
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations

5-2022

A GPU Accelerated Genetic Algorithm for the Construction of A GPU Accelerated Genetic Algorithm for the Construction of

Hadamard Matrices Hadamard Matrices

Raven I. Ruiz
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

 Part of the Mathematics Commons

Recommended Citation Recommended Citation
Ruiz, Raven I., "A GPU Accelerated Genetic Algorithm for the Construction of Hadamard Matrices" (2022).
Theses and Dissertations. 1098.
https://scholarworks.utrgv.edu/etd/1098

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F1098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utrgv.edu%2Fetd%2F1098&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/1098?utm_source=scholarworks.utrgv.edu%2Fetd%2F1098&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

A GPU ACCELERATED GENETIC ALGORITHM

FOR THE CONSTRUCTION OF

HADAMARD MATRICES

A Thesis

by

RAVEN I. RUIZ

Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: Mathematics

The University of Texas Rio Grande Valley

May 2022

A GPU ACCELERATED GENETIC ALGORITHM

FOR THE CONSTRUCTION OF

HADAMARD MATRICES

A Thesis
by

RAVEN I. RUIZ

COMMITTEE MEMBERS

Dr. Andras Balogh
Chair of Committee

Dr. Dambaru Bhatta
Committee Member

Dr. Tamer Oraby
Committee Member

Dr. Zhijun Qiao
Committee Member

May 2022

Copyright 2022 Raven I. Ruiz

All Rights Reserved

ABSTRACT

Ruiz, Raven I., A GPU accelerated Genetic Algorithm for the Construction of Hadamard Matrices.

Master of Science (MS), May, 2022, 63 pp., 8 tables, 15 figures, references, 28 titles.

Hadamard matrices are square matrices with +1 and −1 entries and with columns that are

mutually orthogonal. The applications include signal processing and quantum computing. There are

several methods for constructing Hadamard matrices of order 2k for every positive integer k. The

Hadamard conjecture proposes that there are also Hadamard matrices of order 4k for every positive

integer k. We use a genetic algorithm to construct (search for) Hadamard Matrices. The initial

population of random matrices is generated to have a balanced number of +1 and −1 entries in each

column. Several fitness functions are implemented exploiting the basic matrix property that QT Q

is diagonal if and only if the columns of matrix Q are orthogonal. The crossover process creates

offspring matrix population by exchanging columns of the parent matrix population. The mutation

process flips +1 and −1 entry pairs in random columns, several methods were implemented to

achieve this. The use of CuPy library in Python on graphics processing units enables us to handle

populations of thousands of matrices and matrix operations in parallel.

iii

DEDICATION

I dedicate this thesis to my parents Araceli Ruiz and Rigoberto Ruiz Sr., to my siblings

Rigoberto Ruiz Jr. and Andrew A. Ruiz, and to my significant other Adanary Ramirez. All of

my accomplishments are thanks to the constant support of my loved ones, they’re my source of

motivation and happiness. They have blessed me with their continued support in everything I have

pursued, for that I am grateful.

iv

ACKNOWLEDGMENTS

First and foremost, I would like to thank my family for accommodating all my needs

throughout my college career. To my significant other, Adanary Ramirez for supporting me

emotionally and inspiring me everyday. Adanary contributed to this project as an undergraduate

student in 2019. She implemented the Simulated Annealing Algorithm, which was later built upon.

I would also like to send my sincere gratitude to my committee chair, Dr. Andras Balogh.

He introduced me to Hadamard matrices while I was an undergraduate and I did my final project on

this topic with his guidance. As a graduate student, Dr. Balogh became my research advisor and we

continued our research upon this project. Dr. Balogh has taught me a considerable amount over the

years, without his guidance and enthusiasm, this paper would not have been possible, thank you.

In addition, I would like to send my gratitude to Dr. Dambaru Bhatta, Dr. Tamer Oraby, and

Dr. Zhijun Qiao for being my committee members. My deepest appreciation to Dr. Zhijun Qiao,

who recommend me for the Dean’s Graduate Assistantship Award and encouraged me to enter the

graduate program.

A special thank you to the UTRGV College of Sciences for honoring me with the College of

Sciences Dean’s Graduate Assistantship Award. This prestigious award provided me the opportunity

to continue my education and pursue greater achievements.

Lastly, a thank you to Dr. Cristina Villalobos, who has inspired and guided me since I

entered the mathematics program as an undergraduate. Dr. Villalobos taught me as her student and

as her teaching assistant, I appreciate everything you have done for me.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGMENTS . v

TABLE OF CONTENTS . vi

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER I. INTRODUCTION . 1

1.1 Hadamard Matrices . 1

1.1.1 Definition and Basic Properties . 1

1.1.2 Literature . 4

1.1.3 Applications . 5

1.1.4 Thesis Objective . 6

1.1.5 Thesis Organization . 6

1.2 Genetic Algorithm Method . 6

1.2.1 Natural Selection . 6

1.2.2 Darwin’s Evolution Theory . 7

1.2.3 Genetic Algorithm . 7

1.2.4 Fundamental Theorem of Genetic Algorithms 8

CHAPTER II. COMPUTING ON THE GRAPHICS PROCESSING UNITS 10

2.1 CPU vs GPU . 10

2.2 CuPy vs. Numpy . 10

2.3 Blocks, Grids, and Threads . 15

CHAPTER III. PREVIOUS APPROACH . 17

3.1 Simulated Annealing Algorithm . 17

CHAPTER IV. GENETIC ALGORITHM AND HADAMARD MATRICES 21

4.1 Preface . 21

4.2 Population . 22

vi

4.2.1 Initial Population by means of the CPU 23

4.2.2 Initial Population by means of the GPU 24

4.3 Fitness Function . 27

4.3.1 First Fitness Function . 28

4.3.2 Second Fitness Function . 29

4.3.3 Third Fitness Function . 30

4.3.4 Fourth Fitness Function . 31

4.4 Selection . 32

4.4.1 Selection Without Probabilities . 32

4.4.2 Selection With Probabilities . 34

4.5 Crossover . 35

4.6 Mutation . 39

4.6.1 First Mutation Function . 39

4.6.2 Second Mutation Function . 42

4.6.3 Third Mutation Function . 45

CHAPTER V. COMPUTATIONAL RESULTS . 52

5.1 Local Minimum . 52

5.2 Fitness Function Comparisons . 52

5.3 Mutation Comparisons . 55

5.4 Results . 56

REFERENCES . 59

BIOGRAPHICAL SKETCH . 63

vii

LIST OF TABLES

Page

Table 1.1: Order given a Schema Example . 8

Table 1.2: Defining Length given a Schema Example . 9

Table 2.1: Technical Specifications per Compute Capability 11

Table 2.2: CuPy vs. NumPy Execution Times (seconds) 14

Table 5.1: Average Speed in seconds for each Fitness Function using 1000 matrices 54

Table 5.2: Average Speed in seconds for each Fitness Function using 40000 matrices 55

Table 5.3: Average Iteration steps for a 12×12 matrix using Mutation3 kernel function . . 55

Table 5.4: Average Iteration steps for a 16×16 matrix using Mutation3 kernel function . . 56

viii

LIST OF FIGURES

Page

Figure 1.1: An 8×8 Hadamard Matrix . 1

Figure 1.2: Representing an 8×8 Hadamard matrix using black and white tiles 2

Figure 2.1: EVGA GeForce RTX 3080 XC3 black . 11

Figure 2.2: Cupy vs. Numpy Execution Times (seconds) 14

Figure 3.1: Energy of matrix vs number of iterations . 18

Figure 3.2: Probability as a function of time . 19

Figure 3.3: Probability as a function of time comparison 19

Figure 4.1: Example of the First Mutation Method . 42

Figure 4.2: Example of the Second Mutation Method . 46

Figure 4.3: Example of the Second Mutation Method . 51

Figure 5.1: Minimum of the Fit function . 53

Figure 5.2: 20×20 Hadamard matrix . 56

Figure 5.3: 24×24 Hadamard matrix . 57

Figure 5.4: 28×28 Hadamard matrix . 58

Figure 5.5: 32×32 Hadamard matrix . 58

ix

CHAPTER I

INTRODUCTION

1.1 Hadamard Matrices

1.1.1 Definition and Basic Properties

Hadamard matrices are m×m square matrices with +1 and −1 entries. Their rows or

columns are mutually orthogonal, meaning that any pair of rows or columns are perpendicular

to each other. In this paper, we will pursue column orthogonality. When achieving column

orthogonality, it follows that each Hadamard matrix must have a balanced number of +1 and −1

entries in each column except for the first. In this case, the first column consists of all +1 entries

since it is perpendicular to each other column.

In Figure 1.1, we demonstrate what an 8×8 Hadamard matrix could look like. In Figure

1.2, we represent the same Hadamard matrix, but in tile form. The +1 entries in Figure 1.1 are

represented as white tiles and the −1 entries are represented as black tiles. Throughout this paper,

we will use both representations.

There are two important properties of Hadamard matrices that will be taken advantage of to

create functions that determine if a matrix is an Hadamard matrix. In this section, we will define



+ + + − − − + −
+ − − + + − + −
+ + − + − − − +
+ + − − + + − −
+ − − − − + + +
+ − + − + − − +
+ + + + + + + +
+ − + + − + − −


Figure 1.1: An 8×8 Hadamard Matrix

1

Figure 1.2: Representing an 8×8 Hadamard matrix using black and white tiles

one of these functions and explain how it is used. The two properties are given as follows

1. If H is an m×m Hadamard matrix, then HT H = mIm.

2. If H is an m×m Hadamard matrix, then det(H) =±mm/2.

Let us consider the first property, due to its orthogonality, an Hadamard matrix H gives us

the following form

HT H =



m 0 · · · 0

0
... . . . 0

0 · · · 0 m


= mIm. (1.1)

where HT is the transpose of H and Im is an m×m identity matrix. In general, an m×m matrix Q

with a balanced number of +1 and −1 entries have the following form:

QT Q =



m ∗ · · · ∗

∗
... . . . ∗

∗ · · · ∗ m


(1.2)

2

where QT is the transpose of Q and ∗ is an arbitrary constant. Now, we define the following function:

F(Q) = ∑
i, j

∣∣QT Q
∣∣−m2 (1.3)

where ∑i, j
∣∣QT Q

∣∣ is the sum of entries in |QT Q| and m2 is the size of the matrix Q. By use of the

first property, if Q is an Hadamard matrix, then ∑i, j
∣∣QT Q

∣∣ = m2 which implies F(Q) = 0. If Q

is not an Hadamard matrix with a balanced number of +1 and −1 entries, then ∑i, j
∣∣QT Q

∣∣> m2

which implies F(Q)> m2. Therefore, we can define the function as follows

F(Q) = ∑
i, j

∣∣QT Q
∣∣−m2 ≥ 0. (1.4)

The purpose of this function is to measures how close a matrix Q is to being an Hadamard

matrix. A matrix Q is an Hadamard matrix if and only if F(Q) = 0. While Q is not an Hadamard

matrix, F(Q) > 0. This function was implemented into two algorithms, in Chapter III it was

implemented as an energy defining function and in Chapter IV it was implemented as a fitness

function. This is one of several fitness functions implemented. Additional functions will be defined

and explained in Section 4.3.

Now let us consider the second property, if H is an Hadamard matrix, then

|det(H)|= mm/2 (1.5)

where det(H) is the determinant of H. If Q is an m×m matrix with a balanced number of +1 and

−1, then using the Hadamard inequality by Jacques Hadamard (Hadamard 1893), we have that

|det(Q)| ≤ mm/2 (1.6)

where |det(Q)|< mm/2 while Q is not an Hadamard matrix and notice that mm/2 is maximal among

all possible Q matrices. In Section 4.3, we will define a fitness function using this property.

3

1.1.2 Literature

Hadamard matrices were first discovered by James Sylvester in 1867 (Sylvester 1867) who

found matrices of order 2k where k ∈ N. In 1893, Jacques Hadamard introduced the Hadamard

Conjecture (Hadamard 1893), stating that an Hadamard matrix exists when m = 1, m = 2, and

m = 4k where k ∈ N. This conjecture covers matrices of sizes 12×12, 20×20, 24×24, and other

multiples of 4 which are not covered in James Sylvester’s matrices of order 2k. Deterministic

algorithms are known for creating Hadamard matrices of order 2k and only a few other Hadamard

matrices of order 4k.

