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ABSTRACT 

Karatas, Sumeyra, The Impacts of Supporting Productive Struggle Teaching Practice on 

Students’ Conceptual Understanding, Procedural Fluency, and Strategic Competence: The Case 

of Quadratic Functions. Doctor of Education (Ed.D.), December, 2022, 104 pp., 19 tables, 12 

figures, references, 105 titles.  

This quasi-experimental design study aimed to examine how exposure to supporting 

productive struggle teaching practice impacts students’ conceptual understanding, procedural 

fluency, and strategic competence when solving high-demanding quadratic functions problem-

solving tasks. Results suggested that students in the supporting productive struggle teaching 

practice group performed significantly better than students who received facilitated instruction 

in every three strands of mathematical proficiency (i.e., conceptual understanding, procedural 

fluency, and strategic competence). By examining the effectiveness of supporting productive 

struggle teaching practice, this study offers insight into the conceptions and strategies teachers 

can implement in their classrooms to improve students’ mathematical proficiency.  
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CHAPTER I 

INTRODUCTION 

The “struggle” is viewed as problematic in the United States mathematics classroom 

(Sherman et al., 2009) and conveys negative meaning (Hiebert & Wearne, 2003). Educators, 

parents, and policymakers seek solutions to overcome struggles because they view struggles as 

problematic (Adams & Hamm, 2008). However, Hiebert and Grouws (2007) suggest that 

struggling to make sense of mathematics is crucial in learning mathematics with understanding. 

The first standard of the Common Core Standards for Mathematical Practice (CCSSM) also 

refers to struggle as the process to "make sense of problems and persevere in solving them" 

(National Governors Association Center for Best Practices (NGA Center) and Council of Chief 

State School Officers (CCSSO), 2010, p. 9). Perseverance is a vital learner characteristic and an 

essential element in problem-solving and learning mathematics (Pasquale, 2016). Kapur (2010) 

argues that designing lessons for persistence are central to productive failure and effective 

mathematics learning. When students struggle but keep trying to make sense of a problem, they 

experience productive struggle (Pasquale, 2016). Besides, Peterson and Viramontes (2017) note 

that sense-making is an indicator of productive struggle. Warshauer (2011) also supports the 

connection between the idea of struggle and sense-making and reasoning. For students’ 

productive struggle, I refer to the definition "effort to make sense of mathematics, to figure 

something out that is not immediately apparent" (Hiebert & Grouws, 2007, p. 287). 
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Common Core State Standards for Mathematics [CCSSM] were released in 2010 to 

ensure that all students graduate from high school as college and career ready (CCSSI, 2010). 

The adoption of CCSSM changed the focus of mathematics standards from only developing 

skills efficiency to rigorous thinking, conceptual understanding, and reasoning (Stein et al., 

2017). However, CCSSM documents do not provide information about implementing these 

standards in the mathematics classroom. Therefore, The National Council of Teachers of 

Mathematics (NCTM, 2014) published the Principals to Actions book to help practitioners 

implement CCSSM successfully and ensure mathematics success for all students. NCTM (2014) 

identified eight research-informed high-leverage effective mathematics teaching practices as (a) 

establishing mathematics goals to focus on learning; (b) implementing tasks that promote 

reasoning and problem solving; (c) using and connecting mathematical representations; (d) 

facilitating meaningful mathematical discourse; (e) posing purposeful questions; (f) building 

procedural fluency from conceptual understanding; (g) supporting productive struggle in learning 

mathematics; and (h) eliciting and using evidence of student thinking. These mathematics 

teaching practices provide a framework to improve teaching and learning mathematics.  

Supporting productive struggle in learning mathematics is listed as the seventh effective 

mathematics teaching practice. "Effective mathematics teaching consistently provides students, 

individually and collectively, with opportunities and supports to engage in productive struggle as 

they grapple with mathematical ideas and relationships" (NCTM, 2014, p. 48). In this teaching 

practice, students’ struggles became an opportunity to delve into the problem’s structure and 

understand the relationship among mathematical ideas instead of only focusing on finding the 

correct answer (NCTM, 2014). By using the productive struggle teaching practice, students come 

to realize that they can do well in mathematics with effort and perseverance. Therefore, the 
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implementation of the Common Core State Standards Initiative (CCSSI) (2010) requires teachers 

to go beyond facts and procedures and design lessons that allow applying strategies in problem-

solving and understanding mathematical ideas (Zeybek, 2016). Thus, teachers need to set 

classroom norms that struggling to make sense of mathematics is seen as a natural and essential 

part of learning (Zeybek, 2016). 

Productive struggle is a crucial element in learning mathematics conceptually, so students 

should be given opportunities to struggle productively (Hiebert & Grouws, 2007; Warshauer, 

2015). Learning mathematics, referred to as mathematical proficiency, has been defined as 

developing five intervened strands: conceptual understanding, procedural fluency, strategic 

competence, adaptive reasoning, and productive disposition (Kilpatrick et al., 2001). The five 

strands provide a framework to discuss knowledge, abilities, skills, and beliefs that construct 

mathematical proficiency (Kilpatrick et al., 2001). This framework is similar to the recent 

National Assessment of Educational Progress (NAEP) assessments. Still, NAEP’s framework 

focuses on three mathematical abilities: conceptual understanding, procedural fluency, and 

strategic competence (Kilpatrick et al., 2001). This study examined the impacts of supporting 

productive struggle on these three strands of mathematical proficiency. By incorporating 

supporting productive struggle teaching practice, students have an opportunity to make sense of 

and understand important mathematics (Warshauer, 2015). When teachers observe that students 

struggle or they appear confused, they need to use it as an opportunity to deepen students’ 

understanding of mathematics (Warshauer, 2015). 

When students struggle to apply learning in new and challenging ways, they are more 

likely to probe for novel or unexpected connections, consider multiple ways to solve problems, 

and wrestle with the underlying differences between correct and incorrect solutions, all 
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hallmarks of long-term retention (Pasquale, 2016). They also develop resilience, complex 

reasoning skills, and how to set and achieve goals while creating a healthy attitude toward 

making mistakes.   

Statement of the Problem 

Students in the United States rated classroom teaching more effective if the instruction is 

less challenging and leads to higher immediate performance (Kornell & Hausman, 2016). 

Students often believe that low-effort studying strategies are the most effective favoring passive 

learning strategies such as memorization, highlighting, rereading, and listening to lectures 

(Deslauriers et al., 2019). Researchers discovered that students preferred lectures to challenge 

activities like hands-on experiments and group problem-solving. Unfortunately, the lectured 

students scored lower than their counterparts on their follow-up tests. Kapur (2008) also found 

that 7th-grade students who regularly practice solving complex open-ended problems became 

sophisticated thinkers outscoring their peers from a more traditional lecture-based classroom by 

57 percent. Temporary confusion and frustration are not necessarily things to be avoided; 

instead, they are a precursor to deeper, more durable learning (Deslauriers et al., 2019; Kapur, 

2008). 

Peterson and Viramontes (2017) argued that supporting productive struggle empowers a 

growth mindset. Students with a growth mindset believe that intelligence can be developed 

through effort, so they see the struggle as a learning opportunity (NCTM, 2014). Students with a 

fixed mindset believe that intelligence or math ability is an innate trait and learning mathematics 

should come naturally, so they are more likely to give up (Dweck, 2008). There is a belief that 

mathematics is something one is born with (Pasquale, 2016). You are good at math or not, so the 
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struggle is not observed as an opportunity to learn. Students have a fixed mindset toward 

mathematics compared to other subjects (Dweck, 2008). However, mindset can be changed by 

valuing students’ perseverance, efforts, varied strategies in solving problems, and willingness to 

ask questions (Dweck, 2008). 

