symptoms on 2019 search data.  
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Figure 7: Symptom coefficients using NMF and PCA on 2019 data 

In figure 8, we have shown results obtained from 2018 searches data using NMF and 

PCA. From the analysis on 2018, 2019 and 2020 data, we can see that NMF or PCA cannot 

detect COVID-19 breakout in 2020. For example, from the analysis using NMF, coefficients for 

Ageusia were 0.0160, 0.0044 and 0.0045 from 2018 to 2020 data respectively and coefficients 

for Cough were 0.484, 0.343 and 0.348 respectively. So, shared symptoms are dominant over 

COVID-19 symptoms for each year. Similar results obtained using PCA from 2018 to 2020 data. 

For both algorithms, we found that symptoms coefficients are larger in case of 2020 data, but 

they failed to detect unique COVID-19 symptoms against shared ones. 
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Figure 8: Symptom coefficients using NMF and PCA on 2018 data 

4.2.3 Symptoms coefficients using cPCA 

Figure 9 shows the results of contrastive PCA using multiple background-target data 

configurations with contrast parameter (alpha) equal to 0.5. cPCA, like NMF and PCA, was 

unable to place a strong emphasis on specific COVID-19 symptoms. When compared to Ageusia 

and Anosmia, the symptoms coefficients for Cough and Fever are relatively large in each case. 

5.05% contribution in total symptom coefficient values has been observed for unique COVID-19 

symptoms.  
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Figure 9: Symptom coefficients using cPCA on 2020 data as target with alpha = 0.5 

Next, after running each method for 100 independent times while setting the background 

and target as the 2019 and 2020 Google Trends data, respectively, we investigate the frequencies 

of the symptoms showing up as the top-1, top-2, and top-3 by sorting the corresponding 

coefficients in a descending order. From the experiment results in Table 1, it can be further 

concluded that the proposed DNA outperforms the existing alternatives in terms of higher 

frequencies of successfully searching for the discriminative symptoms. 
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Table 2: Top-k symptom frequencies after 100 Monte Carlo experiments for different models 

 

4.3 Feature Selection in Supervised Learning 

Using discriminative properties of DNA, feature importance set can be created, which 

can lead us to use smaller set of features for classification. We performed feature selection 

procedure on MNIST and CIFAR10 datasets. DNA was implemented on training data only to get 

feature importance set and classification accuracy was calculated using testing data. We have 

shown the convergence time and classification accuracy with different number of features for 

both datasets in table 6. 
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Table 3: Classification Performance on MNIST and CIFAR10 using LR 

Number of Features  Convergence time (s) Classification accuracy (%) 

CIFAR10 MNIST CIFAR10 MNIST CIFAR10 MNIST 

3072 784 29.65 18.99 85.10 99.91 

2500 600 25.91 18.19 86.77 99.87 

2000 500 23.10 17.45 85.35 99.65 

1500 400 18.66 16.28 85.34 99.38 

1000 300 14.32 15.09 86.75 97.33 

500 200 11.45 14.63 87.90 99.54 

100 100 7.86 12.91 87.00 97.72 

25 25 5.98 7.26 83.64 95.37 

 

4.3.1 Feature Selection in classification on CIFAR10 data  

Figure 10 depicts the CIFAR10 dataset, which contains only two classes of data: airplane 

and automobile. For classification, we used logistic regression, and all features and examples in 

test data. Left image in figure 10 shows CIFAR10 dataset with two labels in two dimensions and 

right image shows predicted labels after classification using logistic regression.  
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Figure 10: CIFAR10 dataset with 2 classes and all features 

Next, instead of all features, we used only 25 features to perform classification with same 

example set. Examples have been shown in figure 11, with original label (left) and with 

predicted label (right). From table 6, when all 3072 features were considered, classification 

accuracy was 85.10% and when only 25 features used, accuracy was 83.64%. Convergence time 

was significantly less as expected because of reduced amount of data used. So, 79.83% 

convergence time improvement achieved with 1.72% loss of accuracy when using 25 most 

important features instead of 3072.   
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Figure 11: CIFAR10 dataset with 2 classes and 25 features 

Figure 12 shows the performance curve for CIFAR10 dataset in classification accuracy 

and convergence time with different number of features used. We have considered eight different 

number of features and calculated corresponding classification accuracy and convergence time. 