There are other publications that have made substantial progress in the study of Hadamard

matrices using several methods. In 1970, J.M. Goethals and J.J. Seidel (Goethals and Seidel

1970) constructed a Theorem that proves there exist skew Hadamard matrices of order m = 36 and

m = 52. In 2014, the Goethals Siedel method was later implemented on a software to construct 32

in-equivalent Hadamard matrices of order m = 404 by A. Jayathilake, A. Perera, and M. Chamikara

(A. Jayathilake, Perera, and Chamikara 2014). In 2019, A. Mohammadian and B. Tayfeh-Rezaie

delves into the classification of Hadamard matrices using types of quadruples of rows with two

distinct values (Mohammadian and Tayfeh-Rezaie 2019). In 1972, M. Plotkin proposes that each

Hadamard matrix of order mn is decomposable into m components for m= 4 or m= 8 and achieves a

decomposition D(24,8) for a matrix of order 24 (Plotkin 1972). In 1992, J. Seberry and M. Yamada

highlights important Hadamard matrix theorems, use several methods to construct Hadamard

matrices, display results, and analyze their findings from each method (Seberry and Yamada 1992).

In 2016, Andriyan Suksmono developed a Simulated Annealing Algorithm to construct Hadamard

matrices (A. Suksmono 2016). There have been several other approaches implemented in the

construction of Hadamard matrices. However, to the best of our knowledge no new Hadamard

matrices resulted from these approaches, perhaps due to the computational limitations on CPUs.

The following is a list of currently know constructions results for Hadamard matrices of

different orders (see (Browne et al. 2021)).

1. 2t for t ≥ 0 (Sylvester 1867).

4

2. pa +1 where p is prime and pa ≡ 3mod4 (Paley 1933).

3. 2(pa +1) where p is prime and pa ≡ 1mod4 (Paley 1933).

4. p(p+2)+1 where p and p+2 are twin primes (Stanton and Sprott 1958).

5. 4p4t where p is prime and t ≥ 1 (Xia 1992).

6. 4t for all values of t ≤ 250 except for t ∈ {167,179,223} (Kharaghani and Tayfeh-Rezaie

2005).

7. n = ab/2 or n = abcd/16 where a, b, c, d are orders of Hadamard matrices (Craigen, Seberry,

and Zhang 1992; Seberry and Yamada 1992).

8. There exist constants α and β such that, if t is an odd positive integer, then there exists a

Hadamard matrix of order 2⌈α+β log2(t)⌉t; see (Craigen 1995; Seberry 2017).

1.1.3 Applications

Hadamard matrices are used in applications such as signal processing and quantum comput-

ing. Signal processing is a branch of electrical engineering that focuses on analyzing and modifying

signals. There are several types of signals used in daily life such as communication channels, radio,

and movie. Signals serve as a batch of information, when these signals are being sent and received

they must be transformed. The purpose of this transformation is to verify that the original signal

sent was received as intended. In 2013, an article by Chathranee Jayathilake, A.A.I Perera, and

M.A.P. Chamikara was published which uses the Walsh-Hadamard transformation that decomposes

a signal into a set of Walsh functions (C. Jayathilake, Perera, and Chamikara 2013). Walsh functions

(Walsh 1923) are defined using Sylvester’s Hadamard matrices (Sylvester 1867) and the purpose of

the Walsh-Hadamard transformation is to remove noise from the signals that are sent and received.

The Walsh-Hadamard transformation leads to more applications such as power spectrum analysis,

filtering, and error correcting code.

Quantum computing is a type of computation process that uses quantum state properties to

perform these computations. Quantum computers are needed to perform these computations as they

5

are thousands of times faster than regular computers. In 2019, an article by Andriyan Suksmono and

Yuichiro Minato was published which implemented a quantum annealing machine to find Hadamard

matrices (A.B. Suksmono and Minato 2019).

1.1.4 Thesis Objective

In this work we develop a genetic algorithm for the construction of Hadamard matrices. The

parallel numerical code uses CUDA GPUs to accelerate the computations.

1.1.5 Thesis Organization

In Section 1.2 we describe how Genetic Algorithms work. In Chapter II we describe the

difference between traditional CPU computing and our approach of using GPUs to accelerate com-

putations. In Chapter III we describe a previous stochastic approach by Suksmono (A. Suksmono

2016) that we implemented on the GPU. In Chapter IV we describe our parallel implementation of

a Genetic Algorithm for finding Hadamard matrices. In Chapter V we discuss results found by use

of this Genetic Algorithm.

1.2 Genetic Algorithm Method

1.2.1 Natural Selection

Genetic algorithms are a search heuristic that was inspired by the Natural Selection process

(Wirsansky 2020). Natural Selection is a process where individuals adapt and change based on the

environment and other variables. Each individual in the population is unique, meaning that each

individual has different traits. Some individuals may have better traits than others, this allows those

with better traits to live longer and reproduce. Those superior traits are then passed down to the

next generation, with some variation, this is known as evolution. Evolution is a key component of

genetic algorithms, it allows the algorithms to search for the optimal solution of several problems in

mathematics. We will continue to discuss evolution in the following section.

6

1.2.2 Darwin’s Evolution Theory

Genetic algorithms use Darwin’s evolution theory of natural selection as a bases to search

for optimal solutions. There are three main points behind Darwin’s theory of evolution that are

given as follows

1. Inheritance: Each individual inherits traits that were passed down from their parents. The

traits that are most likely to be passed down are those that will improve chances of survival.

2. Variation: Each individual in a population will have variation that is unique to them, even

those that are related to each other.

3. Fitness and Selection: The most fit individuals are more likely to survive, the surviving

individuals are then able to reproduce and pass on their genes to future generations.

Ultimately, Darwin’s evolution theory suggests that the individuals with the best traits will survive

and maintain the population with offspring of their own. The offspring will most likely be better

equipped for survival and each generation there after will become more adaptive. This leads to a

genetic algorithm that will be used throughout this paper.

1.2.3 Genetic Algorithm

1. Generate Initial Population: Create set of individuals in a population.

2. Compute Fitness: A numerical measure of how close an individual is to becoming ‘fit’.

3. REPEAT

(a) Selection: Select the most fit individuals which is based on the fitness.

(b) Crossover: The selected individuals become parents, the parents are paired and create a

pair of offspring that inherit traits from the parents.

(c) Mutation: Each offspring will have some form of variation to them.

(d) Compute Fitness: A numerical measure of how close an individual is to becoming ‘fit’.

4. UNTIL Population has converged: An individual has met the required fitness.

7

Table 1.1: Order given a Schema Example

Schema Order
∗ ∗ ∗ ∗ 0
∗ ∗ ∗0 1
∗ ∗10 2
1∗10 3
1110 4

1.2.4 Fundamental Theorem of Genetic Algorithms

The fundamental theorem of genetic algorithms (Bridges and Goldberg 1987) is also know

as Holland’s schema theorem (Holland 1975) which was proposed by John Holland in the 1970’s.

While the mathematics is quite involved, we will focus on the basic understanding of the theorem.

The theorem suggests that an individual will prevail if it has an above average fitness. First, some

terminology

1. A schema is a binary string with entries {0,1,∗ } where ∗ can take on any value of either 0 or

1. For example consider the binary string ∗0∗101, then the possible binary strings are

∗0∗101 = {101101,100101,001101,000101}. (1.7)

2. The order of a schema is the number of fixed values. For example consider Table 1.1

3. The defining length of a schema is the distance between the furthest fixed values. For example

consider Table 1.2

The schema theorem states that the schema with above average fitness is said to have a low order

and a small defining length.

8

Table 1.2: Defining Length given a Schema Example

Schema Defining Length
∗ ∗ ∗ ∗ 0
∗ ∗ ∗0 0
∗ ∗10 1
∗1∗0 2
∗110 2
1∗10 3
1110 3

9

CHAPTER II

COMPUTING ON THE GRAPHICS PROCESSING UNITS

2.1 CPU vs GPU

Stochastic algorithms and matrix calculations involve large number of calculations. A CPU

(Central Processing Unit) does calculations mostly in serial way, which can take a large amount

of time if working with large number of large matrices. GPUs (Graphics Processing Units) were

developed for fast graphics rendering by calculating what to do and when with the millions of pixels

in a computer screen. Since a GPU can do thousands of calculations simultaneously (in parallel),

the time working with large number of matrices can be reduced significantly. The use of GPUs

allows us to do parallel calculations more effectively than using CPUs. Most of the calculations

have been performed on an EVGA GeForce RTX 3080 XC3 black which is shown in Figure 2.1,

(Han and Rochford 2020), it has 8704 CUDA cores, 10 GB memory, and CUDA capability 8.6.

The technical specifications is listed in Table 2.1. With the use of GPUs our genetic algorithm was

able to handle for example a population of 40,000 matrices of size 20×20. Clearly, the number of

operations needed to work with so many matrices exceeds 8704, which is the number of CUDA

cores even for the most basic matrix operations. Hence, not all calculations are done simultaneously,

but the GPU can distribute the work over the threads much more effectively than the CPU with its

limited number of cores.

2.2 CuPy vs. Numpy

NumPy (Harris et al. 2020) is a popular library for the Python programming language. It

supports overloaded mathematical functions operation on multi-dimensional arrays. For example,

if A is a 100×100 matrix defined as A=numpy.random.rand(100,100), then B=numpy.sin(A)

10

Figure 2.1: EVGA GeForce RTX 3080 XC3 black

Table 2.1: Technical Specifications per Compute Capability

Technical Specifications Compute Capability (8.6)
Maximum number of resident grids per device 128
Maximum dimension of a grid of thread blocks (x,y,z) (231 −1,65535,65535)
Maximum dimensionality of a thread block (x,y,z) (1024,1024,64)
Maximum number of threads per block 1024

11

produces a matrix containing the sine of the elements of matrix A. The calculations of the 10,000

elements are done one-by-one, in serial fashion on the CPU.

For this project, we are using CuPy (Okuta et al. 2017), which is a Python library accelerated

with NVIDIA CUDA (NVIDIA, Vingelmann, and Fitzek 2020) for GPUs. It was created specifically

to be highly compatible with NumPy. For example modifying the previously mentioned NumPy

matrix example to A=cupy.random.rand(100,100) and B=cupy.sin(A), the calculations are

distributed on the thousands of CUDA threads to be done in parallel.

Using the CuPy library and in general CUDA on the GPU involves the following steps. It is

important to note that the CPU controls the GPU too.

1. Data is copied from CPU memory to GPU memory.

2. CPU initiates the calculations on the GPU.

3. GPU executes the calculations.

4. Results are copied back from GPU to CPU.

Each of these steps require time. The speed up of the GPU execution has to be significant in

order to balance the extra time required by copying the data back and forth between CPU and GPU.

We include here a simple speed comparison of using Numpy (serial calculations) vs. CuPy

(parallel calculations). Since our actual code with Genetic Algorithm includes raw kernels, we

never wrote a serial version of it, but due to the complicated nature of the calculations with large

multi-dimensional arrays, we expect the parallel computations to be hundreds of times faster than

the serial code. The example creates a list of N = 10,000 random matrices of size 100×100, and

then multiplies each with their transform, repeating the calculation M times.

NumPy version:

import numpy as np

m=100

N=10**4

12

Pop = np.random.rand(N, m, m)

for i in range(M):

F=np.matmul(np.transpose(Pop,axes=(0,2,1)),Pop)

CuPy version:

import cupy as cp

m=100

N=10**4

Pop=cp.random.rand(N, m, m)

for i in range(M):

F=cp.matmul(cp.transpose(Pop,axes=(0,2,1)),Pop)

Note the identical syntax other than the use of "cp" for CuPy vs. "np" for NumPy. The

time required for the calculations are summarized in Table 2.2 and in Figure 2.2. For M = 1, when

the matrix calculations are done only once, the CuPy and NumPy calculations take the same 3.9

seconds. Although the GPU does the calculation faster than the CPU, the time it takes to load

the GPU slows the completion of the code down. For repeated calculations of the batched matrix

multiplications the Numpy code execution time increases by about 2.12 seconds for each additional

loop steps taken. The CuPy calculation only increases by about 0.07 seconds for each loop steps.