Studies have shown that providing opportunities to engage in productive struggle 

improves students’ performance and conceptual understanding of mathematics. For example, 

Kapur (2008) found that engagement, persistence, motivation, and struggle lead to developing a 

deeper understanding. Jonsson et al.’s (2014) findings support Kapur’s results. The authors 

stated that students who are encouraged to struggle productively and create their methods 

perform better than those who use instructed procedures. Bjork and Bjork (2011) also found that 

the conditions that challenge learners may lower the rate of apparent learning but maximize long-

term retention and transfer. Teaching with productive struggle has long-term benefits as applying 

their learning to new problem situations (Kapur, 2010). 

Kapur (2011) examined the role of productive failure in solving speed problems. Miller 

(2020) also found that productive struggle experiences enhance high school students' ability to 

progress through challenges in an engineering course. Kapur (2011) and Miller (2020) suggested 

future researchers extend the study to other subject areas. After reviewing high-ranked 

mathematics education journals, I did not come across any study which used quadratic functions 

as a concept regarding productive struggle in learning mathematics. Hence, I selected and 

designed the tasks related to the quadratic functions.   

Preceding studies support a link between students’ engagement in productive struggle 

and meaningful mathematics learning. Warshauer (2015) explored what students’ productive 
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struggle looks like, how teachers respond to students’ struggles, and what teacher actions are 

productive in student engagement and conceptual understanding in a middle school mathematics 

classroom. The author recommended assessing how productive struggle contributes to student 

learning to future researchers. In my study, I aim to investigate how student exposure to 

productive struggle learning experiences contributes to students’ conceptual understanding, 

procedural fluency, and strategic competence in solving high-demanding problem-solving 

questions in quadratic functions. The participants of previous studies were generally middle 

school students (Kapur, 2011; Warshauer, 2015) and pre-service teachers (Warshauer et al., 

2021; Zeybek, 2016). Thus, this study will contribute to the literature by examining the role of 

productive struggle on high school students.  

The school district where I conducted my study is a charter public school located in the 

south-central region of the United States. The district and school administrators are more 

concerned about test scores than developing mathematical proficiency. Most mathematics 

teachers in the school use traditional teaching methods that provide direct instruction, and 

students take notes and practice. Implementing supporting productive struggle teaching practice 

might be eye-opening for teachers and stakeholders in my school district to promote meaningful 

mathematics learning. This study contributes to mathematics education and learning 

environments enhanced by supporting productive struggle in learning mathematics. Mathematics 

teachers, coaches, curriculum developers, students, and parents would benefit from supporting 

productive struggle teaching practice to improve mathematical proficiency.  
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Purpose of the Study 

The purpose of the study is to examine how exposure to supporting productive struggle 

teaching practice impacts students’ conceptual understanding, procedural fluency, and strategic 

competence in the topic of quadratic functions.  

I focused my study on the following research question. 

Research Question 

What are the differences regarding high school students’ conceptual understanding, 

procedural fluency, and strategic competence when solving high-demanding quadratic functions 

problem-solving tasks between students exposed to productive struggle teaching practice and 

those who received facilitated instruction? 

Null Hypotheses (H0). The mean of the posttest scores for conceptual understanding, 

procedural fluency, and strategic competence is equal for the treatment and comparison groups 

after controlling for the effects of the pretest scores.  

Alternative Hypotheses (H1). The mean of the posttest scores for conceptual 

understanding, procedural fluency, and strategic competence is not equal for the treatment and 

comparison groups after controlling for the effects of the pretest scores. 

Significance of the Study 

Dominant cultural beliefs about teaching and learning mathematics hinder the 

implementation of effective teaching and learning practices (Philipp, 2007). Many teachers and 

parents believe that students should be taught as they were taught (NCTM, 2014). According to 
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the video studies conducted by Trends in Mathematics and Science Study (TIMMS) in 1995 and 

1999 (as cited by Peterson & Viramontes, 2017), a typical math class involves reviewing the 

homework, teacher-directed instruction, and practice. This scene is often observed in American 

classrooms for decades and continues to be apparent (Hiebert, 2013).  

Stigler and Hiebert (2009) videotaped mathematics lessons in seven countries that 

performed high on international mathematics assessments to compare teaching in higher-

achieving and lower-achieving countries. U.S. mathematics instruction does not support asking 

questions to reason and think mathematical ideas compared to high-achieving countries 

(Banilower et al., 2006). The authors stated that high achieving countries’ common practice was 

"student engagement in an active struggle with core mathematics concepts and procedures" (p. 

27). However, U.S. teachers wanted to rescue the students by doing the work for them. They 

ignored discussing the conceptual aspects of problems, so teachers did not allow students to 

struggle to solve the problem. Instead, they excessively scaffolded the tasks and took away 

students’ thinking. The national assessment results show that these teaching methods are not 

providing evidence of high performance. Only 6.9% of 17-year-old students scored at or above 

proficient level according to the National Assessment of Educational Progress (NAEP) (National 

Center for Education Statistics, 2007). 

A typical U.S. mathematics classroom involves direct teaching where students observe 

the teacher and are assigned practice questions to solve using demonstrated methods (Kapur, 

2011). Having students practice the concept after explicitly modeling is expected in the U.S. 

mathematics classroom rather than supporting productive struggle in learning mathematics 

practice (Peterson & Viramontes, 2017). Hiebert and Wearne (2003) also noted that U.S. 

teachers rarely engage students in productive struggle. However, when students have a risk-free 
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classroom structure and teachers emphasize mistakes as a learning opportunity, they will be 

motivated to persist (Kapur, 2011).  

Warshauer (2015) suggested a range of teacher support when students struggle to 

advance students toward a resolution of understanding. Warshauer (2015) illustrated four 

strategies to support students’ struggle productively by asking questions about their thinking and 

the source of their struggle, encouraging students to reflect on their work and supporting their 

struggle to explain their thinking, giving time to struggle but helping students to manage their 

struggle without lowering the demand and stepping in to explain everything, acknowledging 

students that struggle is a natural part of learning. Stigler and Hiebert (2009) described such 

support as providing students with opportunities to think more deeply about mathematical 

concepts. The teacher’s responses to students’ struggles have the power to enhance the level of 

learning depending on the goal of the task, students’ prior knowledge, and students’ willingness 

(Warshauer, 2015). 

Warshauer (2015) examined 186 episodes of struggle visible to teachers in middle school 

and identified four types of struggles: getting started, carrying out a process, giving a 

mathematical explanation, and expressing misconceptions and errors. The author did not 

examine how supporting productive struggle impacted students’ mathematics understanding and 

suggested future researchers explore the impacts of productive struggle on students’ mathematics 

understanding. Empirical research on productive struggle and how to address struggle 

productively is limited (Warshauer, 2015). Therefore, it is crucial to know what productive 

struggle is and how supporting productive struggle contributes to students’ learning (Peterson & 

Viramontes, 2017). This study aims to contribute to the literature regarding how engaging 

students in productive struggle promotes students’ mathematics understanding.  
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CHAPTER II 

REVIEW OF LITERATURE 

The literature review examined the existing research supporting productive struggle 

teaching practice and its impacts on mathematical proficiency. The literature review began by 

defining productive struggle and then discussed constructivism as a broad theory of learning. 

This discussion included a brief description of both constructivism and social- constructivism, 

educational possibilities of the theory, highlighting how the theory is used in the mathematics 

classroom, as well as the connection between productive struggle and social constructivism. 

Then, the chapter examined the teaching strategies that support the productive struggle and the 

role of tasks in supporting the productive struggle. Finally, the role of productive struggle in 

mathematical proficiency: conceptual understanding, procedural fluency, and strategic 

competence is presented in this section.  

