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ABSTRACT

Suarez, Selena, An application of Matrices to the spread of the COVID 19. Master of Science (MS),

May, 2022, 22 pp., 6 figures, references, 11 titles.

We represented a restaurant seating arrangement using matrices by using 0 entry for someone

without covid and 1 entry for someone with covid. Using the matrices we found the best seating

arrangements to lessen the spread of covid. We also investigated if there was a factor needed to

create a formula that could calculate the matrix that shows who would be affected with covid with

each seating arrangement. However, there did not seem to be a clear pattern within the factors.

Aside from covid applications, we also investigated the symmetries in seating arrangements and the

possible combinations with these arrangements taking into consideration the equivalent matrices.

We realized that the most equivalent matrices possible was 8, which happened when there were no

symmetries in the matrices. There were 4 equivalent matrices when there was diagonal, vertical,

or rotational symmetry. There were 2 equivalent matrices when there was diagonal and rotational

or vertical and rotational symmetry. There was only 1 equivalent matrix where there was all

symmetries present. This knowledge was used to create a new method for the 4 by 4 case in order to

find all possible combinations of seating arrangements and this new method made the process much

more efficient. After concluding our results using this method, we realized there was symmetry for

possible combinations and for ways of spreading covid which can be seen in the list of tables.
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CHAPTER I

INTRODUCTION

The purpose of this study is to show how the powers of adjacency and connectivity matrices

and inite (undirected) graphs can be used to investigate the spread of Covid-19 between people

at a restaurant. We also show the best seating arrangements for restaurants given the number

of customers that have Covid. We investigate those seating arrangements further to see if there

is a formula that will track the spread of Covid-19. We first recall the notion of graphs; most

of the discussion in the rest of this section is taken from GJSW and Hog1. We will denote by

G = (V,E) = (V (G) ,E (G)) a finite (undirected) graph. The set V (G) of vertices is finite, and

the set E (G) of edges is a subset of the set {{i, j} : i, j ∈V (G)}. We allow that E may contain

loops, i.e., i may equal j for an edge {i, j} ∈ E. Two vertices connected by an edge are said to be

adjacent. Notice that two vertices may be connected by more than one edge, that a vertex need not

be connected to any other vertex, and that a vertex may be connected to itself (a loop). The order

of G is the number of vertices of G. An adjacency matrix can be made if we have any given seating

arrangement. The seating arrangement is made into a graph, G. The vertices would be the people

sitting at the table and the edges would be representing the spread of Covid through the interaction

between those vertices. The (i, j) entry of m×n adjacency matrix is 1 if the person at the position

with COVID, and 0 if the person without COVID. From this we can ask the following:

Problem 1: What is the total number of ways Covid can be spread from person A to person

D through n interactions? Problem 2: For n ∈ N, n people with covid, we need to find the best

seating arrangement to reduce the spread of covid.
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CHAPTER II

NOTATION AND PRELIMINARIES

We first consider the following example of a restaurant seating arrangement R:

Consider

 Booth A

Booth B Booth C Booth D


with d (A,B) ,d (A,C) ,d (B,C) ,d (C,D)< 6, where d (A,B) means the distance between Booth A

and Booth B. Let
a : person at Booth A

b : person at Booth B

c : person at Booth C

d : person at Booth D

and R :

a ←→ c

↕ ↗↙ ↕

b d

(2.1)

Suppose you want to know how many interactions are required to spread COVID from person a to

d. We let

mi j =

 1, if COVID can be spread from person i to person j

0, otherwise.

2



Then, we have MR =



1 1 1 0

1 1 1 0

1 1 1 1

0 0 1 1


and M2

R means that the total number of ways COVID can

be spread from person i to person j through 2 interactions. Thus, Mk
R means that the total number

of ways COVID can be spread from person i to person j through k interactions.

Figure 2.1: The above matrix is demonstrating a seating arrangement with 9 tables

Figure 2.2: The above matrix is demonstrating a seating arrangement with 16 tables.

Figure 2.3: 5 ways of spreading Covid to the people around the ones that have Covid.
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Next, we have:

Figure 2.4: The new method used for the 4x4 cases 1.