This means that the CuPy operation is 30 times faster than the NumPy operation after ignoring the

initial data copy between the CPU and GPU.

It is also possible to combine CuPy code with CUDA kernel function that use C++ syntax.

We use several so-called "raw kernels" when we need more complicated operations than simple

matrix-vector ones. This requires to know how threads are arranged in grids of blocks, as explained

in the next section.

13

Table 2.2: CuPy vs. NumPy Execution Times (seconds)

M NumPy CuPy
1 3.9 3.862
2 6.2 3.994
3 8.6 4.038
4 10.7 4.095
5 13.0 4.175
6 14.6 4.252
7 17.0 4.287
8 19.2 4.330
9 21.6 4.394
10 23.0 4.454
...

...
...

100 218.6 9.916

Figure 2.2: Cupy vs. Numpy Execution Times (seconds)

14

2.3 Blocks, Grids, and Threads

Without going deep into the technical description of how the GPU architecture and the

CUDA programming model works, it is necessary to introduce it briefly, because not all of our

calculations can be done effectively using the NumPy-compatible CuPy operations in basic vector-

matrix format. For more complicated operations we use CUDA kernel functions where operations

are executed in parallel different CUDA threads. The CUDA threads are grouped into CUDA blocks,

and the CUDA blocks are grouped into a grid. These can be arranged in 1, 2, or 3-dimensions. While

the basic CuPy commands automatically arranges the operations over certain number of grids and

blocks and threads, we have to do this ourselves in the case of more complicated operations. More

complicated CUDA kernel functions are presented later in our work. Here we only demonstrate

with a simple example the arrangement of grids and blocks. As a simple 1-dimensional example,

consider adding together random vectors a and b, each of length n = 10,000 and the result is

stored in vector c. The maximum number of threads per block is typically 1024 in today’s Nvidia

GPUs. The n = 10,000 elements need then ⌈n/1024⌉ number of grids in order to have enough

threads. Then the CUDA kernel function receives the three arrays, their size, and the block and grid

arrangements. The corresponding CuPy code is

import cupy as cp

import math

n = 10000

a = cp.random.rand(n)

b = cp.random.rand(n)

c = cp.zeros(n)

blocksizex = 1024

blocks = (blocksizex, 1, 1)

grids = (math.ceil(n/blocksizex), 1, 1)

addvectors(grids, blocks, (a, b, c, n))

15

In the kernel code the threads are indexed using the built-in 3D variable threadIdx and the blocks

are indexed using the built-in 3D variable blockIdx. Since the total number of threads reserved

math.ceil(n/blocksizex)*blocksizex is larger then the vectors length n, we use an if (i<n)

statement in the kernel in order to avoid going out of bound with the index. The corresponding

kernel code follows.

addvectors = cp.RawKernel(r’’’

extern "C" __global__

void addvectors(double *a, double *b, double *c, const int n){

int i = blockDim.x*blockIdx.x+threadIdx.x;

if (i<n){ c[i]=a[i]+b[i]; }

}

’’’, ’addvectors’)

16

CHAPTER III

PREVIOUS APPROACH

3.1 Simulated Annealing Algorithm

In a previous project, we were inspired by Andriyan Suksmono’s (A. Suksmono 2016) work

which uses a method called The Simulated Annealing Algorithm with a Metropolis update criteria

on an ising model. The Simulated Annealing is a stochastic algorithm to find global minimum of a

function. This process is similar to the annealing of metals where the metal is heated up and then

slowly cooled down in order to reduce its hardness. The Simulated Annealing Algorithm goes as

follows:

1. Start by randomly selecting a Q matrix with balanced +1 and −1 entries in each column

except for the first, the first column consists of all +1 entries.

2. For a matrix Q, we define its energy as (shown in Section 1.1.1):

E(Q) = ∑
i, j

|QT Q|−m2 ≥ 0. (3.1)

3. While E(Q)> 0 we randomly flip +1 and −1 entries from random columns. This is done by

rearranging a pair of rows.

(a) If the energy decreases then we accept the change and accept the new Q matrix.

(b) If the energy does not decrease, the change is not accepted and the flipping continues.

(c) If E(Q) = 0, then Q is a Hadamard matrix.

17

Figure 3.1: Energy of matrix vs number of iterations

The problem with the algorithm on its own is that a matrix can get stuck in a bad configuration such

that the matrix does not show anymore improvement. We show an example of this in the Figure 3.1.

In Figure 3.1, between 0 to 1000 iterations. the energy decreased from an energy of

approximately 250 to an energy of approximately 15. Then for the next 9000 iterations, the energy

stayed the same. This problem happened a numerous amount of times, even for smaller matrices. A

solution to this problem is called The Metropolis-Hasting method.

The Metropolis-Hasting method uses a probability as a function of time such that we accept

a new matrix with some probability even if its energy is not smaller in-order to avoid getting stuck

in a bad configuration. We used two probability functions, the first being the following exponential

function:

P = 0.5e−Ct where C is a constant. (3.2)

We chose this exponential function because it approaches zero (shown in Figure 3.2), which

is exactly what we want for the energy. The metropolis constant C is a value that is chosen. After

many tests of working with this metropolis constant we found that this constant value depended on

the size of the matrix we are working with. If C is too large, then the process might get stuck. If C

is too small, then the convergence will be too slow. The second probability function that we chose

was the following:

P =
0.5

Ct +1
where C is a constant. (3.3)

18

Figure 3.2: Probability as a function of time

0 20000 40000 60000 80000 100000

0.0

0.1

0.2

0.3

0.4

0.5 0.5e Ct

0.5
Ct + 1

Figure 3.3: Probability as a function of time comparison

This 1/t function was chosen since it approaches zero slower than the exponential function.

In theory, this would mean we accept more flips even if the energy does not decrease. The hope is

that the algorithm would get stuck less often and it would yield better results than the exponential

function did. In Figure 3.3, we compared the two functions using the metropolis constant C = 10−4

such that

P = 0.5e−Ct vs. P =
0.5

Ct +1
for C = 10−4. (3.4)

After many tests with the 1/t function we saw no improvement. We did not get stuck but

we also did not find any Hadamard matrices due to the convergence being too slow. Overall, the

exponential function seemed to be better than the 1/t function.

19

Using the Simulated Annealing Algorithm, the largest Hadamard matrix found was of the

size 16× 16. When attempting to find larger matrices, the energy would get stuck too often. In

addition, choosing the "correct" metropolis number became tedious as it depends on the size of the

matrix. Moreover, this implementation of the algorithm allowed us to only work with one matrix at

a time. For these reasons, we implemented a Genetic Algorithm that works with multiple matrices

at a time as well as other reasons. The details of this Genetic Algorithm will be discussed in Chapter

IV and its results in V.

20

CHAPTER IV

GENETIC ALGORITHM AND HADAMARD MATRICES

4.1 Preface

In Section 1.2, we discussed the idea of the genetic algorithm method. To summarize,

genetic algorithms are a search heuristic which uses the idea of Natural Selection and Darwin’s

evolution theory. These algorithms find and select the fittest of individuals in a population to

reproduce offspring for future generations. Genetic algorithms are useful for finding optimal

solutions of several mathematics problems. In this section, we will discuss how this algorithm can

be implemented to search for Hadamard matrices. We will use the following algorithm

1. Generate Initial Population

2. Compute Fitness

3. REPEAT

(a) Selection

(b) Crossover

(c) Mutation

(d) Compute Fitness

4. UNTIL Population has converged

In Section 4.2, we detail how an initial population of matrices is generated. For this process,

two methods were implemented and we discuss their differences. In Section 4.3, we use a fitness

function to compute the fitness of each matrix in a population. These fitness values are used as a

21

measurement to see how close a matrix is to becoming an Hadamard matrix. There are four fitness

functions that were implemented and we discuss their differences. In Section 4.4, we use the fitness

values of each matrix to select parent matrices from a population. In Section 4.5, we use a process

that creates offspring matrices from selected parent matrices. In Section 4.6, we discuss how each

offspring matrix is given some variation or mutation. Three methods were implemented that achieve

this.

4.2 Population

This algorithm starts by randomly generating an initial population of 4N matrices. The

initial population is a 3-dimensional array that has the form:

Initial Population = [Q1, . . . ,QN ,QN+1, . . . ,Q2N ,Q2N+1, . . . ,Q3N ,O3N+1, . . . ,Q4N] . (4.1)

Here, Q1, . . . ,Q2N are m×m matrices with a balanced number of +1 and −1 entries in each

column except for the first. The first column consists of all +1 entries. In addition, Q2N+1, . . . ,Q4N

are m×m matrices with entries consisting of all +1 entries. There are three reasons for this:

1. The matrices with all +1 entries will have a larger fitness value than the matrices that have

a balanced number of +1 and −1 entries. As a result, these matrices won’t be selected to

become parents during the selection process.

2. During the crossover process, all the matrices consisting of +1 entries will be overridden by

the offspring matrices.

3. The calculations are cut in half, hence the time it takes to fulfill these calculations is shorter.

After the initial population is generated, it is modified by means of the Selection process

which selects parent matrices and then the Crossover process which creates offspring matrices.

Consequently, after the first iteration of the algorithm, the population will have the form:

Population = [P1, . . . ,PN ,PN+1, . . . ,P2N ,O1, . . . ,ON ,ON+1, . . . ,O2N] (4.2)

22

where P1, . . . ,P2N and O1, . . . ,O2N are m×m matrices with a balanced number of +1 and −1 entries

in each column except for the first. The first column consists of all +1 entries. We define P1, . . . ,P2N

as the parent matrices and O1, . . . ,O2N as the offspring matrices. The details of how we define these

parent and offspring matrices will be discussed in Sections 4.4 and 4.5.

In this section, we implemented two methods of generating the initial population that was

detailed earlier and has the form given in equation (4.1). The first method randomly generates the

initial population completely through the CPU. The second method generates an initial population

that done in parallel on the GPU. The details of what is being done in the CPU and GPU will be

discussed later in this section.

4.2.1 Initial Population by means of the CPU

The first method creates a 3-dimensional initial population of 4N matrices of sizes m×m.

The first 2N matrices are randomly generated to have a balanced number of +1 and −1 entries in

each column except for the first. The first column consists of all +1 entries. The last 2N matrices

consist of all +1 entries. This was detailed at the beginning of the section. This implementation of

the initial population is completely done through the CPU and is coded as follows:

Pop = cp.ones((4*N, m, m), dtype=cp.int8)

for n in range(2*N):

for j in range(1,m):

Pop[n, :, j] = cp.sign(cp.random.permutation(m)*2-(m-1))

We start with the line Pop = cp.ones((4*N, m, m), dtype=cp.int8) which creates

a population of 4N matrices of sizes m×m with +1 entries. We use a for n in range(2*N)

loop that refers to the first 2N matrices of the population. Within this for loop, we use another

for j in range(1,m) loop that refers to each column (except the first) of the 2N matrices. Within

both for loops, we use the line Pop[n,:,j]=cp.sign(cp.random.permutation(m)*2-(m-1))

that creates balanced number of random +1 and −1 entries in each column (except the first) of the

2N matrices.

23

For further explanation, the population Pop, uses the indexing [n,:,j] to specify the

matrices and columns that will be operated upon. In this case, it was specified in the double for loop

which was explained earlier. For cp.sign(cp.random.permutation(m)*2-(m-1)), the CuPy

function cp.random.permutation(m) creates an m array with entries that has a permutation range

between 0 and m− 1. Multiplying this by 2, we have a array of all even numbers. Subtracting

by (m− 1) we have an array with m/2 positive integer and m/2 negative integers. Then, using

the CuPy function cp.sign(...), it return an array with with a balanced number of +1 and −1

entries. This is done for 2N matrices and for each column (except the first). We could have also

used the random perturbation (shuffle) of a predetermined array with balanced ±1 entries.