Productive Struggle 

Warshauer (2011) defined productive struggle as "a particular kind of phenomenon that 

may occur as students engage in a mathematical activity or problem that is challenging but 

reasonably within the students’ capabilities, possibly with some assistance" (p. 10). The author 

noted that struggle or difficulties push the students in their thinking and deepen their 

understanding. Warshauer (2011) pointed out that struggle may or may not be visible as students 

engage in a mathematical task. The struggle may be manifested externally, so it is observable or 
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may not be visible to teachers or observers. Warshauer (2011) stated that the manifestation of 

internal struggle is independent sense-making. The high-demand task provokes struggle and 

provides more incidence of struggle. One can see how internal thought is crucial in self-reflection 

when the struggle is considered. Internal thoughts could be affected by external factors like the 

presence of others. 

Hiebert and Grouws (2007) defined productive struggle as an "effort to make sense of 

mathematics, to figure something out that is not immediately apparent" (p. 387). According to 

Granberg (2016), the struggle involves dealing with insufficient prior knowledge and interpreting 

new information to construct new knowledge. Peterson and Viramontes (2017) indicated that 

struggle in the mathematics classroom occurs when students are asked to solve a problem that 

does not have an obvious way to solve and connect mathematical ideas and strategies. The 

authors also pointed out that struggle does not mean that students will be given complex 

problems and let them struggle and get frustrated. 

I adopted Hiebert and Grow`s (2007) definition of productive struggle, which is an effort 

to make sense of mathematics, to figure something out that is not immediately apparent.  Some 

learning theories refer to struggle as a cognitive process internal to the learner. Dewey (1933) 

pointed out the process of struggle is necessary to construct a deep understanding. It starts with 

engaging in perplexity and doubt and continues as learners put things together to make sense and 

resolve the dilemma. Dewey (1933) suggested providing opportunities for students to muddle 

through the process of solving challenging problems rather than practice and drills. Besides, Piaget 

(1977) referred to struggle as disequilibrium, which challenges our thinking to restore equilibrium 

by building new information on existing knowledge. Disequilibrium occurs between internal 

schemas and the external environment. Productive struggle fits within the constructivist approach 
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(Miller, 2020). I base the concept of struggle on the constructivist theory. Constructivism and its’ 

connection to mathematics learning and teaching and the relationship between constructivism and 

supporting productive struggle teaching practice were reviewed in the following sections.  

Constructivism 

Constructivism is the combination of multiple theories, and it is assimilated from 

behaviorism and cognitivism (Amineh & Asl, 2015). Mahoney (2005) points out that the words 

"constructivism," "constructivist," or related terms became popular in the second half of the 20th 

century. The most popular educational constructivism types are Jian Piaget's cognitive 

constructivism and Lev Vygotsky's social constructivism (Amineh & Asl, 2015).  

The constructivist approach started with Jean Piaget, whose work emphasized 

understanding child development and learning as a construction process (Pritchard & Woollard, 

2013). Bada and Olusegun (2015) defined constructivism as a learning theory that explains how 

human beings learn and gain knowledge. The constructivist approach describes learning as the 

process of constructing meaning (Caffarella & Merriam, 1999). People build new knowledge upon 

prior knowledge and experiences by asking questions and assessing the current knowledge (Bada 

& Olusegun, 2015). 

Amineh and Asl (2015) stated that constructivism explains how learners can sense 

material and how materials can be thought effectively. Piaget (1977) claims that learning is an 

active process. Piaget explains that disequilibrium occurs when we encounter a situation that 

challenges our thinking, and we should change our thinking to restore equilibrium by building 

new information on existing knowledge. Constructivist learning is an active rather than passive 

process, so students should have opportunities to actively construct new knowledge (Bada & 
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Olusegun, 2015). Constructivist pedagogy focuses on student-centered instruction, autonomy, 

real-world applications, social interaction, activating students’ prior knowledge, and continuous 

formative assessment (Abdulwahed et al., 2012). 

The constructivist approach emphasizes the importance of student-centered instruction 

and understanding students' thinking processes (Even & Tirosh, 2002). Students build new 

knowledge upon their current knowledge and experiences, so each student has a different way of 

learning a new concept (Eraslan, 2005). Therefore, teachers need to create a learning atmosphere 

where students can construct their learning through authentic activities. Having students 

construct their knowledge does not mean acting like they are experts. Students need guidance to 

develop background knowledge and scaffold new information (Krahenbuhl, 2016). When students 

are exposed to a lot of new information, they may feel overwhelmed, and effective learning may 

not occur (Krahenbuhl, 2016). Teachers need to consider and be aware of students' deficiencies 

and guide them through the process of knowledge construction (Krahenbuhl, 2016). Teachers have 

a crucial role in checking students’ prior knowledge and applying what they learned in class 

(Amineh & Asl, 2015). Mvududu and Thiel-Burgess (2012) also suggest that teachers consider 

students’ knowledge and provide opportunities to apply the knowledge to practice. The teachers’ 

part is being aware of students' prior knowledge and challenging and supporting students during 

learning (NCTM, 2000).  

On the other hand, Amineh and Asl (2015) defined social constructivism as a theory of 

knowledge that learning occurs through coordinating with other people. Vygotsky contributed to 

the concept of teaching and learning in several ways, pointing out the zone of proximal 

development and scaffolding (Goodman, 2010). Vygotsky (1980) introduced the zone of proximal 

development (ZPD), which is the distance between actual development and potential development 
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(Connery & Curran, 2010). The actual development (child can perform alone) and the potential 

development (child can do with help) should be distinguished to understand the relationship 

between learning and development (Palincsar, 1998). Connery and Curran (2010) stressed that 

ZPD connects current individual conception to an advanced understanding level through 

collaboration. Productive interactions direct instruction toward the zone of proximal development 

(Palincsar, 1998). 

Vygotsky (1980) claims that cognitive skills develop on a social level first and are then 

internalized by individuals. Students may start learning with collaborative or group work and 

then individually contribute to the world of expertise (Amineh & Asl, 2015). Internal 

development occurs when students interact with their peers or other individuals during the 

learning process (Ginga & Zakariya, 2020). Learning warns of different internal development 

processes that can be activated if the learner has an opportunity to interact with others 

(Vygotsky, 1980). Interacting with others through group discussions improves students’ higher-

order thinking skills (Palincsar, 1998). Hence, students need interaction with their classmates or 

teachers to develop conceptual understanding and internalize knowledge (Ginga & Zakariya, 

2020).   

Schunk (2012) listed several methods that use social constructivism: instructional 

scaffolding, reciprocal teaching, peer collaboration, apprenticeships, cooperative learning, and 

jigsaw methods. For instance, instructional scaffolding is defined as a procedure to design tasks 

beyond students' capabilities. The teacher is more active and models a skill to support the 

learners at the beginning. And then, the teacher reduces scaffolding to let the learners develop 

skills independently. The primary factor of scaffolding is keeping the learner in the zone of 

proximal development. 
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Learning and Teaching Mathematics from Social-Constructivist Perspective 

Educators are concerned about low mathematics performance, so it is necessary to 

examine innovative teaching methods (Ginga & Zakariya, 2020). Implementing teaching 

methods derived from learning theories to enhance mathematics instruction and learning 

effectiveness is crucial (Ginga & Zakariya, 2020). Trends in teaching and learning altered from 

behaviorism to cognitivism and then constructivism (Abdulwahed et al., 2012). Therefore, the 

new focus requires some differences in mathematics teaching techniques, assessment methods, 

and classroom practices (Eraslan, 2005). 