Figure 2.5: The new method used for the 4x4 cases 2.

4



Figure 2.6: The new method used for the 4x4 cases 3.
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CHAPTER III

MAIN RESULTS

n tables with only the first row and column are seated, where n≥ 3 :

Theorem 1. Let A1 =



0 1 · · · 1

1 0 · · · 0
...

... . . . ...

1 0 · · · 0


∈Mn(R) and sn−2 =



−1 −1 · · · −1

−1 −1 · · · −1
...

... . . . ...

−1 −1 · · · −1


∈Mn−2(R),

where n≥ 3. Let Sn = 0⊕ sn−2 ∈Mn(R). Then, we have

A2
1 =



n−1 0 · · · 0

0 1 · · · 1
...

... . . . ...

0 1 · · · 1


and

A1 +A2
1 +Sn =



n−1 1 · · · 1 1

1 1 · · · 1 1
...

... 0 · · · 0

1 1
... . . . ...

1 1 0 · · · 0


.

Remark. If 2n−2 tables are seated, the best is determined by the seating that has the least ways of

spreading.

n tables with only the first row and column and the diagonal tables are seated, where

n≥ 6 :
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Theorem 2. Let B1 =



1 1 · · · 1

1 1 · · · 0
...

... . . . ...

1 0 · · · 1


∈Mn(R) and tn−2 =



0 −1 · · · −1

0 0 . . . ...
... . . . . . . −1

0 · · · 0 0


∈Mn−2(R),

where n≥ 6. Let Tn =

 0 tn−2

0 0

 ∈Mn(R) (n≥ 6). Then, we have

B2
1 =



n+1 2 2 · · · 2

2 2 1 · · · 1

2 1 2 . . . ...
...

... . . . . . . 1

2 1 · · · 1 2


and

B1 +B2
1 +T ∗n +Tn =



n+4 3 3 · · · 3 3 · · · 3

3 3 1 · · · 1 1 · · · 1

3 1 3 . . . 1 0 · · · 0
...

... . . . . . . 1 . . . . . . ...

3 1 . . . 1 3 1 1 0

3 1 0 1 . . . 3 1 1
...

...
... . . . . . . . . . 3 1

3 1 0 · · · 0 1 1 3



.

Example 1. 3×3 = 9 tables with 9 people and 2 with COVID.

By using permutations of rows and columns, we observe that there are 8 possible combinations of

seating arrangements where 2 people have COVID.

We first consider C (3)21, then C (3)24 and C (3)25 and so on.

Next we consider C (3)26, then C (3)27 and C (3)23 and so on. Finally, we consider C (3)28. Therefore,

7



we have the following:

C (3)21 =


1 1 0

0 0 0

0 0 0

 ;C (3)22 =


0 0 1

1 0 0

0 0 0

 ;C (3)23 =


0 0 0

1 1 0

0 0 0

 ;

C (3)24 =


1 0 1

0 0 0

0 0 0

 ;C (3)25 =


0 1 0

1 0 0

0 0 0

 ;C (3)26 =


0 0 0

1 0 1

0 0 0

 ;

C (3)27 =


1 0 0

0 1 0

0 0 0

 ;C (3)28 =


0 0 1

0 0 0

1 0 0

 .

Remark. By a simple calculation, we can observe that C (3)21 is the best to lessen the spread of

the 2 people with COVID because this is the seating arrangement with 3 ways of spreading where

as all the others have more than 3 ways of spreading.

Example 2. 3×3 = 9 tables with 9 people and 3 with COVID.

By using permutations of rows and columns, we observe that there are 16 possible combinations of

seating arrangements where 3 people have COVID.

C (3)31 =


1 1 1

0 0 0

0 0 0

 ;C (3)32 =


1 1 0

1 0 0

0 0 0

 ;C (3)33 =


1 1 0

0 1 0

0 0 0

 .