The result is a randomly generated initial population that has the form given in equation

(4.1). The issue with this method is that it is being done in two serial for loops. As mentioned in

Section 2.1, serial calculations can take a large amount of time if working with large number of

large matrices. For this algorithm, we do exactly that. We quickly discovered that our algorithm

spent more time on creating the initial population than on the rest of the Genetic Algorithm. For

this reason, we implemented a second method that does these calculations in parallel on the GPU.

4.2.2 Initial Population by means of the GPU

Similar to the first method, the second method creates a 3-dimensional initial population

of 4N matrices of sizes m×m. The first 2N matrices are randomly generated to have a balanced

number of +1 and −1 entries in each column except for the first. The first column consists of all +1

entries. The last 2N matrices consist of all +1 entries. This implementation of the initial population

is done in parallel on the GPU and is coded as follows

Pop = cp.ones((4*N, m, m), dtype=cp.int8)

Pop[0:2*N,0:2*k,1:m] = -1

seed = int.from_bytes(os.urandom(4), ’big’)

Shuffle_Column(grids, blocks,(Pop, seed, m, N))

We start with the line Pop = cp.ones((4*N, m, m), dtype=cp.int8) which creates a

24

population of 4N matrices of sizes m×m with +1 entries. Then we modify the population, using

Pop[0:2*N,0:2*k,1:m] = -1, this sets specific entries of matrices of the population equal to −1.

We specify which entries to modify by using [0:2*N,0:2*k,1:m] which refers to the first 2N

matrices, the first m/2 rows, and for all columns except for the first. Hence, for the first 2N matrices

and each column except the first, the line Pop[0:2*N,0:2*k,1:m] = -1 changes the first m/2

rows to −1 entries. As a result, the first 2N matrices will have a balanced number of +1 and −1

entries in each column except the first. For the first 2N matrices, the first m/2 rows will consist of

−1 entries and the last m/2 rows will consist of all +1 entries.

The line seed = int.from_bytes(os.urandom(4), ’big’) returns the integer repre-

sented by the given array of bytes. The input os.urandom(4) returns a string of size 4 which

represents random bytes and the input ’big’ determines the byte order used to represent the integer,

in this case, the most significant byte is at the beginning of the byte array.

Now we must randomize the order of these entries for each column. We achieve this by

implementing a raw kernel function called Shuffle_Column. Raw kernel functions were briefly

discussed in Chapter II. The idea of the shuffling algorithm is based on the Fisher-Yates shuffle

(Fisher and Yates 1938) which was later implemented for computers by Richard Durstenfeld in

1964. The shuffling algorithm that we have implemented is known as the modern version of the

Fisher-Yates shuffle (Fisher and Yates 1938; Durstenfeld 1964). While the shuffling in each column

is done in serial, the columns are handled simultaneously in parallel. The Shuffle_Column kernel

function is coded as follows:

Shuffle_Column = cp.RawKernel(r’’’

#include <curand_kernel.h>

extern "C" __global__

void Shuffle_Column(char *Q, int seed, const int m, const int N)

{

int k = blockDim.x*blockIdx.x+threadIdx.x;

int i = blockDim.y*blockIdx.y+threadIdx.y;

25

int j = blockDim.z*blockIdx.z+threadIdx.z;

unsigned long int seq, offset;

int i1,i2; char ti1,ti2;

seed=seed+k; seq = j; offset = 0; curandState h;

if ((k<2*N)&&(j<m)&&(i==0)){

curand_init(seed,seq,offset,&h);

for(i1=0; i1<m-1; i1++){

i2=(int)(curand_uniform(&h)*(m-i1)+i1);

ti1=Q[m*m*k+m*i1+j];

ti2=Q[m*m*k+m*i2+j];

Q[m*m*k+m*i1+j]=ti2;

Q[m*m*k+m*i2+j]=ti1;

}

}

}

’’’, ’Shuffle_Column’, backend=’nvcc’)

The Shuffle_Column kernel function has the following inputs:

• The input char *Q is the Pop consisting of 4N matrices with balanced +1 and −1 entries in

each column where the first m/2 rows consist of −1 entries.

• The input int seed is given by int.from_bytes(os.urandom(4), ’big’) which returns

the integer represented by the given array of bytes.

• The input const int m is an integer that is represented by the size of the matrices in Pop.

• The input const int N is an integer such that Pop has 4N matrices.

In the Raw Kernel function int k is the index of matrices, int i is the index of rows, and int j

is the index of columns. The shuffling steps are distributed over all columns of all parent matrices,

26

but by setting i == 0 we prevent the distributed over each row. Instead, a for loop goes through all

the rows from 0 to m−2, and the entry i1 is switched with entry i2, where i2 is a random index

between i1 and m−1. This shuffles the columns from lowest index to highest.

4.3 Fitness Function

In the natural selection process, the most fit person will most likely survive. For this genetic

algorithm, the fitness function measures how close a matrix is to becoming an Hadamard matrix. In

this section, we test four fitness functions which are stated as follows:

F1 = ∑
i, j

∣∣QT Q
∣∣−m2 ≥ 0. (4.3)

F2 = nonzero
(
QT Q

)
−m ≥ 0. (4.4)

F3 = mm/2 −|det(Population)| ≥ 0. (4.5)

F4 =
1

nonzero(QT Q)−m+1
≤ 1. (4.6)

where Q is an m×m matrix within a population. For the functions F1, F2, and F3, we are computing

the minimum fitness value to find the Hadamard matrix, in these cases, the minimum fitness value

is 0. For the function F4, we are computing the maximum fitness value to find the Hadamard matrix,

in this case, the maximum fitness value is 1. In Chapter V, we will compare the minimizing fitness

functions and explain which fitness function yielded the best results in a speed comparison test.

Each function yields the fitness of each matrix in the population which has the form:

F = [f1, . . . , fN , fN+1, . . . , f2N , f2N+1, . . . , f3N , f3N+1, . . . , f4N] (4.7)

where f1, . . . , f2N and f2N+1, . . . , f4N refers to the fitness of P1, . . . ,P2N and O1, . . . ,O2N in equation

(4.2), respectively. The purpose of testing these four fitness functions is to evaluate which one yields

the best results.

27

4.3.1 First Fitness Function

The first fitness function is given as follows:

F1 = ∑
i, j

∣∣QT Q
∣∣−m2 ≥ 0. (4.8)

Notice that it is the same as equation (3.1) used in the previous algorithm, Chapter III.

However, in the simulated annealing algorithm, we are only working with one matrix at a time. In

this algorithm, we are working with 4N matrices at a time. The idea is it gives us a higher chance of

finding an Hadamard matrix, maybe even several at a time. The fitness function in equation 4.8 is

coded as follows:

F=cp.sum(cp.absolute(cp.matmul(cp.transpose(Pop,axes=(0,2,1)),Pop)),

axis=(1,2))-m2

The operation on the matrices are done in parallel batches. The 3-dimensional array Pop

was described in the population form (4.2). For the sake of understanding the use of the axes in

Python, Pop has the following form

Pop=

0︷ ︸︸ ︷1
{
[Q1]︸︷︷︸

2

, . . . , [Q4N]

 (4.9)

where 0,1, and 2 represent a permutation of the dimensions. We use this information to perform

some basic matrix operation for each of the matrices in Pop. First, consider the following:

cp.matmul(cp.transpose(Pop,axes=(0,2,1)),Pop)

The CuPy function cp.transpose(Pop,axes=(0,2,1)) returns a transpose for each of

the matrices in Pop. Here, the axes is changed from (0,1,2) to (0,2,1). This means that the

entries in the 1st dimension are exchanged with the entries in the 2nd dimension. Therefore, the

28

result is QT . The CuPy function cp.matmul(...) returns the product of two matrices. This implies

that the line cp.matmul(cp.transpose(Pop,axes=(0,2,1)),Pop) returns the operation QT Q.

Continuing upon the operation, we have the following

F=cp.sum(cp.absolute(...), axis=(1,2))-m2

The CuPy function cp.absolute(...) returns an elementwise absolute value of each entry

for every matrix in Pop. The CuPy function cp.sum(...,axis=(1,2)) uses the axis to specify

along which dimension the sum is taken. The sum taken is the axis=(1,2), this refers back to

the dimensions in equation (4.9). Meaning, for each matrix, the absolute sum of the entries are

calculated. Consequently, we have the operation ∑i, j
∣∣QT Q

∣∣. Subtracting m2, which is just m2, we

have the fitness function F1 given in equation (4.8). The final result of this is an array of fitness

values that was demonstrated to have the form (4.7).

4.3.2 Second Fitness Function

The second fitness function was implemented in an attempt to get faster results as opposed

to the previous function. The second fitness is given as follows:

F2 = nonzero
(
QT Q

)
−m ≥ 0. (4.10)

Equation (4.10) was implemented using property the first property from Section 1.1.1. That is, If Q

is an Hadamard matrix, it has the following form:

QT Q =



m 0 · · · 0

0
... . . . 0

0 · · · 0 m


= mIm. (4.11)

29

If Q is an m×m matrix with a balanced number of +1 and −1 entries then,

QT Q =



m ∗ · · · ∗

∗
... . . . ∗

∗ · · · ∗ m


(4.12)

The idea of the fitness function F2 given in equation (4.10) is if Q is an Hadamard ma-

trix, then the number of non-zero entries in QT Q is the same as the size of the matrix, that is,

nonzero(QT Q) = m. This was easily derived from the property given in equation (4.11). Moreover,

if Q is an m×m matrix with a balanced number of +1 and −1 entries in each column and is not an

Hadamard matrix, then nonzero(QT Q)> m. This results in equation (4.10) and is coded as follows:

F=cp.count_nonzero(cp.matmul(cp.transpose(Pop, axes=(0,2,1)), Pop),

axis=(1,2))-m

Here, the matrix operations cp.matmul(cp.transpose(...)) was explained in Section

4.3.1. The CuPy function cp.count_nonzero(...) counts the non-zero entries of each of the

matrices in the population. As mentioned previously, if nonzero(QT Q) = m, then Q is an Hadamard

matrix. The final result of this is an array of fitness values that was demonstrated to have the form

(4.7).

4.3.3 Third Fitness Function

The third fitness function was implemented in an attempt to get faster results as opposed to

the previous functions. The third fitness is given as follows:

F3 = mm/2 −|det(Population)| ≥ 0. (4.13)

This function was created using the second property of Hadamard matrices that was mentioned in

Section 1.1.1. The property states that, if H is an m×m Hadamard matrix, then det(H) =±mm/2.

30

From Section 1.1.1, we reduced this property using the Hadamard Inequality, that is, if Q is an

m×m matrix with a balanced number of +1 and −1 in each column, then

|det(Q)| ≤ mm/2. (4.14)

If Q is an m×m Hadamard matrix, then

|det(Q)|= mm/2. (4.15)

This results in equation (4.13) and is coded as follows:

F = md-cp.absolute(cp.linalg.det(Pop))

The variable md=mm/2. The CuPy function cp.linalg.det(Pop) returns an array of deter-

minants from each of the matrices in the population. Then, the CuPy function cp.absolute(...)

takes the absolute value of each determinant in the array. The final result of this is an array of fitness

values that was demonstrated to have the form (4.7).

4.3.4 Fourth Fitness Function

The fourth fitness function was introduced to compare the results of using a minimum fitness

value and a maximum fitness value. The first 3 fitness functions were implemented in search of a

minimum fitness value, the fourth fitness function searches for a maximum fitness value. The fourth

fitness is given as follows:

F4 =
1

nonzero(QT Q)−m+1
≤ 1. (4.16)

Notice that equation (4.16) is similar to equation (4.10) such that

F4 =
1

F2 +1
≤ 1. (4.17)

where min(F2) = 0 and so max(F4) = 1. For this function, a matrix Q is an Hadamard matrix if

and only if F4 = 1. This results in equation (4.16) and is coded as follows:

31

F=1/(cp.count_nonzero(cp.matmul(cp.transpose(Pop, axes=(0,2,1)),Pop),axis =

(1,2))-m+1)

The line cp.count_nonzero(...) was described in Section 4.3.2. The other operations

are quite obvious and follow that of equation (4.16). Unfortunately, after testing this maximizing

function, it was found that the minimizing functions produced better results.