Ernest (1998) points out that the social aspect of learning is disregarded in epistemology 

and philosophy. Individual knowers, cognizing the subject, and objectivized knowledge is some 

of the main focus of traditional epistemologists. The psychology of mathematics education's 

primary issue might be seeking a theory of learning mathematics to guide teaching and learning 

(Ernest, 1998). Piaget's Stage Theory affected the research on mathematics learning and 

conceptual development in the 1980s (Ernest, 1998). Then, radical constructivism became more 

popular due to its construction of meaning (Ernest, 1998). However, radical constructivism 

focuses on the individual aspect of learning rather than the social part of learning (Ernest, 1998). 

That's why social constructivist theory plays a crucial role in acknowledging both the social 

process and individual sense-making in learning mathematics (Ernest, 1998). Ernest adopted the 

Vygotskian roots of constructivism to develop his social constructivist theory of learning 

mathematics. 

Ernest (1998) stated that the philosophy of mathematics considered knowledge as a 

product rather than the process of coming to know. Ernest (1998) used the term conceptual 
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continuity in mathematics to refer to that mathematical knowledge is constructed from various 

meaningful elements such as symbols, notations, problems, explanations, proofs, and more. 

Learning a new concept requires combining some of these components, so most of the original 

concept is similar to pre-existing elements (Ernest, 1998). If mathematics is seen as a social 

construct, it would significantly impact goals, content, teaching methods, assessment, and 

teachers’ beliefs (Ernest, 1998). The view of mathematics could be redesigned to give everybody 

access and power. If mathematics is not a finished product, and it keeps developing by human 

beings, we need to see the reflection of these ideas on school mathematics curriculums (Ernest, 

1998).  

However, the typical U.S. classroom environment involves teachers presenting a topic to 

the class, and students practice using the demonstrated methods (Stigler & Hiebert, 2009). 

Teacher-centered instruction makes students passive and does not improve their problem-solving 

and critical thinking skills (Koc & Demirel, 2002). Obioma (2011) also pointed out how poor 

teaching strategies negatively affect students’ understanding of mathematics. Even assessing the 

students differs from traditional teaching to a constructivist teaching approach. In the traditional 

teaching approach, teachers use tests to measure students' knowledge; however, it does not 

provide information about students’ mathematical understanding (Eraslan, 2005). Students' view 

and thinking is the way of assessment in the constructivist approach (Eraslan, 2005). Open-ended 

questions and problem-solving tasks became central for evaluating mathematical knowledge 

from the constructivist perspective (Ginsburg, 1997). 

Recent studies showed that the social constructivist teaching approach enhanced students’ 

performance in mathematics. For example, Ginga and Zakariya (2020) found that the treatment 

group that experienced a social constructivist instructional approach performed significantly 
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better than the conventional teaching group. Similar results were obtained by Bay et al. (2012) 

and Ilyas et al. (2013). Bay et al. (2012) conducted a study on pre-service teachers to investigate 

the impacts of authentic task-based socio-constructivist instruction on participants’ problem-

solving and metacognitive skills. The social constructivist instruction group improved problem-

solving and metacognitive skills more than the comparison group (Bay et al., 2012). Ilyas et al. 

(2013) studied how Vygotsky's social constructivist approach impacts students’ understanding of 

algebra. The social constructivist approach provided peer-interaction opportunities, sharing 

ideas, listening, observing others' viewpoints, and a friendly collaborative learning atmosphere. 

While the treatment group is taught by social constructivist instruction, the comparison group is 

taught by one-way teaching. While the pretest scores were parallel, the treatment group 

performed significantly better than the comparison group in the post-test. These studies’ findings 

show that the social constructivist approach enhances learning outcomes and creates a 

collaborative learning environment. 

Productive Struggle and Social-Constructivist Theory 

Both personal constructions and social interaction play crucial roles in mathematics 

understanding (Cobb, 2000). Most of the constructivist teaching methods match with the 

National Council of Teachers of Mathematics (NCTM) Principles and Standards (2000) 

(Hennessey et al., 2012). NCTM standards support classroom activities that provide meaningful 

peer interaction and improve students’ reasoning skills (Hennessey et al., 2012). Driscoll (1994) 

claims that the constructivist learning theory supports students' conceptual and logical 

development. Knowing students’ prior knowledge and implementing different representations of 

information are some of the other corresponding practices of the constructivist approach and 

NCTM (2000) standards (Hennessey et al., 2012). NCTM (2000) standards also state that 
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students must learn mathematics with conceptual understanding by constructing new knowledge 

on prior knowledge and experience. 

The social-constructivist theory also aligns with the principles of effective mathematics 

teaching practices proposed by NCTM (2014). NCTM (2014) suggested constructing 

mathematics knowledge from the learners’ perceptions and experiences by participating in 

informed exploration and cooperative learning activities. Besides, one of the students’ actions of 

supporting productive struggle teaching practice refers to collaborative learning as helping one 

another without giving the answer or explaining what to do to solve the question (NCTM, 2014). 

Recent research also supports that mathematic learning is an active process in that students 

construct their knowledge from their experience by cooperating with their peers, teachers, and 

other adults (Hiebert & Grouws, 2007). Learners should experience constructing knowledge 

socially through discourse, activity, and interaction related to meaningful problems (NCTM, 

2014). 

NCTM’s (2014) Principals to Action book will remain only ideas until all stakeholders 

take action using research-informed decisions. The most important stakeholder is the teacher 

because teachers are the ones who can implement effective mathematics teaching practices 

proposed by NCTM (2014) in the classroom. The classroom and learning environment should 

allow students to engage in meaningful tasks that enhance mathematical understanding actively, 

problem-solving, and reasoning (NCTM, 2014). Interaction with peers or teachers, making sense 

of mathematics, comparing different ways to solve problems, and verifying solutions are some of 

the classroom routines that should be observable to ensure mathematics success for all students 

(NCTM, 2014). In such classrooms, students may take hours or even days to solve a problem by 

working cooperatively with their classmates. Teachers use questioning techniques effectively 
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and provide opportunities for productive struggle. Teachers should implement lesson plans that 

empower a productive disposition toward mathematics learning, curiosity, and perseverance 

(NCTM, 2014). Setting risk-free classroom environments where students can externalize their 

struggles and obtaining the wrong answer is seen as an opportunity to explore and grow support 

and motivates students to persist and struggle (Carter, 2008). 

A Vygotskian perspective suggests that internal mental functioning and social 

interactions direct students' struggle toward understanding (Warshauer, 2015). For instance, 

when students struggle and make mistakes, the teacher uses this as an opportunity to question, 

explain, justify, and extend their ideas to their peers (Hoffman, 2009). Such classroom activities 

promote productive struggle and sense-making (Warshauer, 2015).  

Teaching Strategies to Support Productive Struggle 

Teaching mathematics effectively requires teachers to be skilled at teaching methods that 

develop mathematics learning for all students (NCTM, 2014). NCTM (2014) provided a table 

about teacher and student actions to support productive struggle in learning mathematics. 

Teacher actions could be summarized in four categories: anticipating what students might 

struggle with, giving time to struggle, helping students to realize that mistakes are a natural part 

of learning, and praising students’ efforts. In exposure to the productive struggle learning 

experience, student actions could be struggling, asking questions about their struggle, 

persevering in problem-solving, and helping others without giving the answer. 

Mathematics lessons should be designed to promote student engagement by discussing 

the tasks that will improve problem-solving and reasoning skills (NCTM, 2014). Student 

learning is mainly based on what happens inside the classroom and their interactions with peers 
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and teachers over the curriculum (Ball & Forzani, 2011). When preparing their lesson plans, 

teachers need to consider the struggles and misconceptions that can arise (NCTM, 2014). 

Thinking and planning about possible struggles allow the teacher to support students without 

removing all the challenges in the task.  