8



C (3)34 =


1 1 0

0 0 1

0 0 0

 ;C (3)35 =


1 1 0

0 0 0

1 0 0

 ;C (3)36 =


1 1 0

0 0 0

0 1 0

 ;

C (3)37 =


1 1 0

0 0 0

0 0 1

 ;C (3)38 =


1 0 1

0 1 0

0 0 0

 ;C (3)39 =


1 0 1

0 0 0

1 0 0

 ;

C (3)310 =


1 0 0

0 1 1

0 0 0

 ;C (3)311 =


0 1 0

1 0 1

0 0 0

 ;C (3)312 =


1 0 0

0 1 0

0 0 1

 ;

C (3)313 =


1 0 0

0 0 1

1 0 0

 ;C (3)314 =


1 0 0

0 0 1

0 1 0

 ;C (3)315 =


0 1 0

1 1 0

0 0 0

 ;

C (3)316 =


0 1 0

0 1 0

0 1 0

 .

Remark. By a simple calculation, we can observe that C (3)31 is the best to lessen the spread of

the 3 people with COVID because it only has 3 ways of spreading.

Example 3. 3×3 = 9 tables with 9 people and 4 with COVID.

By using permutations of rows and columns, we observe that there are 23 possible combinations of

seating arrangements where 3 people have COVID.

C (3)41 =


1 1 1

1 0 0

0 0 0

 ;C (3)42 =


1 1 1

0 1 0

0 0 0

 ;C (3)43 =


1 1 1

0 0 0

1 0 0

 .

9



Next, we have:

C (3)44 =


1 1 1

0 0 0

0 1 0

 ;C (3)45 =


1 1 0

1 1 0

0 0 0

 ;C (3)46 =


1 1 0

1 0 1

0 0 0

 ;

C (3)47 =


1 1 0

0 1 1

0 0 0

 ;C (3)48 =


1 1 0

1 0 0

0 0 1

 ;C (3)49 =


1 1 0

0 1 0

1 0 0

 ;

C (3)410 =


1 1 0

0 1 0

0 1 0

 ;C (3)411 =


1 1 0

0 1 0

0 0 1

 ;C (3)412 =


1 1 0

0 0 1

1 0 0

 ;

C (3)413 =


1 1 0

0 0 1

0 1 0

 ;C (3)414 =


1 1 0

0 0 1

0 0 1

 ;C (3)415 =


1 1 0

0 0 0

1 1 0

 ;

C (3)416 =


1 1 0

0 0 0

1 0 1

 ;C (3)417 =


1 1 0

0 0 0

0 1 1

 ;C (3)418 =


1 0 1

0 1 0

1 0 0



C (3)419 =


1 0 1

0 1 0

0 1 0

 ;C (3)420 =


1 0 1

0 0 0

1 0 1

 ;C (3)421 =


1 0 0

0 1 1

0 1 0



C (3)422 =


0 1 0

1 1 0

0 1 0

 ;C (3)423 =


0 1 0

1 0 1

0 1 0

 .

Remark. By a simple calculation, we can observe that C (3)41 and C (3)45 are the best to lessen

the spread of the 4 people with COVID.
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Example 4. 3×3 = 9 tables with 9 people and 5 with COVID.

By using permutations of rows and columns, we observe that there are 23 possible combinations of

seating arrangements where 3 people have COVID.

C (3)51 =


1 1 1

1 0 0

1 0 0

 ;C (3)52 =


1 1 1

1 1 0

0 0 0

 ;C (3)53 =


1 1 1

1 0 1

0 0 0

 ;

C (3)54 =


1 1 1

1 0 0

0 1 0

 ;C (3)55 =


1 1 1

1 0 0

0 0 1

 ;C (3)56 =


1 1 1

0 1 0

1 0 0

 ;

C (3)57 =


1 1 1

0 1 0

0 1 0

 ;C (3)58 =


1 1 1

0 0 0

1 1 0

 ;C (3)59 =


1 1 1

0 0 0

1 0 1

 ;

C (3)510 =


1 1 0

1 1 1

0 0 0

 ;C (3)511 =


1 1 0

1 1 0

0 0 1

 ;C (3)512 =


1 1 0

1 0 1

0 1 0

 ;

C (3)513 =


1 1 0

1 0 1

0 0 1

 ;C (3)514 =


1 1 0

0 1 1

1 0 0

 ;C (3)515 =


1 1 0

0 1 1

0 1 0

 ;

C (3)516 =


1 1 0

0 1 1

0 0 1

 ;C (3)517 =


1 1 0

0 1 0

1 1 0

 ;C (3)518 =


1 1 0

0 1 0

1 0 1

 ;

C (3)519 =


1 1 0

0 1 0

0 1 1

 ;C (3)520 =


1 1 0

0 0 1

1 1 0

 ;C (3)521 =


1 1 0

0 0 1

1 0 1

 .
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Next,wehave : C (3)522 =


1 0 1

0 1 0

1 0 1

 ;C (3)523 =


0 1 0

1 1 1

0 1 0

 .