4.4 Selection

The purpose of the selection process is to select matrices that are more likely to become

Hadamard matrices. The selected matrices will take the parent position of the population and will

be of the form

Population = [P1, . . . ,P2N ,Q1, . . . ,Q2N] (4.18)

where P1, . . . ,P2N are the selected parent matrices and Q1, . . . ,Q2N are matrices that were not

selected. Note that in first iteration of the selection process Q1, . . . ,Q2N consist of matrices with all

+1 entries and they are guaranteed not to be selected, this was discussed in Section 4.2. The selected

parent matrices will be paired up to create a pair of offspring matrices which will be discussed in

Section 4.5

In this section, we developed two selection processes. The first process selects matrices by

using the direct fitness values from equation (4.7). The second process selects matrices by creating

a probability function using the fitness values from equation (4.7).

4.4.1 Selection Without Probabilities

The selection process without probabilities is coded as follows:

Pop[0:2*N,:,:] = Pop[cp.random.permutation(cp.argsort(F)[:2*N]),:,:]

The CuPy function cp.argsort(F) returns the indices of the fitness array F given in

equation (4.7) that correspond directly to the population in (4.2). The order of the indices re-

turned depend on the fitness values of each matrix in the population. The indices will be sorted

32

from the least fitness value to the greatest fitness value. For the selection part, we only care

to use the most fit individuals, that is, we only want the matrices that are closest to becoming

Hadamard matrices. The indices of the selected matrices that we want are located in the first half

of cp.argsort(F), which will be defined as the indices of the parent matrices. This is accom-

plished using cp.argsort(F)[:2*N]. Then, the CuPy function cp.random.permutation(...)

randomly permutes these indices to guarantee a random order of the parent matrices. Finally, using

Pop[0:2*N,:,:]=Pop[...,:,:], this moves the matrices with the best fitness value to the parent

position in random order which is from 0 to 2N. This results in the population of the form (4.18).

Consider the following example, let N = 2 and m = 20 such that the population has 8

matrices of sizes 20×20 with a balances number of +1 and −1 entries in each column. Assume

that the fitness values are calculated by F2 given in equation (4.10) and is given as follows:

F= [238,220,234,236,234,220,228,212] . (4.19)

To sort the fitness value indices from least to greatest, we use cp.argsort(F) such that

cp.argsort(F)= [7,1,5,6,2,4,3,0] . (4.20)

To save only the most fit half into the parent position index wise, we use cp.argsort(F)[:4] such

that

cp.argsort(F)[:4]= [7,1,5,6] . (4.21)

Although we have the indices of the most fit matrices, it is in increasing order, we want to randomize

the order of this using cp.random.permutation(...) such that

cp.random.permutation(...)= [6,7,5,1] . (4.22)

Then, using Pop[0:4,:,:]=Pop[...,:,:], we have defined 4 matrices with that have superior

fitness at the parent position. We now have a population that is of the form (4.18).

33

The next selection process uses a probability function to select the parent matrices. We will

discuss and compare the two methods in the next section.

4.4.2 Selection With Probabilities

The selection process with probabilities is coded as follows:

idx = np.arange(4*N)

p = F/cp.sum(F)

C = np.random.choice(idx,2*N,replace=False,p=p.get())

Pop[0:2*N,:,:] = Pop[C,:,:]

The CuPy function C = np.random.choice generates a random sample from a one-

dimensional array. The output array is C and the inputs are idx, size, replace, and p. In

this case:

• The input idx is a one-dimensional array. Using np.arange(4*N), it returns evenly spaced

integer values which results in the following array

idx = [0,1,2, . . . ,4N −1] . (4.23)

• The input size describes the shape of the output. This implies the output C is a 2N array.

• The input replace determines whether the sample is with or without replacement. In this

case, we are choosing without replacement.

• The input p is an array of probabilities that are associated with each entry in the idx given by

equation (4.23). We define that probability function p as

p =
Fi

∑
4N
i=1 Fi

=

[
F1

∑
4N
i=1 Fi

, . . . ,
F4N

∑
4N
i=1 Fi

]
(4.24)

where the p is an array whose probabilities correspond to the fitness form (4.7).

34

The line Pop[0:2*N,:,:]=Pop[C,:,:] randomly selects the parent matrices with some

probability based on equation (4.24) and results in the population of the form (4.18). Comparing

the two selection processes, there was no improvement when using the probabilities. The hope of

this probability method was to give matrices, with higher fitness values, the opportunity to create

offspring matrices and hopefully the offspring will have an improved fitness value. Nonetheless, the

probabilities had no impact on whether or not an Hadamard matrix was found.

4.5 Crossover

The purpose of the crossover is to create a pair of offspring matrices from a pair of parents

matrices, these parents were selected using the selection process in section 4.4. The crossover

process is coded as follows:

col = cp.random.random_integers(1,m-1,N)

Crossover(grids, blocks, (Pop, col, m, N))

The CuPy function col = cp.random.random_integers(1,m-1,N) returns an array of

N random integers between the values of 1 and m−1. Each integer in this array will be known as

the crossover points. Notice that there are 2N parent matrices and N crossover points. So each pair

of parent matrices will be assigned a crossover point. A crossover point splits each pair of parent

matrices into two parts and uses parts from each parent matrix to create a pair of offspring matrices.

For example, consider a pair of 4×4 parent matrices with a randomly generate crossover

point col = 3. The parent matrices with the appropriate crossover point is given as follows:

P1 =



− + + | +

− + − | −

+ − + | −

+ − − | +


, P2 =



− + + | +

+ − + | +

− − − | −

+ + − | −


(4.25)

35

Using the crossover point col = 3, we create the following offspring matrices as follows

O1 =



− + + | +

− + − | +

+ − + | −

+ − − | −


, O2 =



− + + | +

+ − + | −

− − − | −

+ + − | +


(4.26)

This example demonstrates what the raw kernel function Crossover(grids, blocks,

(Pop, col, m, N)) accomplishes. However, the Crossover function does this for a pair of N

parent matrices, each with an assigned crossover point, and it will create a pair of N offspring

matrices. The result is a population with 2N parent matrices and 2N offspring matrices that hold

characteristics from the parents. The Crossover is a kernel function that is given as follow:

Crossover = cp.RawKernel(r’’’

extern "C" __global__

void Crossover(char *Q, const int* col, const int m, const int N)

{

int k = blockDim.x*blockIdx.x+threadIdx.x;

int i = blockDim.y*blockIdx.y+threadIdx.y;

int j = blockDim.z*blockIdx.z+threadIdx.z;

if (k<N){

if((j<col[k]) && (i<m)){

Q[m*m*(k+2*N)+m*i+j]=Q[m*m*k+m*i+j];

Q[m*m*(k+3*N)+m*i+j]=Q[m*m*(k+N)+m*i+j];

}

if((j>=col[k]) && (j<m) && (i<m)){

Q[m*m*(k+3*N)+m*i+j]=Q[m*m*k+m*i+j];

Q[m*m*(k+2*N)+m*i+j]=Q[m*m*(k+N)+m*i+j];

}

36

}

}

’’’, ’Crossover’)

The Crossover kernel function creates 2N offspring matrices using 2N parent matrices and

returns an array Pop with size 4N such that

Pop= [P1, . . . ,PN ,PN+1, . . . ,P2N ,O1, . . . ,ON ,ON+1, . . . ,O2N] (4.27)

and has the following inputs:

• The input char *Q is the Pop consisting of 4N matrices with balanced +1 and −1 entries in

each column (except the first).

• The input const int* col is given by cp.random.random_integers(1,m-1,N) and re-

turns an array of N random integers between the values of 1 and m−1. As discussed earlier,

this is the crossover point.

• The input const int m is an integer that is represented by the size of the matrices in Pop.

• The input const int N is an integer such that Pop has 4N matrices.

In the raw kernel function we define int k as the index of matrices, int i as the index of

rows, and int j as the index of columns.

We use an if (k<N) statement since the indexing of the parent matrices are given by

P1, . . . ,PN and PN+1, . . . ,P2N , both of size N. This is also done in order to avoid going out of bound

with the indexing, this was discussed in Section 2.3. To create the offspring matrices, we have to

consider the crossover point. As demonstrated in the previous example, the crossover point splits the

parent matrices into two parts. Within the previous if statement, we use two more if statements to

denote the parent matrices into two parts using the crossover point and create the offspring matrices.

37

• Consider the if((j<col[k])&& (i<m)) statement, this specifies that the index of columns

are before the crossover point. We also must set a boundary for the index of rows to be less

than the size of the matrices, this is used so the index does not exceed the number of rows for

each matrix. Using these conditions, the following is executed:

Q[m*m*(k+2*N)+m*i+j]=Q[m*m*k+m*i+j];

Q[m*m*(k+3*N)+m*i+j]=Q[m*m*(k+N)+m*i+j];

In this case, the crossover point is used to denote the first parts of the parent matrices. In the

first line, we copy the first part of P1, . . . ,PN into O1, . . . ,ON . In the second line, we copy the

first part of PN+1, . . . ,P2N into ON+1, . . . ,O2N .

• Consider the if((j>=col[k])&& (j<m)&& (i<m)) statement, this specifies that the index

of columns are at the crossover point or after the crossover point. We also must specify a

boundary for the index of columns and rows to be less than the size of the matrices. Using

these conditions, the following is executed:

Q[m*m*(k+3*N)+m*i+j]=Q[m*m*k+m*i+j];

Q[m*m*(k+2*N)+m*i+j]=Q[m*m*(k+N)+m*i+j];

In this case, the crossover point is used to denote the second parts of the parent matrices. In

the first line, we copy the second part of P1, . . . ,PN into ON+1, . . . ,O2N . In the second line,

we copy the first part of PN+1, . . . ,P2N into O1, . . . ,ON .

It is obvious to see that each offspring matrices inherited parts from each of the parent

matrices which is exactly what we wanted to achieve. We now have a population that consist of

2N parent matrices and 2N offspring matrices as shown in the population form (4.2). In the next

section, we will discuss the mutation of the offspring matrices.

38

4.6 Mutation

The purpose of the mutation process is for each offspring matrix to have some kind of

variation to them. The mutation of these offspring matrices is done by switching a pair of +1 and

−1 entries while maintaining the balance of +1 and −1 entries in each column. In this section,

three methods were implemented to achieve variation among offspring matrices.

4.6.1 First Mutation Function

This method flips a pair of +1 and −1 entries by randomly selecting a column (except the

first) and randomly selecting two different row indices. For every offspring matrix, the randomly

selected column and row indices are the same. The Mutation is coded as follows:

rowindx1 = np.random.randint(m)

rowindx2 = np.random.randint(m)

colindx = np.random.randint(1,m)

while rowindx1 == rowindx2: rowindx2 = np.random.randint(m)

Mutation1(grids, blocks, (Pop, rowindx1, rowindx2, colindx, m, N))

For rowindx1 and rowindx2, the CuPy function np.random.randint(m) returns a ran-

dom integer between the values 0 and m− 1, this is the indexing for the two rows. Similarly,

the Cupy function colindx = np.random.randint(1,m) returns a random integer between the

values 1 and m−1, meaning the first column (which has index 0) cannot be selected. A while loop

is then used anytime the row indices are the same, while this is true, we recalculate the second row

index. Finally, the Mutation1 kernel function is called and is given as follows:

Mutation1 = cp.RawKernel(r’’’

extern "C" __global__

void Mutation1(char *Q, const int row1, const int row2, const int col,

const int m, const int N)

{

39

int k = blockDim.x*blockIdx.x+threadIdx.x;

int i = blockDim.y*blockIdx.y+threadIdx.y;

int j = blockDim.z*blockIdx.z+threadIdx.z;

if ((k>=2*N) && (k<4*N)){

if(((i==row1) || (i==row2)) && (j==col) && (Q[m*m*k+m*row1+col] !=

Q[m*m*k+m*row2+col])){

Q[m*m*k+m*row1+col] *= -1;

Q[m*m*k+m*row2+col] *= -1;

}

}

}

’’’, ’Mutation1’)

For 2N offspring matrices, the Mutation1 kernel function flips the sign of two entries with

opposite sign in a column. The column and row indices are randomly generated and are the same

for each offspring matrix. The inputs are given as follows:

• The input char *Q is the Pop consisting of 4N matrices with balanced +1 and −1 entries in

each column.