 Teachers impact students’ perception and approach toward struggle in the mathematics 

classroom (NCTM, 2014). Teachers must see the struggle as an integral part of learning 

mathematics, convey this message to students, and provide ample time and opportunities for 

students to keep trying (NCTM, 2014). The teacher’s role and beliefs are critical in preparing 

students to be persistent in problem-solving and productive failure (Kapur, 2011). The author 

states that teachers must emphasize using multiple representations and methods even if it does 

not lead to correct solutions. Secondly, teachers must resist stepping in and explaining to 

students what to do. Teachers may encourage the students to try harder and solve the question 

with the group members. Kapur (2011) argues that it is more productive to delay help by 

providing time for students to find the solution by themselves. If teachers help students see 

mistakes as learning and sense-making sources, the struggle will lead to a productive 

engagement in mathematics class (Warshauer, 2015).  

Warshauer (2015) pointed out the importance of teacher actions to resolve students’ 

struggles. However, the level of support should not deprive students of the chance to think for 

themselves. Telling the answer or providing direct guidance that will guide students’ thinking to 

the answer without making connections and reasoning removes or lowers the cognitive demand. 

Probing guidance and affordance do not lower cognitive demand because participants have more 

time to delve into the concept (Zeybek, 2016). Warshauer (2015) suggested that teachers respond 

with examples that connect students’ thinking with their prior knowledge to provide skills and 
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techniques to solve the task. The author also stated that teachers might use revoicing to help 

students clarify their solutions.  

Hiebert and Wearne (2003) found that asking more questions, having students make 

connections between critical mathematical ideas, and providing wait time improved students’ 

computation and understanding more than students who practiced demonstrated procedures. 

Asking questions directs students’ thinking and helps them organize their ideas (Sorto et al., 

2009). If the questions are scaffolded on students’ ideas, they allow a productive exchange and 

enhance students’ learning (Warshauer, 2015). 

Lai et al. (2017) pointed out that the lessons that allow productive struggle generally start 

with a problem-solving or critical-thinking activity before receiving any instruction related to a 

new concept. Teachers must be available in this process to guide students through their struggles 

without giving answers to students (Miller, 2020) and to praise their students for their efforts to 

make sure students persevere through challenges (NCTM, 2014). Teachers should provide 

feedback to students that value their effort of trying different methods in solving problems, 

asking questions about specific parts of the tasks, and their attempts to explain the procedure and 

answer precisely using mathematical language.  

When students feel frustrated or are stuck, the teacher should provide support without 

lowering the task’s cognitive demand (NCTM, 2014). When teachers observe students struggle, 

they want to rescue their students by breaking down the task and explaining the concept step by 

step. However, such rescuing undermines students’ effort, lowers the task’s cognitive demand, 

and reduces students’ chances to engage in making sense of mathematics (Stein et al., 2009). 
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Mathematics teachers need to give students time to struggle and become self-reliant problem 

solvers (Peterson & Viramontes, 2017). 

The Role of Task in Supporting the Productive Struggle 

Stein et al. (2009) identified four task levels: cognitive demand as memorization, 

procedures without connections, procedures with connections, and doing mathematics. 

Memorization involves practicing learned facts and formulas and reproducing demonstrated 

materials. The mathematics tasks that have procedures without connections are algorithmic and 

focus on producing the correct answer instead of meaningful mathematics learning or 

justification. The tasks with procedures with connections allow multiple representations and a 

deeper understanding. Doing mathematics type of tasks requires complex thinking and 

exploration. The mathematical task is vital to creating a classroom environment where 

mathematical discourse will occur, and students will interact with their peers and teachers 

(Wilkie, 2022).  

Zeybek (2016) also pointed out that the task’s selection and construction are among the 

most critical aspects of pedagogical decisions because tasks open or close the doors for 

meaningful mathematics learning. The author found that implementing a high demanding task 

motivated pre-service teachers to persevere in solving the problem. High cognitive level tasks 

allowed pre-service teachers to connect mathematical ideas to construct new knowledge and 

validate possible solutions. Students should be provided enough time to solve challenging tasks 

and develop curiosity (Goldenberg et al., 2015). Thus, the task should have multiple solutions, 

allow students to make sense of the concept, and acquire conceptual knowledge through 

interaction and discussion with peers or teachers (Zeybek, 2016).  
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Kapur (2008, 2011) used ill-defined tasks with multiple solutions and unknown 

parameters and required assumptions and well-defined tasks with fewer parameters that are not 

challenging to complete in the context of productive failure. The author found that students who 

practiced ill-defined tasks performed worse than students who practiced well-defined tasks 

during the intervention. However, students who practiced ill-defined tasks performed better on 

well-defined and ill-defined tasks than those who practiced well-defined tasks during the 

posttest. Kapur (2011) argued that the challenging and divergent tasks helped students develop 

problem-solving structures. Thus, the task design is crucial to enhancing mathematical reasoning 

and conceptual learning (Jonsson et al., 2014). 

Hiebert and Wearne (2003) argued that challenging problems should be integrated into 

teaching to make the struggle productive. When students are given complex problems within 

reach of students and have tools to solve them, productive struggle occurs (Peterson & 

Viramontes, 2017). High cognitive demanding tasks that allow connecting concepts, 

justification, and explanation enable students to develop conceptual knowledge and 

understanding (Boston & Smith, 2009).  

Peterson and Viramontes (2017) listed three elements to ensure that struggle is 

productive. Firstly, the tasks need to be highly demanding but within reach of students (Hiebert 

& Grouws, 2007) and in the zone of proximal development (Vygotsky, 1980). Students may not 

solve the problem immediately but can solve it by interacting with their peers and teachers. The 

struggle is not productive when the problem is not within reach or students are not used to such 

cognitive work (Peterson & Viramontes, 2017). Secondly, teachers must ensure that mathematics 

is central to the learning goals. Lastly, it is crucial to observe if students employ sense-making. 

Kapur (2010) also classified three factors that promote beneficial struggle: choosing the 
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appropriate level of challenging task, encouraging students to explain what they are doing, and 

having students compare and contrast good and bad solutions. 

The Role of Productive Struggle in Mathematical Proficiency 

Kilpatrick et al. (2001) used the term mathematical proficiency to refer to learning 

mathematics successfully. Mathematical proficiency has five elements: conceptual 

understanding, procedural fluency, strategic competence, adaptive reasoning, and productive 

disposition. The authors pointed out that these five elements are interwoven, so there is a 

powerful insight into traditional mathematics classrooms to improve students` knowledge, 

ability, and skills. Being proficient requires applying knowledge from one setting to another 

(NCTM, 2000). Factual knowledge, procedural fluency, and conceptual understanding are 

essential components of mathematical proficiency (NCTM, 2000). This study examined how 

student exposure to productive struggle learning experiences contributed to students’ conceptual 

understanding, procedural fluency, and strategic competence. Therefore, I focused on these three 

strands of mathematical proficiency.  

Hiebert and Grouws (2007) defined conceptual understanding as mental connections 

among mathematical facts, procedures, and ideas. NCTM’s (2014) definition involved 

comprehension and connecting concepts, operations, and relations. Conceptual understanding 

has become more critical in today's world because students can handle most arithmetic and 

algebra concepts with calculators, so understanding the number concepts and modeling gained 

more interest (NCTM, 2000). Conceptual understanding is an integrated and functional 

comprehension of mathematical ideas (Kilpatrick et al., 2001). Conceptual understanding lets 

students connect the facts and methods rather than see isolated facts (Kilpatrick et al., 2001). 