Remark. By a simple calculation, we can observe that C (3)51 and C (3)52 are the best to lessen

the spread of the 5 people with COVID with Selena factor


0 0 0

0 0 0

0 0 −1

 and


0 1 1

0 0 0

0 0 0

,

respectively.

Example 5. 3×3 = 9 tables with 9 people and 6 with COVID.

By using permutations of rows and columns, we observe that there are 16 possible combinations of

seating arrangements where 3 people have COVID.

C (3)61 =


1 1 1

1 1 1

0 0 0

 ;C (3)62 =


1 1 1

0 1 1

0 0 1

 ;C (3)63 =


1 1 1

0 1 1

0 1 0

 ;

C (3)64 =


1 1 1

1 1 0

0 0 1

 ;C (3)65 =


1 1 1

1 0 1

1 0 0

 ;C (3)66 =


1 1 1

1 0 1

0 1 0

 ;

C (3)67 =


1 1 1

0 0 1

1 0 1

 ;C (3)68 =


1 0 1

1 1 0

1 0 1

 ;C (3)69 =


1 0 1

1 0 1

1 0 1

 .
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next, we have:

C (3)610 =


0 0 1

1 1 1

1 0 1

 ;C (3)611 =


0 1 1

1 1 1

0 1 0

 ;C (3)612 =


1 0 1

1 0 1

0 1 1

 ;

C (3)613 =


0 1 1

0 1 1

1 1 0

 ;C (3)614 =


1 0 1

0 1 1

1 1 0

 ;C (3)615 =


0 1 1

1 1 0

0 1 1

 ;

C (3)616 =


1 1 0

1 0 1

0 1 1

 .

Remark. (i) Recall that two n by n matrices A and B are permutationally equivalent to each other,

if there exists a permutation matrix Pπ such that A = P−1
π BPπ

COVIDs
possible

combinations
Best seating Selena factors Ways of spreading

0 1 0 No 0

1 3 C (3)11 S (3)11 2

2 8 C (3)21 S (3)21 3

3 16 C (3)31 S (3)31 3

4 23 C (3)41,C (3)45 S (3)41 ,S (3)45 4

5 23 C (3)51,C (3)52 S (3)51 ,S (3)52 4

6 16 C (3)61 S (3)61 3

7 8 C (3)71 No 3

8 3 C (3)81 No 2

9 1 C (3)91 No 0
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where

C (3)11 =


1 0 0

0 0 0

0 0 0

 ,C (3)21 =


1 1 0

0 0 0

0 0 0

 ,C (3)31 =


1 1 1

0 0 0

0 0 0



C (3)41 =


1 1 1

1 0 0

0 0 0

 ,C (3)42 =


1 1 0

1 1 0

0 0 0

 ,C (3)51 =


1 1 1

1 1 0

0 0 0

 ,

C (3)52 =


1 1 1

1 0 0

1 0 0

C (3)61 =


1 1 1

1 1 1

0 0 0

 ,C (3)71 =


1 1 1

1 1 1

1 0 0

 ,

C (3)81 =


1 1 1

1 1 1

1 1 0

 ,C (3)91 =


1 1 1

1 1 1

1 1 1

 ;S (3)11 =


0 0 0

0 0 1

0 1 0



S (3)21 =


0 0 1

1 1 0

0 0 0

 ,S (3)31 =


0 0 0

1 1 1

0 0 0

 ,S (3)41 =


0 0 1

0 0 0

0 0 0

 ,

S (3)45 =


0 1 1

1 0 0

1 0 0

 ,S (3)51 =


0 1 1

0 0 0

0 0 0

 ,S (3)52 =


0 0 0

0 0 0

0 0 −1



S (3)61 =


1 1 1

0 0 0

0 0 0

 .