• The input const int row1 is the first row index that is an integer between 0 and m−1.

• The input const int row2 is the second row index that is an integer between 0 and m−1.

• The input const int col is the column index that is an integer between 1 and m−1.

• The input const int m is an integer that is represented by the size of the matrices in Pop.

• The input const int N is an integer such that Pop has 4N matrices.

In the raw kernel function we define int k as the index of matrices, int i as the index

of rows, and int j as the index of columns. The if ((k>=2*N)&& (k<4*N)) statement sets a

40

boundary for k such that only the offspring matrices are mutated.. For the actual mutation process,

an if statement is given as follows:

if(((i==row1) || (i==row2)) && (j==col) && (Q[m*m*k+m*row1+col] !=

Q[m*m*k+m*row2+col])){

Q[m*m*k+m*row1+col] *= -1;

Q[m*m*k+m*row2+col] *= -1;

}

This if statement checks that row1 or row2 is in the index i and checks if col is in the

index j. For the condition Q[m*m*k+m*row1+col] != Q[m*m*k+m*row2+col], this checks that

the entries have opposite sign given row1, row2, and col. If these conditions are met, then

Q[m*m*k+m*row1+col] *= -1 and Q[m*m*k+m*row2+col] *= -1. This multiplies the two en-

tries by −1, in other words, we flip the sign. For each matrix, there is no mutation if this condition

is not met.

To demonstrate how the Mutation1 kernel function works, lets consider an example. Let

m = 8 and N = 2 such that the we have a population of 8 matrices that have the sizes 8×8 with a

balanced number +1 and −1 in each column. This implies there are 4 offspring matrices that will

be mutated. Let rowindx1 = 1, rowindx2 = 5, and colindx = 4 be the randomly generated

indices. The mutation of the 4 offspring matrices are given in Figure 4.1. In parts (a), (c), and (d)

the green highlights represent that a mutation occurred since the signs are opposite. In part (b) the

red highlights represent that a mutation does not occur since the signs are not opposite.

The disadvantage of this method is it mutates the same column and row indices for every

offspring matrix given the restrictions. Implying that each offspring matrix was either not mutated

at all or they have the same mutation as another offspring matrix. Additionally, when working with

larger matrices, the flipping of just two entries may not be good enough, the convergence may be

too slow. The largest Hadamard matrix found using this method was of the size 12×12. To improve

upon creating variation among each offspring matrix, we implemented a second mutation function

41



+ + − + + + + −
+ + − − − − + −
+ − + + + − − −
+ + − − − + − +
+ + − + − + + +
+ − + − + − + +
+ − + − − − − +
+ − + + + + − −


(a) First Offspring Matrix



+ + + − + − + −
+ − + + − − + −
+ + + + − + + −
+ − − + + + − +
+ + − − + + − +
+ − + + − − − +
+ + − − + − − −
+ − − − − + + +


(b) Second Offspring Matrix

+ − + − + − + −
+ + − − + − + +
+ + + − − − − −
+ + − + − − − +
+ − − + − + − −
+ − − + − + + +
+ + + + + + − +
+ − + − + + + −


(c) Third Offspring Matrix



+ − − − − − + −
+ + + + + − + +
+ + + + + − + −
+ − + − + + − +
+ − − + − − − +
+ + − − − + + −
+ − + + + + − +
+ + − − − + − −


(d) Fourth Offspring Matrix

Figure 4.1: Example of the First Mutation Method

that achieves this.

4.6.2 Second Mutation Function

The previous mutation function either mutated the same column and pair of row indices

or no mutation took place. This method flips a pair of +1 and −1 entries by randomly selecting

a column array of indices (except the first) and randomly selecting two row arrays of indices. In

this section, we achieve variation among each offspring matrix. This mutation method is coded as

follows:

rowindx1 = cp.random.random_integers(0,m-1,size=(2*N))

rowindx2 = cp.random.random_integers(0,m-1,size=(2*N))

colindx = cp.random.random_integers(1,m-1,size=(2*N))

Mutation2(grids, blocks, (Pop, rowindx1, rowindx2, colindx, m, N))

For rowindx1 and rowindx2, the CuPy function cp.random.random_integers(0,

m-1, size=(2*N)) returns a 2N array with entries containing the integer values between 0 and

42

m− 1. For colindx, the CuPy function cp.random.random_integers(1,m-1,size=(2*N))

returns a 2N array with entries containing the integer values between 1 and m− 1. Finally, the

Mutation2 kernel function is called and is given as follows:

Mutation2 = cp.RawKernel(r’’’

extern "C" __global__

void Mutation2(char *Q, const int* row1, const int* row2, const int* col,

const int m, const int N)

{

int k = blockDim.x*blockIdx.x+threadIdx.x;

int i = blockDim.y*blockIdx.y+threadIdx.y;

int j = blockDim.z*blockIdx.z+threadIdx.z;

if ((k>=2*N) && (k<4*N)){

if((i==0) && (j==col[k-2*N])){

if (Q[m*m*k+m*row1[k-2*N]+j] != Q[m*m*k+m*row2[k-2*N]+j]){

Q[m*m*k+m*row1[k-2*N]+j] *= -1;

Q[m*m*k+m*row2[k-2*N]+j] *= -1;

}

}

}

}

’’’, ’Mutation2’)

For 2N offspring matrices, the Mutation2 kernel function flips the sign of two entries with

opposite sign in a column. The column and row indices are randomly generated and are highly

likely to be different for each offspring matrix. The inputs are given as follows:

• The input char *Q is the Pop consisting of 4N matrices with balanced +1 and −1 entries in

each column.

43

• The input const int row1 is a 2N array whose entries are integer values between 0 and

m−1 and define the first set of row indices.

• The input const int row2 is a 2N array whose entries are integer values between 0 and

m−1 and define the second set of row indices.

• The input const int col is a 2N array whose entries are integer values between 1 and

m−1 and define the set of column indices.

• The input const int m is an integer that is represented by the size of the matrices in Pop.

• The input const int N is an integer such that Pop has 4N matrices.

In the raw kernel function we define int k as the index of matrices, int i as the index

of rows, and int j as the index of columns. The if ((k>=2*N)&& (k<4*N)) statement sets a

boundary for k such that only the offspring matrices are mutated. For the actual mutation process,

an if statement is given as follows:

if((i==0) && (j==col[k-2*N])){

if (Q[m*m*k+m*row1[k-2*N]+j] != Q[m*m*k+m*row2[k-2*N]+j]){

Q[m*m*k+m*row1[k-2*N]+j] *= -1;

Q[m*m*k+m*row2[k-2*N]+j] *= -1;

}

}

The if((i==0)&& (j==col[k-2*N])) statement fixes the index of rows i so all rows are

not worked on and fixes the index of columns j to assure we work with the appropriate index of

columns for each offspring matrix. The last if statement checks that the sign of the two entries in

each offspring matrix is opposite, if so, the signs are flipped. There is no mutation if this condition

is not met.

To demonstrate how the Mutation2 kernel function works lets consider an example. Let

m = 8 and N = 2 such that the we have a population of 8 matrices that have the sizes 8×8 with a

44

balanced number +1 and −1 in each column. This implies there are 4 offspring matrices that will be

mutated. Let rowindx1 = [3 1 2 6], rowindx2 = [0 5 6 0], and colindx = [1 7 5 3]

be the randomly generated array of indices. The mutation of the 4 offspring matrices are given in

Figure 4.2 such that

• In part (a), we use the indices rowindx1 = 3, rowindx2 = 0, and colindx = 1.

• In part (b), we use the indices rowindx1 = 1, rowindx2 = 5, and colindx = 7.

• In part (c), we use the indices rowindx1 = 2, rowindx2 = 6, and colindx = 5.

• In part (d), we use the indices rowindx1 = 6, rowindx2 = 0, and colindx = 3.

Additionally, In part (a), the red highlights represent that a mutation did not occur since the signs

are the same. In parts (b), (c), and (d), the green highlights represent that a mutation did occur

since the signs are opposite. Each offspring matrix has a randomly generates set of row and column

indices. This provides variation between each offspring matrix as opposed to the example in Figure

4.1 where all the offspring matrices had the same mutation.

The largest Hadamard matrix found is of the size 12×12, which is the same result as the

last method. Although this method achieves variation between each offspring matrix. The same

issue stands, that is, when working with larger matrices, the flipping of just two entries may not be

good enough as the convergence may be too slow. To improve upon this, a third mutation function

was implemented that allows us to choose the number of random columns and random pair of row

indices that we want to mutate..

4.6.3 Third Mutation Function

The previous mutation function achieved variation between each offspring matrix. This

method builds upon that by controlling the number of random columns and pair of random rows that

we want to mutate for each matrix. This allows us to have greater variation amongst the offspring

matrices and in theory, will give us a better chance of finding an Hadamard matrix. This method

45



+ + − + + + + −
+ + − − − − + −
+ − + + + − − −
+ + − − − + − +
+ + − + − + + +
+ − + − + − + +
+ − + − − − − +
+ − + + + + − −


(a) First Offspring Matrix



+ + + − + − + −
+ − + + − − + −
+ + + + − + + −
+ − − + + + − +
+ + − − + + − +
+ − + + − − − +
+ + − − + − − −
+ − − − − + + +


(b) Second Offspring Matrix

+ − + − + − + −
+ + − − + − + +
+ + + − − − − −
+ + − + − − − +
+ − − + − + − −
+ − − + − + + +
+ + + + + + − +
+ − + − + + + −


(c) Third Offspring Matrix



+ − − − − − + −
+ + + + + − + +
+ + + + + − + −
+ − + − + + − +
+ − − + − − − +
+ + − − − + + −
+ − + + + + − +
+ + − − − + − −


(d) Fourth Offspring Matrix

Figure 4.2: Example of the Second Mutation Method

flips a pair of +1 and −1 entries by randomly selecting a column matrix of indices (except the first)

and randomly selecting two row matrices of indices. This method is coded as follows:

rowindx1 = cp.random.random_integers(0,m-1,size=(2*N,NR))

rowindx2 = cp.random.random_integers(0,m-1,size=(2*N,NR))

colindx = cp.random.random_integers(1,m-1,size=(2*N,NC))

Mutation3(grids, blocks, (Pop, rowindx1, rowindx2, colindx, NC, NR, m, N))

For rowindx1 and rowindx2, the CuPy function cp.random.random_integers(0,

m-1, size=(2*N,NR)) returns a 2N ×NR matrix with entries containing the integer values be-

tween 0 and m−1. Similarly, the CuPy function colindx = cp.random.random_integers(1,

m-1, size=(2*N,NC)) returns a 2N ×NC matrix with entries containing the integer values be-

tween 1 and m−1. Finally, the Mutation3 kernel function is called and is given as follows:

Mutation3 = cp.RawKernel(r’’’

extern "C" __global__

46

void Mutation3(char *Q, const int* row1, const int* row2, const int* col,

const int NC, const int NR, const int m, const int N)

{

int k = blockDim.x*blockIdx.x+threadIdx.x;

int i = blockDim.y*blockIdx.y+threadIdx.y;

int j = blockDim.z*blockIdx.z+threadIdx.z;

int jc, ir, coljc, rowir1, rowir2;

if ((k>=2*N) && (k<4*N)){

if((i==0) && (j==0)){

for(jc=0; jc<NC; jc++){

coljc=col[(k-2*N)*NC+jc];

for(ir=0; ir<NR; ir++){

rowir1=row1[(k-2*N)*NR+ir];

rowir2=row2[(k-2*N)*NR+ir];

if (Q[m*m*k+m*rowir1+coljc] != Q[m*m*k+m*rowir2+coljc]){

Q[m*m*k+m*rowir1+coljc] *= -1;

Q[m*m*k+m*rowir2+coljc] *= -1;

}

}

}

}

}

}

’’’, ’Mutation3’)

For 2N offspring matrices, the Mutation3 kernel function can flip multiple pairs +1 and

−1 entries in multiple columns. The inputs are given as follows:

47

• The input char *Q is the Pop consisting of 4N matrices with balanced +1 and −1 entries in

each column.