Students with conceptual understanding know why a mathematical idea is important and when 
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and how to use it (Kilpatrick et al., 2001). They can organize the information by connecting the 

new knowledge with prior knowledge (Kilpatrick et al., 2001). When students conceptualize a 

concept, their knowledge is organized in a coherent whole, so they learn new ideas by 

connecting them to existing knowledge (Mutambara et al., 2019). Retention is another crucial 

aspect of conceptual understanding because students learn the facts and methods with 

understanding so they can remember easily (Kilpatrick et al., 2001). 

Conceptual understanding is necessary to develop procedural fluency, defined as 

meaningful and flexible use of procedures (NCTM, 2014). Conceptual understanding and 

procedural fluency are critical in effective mathematics teaching (NCTM, 2014). Additionally, 

the National Mathematics Advisory Panel (2008) points out the importance of balancing the 

conception and procedures in mathematics learning. Effective mathematics teaching helps 

students be fluent in the process if the teacher creates a learning environment that encourages 

conceptual understanding (NCTM, 2014). When students deepen their conceptual understanding, 

they become more fluent in computation procedures (Kilpatrick et al., 2001). Procedural fluency 

is significant because being fluent lets students choose the most appropriate and productive 

method (Martin, 2009). Students who are fluent in procedures may focus on different aspects of 

problems to grasp new information (Kilpatrick et al., 2001). The Common Core State Standards 

[CCSSM] sets the guidelines and grade-level expectations that incorporate conceptual 

understanding and procedural fluency.  

Strategic competence (problem-solving) is the ability to formulate, represent, and solve 

mathematical problems (NCTM, 2014). Problem-solving is one of the five process standards of 

NCTM (2000), and it is also widely emphasized in the Common Core State Standards in the 

USA (CCSSI, 2010). There is a solid supportive connection between strategic competence, 
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conceptual understanding, and procedural fluency (Kilpatrick et al., 2001). The authors noted 

that students need to understand the quantities and the relationship between them to develop 

problem-solving strategies. Strategic competence arises in every step in developing procedural 

fluency in computation.   

When the literature is reviewed to explore the impacts of supporting productive struggle 

on students’ conceptual understanding, procedural fluency, and strategic competence, studies 

suggest that struggling to make sense of mathematics is essential in learning mathematics with 

understanding (Hiebert & Grouws, 2007). Kapur (2008) found that engaging in productive 

failure improved conceptual understanding to solve complex math problems. Miller (2020) also 

found that supporting productive struggle in learning enhances high school students’ problem-

solving skills. Peterson and Viramontes (2017) claimed five benefits of productive struggle: a 

sense of accomplishment, knowledge, understanding, high achievement, improved achievement, 

mastery, and long-term retention. Kapur (2016) found that students who engaged in productive 

failure perform higher and deepen their mathematical understanding. 

Summary 

This chapter envisioned incorporating productive struggle teaching practice to promote 

mathematical proficiency. The researcher discussed how exposing students to productive 

struggle teaching practice provides hopes for high-quality mathematics education. Dewey (1933) 

and Piaget (1977) referred to struggle as a cognitive process for deeper understanding. As a 

broad philosophy of learning, Piaget’s cognitive development and Vygotsky’s approach 

regarding the zone of proximal development and cooperative learning were discussed. The 

discussion of Ernest`s (1998) constructivist theory of learning mathematics adopted the 

Vygotskian roots of constructivism were presented in this chapter. Most of the constructivist 
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approaches are aligned with NCTM’s (2014) effective mathematics teaching practices, so the 

connection between social-constructivism and productive struggle was reported in this section. 

The teaching strategies that support productive struggle highlighted how these effective 

mathematics teaching practices are oriented to foster procedural fluency, conceptual 

understanding, and strategic competence. In addition, this paper highlighted the role of tasks in 

supporting productive struggle teaching practice. High cognitive demanding tasks within 

students’ reach allow students to develop a conceptual understanding (Boston & Smith, 2009).
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CHAPTER III 

METHODOLOGY 

Research Design  

Quasi-experimental designs are widely used to assess policy and programs (Dong & 

Maynard, 2013). Since the researcher cannot artificially create the groups, participants are not 

randomly assigned to groups (Creswell, 2015). When it is impossible to create a randomized 

sample, researchers may use a quasi-experimental design (Gay et al., 2012). Therefore, a quasi-

experimental design was appropriate for this study. This study took place in March and April of 

2022 over five weeks in a charter public high school.  

Context and Sample 

The population selected for this study is a public high school located in the south-central 

region of the United States. The school is classified as a public charter school that serves 447 9th-

grade through 12th-grade students. The school population comprises 78 Gifted and Talented 

students, 85 English learners, 228 bilingual students, and 282 economically disadvantaged 

students who receive free or reduced lunch. About 86% of the students are Hispanic, and 14% 

are White, African American, Asian, and others. The school promotes science, mathematics, and 

educational technology. 
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Students learn quadratic functions in the Algebra II course at our school. That is why the 

students currently enrolled in the Algebra II class were selected for the sample. Four sections 

took Algebra II in the 2021-2022 school year. All four sections had the same teacher to 

accommodate the differences in characteristics of the instructor. The explicit child consent and 

parent assent forms in writing were obtained before participating in the study (see Appendix E 

and F). The subjects selected for this study were 74 tenth and eleventh-grade students from four 

Algebra 2 classrooms. 

During the participant selection process, it is crucial to determine the sample size 

(Creswell, 2015). It is vital to have adequate statistical power to choose the minimum detectable 

effect size (Dong & Maynard, 2013). Sample size formulas determine the number of individuals 

to study (Creswell, 2015). Some excellent tools are developed to detect a sufficient sample size 

to achieve the desired statistical power level (Dong & Maynard, 2013). Hence, a power analysis 

was used to decide an appropriate number of participants.  

 The sample included 74 students, 42 were male, and the rest were female. The sample 

size is larger than the desired sample size determined by power analysis to be an adequate 

sample size for this study. Power analysis for a two-level and one covariate ANCOVA was 

conducted to determine a sufficient sample size using an alpha of 0.05, a power of 0.80, a large 

effect size (f = 0.40), and two tails (Faul et al., 2013). Leppink (2019) suggested using a power of 

at least 0.80 to detect an impact of interest in the experiment and replicate meaningful research. 

There was a close allocation of participants into each group. Based on the assumptions 

mentioned above, the desired sample size is 64. Since the sample size of the current study was 

74, it was an adequate sample size. Participants’ age ranged from 15 years old to 19 years old. 



30 

Around 91% of the students who participated in this study received free or reduced lunch. 77% 

of the participants were Hispanic, 10% Black, 7% Asian, and 6% White.  

The teacher is a certified mathematics teacher who taught middle and high school mathematics 

courses for nine years. He is 38 years old and has a master’s degree in mathematics. Students 

must be exposed to productive struggle learning experiences to turn their struggle into productive 

struggle. That’s why the teacher was trained before the study about strategies to support 

students’ productive struggle. The teacher and I attended NCTM one-day virtual workshop 

called supporting students` productive struggle. We read and discussed several articles to 

understand supporting productive struggle teaching practice. We also watched the video 

recordings in the NCTM`s (2014) principals to actions book. The teacher practiced these 

strategies with one of the classes who did not participate in the study.   

Conditions 

Two classes from 10th grade and two from 11th grade enrolled in Algebra II in the 2021-

2022 school year. The students were divided into two groups: the treatment group and the 

comparison group. In a quasi-experimental design, pre-existing groups receive different 

treatments instead of randomized groups (Stuart & Rubin, 2010). It may not be feasible to 

randomize the sample in social sciences due to practical and ethical concerns (Stuart & Rubin, 

2010). One 10th grade and one 11th grade class were in the comparison group, and the other 10th 

grade and 11th-grade classes were in the treatment group. The same teacher taught all four 

classes. 