(ii) We can find the possible combinations through the permutational equivalence. We can also

find them using the vertical, diagonal, or rotational symmetry methods.
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(iii)

COVIDs
possible

combinations
Best seating Selena factors

Ways of

spreading

3 77 C (4)31 ,C (4)32 S (4)31 ,S (4)32 4

4 252 C (4)41 ,C (4)42 S (4)41 ,S (4)42 4

5 567 C (4)51 ,C (4)52 S (4)51 ,S (4)52 5

6 1053 C (4)61 S (4)61 5

7 1465 C (4)71 S (4)71 5

8 1674 C (4)81 S (4)81 4

9 1465 C (4)91 S (4)91 5

10 1053 C (4)10,1 S (4)10,1 5

11 567 C (4)11,1 ,C (4)11,2 S (4)11,1 ,S (4)11,2 5

12 252 C (4)12,1 ,C (4)12,2 No, S (4)12,2 4

C (4)31 =



1 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0


, C (4)32 =



1 1 1 0

0 0 0 0

0 0 0 0

0 0 0 0


,

S (4)31 =



0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0


, S (4)32 =



0 0 0 1

1 1 1 0

0 0 0 0

0 0 0 0


,
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Next, we have: C (4)41 =



1 1 0 0

1 1 0 0

0 0 0 0

0 0 0 0


, C (4)42 =



1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0


,

S (4)41 =



0 0 1 0

0 0 1 0

1 1 0 0

0 0 0 0


, S (4)42 =



0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0


,

C (4)51 =



1 1 1 1

1 0 0 0

0 0 0 0

0 0 0 0


, C (4)52 =



1 1 0 0

1 1 0 0

1 0 0 0

0 0 0 0


,

S (4)51 =



0 0 0 0

0 0 0 0

1 0 0 0

0 0 0 0


, S (4)52 =



0 0 1 0

0 0 1 0

0 0 0 0

1 0 0 0


,

C (4)61 =



1 1 1 1

1 1 0 0

0 0 0 0

0 0 0 0


, S (4)61 =



0 0 0 0

0 0 0 0

1 1 0 0

0 0 0 0


,

C (4)71 =



1 1 1 1

1 1 1 0

0 0 0 0

0 0 0 0


, S (4)71 =



0 0 0 0

0 0 0 0

1 1 1 0

0 0 0 0


,
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C (4)81 =



1 1 1 1

1 1 1 1

0 0 0 0

0 0 0 0


, S (4)81 =



0 0 0 0

0 0 0 0

1 1 1 1

0 0 0 0


,

C (4)91 =



1 1 1 1

1 1 1 1

1 0 0 0

0 0 0 0


, S (4)91 =



0 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0


,

C (4)10,1 =



1 1 1 1

1 1 1 1

1 1 0 0

0 0 0 0


, S (4)10,1 =



0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0


,

C (4)11,1 =



1 1 1 1

1 1 1 1

1 1 0 0

1 0 0 0


, C (4)11,2 =



1 1 1 1

1 1 1 1

1 1 1 0

0 0 0 0


,

S (4)11,1 =



0 0 0 0

0 0 0 0

0 0 0 0

0 0 −1 −1


, S (4)11,2 =



0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 0


,

C (4)12,1 =



1 1 1 1

1 1 1 1

1 1 0 0

1 1 0 0


, C (4)12,2 =



1 1 1 1

1 1 1 1

1 1 1 1

0 0 0 0


,
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S (4)12,2 =



0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1


,
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CHAPTER IV

FUTURE WORK AND OPEN QUESTIONS

(i) Investigate cases where n≥ 5 We need to see if the symmetry in possible combinations

and the ways of spreading continues to occur for the cases 5 by 5 and larger.

(ii) Investigate the Selena factors further. Possibly looking into further detail in the factors or seeing

how they can be improved. In Theorem 1 and Theorem 2, there was a formula developed using the

Selena factors, we want to expand this research in more detail.
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