Convergence time was decreased with a smaller number of features used every time. Highest 

classification accuracy, 87.90%, was achieved when top 500 features have been used.  
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Figure 12: Classification Performance curve for CIFAR10 

4.3.2 Feature Selection in classification on MNIST data  

In the next section, we used the MNIST handwritten dataset for classification 

performance evaluation. Because MNIST is a simpler dataset, we were able to achieve higher 

classification accuracy. We have filtered the dataset for only two classes: handwritten digits for 

zero and one. Figure 13 shows MNIST test dataset with original labels (left) and predicted labels 

(right) in two dimensions.   
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Figure 13: MNIST dataset with 2 classes and all features 

Figure 14 shows all the examples of MNIST test dataset for top 25 features using original 

labels (left) and predicted labels (right). When 784 features considered, prediction accuracy was 

99.91% and prediction accuracy was 95.37% when 25 most important features used. So, there is 

4.54% decrease in performance with 61.77% improvement in convergence time.  

 

Figure 14: MNIST dataset with 2 classes and 25 features 
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Figure 15 we have shown the performance curve for MNIST dataset with classification 

accuracy and convergence time. With different number of features in between 784 and 25, we 

can see the classification accuracy has been decreased 4.54% at most with a consistent amount of 

improvement in convergence time. So, it can be concluded that, DNA is capable of sorting 

features in terms of their importance in the overall dataset for both MNIST and CIFAR10.  

 

Figure 15: Classification Performance curve for MNIST dataset 

4.4 Feature Selection in Unsupervised Learning 

In this section, we have used feature importance set obtained from DNA to find 

clustering accuracy using K-means clustering algorithm. Convergence time and clustering 

accuracy for each number of features, have been shown in table 7 for both MNIST and CIFAR10 

dataset.  
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Table 4: Clustering Performance on MNIST and CIFAR10 using K-Means 

Number of Features  Convergence time (s) Clustering accuracy (%) 

CIFAR10 MNIST CIFAR10 MNIST CIFAR10 MNIST 

3072 784 28.61 10.66 69.30 99.85 

2500 600 24.30 8.86 66.95 99.90 

2000 500 21.10 8.40 67.55 99.86 

1500 400 17.23 7.98 68.65 99.91 

1000 300 13.46 7.27 69.70 97.91 

500 200 10.17 6.52 69.40 99.86 

100 100 6.42 6.13 67.05 99.29 

25 25 5.67 5.88 67.35 92.00 

 

4.4.1 Feature Selection in Clustering on CIFAR10 data 

Figure 16 shows all the examples of CIFAR10 test dataset with all features in the left 

image and assigned clusters for each example has been shown in the right image. Like the 

analysis with supervised learning, we have used only examples with two labels: airplane and 

automobile for clustering performance analysis.  
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Figure 16: CIFAR10 dataset with 2 clusters and all features 

In figure 17, we have shown all examples of CIFAR10 test dataset with 25 features in 

two dimensions and examples with predicted clusters side by side. When only 25 features used, 

clustering accuracy was 67.35% which is 2.81% less than clustering accuracy obtained using all 

features.  

 

Figure 17: CIFAR10 dataset with 2 clustering and 25 features 
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Clustering performance has been shown in figure 18 with percentage clustering 

performance and convergence time with respect to different number of features. Highest 

performance 69.70% obtained when using 1000 top features. Convergence time has been 

improved by 81.18% with a consistent manner from 3072 features to 25 features.  

 

Figure 18: Clustering Performance curve for CIFAR10 

4.4.2 Feature Selection in Clustering on MNIST data 

Here we used MNIST test data for our clustering performance analysis. In figure 19 we 

have shown each example with all features in two dimensions (left image) and after clustering 

using K-Means both clusters shown in right image. Clustering accuracy, obtained using all 

features, was 99.85%.  



40 

 

Figure 19: MNIST dataset with 2 classes and all features 

In figure 20, we have exhibited MNIST data with 50 features (left) and corresponding 

cluster prediction in right image. When using 50 features, classification accuracy was 98.89% 

which is 1.02% less than the accuracy using all 784 features with 44.84% improvement in 

convergence time of K-Means algorithm.  