While the comparison group consisted of 35 students, the treatment group consisted of 39 

students. A Chi-square goodness of fit test was conducted to examine whether the group was 
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equally distributed across the comparison and treatment groups. The results of the test were not 

significant based on an alpha value of .05, χ2(1) = 0.22, p = .642. The observed and expected 

frequencies were not significantly different for the comparison and treatment groups. Table 1 

presents the results of the Chi-Square goodness of fit test. 

Table 1 

Chi-Square Goodness of Fit Test for Group 

Level Observed Frequency Expected Frequency 

Comparison 35 37.00 

Treatment 39 37.00 

Note. χ2(1) = 0.22, p = .642. 

All four classes took the pre-test. According to the pretest scores, two classes were 

selected for the comparison group, and the other two classes became the treatment group. 

Convenient sampling was used for the sample because participants were not randomly assigned 

to the comparison and treatment groups. There are many experimental situations in education 

where researchers need to use convenient groups due to participant availability and the 

inconvenience of forming artificial groups (Creswell, 2015). Convenient sampling allows 

researchers to select willing and available participants to participate in the study (Creswell, 

2015). Even though the sample may not represent the population, the sample can reveal helpful 

information about the research question (Creswell, 2015).  

Treatment Group (Productive Struggle Group (P.S.)) 

The treatment group comprised two sections; a 10th-grade and an 11th-grade class (n = 

39). Students worked on tasks cooperatively in small groups. The teacher was provided with the 

lesson plan (see Appendix D) for each lesson and practiced teacher actions to support students’ 
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productive struggle. Warshauer (2015) identified four types of teacher responses to students’ 

struggles: telling, directed guidance, probing guidance, an affordance that is determined by 

evaluating their effect on the cognitive demand of the task, and how they address students’ 

struggles and students’ thinking. While telling and directed guidance lower the cognitive 

demand, probing guidance and affordance maintained cognitive demand (Warshauer, 2015). In 

accordance with Washauer’s findings, when students asked for help, the teacher did not help 

students by telling them what to do or explaining the procedure. Instead, the teacher used 

probing guidance and affordance to support persistence in the process. In addition, NCTM’s 

(2014) teacher actions and student actions (see table 2) that support productive struggle in 

learning mathematics were observable in the treatment group. The lesson plans were designed so 

that when the teacher followed the lesson plan, students were exposed to supporting productive 

struggle teaching practice. I video recorded the teacher and the classes to verify the use of 

supporting productive struggle teaching techniques in the treatment group.  
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Table 2 

Support Productive Struggle in Learning Mathematics adapted from NCTM, 2014 
What are teachers doing? What are students doing? 

● Anticipating what students might
struggle with during a lesson and
being prepared to support them
productively through the struggle.

● Giving students time to struggle with
tasks and asking questions that
scaffold students’ thinking without
stepping in to do the work for them.

● Helping students realize that
confusion and errors are a natural part
of learning by facilitating discussions
on mistakes, misconceptions, and
struggles.

● Praising students for their efforts in
making sense of mathematical ideas
and perseverance in reasoning through 
problems.

● Struggling at times with mathematics
tasks but knowing that breakthroughs
often emerge from confusion and
struggle.

● Asking questions that are related to
the sources of their struggles will help
them make progress in understanding
and solving tasks.

● Persevering in solving problems and
realizing that it is acceptable to say, "I
don’t know how to proceed here," but
it is not acceptable to give up.

● Helping one another without telling
their classmates the answer or how to
solve the problem.

Comparison Group (Facilitated Instruction (F.I.) Comparison Group) 

The comparison group comprised two sections; a 10th-grade and an 11th-grade class (n = 

35). The instruction of the comparison group was designed to be the same as the treatment group 

but with one significant exception. While the treatment group was facilitated by probing 

guidance and affordance, the comparison group was facilitated by telling and directed guidance, 

based on Warshauer’s (2015) four types of teacher responses. Students worked in small 

cooperative groups. Students received instruction as a whole class, as a small group, and 

individuals. Whole class instruction was designed as mini-lectures on critical aspects of the 

lesson. Individual and group-level facilitation was on-demand. This facilitation could be 

clarification, pointing out students’ mistakes, providing corrective feedback, and taking students’ 
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attention to essential aspects of the concept. NCTM’s (2014) supporting productive struggle 

teacher and student actions were not observable in the comparison group.  

The Content 

I have selected the quadratic function unit to collect data. Quadratic functions and 

equations are a particular case of functions taught in high school math courses (Memnun et al., 

2015). Quadratic functions are the extension of linear functions and can provide information 

about students’ generalizations about other function families (Ellis & Grinstead, 2008). It is 

crucial to learn quadratics because various aspects of quadratics are used in higher mathematics 

courses and real-world settings such as paths of projectiles, suspension bridges, automobile 

headlights, satellite dishes, radio telescopes, maximizing profit, and more (Parent, 2015). Santia 

(2019) emphasizes the importance of quadratic functions and the lack of appreciation of 

quadratic functions in daily life. 

Moreover, linear and quadratic functions are the first topics students deal with in higher-

order thinking involving graphing (Parent, 2015). Hoon et al. (2018) conducted a study to 

investigate the correlation between students’ level of knowledge in functions and quadratic 

functions. If students understand the key features of quadratic functions and their applications, 

they can better understand other functions and more complex concepts (Hoon et al., 2018). 

 The College Career Math Ready course’s quadratic function unit, designed by the 

Southern Regional Education Board (SREB), was adopted in this study. SREB is one of the 

leading organizations that encourages states to develop a plan to have high school graduates be 

college and career-ready (Barnett et al., 2013). The quadratic functions unit comprised ten 

lessons that allowed students to explore quadratic functions through application and conceptual 
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problems by focusing on the interplay of multiple representations of equations in various forms 

such as tables, graphs, and written forms. The lessons were designed to support conceptual 

understanding, procedural fluency, and problem-solving (strategic competence) (Barnett et al., 

2013). Mathematical Actions and Processes (MAP) are process standards for the Oklahoma 

Academic Standards for mathematics. Seven MAPs leverage both NCTM (2000) process 

standards and five strands of mathematics proficiency (NRC, 2001) to support students in 

accessing and understanding mathematics for life and workspace (Oklahoma Academic 

Standards for Mathematics, 2016).  

MAPS are listed below and integrated into the lessons (see Table 3). 

MAP 1: Develop a Deep and Flexible Conceptual Understanding 

MAP 2: Develop Accurate and Appropriate Procedural Fluency 

MAP 3: Develop Strategies for Problem Solving 

MAP 4: Develop Mathematical Reasoning 

MAP 5: Develop a Productive Mathematical Disposition 

MAP 6: Develop the Ability to Make Conjectures, Model, and Generalize 

MAP 7: Develop the Ability to Communicate Mathematically. 
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Table 3 

Quadratic Functions Unit Outline 
Quadratic Functions Lesson Details MAP 

Lesson 1: Key Features of 
Quadratic Functions 

Students began this lesson by launching 
projectile motion and modeling the flight of an 
angry bird by using tongue depressors, gummy 
bears, and rubber bands. Students learned the 
characteristics of the parabola. 

MAP 1 
MAP 6 
MAP 7 

Lesson 2: The effect of 
coefficients on the standard 
form of the quadratic function 

Students conceptualized the projectile motion 
equation and explored the effects of graphically 
manipulating the structure of the coefficients 
with technology. 