• The input const int row1 is a 2N ×NR matrix whose entries are integer values between 0

and m−1 and define the first set of row indices.

• The input const int row2 is a 2N ×NR matrix whose entries are integer values between 0

and m−1 and define the second set of row indices.

• The input const int col is a 2N ×NC matrix whose entries are integer values between 1

and m−1 and define the set of column indices.

• The input const int NC is an integer value between 1 and m that denotes the number of

columns we want to mutate for each matrix.

• The input const int NR is an integer value between 1 and m/2 that denotes the half the

number of rows we want to mutate for each matrix.

• The input const int m is an integer that is represented by the size of the matrices in Pop.

• The input const int N is an integer such that Pop has 4N matrices.

In the raw kernel function we define int k as the index of matrices, int i as the index

of rows, and int j as the index of columns. We define some integer values such that int jc,

ir, coljc, rowir1, rowir2. The if ((k>=2*N)&& (k<4*N)) statement sets a boundary for

k such that only the offspring matrices are mutated. The line if((i==0)&& (j==0)) fixes the row

index i and column index j, this is used for indexing purposes. Now, the actual mutation step is

executed as follows:

for(jc=0; jc<NC; jc++){

coljc=col[(k-2*N)*NC+jc];

for(ir=0; ir<NR; ir++){

rowir1=row1[(k-2*N)*NR+ir];

48

rowir2=row2[(k-2*N)*NR+ir];

if (Q[m*m*k+m*rowir1+coljc] != Q[m*m*k+m*rowir2+coljc]){

Q[m*m*k+m*rowir1+coljc] *= -1;

Q[m*m*k+m*rowir2+coljc] *= -1;

}

}

}

The for(jc=0; jc<NC; jc++) loop creates iteration steps for jc that increases by 1 every

loop, it starts at 0 and ends at NC − 1. In this for loop, the line coljc=col[(k-2*N)*NC+jc]

defines coljc to be the column indices that correspond to the column indices of the offspring

matrices that we want mutate. Within this for loop, we have another for loop that is given by

for(ir=0; ir<NR; ir++), notice that this line does the same thing as the previous for loop,

but for the row indices rowir1 and rowir2. Finally, the if (Q[m*m*k+m*rowir1+coljc] !=

Q[m*m*k+m*rowir2+coljc]) statement checks that the sign of the two entries are opposite, if

so, the signs are flipped. There is no mutation if this condition is not met. Note that the first for

loop works on one column for each offspring matrix at a time. So if we choose to mutate multiple

columns, each column will be done one-by-one, but for all offspring matrices at a time. The second

for loop works in a similar manner but with row indices.

To demonstrate how the Mutation3 kernel function works lets consider an example. Let

m = 8 and N = 2 such that the we have a population of 8 matrices that have the sizes 8×8 with a

balanced number +1 and −1 in each column. This implies there are 4 offspring matrices that will

be mutated. Let NC = 3 be the number of columns mutated and NR = 2 be the number of row pairs

49

mutated such that we have the randomly generated column and row indices given by

rowindx1=



6 5

4 2

0 6

1 6


, rowindx2=



3 1

7 0

1 2

2 5


, colindx=



6 5 2

5 2 4

3 1 6

2 7 6


(4.28)

The mutation of the 4 offspring matrices are given in Figure 4.3 such that

• In part (a), the indices are rowindx1= [6, 5], rowindx2= [3, 1], and colindx= [6, 5, 2].

• In part (b), the indicies are rowindx1= [4, 2], rowindx2= [7, 0], and colindx= [5, 2, 4].

• In part (c), the indicies are rowindx1= [0, 6], rowindx2= [1, 2], and colindx= [3, 1, 6].

• In part (d), the indicies are rowindx1= [1, 6], rowindx2= [2, 5], and colindx= [2, 7, 6].

In each column, a successful mutation is represented in green and blue (if there is more than one

successful), an unsuccessful mutation is represented in red and magenta (if there is more than one

unsuccessful).

In analyzing Figure 4.3, although we do choose the number of columns and pair of rows we

want to mutate, it is not guaranteed to mutate all of them. In part (a), we saw the colindx=2 have

no mutation, the colindx=5 have one mutation, and the colindx=6 have two mutations. So, the

maximum number of mutations for each column is NR.

This method improves upon the issue of working with larger matrices, we have achieved

greater variation among offspring matrices and the hope is the convergence to be faster when

searching for Hadamard matrices. Using this method, the largest Hadamard matrix found so far is

of the size 32×32, this is a major improvement from the other two methods.

50



+ + − + + + + −
+ + − − − − + −
+ − + + + − − −
+ + − − − + − +
+ + − + − + + +
+ − + − + − + +
+ − + − − − − +
+ − + + + + − −


(a) First Offspring Matrix



+ + + − + − + −
+ − + + − − + −
+ + + + − + + −
+ − − + + + − +
+ + − − + + − +
+ − + + − − − +
+ + − − + − − −
+ − − − − + + +


(b) Second Offspring Matrix

+ − + − + − + −
+ + − − + − + +
+ + + − − − − −
+ + − + − − − +
+ − − + − + − −
+ − − + − + + +
+ + + + + + − +
+ − + − + + + −


(c) Third Offspring Matrix



+ − − − − − + −
+ + + + + − + +
+ + + + + − + −
+ − + − + + − +
+ − − + − − − +
+ + − − − + + −
+ − + + + + − +
+ + − − − + − −


(d) Fourth Offspring Matrix

Figure 4.3: Example of the Second Mutation Method

51

CHAPTER V

COMPUTATIONAL RESULTS

5.1 Local Minimum

Genetic Algorithms also suffer from finding local minimums instead of global minimum

similarly to the Simulated Annealing Algorithm. Figure 5.1 shows the minimum of the fit function

as a function of the iteration number for matrix size 20×20 with NC = NR = 4. It is not just that

the minimum of the fit function stays constant (gets stuck) without converging to zero, but the whole

parent population becomes homogeneous. One way to try to prevent stalling at a local minimum is

to use a selection process with some probability. This approach does not seem to result in improved

convergence. We had some success to speed up convergence by selecting low number of columns

for the mutations. This is discussed in Section 5.3.

5.2 Fitness Function Comparisons

The functions tested in this section are the minimizing fitness functions discussed in Section

4.3 and are given as follows:

F1 = ∑
i, j

∣∣QT Q
∣∣−m2 ≥ 0. (5.1)

F2 = nonzero
(
QT Q

)
−m ≥ 0. (5.2)

F3 = mm/2 −|det(Population)| ≥ 0. (5.3)

Table 5.1 shows the average speed (in seconds) for the first three fitness functions while

working with 1000 matrices at a time and over 10000 iterations. Through 10 runs, The average speed

was taken and was done for each matrix size in the table. The parameter are N = 250, T = 104,

NC = 4, and NR = 2 for several matrix sizes. The purpose of this table was to compare the speed

52

Figure 5.1: Minimum of the Fit function

of each fitness function while working with larger matrices. Note that none of these runs resulted in

any Hadamard matrices. For the F3 function, it was unable to run with 40×40 and larger matrices.

This is due to the determinants of the matrices being too large and as a result we see an overflow

error in the python code. Over 10000 iterations, comparing F1 to F2 we saw that:

• For 20×20, F2 was 0.16 seconds slower on average than F1.

• For 40×40, F2 was 0.26 seconds faster on average than F1.

• For 100×100, F2 was 0.75 seconds faster on average than F1.

• For 200×200, F2 was 1.86 seconds faster on average than F1.

• For 400×400, F2 was 14.26 seconds faster on average than F1

• For 668×668, F2 was 58.48 seconds faster on average than F1.

The results were relatively similar for sizes 200×200 and smaller. For the sizes 400×400

and 668×668, we saw a larger difference in time between the two functions. This indicates that F2

performs better than F1 as the size of the matrices increase. Now, what can be said if we use a larger

amount of matrices. In this table, we only work with 1000 matrices at a time.

Table 5.2 shows the average speed (in seconds) for the first three fitness functions while

working with 40000 matrices at a time and over 10000 iterations. Through 10 runs, The average

53

Table 5.1: Average Speed in seconds for each Fitness Function using 1000 matrices

Matrix sizes F1 F2 F3

20×20 17.41 17.57 18.61
40×40 18.70 18.44 −

100×100 26.28 25.53 −
200×200 62.49 60.63 −
400×400 271.80 257.54 −
668×668 873.16 814.68 −

speed was taken and was done for each matrix size in the table. The parameter are N = 104, T = 104,

NC = 4, and NR = 2 for several matrix sizes. The purpose of this table was to compare the speed

of each fitness function while working with large number of matrices. Note that none of these runs

resulted in any Hadamard matrices. Similar to Table 5.1, F3 is unable to run with 40×40 and larger

matrices. Over 10000 iterations, comparing F1 to F2 we saw that:

• For 20×20, F2 was 1.12 seconds faster on average than F1.

• For 40×40, F2 was 3.31 seconds faster on average than F1.

• For 60×60, F2 was 6.08 seconds faster on average than F1.

• For 80×80, F2 was 19.33 seconds faster on average than F1.

• For 100×100, F2 was 35.3 seconds faster on average than F1.

So from the Tables 5.1 and 5.2, we can clearly see that F2 is the superior fitness function.

These results were showed for only 104 iterations. Typically when finding larger Hadamard matrices,

107 iterations and greater is usually needed to find them. Consequently, for a larger number of

iterations, F2 will perform significantly better. For these reasons, when computing results in Section

5.4, we use the fitness function F2 given by

F2 = nonzero
(
QT Q

)
−m ≥ 0. (5.4)

54

Table 5.2: Average Speed in seconds for each Fitness Function using 40000 matrices

Matrix sizes F1 F2 F3

20×20 60.50 59.38 64.79
40×40 103.15 99.84 −
60×60 176.28 170.20 −
80×80 275.92 256.59 −

100×100 416.68 381.38 −

Table 5.3: Average Iteration steps for a 12×12 matrix using Mutation3 kernel function

Average NC
Iterations 1 2 3 4

NR

1 34.2 35.8 37.4 35.8
2 32.3 38.8 40.5 43.4
3 35.2 42.6 47.5 50.7
4 36.3 46.0 49.9 65.7

5.3 Mutation Comparisons

Table 5.3 shows the average number of iterations required to find a 12×12 Hadamard matrix

given different NC and NR values. For each case 10 runs were made. The numbers in the table

suggests that mutating two pairs (NR = 2) in one column (NC = 1) takes the least amount of steps

to find an Hadamard matrix. In addition, the best results occurred when NC = 1 with any amount of

row pairs.

Table 5.4 shows the average number of iterations required to find a 16×16 Hadamard matrix

given different NC and NR values. For each case 10 runs were made. We found that the smallest

numbers for NR = 1 and NC = 2,3,4 were obtained with the majority runs not finding Hadamard

matrix. This suggest that either an Hadamard matrix was found fast or it wasn’t found at all. The

best results occurred when NC = 1 with any amount of row pairs. Although it took slightly more

iterations to find the Hadamard matrices, it finding them more consistently. For the case of larger

matrices, this table summarizes those results. Therefore when finding Hadamard matrices, we use a

low number of columns (NC = 1) or (NC = 2) and a larger number of row pairs depending on the

size of the matrix.

55

Table 5.4: Average Iteration steps for a 16×16 matrix using Mutation3 kernel function

Average NC
Iterations 1 2 3 4

NR

1 130.1 119.4∗ 116.0∗ 115.5∗

2 121.0 181.3 135.0 168.7
3 120.0 158.1 165.9 202.7
4 120.2 166.2 236.2 301.6

Figure 5.2: 20×20 Hadamard matrix

5.4 Results

The following are Hadamard matrices found using the fitness function F2 and the mutation

kernel function Mutation3.