 

Figure 20: MNIST dataset with 2 classes and 50 features 
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In figure 21, we have manifested clustering performance curve for MNIST dataset. While 

determining clustering accuracy, we observed at most 0.56% variation using different number of 

top features from 784 to 100. We found a sudden decrease of performance when using number of 

features less than 50.  

 

Figure 21: Clustering performance curve for MNIST 

4.5 Comparison of Feature Selection Performance with cPCA 

In this section, we compared feature selection performance of DNA with that obtained 

using cPCA. We used the feature importance set derived from both techniques to estimate 

classification performance with varied numbers of top features in the MNIST test dataset and 

showed the comparison in figure 22. We can see that, among seven test cases, in four test cases, 

feature set from DNA provides better classification accuracy than those obtained from cPCA. 

Four test cases when the number of top features used were: 600, 500, 200 and 25. We excluded 
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test case for 784 features here, because performance is same when all features used with different 

feature ranking obtained from each algorithm. When using only 25 top features from DNA, 

classification accuracy was 0.08% higher. 

 

Figure 22: Feature selection performance comparison in classification (DNA vs cPCA) 

In figure 23, we have manifested comparison of clustering performance using feature 

importance set from DNA and cPCA. Similar to the comparison in supervised learning setting, 

we got better performance using DNA algorithm. Using feature ranking set from both 

algorithms, among seven test cases, in four cases clustering performance was better when used 

feature importance set obtained from DNA. Four cases when 600, 500, 400 and 200 top features 

used. When using 200 top features from DNA, the model provides 1.01% better clustering 

performance.  
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Figure 23: Feature selection performance comparison in clustering (DNA vs cPCA) 

 We executed all operations one at a time in a single window to establish an unbiased 

environment for calculating convergence time in supervised and unsupervised learning settings. 

We used a Dell Precision 5500 laptop with an Intel Core i7 - 10750H processor and 16 GB of 

RAM. We calculated the difference time by using the python time method from the time class to 

measure the start and finish times. Convergence time may vary depending on the machine 

configuration, but the percentage variation in convergence time should be comparable.
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CHAPTER V 

 

CONCLUSION AND FUTURE WORKS 

 

Leveraging the advances of the discriminative principal component and the nonnegative 

matrix decomposition, this paper puts forward a new multi-view learning model, this is terms 

DNA, to extract the discriminative information of one dataset relative to the other dataset. First, 

we demonstrated how to extract unique information from one dataset relative to another using 

DNA. We used Google Trends disease symptoms dataset and took a subset which contains only 

information about COVID-19 and Flu symptoms. We have demonstrated, using DNA, that 

COVID-19 symptoms were prevalent at the time of year 2020 with respect to year 2018 and 

2019, compared to shared symptoms between COVID-19 and Flu. It can be very useful to early 

detect possible outbreaks in future. Additionally, we have proven that DNA outperforms other 

competitive algorithms: cPCA, PCA and NMF, in finding unique discriminative information 

about COVID-19. Second, we developed a feature selection method based on DNA and 

demonstrated its performance using supervised and unsupervised learning techniques. We picked 

a varied number of top features from feature ranking obtained from DNA and calculated 

classification and clustering accuracy in some standard datasets. We found an insignificant fall in 

performance with a gradual decrease in convergence time when used smaller feature set because 

of reduced data size. Other conventional discriminative analysis techniques such 
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as cPCA have also been addressed and results obtained. We compared performance obtained 

using cPCA with our proposed method and found better performance from our approach.        

 In the future, our research opens in several directions: (1) develop non-negative dPCA 

and compare its performance against DNA; (2) understand the connection between eigenvalue 

decomposition and nonnegative matrix factorization on 𝐶𝐶𝑦𝑦−1𝐶𝐶𝑥𝑥, (3) modify DNA algorithm to 

extract discriminative information from more than two datasets. (4) create new features to obtain 

better performance in supervised and unsupervised learning, (5) work with more complex 

datasets like images of cells, tissues from human body (6) work with human sentiment data to 

obtain discriminative information etcetera.  
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