• In Figure 5.2, we show a 20× 20 Hadamard matrix using the parameters k = 5, N = 103,

T = 107, NC = 2, and NR = 8. We acquired this result after 517 seconds and 258875

iterations.

• In Figure 5.3, we show a 24× 24 Hadamard matrix using the parameters k = 6, N = 103,

T = 107, NC = 2, and NR = 10. We acquired this result after 19997 seconds and 9576814

iterations.

56

Figure 5.3: 24×24 Hadamard matrix

• In Figure 5.4, we show a 28× 28 Hadamard matrix using the parameters k = 7, N = 104,

T = 108, NC = 1, and NR = 10. We acquired this result after 3054 seconds and 428082

iterations.

• In Figure 5.5, we show a 32×32 Hadamard matrix using the parameters k = 8, N = 2(104),

T = 107, NC = 1, and NR = 12. We acquired this result after 94923 seconds and 7472853

iterations.

57

Figure 5.4: 28×28 Hadamard matrix

Figure 5.5: 32×32 Hadamard matrix

58

REFERENCES

Bridges, C.L. and D.E. Goldberg (1987). “An Analysis of Reproduction and Crossover in a Binary-

Coded Genetic Algorithm.” In: ICGA. Ed. by John J. Grefenstette. Lawrence Erlbaum

Associates, pp. 9–13. ISBN: 0-8058-0158-8.

Browne, P. et al. (2021). “A Survey of the Hadamard Maximal Determinant Problem”. In: The

Electronic Journal of Combinatorics 28.4. DOI: 10.37236/10367.

Craigen, R. (1995). “Signed groups, sequences, and the asymptotic existence of Hadamard matrices”.

In: J. Combin. Theory Ser. A 71.2, pp. 241–254. ISSN: 0097-3165. DOI: 10.1016/0097-

3165(95)90002-0.

Craigen, R., J. Seberry, and X.M. Zhang (1992). “Product of four Hadamard matrices”. In: J. Combin.

Theory Ser. A 59.2, pp. 318–320. ISSN: 0097-3165. DOI: 10.1016/0097-3165(92)90073-

4.

Durstenfeld, R. (July 1964). “Algorithm 235: Random Permutation”. In: Commun. ACM 7.7, p. 420.

ISSN: 0001-0782. DOI: 10.1145/364520.364540. URL: https://doi.org/10.1145/

364520.364540.

Fisher, R.A. and F. Yates (1938). Statistical Tables for Biological, Agricultural and Medical

Research. Edinburgh, UK; London, UK: Oliver and Boyd, pp. viii + 90 + 1.

Goethals, J.M. and J.J. Seidel (1970). “A skew Hadamard matrix of order 36”. In: J. Austral. Math.

Soc. 11, pp. 343–344. ISSN: 0263-6115.

59

https://doi.org/10.37236/10367
https://doi.org/10.1016/0097-3165(95)90002-0
https://doi.org/10.1016/0097-3165(95)90002-0
https://doi.org/10.1016/0097-3165(92)90073-4
https://doi.org/10.1016/0097-3165(92)90073-4
https://doi.org/10.1145/364520.364540
https://doi.org/10.1145/364520.364540
https://doi.org/10.1145/364520.364540

Hadamard, J. (1893). “Résolution d’une question relative aux déterminants”. In: Bulletin des

Sciences Mathématiques 17, pp. 240–246.

Han, A. and K. Rochford (2020). EVGA GeForce RTX 3080 XC3 BLACK GAMING, 10G-P5-

3881-KL, 10GB GDDR6X, iCX3 Cooling, ARGB LED, LHR. https://www.evga.com/

products/product.aspx?pn=10G-P5-3881-KL.

Harris, C.R. et al. (Sept. 2020). “Array programming with NumPy”. In: Nature 585.7825, pp. 357–

362. DOI: 10.1038/s41586-020-2649-2.

Holland, J.H. (1975). Adaptation in Natural and Artificial Systems. second edition, 1992. Ann

Arbor, MI: University of Michigan Press.

Jayathilake, A.A.C.A., A.A.I. Perera, and M.A.P. Chamikara (Apr. 2014). “A New Set of 32

In-equivalent Hadamard Matrices of Order 404 of Goethals- Seidel Type”. In: Elixir 69,

pp. 23266–23272.

Jayathilake, C., A.A.I. Perera, and M.A.P. Chamikara (Jan. 2013). “Discrete Walsh-Hadamard

Transform in Signal Processing”. In: International Journal of Research in Information

Technology 1, pp. 80–89.

Kharaghani, H. and B. Tayfeh-Rezaie (2005). “A Hadamard matrix of order 428”. In: J. Combin.

Des. 13.6, pp. 435–440. ISSN: 1063-8539. DOI: 10.1002/jcd.20043. URL: https:

//doi.org/10.1002/jcd.20043.

Mohammadian, A. and B. Tayfeh-Rezaie (2019). “Hadamard matrices with few distinct types”.

In: Linear and Multilinear Algebra 67.8, pp. 1596–1605. DOI: 10.1080/03081087.2018.

1464113. eprint: https://doi.org/10.1080/03081087.2018.1464113. URL: https:

//doi.org/10.1080/03081087.2018.1464113.

60

https://www.evga.com/products/product.aspx?pn=10G-P5-3881-KL
https://www.evga.com/products/product.aspx?pn=10G-P5-3881-KL
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1002/jcd.20043
https://doi.org/10.1002/jcd.20043
https://doi.org/10.1002/jcd.20043
https://doi.org/10.1080/03081087.2018.1464113
https://doi.org/10.1080/03081087.2018.1464113
https://doi.org/10.1080/03081087.2018.1464113
https://doi.org/10.1080/03081087.2018.1464113
https://doi.org/10.1080/03081087.2018.1464113

NVIDIA, P. Vingelmann, and F.H.P. Fitzek (2020). CUDA, release: 10.2.89. URL: https://

developer.nvidia.com/cuda-toolkit.

Okuta, R. et al. (2017). “CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations”.

In: Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-

first Annual Conference on Neural Information Processing Systems (NIPS). URL: http:

//learningsys.org/nips17/assets/papers/paper_16.pdf.

Paley, R. (1933). “On orthogonal matrices”. In: J. Math. Phys. 12, pp. 311–320.

Plotkin, M. (1972). “Decomposition of Hadamard matrices”. In: J. Combinatorial Theory Ser.

A 13, pp. 127–130. ISSN: 0097-3165. DOI: 10.1016/0097-3165(72)90015-5. URL:

https://doi.org/10.1016/0097-3165(72)90015-5.

Seberry, J. (2017). Orthogonal designs. Hadamard matrices, quadratic forms and algebras, Revised

and updated edition of the 1979 original [MR0534614]. Springer, Cham, pp. xxiii+453.

ISBN: 978-3-319-59031-8. DOI: 10.1007/978-3-319-59032-5. URL: https://doi.

org/10.1007/978-3-319-59032-5.

Seberry, J. and M. Yamada (1992). “Hadamard matrices, sequences, and block designs”. In: Con-

temporary design theory. Wiley-Intersci. Ser. Discrete Math. Optim. Wiley, New York,

pp. 431–560.

Stanton, R.G. and D.A. Sprott (1958). “A family of difference sets”. In: Canadian J. Math. 10,

pp. 73–77. ISSN: 0008-414X. DOI: 10.4153/CJM-1958-008-5. URL: https://doi.org/

10.4153/CJM-1958-008-5.

Suksmono, A. (2016). “Finding a Hadamard Matrix by Simulated Annealing of Spin-Vectors”. In:

Journal of Physics: Conference Series 18(3), pp. 66–70.

61

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf
https://doi.org/10.1016/0097-3165(72)90015-5
https://doi.org/10.1016/0097-3165(72)90015-5
https://doi.org/10.1007/978-3-319-59032-5
https://doi.org/10.1007/978-3-319-59032-5
https://doi.org/10.1007/978-3-319-59032-5
https://doi.org/10.4153/CJM-1958-008-5
https://doi.org/10.4153/CJM-1958-008-5
https://doi.org/10.4153/CJM-1958-008-5

Suksmono, A.B. and Y. Minato (Oct. 2019). “Finding Hadamard Matrices by a Quantum Annealing

Machine”. In: Scientific Reports 9.14380. DOI: 10.1038/s41598-019-50473-w. URL:

https://doi.org/10.1038/s41598-019-50473-w.

Sylvester, J. (1867). “Thoughts on inverse orthogonal matrices, simultaneous sign successions, and

tessellated pavements in two or more colours, with applications to Newton’s rule, ornamental

tile-work, and the theory of numbers”. In: Philosophical Magazine 34, pp. 461–475.

Walsh, J.L. (1923). “A Closed Set of Normal Orthogonal Functions”. In: American Journal of

Mathematics 45.1, pp. 5–24. ISSN: 00029327, 10806377. URL: http://www.jstor.org/

stable/2387224.

Wirsansky, E. (2020). Hands-On Genetic Algorithms with Python: Applying genetic algorithms to

solve real-world deep learning and artificial intelligence problems. Packt Publishing. ISBN:

9781838559182. URL: https://books.google.com/books?id=A0vODwAAQBAJ.

Xia, M.J. (1992). “Some infinite classes of special Williamson matrices and difference sets”. In:

J. Combin. Theory Ser. A 61.2, pp. 230–242. ISSN: 0097-3165. DOI: 10.1016/0097-

3165(92)90020-U.

62

https://doi.org/10.1038/s41598-019-50473-w
https://doi.org/10.1038/s41598-019-50473-w
http://www.jstor.org/stable/2387224
http://www.jstor.org/stable/2387224
https://books.google.com/books?id=A0vODwAAQBAJ
https://doi.org/10.1016/0097-3165(92)90020-U
https://doi.org/10.1016/0097-3165(92)90020-U

BIOGRAPHICAL SKETCH

The author, Raven I. Ruiz was born November 28, 1997, in Mcallen, Texas. He has two

siblings, Rigoberto Ruiz Jr. and Andrew A. Ruiz with parents Rigoberto Ruiz Sr. and Araceli Ruiz.

To contact him, his email address is ruiziraven@gmail.com.

From 2012-2016, Raven was enrolled at Robert Vela High School in Edinburg, Texas. After

graduating in 2016, he enrolled at the University of Texas Rio Grande Valley in Edinburg, Texas.

He was enrolled as an undergraduate student from 2016-2020. In 2020, he became a magna cum

lauda graduate and received a Bachelor of Science in Applied Mathematics.

In 2020, he continued his education at the University of Texas Rio Grande Valley as a

graduate student and was selected to receive the College of Sciences Dean’s Graduate Assistantship

Award. He was enrolled as a graduate student from 2020-2022. In 2022, he received a Master of

Science in Applied Mathematics.

63

mailto:ruiziraven@gmail.com

	A GPU Accelerated Genetic Algorithm for the Construction of Hadamard Matrices
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	CHAPTER I. Introduction
	Hadamard Matrices
	Definition and Basic Properties
	Literature
	Applications
	Thesis Objective
	Thesis Organization

	Genetic Algorithm Method
	Natural Selection
	Darwin's Evolution Theory
	Genetic Algorithm
	Fundamental Theorem of Genetic Algorithms

	CHAPTER II. Computing on the Graphics Processing Units
	CPU vs GPU
	CuPy vs. Numpy
	Blocks, Grids, and Threads

	CHAPTER III. Previous Approach
	Simulated Annealing Algorithm

	CHAPTER IV. Genetic Algorithm and Hadamard Matrices
	Preface
	Population
	Initial Population by means of the CPU
	Initial Population by means of the GPU

	Fitness Function
	First Fitness Function
	Second Fitness Function
	Third Fitness Function
	Fourth Fitness Function

	Selection
	Selection Without Probabilities
	Selection With Probabilities

	Crossover
	Mutation
	First Mutation Function
	Second Mutation Function
	Third Mutation Function

	CHAPTER V. Computational Results
	Local Minimum
	Fitness Function Comparisons
	Mutation Comparisons
	Results

	REFERENCES
	Biographical Sketch