MAP 1 
MAP 4 
MAP 6 
MAP 7 

Lesson 3: Making sense of 
the structure of the three 
forms of quadratic functions 

This lesson was a modification of the NCTM 
illuminations Egg Launch Contest. Students 
used the three forms of quadratic (tables, 
graphs, and algebraic equations) to determine 
the winner of the egg launch competition. 
Students also worked on the Skeleton Tower 
task (see Appendix D) adopted from MARS. 

MAP 2 
MAP 3 
MAP 4 
MAP 6 
MAP 7 

Lesson 4: Forming Quadratics 

Forming Quadratics formative assessment 
lesson from Mathematics Assessment Resource 
Center (MARS) was used to garnish 
information from the structure of the forms of 
quadratics (standard form, vertex form, and 
factored form). Students were provided domino 
cards, matched the graphs with the equations, 
and completed the equation’s missing form. 

MAP 1 
MAP 2 
MAP 3 
MAP 4 
MAP 5 
MAP 6 

Lesson 5: Same story, 
different equation-moving 
between the forms 

This lesson focused on moving between forms 
by drawing on skills of multiplying and 
factoring. This lesson involved some projectile 
motion questions. Students were also given 
three forms (standard, vertex, and factored 
form) of the same quadratic function, and then 
they proved that the equations were equal. 

MAP 2 
MAP 3 
MAP 4 
MAP 5 
MAP 6 
MAP 7 

Lesson 6: Getting to vertex 
form-completing the square 

Students used algebra tiles to discover what is 
meant spatially by "completing the square." 
This lesson built a conceptual understanding of 
the process of completing the square. 

MAP 1 
MAP 2 
MAP 3 
MAP 6 
MAP 7 
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Table 3, cont. 

Quadratic Functions Lesson Details MAP 

Lesson 7: Transformation of 
quadratic functions 

Students used technology to investigate the 
effects of changing parameters on the resulting 
graph. Students used an online interactive tool 
to explore how each parameter (slider) changes 
the graph. 

MAP 1 
MAP 2 
MAP 4 
MAP 6 
MAP 7 

Lesson 8: Solving Quadratics 

This lesson first concentrated on solving a 
quadratic by exploring a graphical and tabular 
approach. Students made connections to the 
terminology of solving roots and x-intercepts. 

MAP 2 
MAP 3 
MAP 4 
MAP 6 
MAP 7 

Lesson 9: Solving Quadratics 
Comparing Methods 

Knowing what to do with each form of 
quadratic structure leads to strategic 
competence in efficiently solving quadratic 
equations. The investigation focused on 
choosing the most appropriate method. At the 
end of the lesson, students were given a 
problem and ask them to come up with a 
convincing argument for their method. 

MAP 2 
MAP 3 
MAP 4 
MAP 5 
MAP 6 
MAP 7 

Lesson 10: Generalizing 
Solving-The quadratic 
formula 

The quadratic formula is a way to express 
repeated reasoning of solving quadratics in 
vertex form. Students explored this pattern and 
arrived at the quadratic formula. Students 
generalized the process of completing the 
square as the quadratic formula. 

MAP 1 
MAP 2 
MAP 3 
MAP 4 
MAP 6 
MAP 7 

 Students started the unit by launching projectile motion and modeling the motion. They 

modeled an angry bird’s flight to identify their graph’s critical features. They were engaged in 

some activities to use technology such as graphing calculators and spreadsheets to explore how 

parameter change affects the quadratic function’s graph and key features. One of the NCTM 

illumination activities, named as egg launch contest (see Appendix C), was also adapted to make 

sense of the structure of the three forms of the quadratic functions (i.e., table, algebraic equation, 

and graph). Students participated in small group activities and whole-class discussions during the 

unit. Students used algebra tiles, which were meant spatially by completing the square, to build a 
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conceptual understanding of completing the square. Each group was given lesson booklets that 

included the students’ activities and workspace. These class works were used to gather 

information about students’ methods and representations. 

The same content was covered for both the comparison and treatment groups. Both 

groups used the same instructional materials and resources. While the comparison group 

received facilitated instruction, the treatment group was exposed to supporting productive 

struggle teaching practice. The quadratic function unit lasted approximately five weeks; students 

had five 45-minute periods per week.  

Data Collection 

In this study, I examined the difference regarding high school students’ conceptual 

understanding, procedural fluency, and strategic competence when solving high-demanding 

quadratic functions problem-solving tasks between students exposed to supporting productive 

struggle teaching practice and those who received facilitated instruction. I used a quasi-

experimental design.  

Instrument 

Pretest and posttest were used to check students’ performance before and after the 

treatment. The pretest and posttest design approach could be applied in quasi-experimental 

design (Creswell, 2015). The researcher administers a pretest for comparison and treatment 

groups, conducts the treatment activities for the treatment group only, and uses the posttest to 

evaluate the differences between groups (Creswell, 2015).  
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Researchers need to make any possible effort to create groups equivalent to reducing the 

threats and strengthening the study (Gay et al., 2012). A pretest was implemented before 

beginning the study to ensure that the groups’ level was close. Mathematics Understanding 

Rubric designed by Telese (1994) and revised by Aguilar and Telese (2018) was used to score 

pretests for all four classes. After scoring the pretest, an Analysis of Variance (ANOVA) was 

conducted if the mean of the pretest scores was significantly different between the factor levels 

of the treatment and comparison group. The ANOVA is appropriate when the research goals 

involve identifying significant differences in a continuous variable between two or more discrete 

groups (Gay et al., 2012). 

After the quadratic function unit was completed, which took around five weeks, a posttest 

was given to both groups to compare students’ Conceptual Understanding (C.U.), Procedural 

Fluency (P.F.), and Problem-Solving-Strategic Competence (PS-SC) of quadratic functions by 

using Mathematics Understanding Rubric (Aguilar & Telese, 2018). Students’ solutions to each 

pretest and posttest problem were rated using Mathematics Understanding Rubric. The reliability 

of the rubric was tested by using the Generalizability theory. The G-coefficients were 0.86, 0.92, 

and 0.88 for C.U., P.F., and PS-SC, respectively.  

I have selected open-response, demanding problem-solving tasks for both pretest and 

posttest (see Appendix A). Both instruments involved the same six open-response questions, 

which had multiple parts. Open-response questions were selected to get more information about 

students’ conceptual understanding, procedural fluency, and strategic competence in quadratic 

functions. Mathematics Understanding Rubric designed by Aguilar and Telese (2018) was used 

to assess students’ responses. Table 4 presents the name of each problem in both pretest and 
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posttest and the webpage where the question was retrieved. The test items were selected to assess 

students’ conceptual understanding, procedural fluency, and strategic competence.  

Table 4

Pretest and Posttest Question Breakdown 

Question # Pretest and Posttest Questions 
Question 1 Bunny Rabbit Population Problem (www.shelovesmath.com) 

Question 2 Quadratics Trajectory (Path) Problem (www.shelovesmath.com) 

Question 3 Small Steel Frame (www.mathsisfun.com) 

Question 4 Optimizing of Area Problem (www.shelovesmath.com) 

Question 5 I Rule! (www.mathematicsvisionproject.org) 

Question 6 NAEP (1996) Pattern Problem (www.nationsreportcard.gov) 

Validity 

The researchers get assistance from judges or experts to determine whether the questions 

are valid (Creswell, 2015). This form of validity works well if the items’ possibilities are easily 

identified and well-known (Creswell, 2015). Five high school mathematics teachers who have 

taught Algebra II or higher-level mathematics courses and two professors from a university 

mathematics education department validated the instrument by checking the difficulty, clarity, 

language, and applicability to measure students’ conceptual understanding, procedural fluency, 

and strategic competence. Their suggestion was considered to adjust before administering the 

instrument.  
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Reliability 

When researchers administer the same test multiple times, the instrument could be 

considered a reliable tool if the instrument’s scores are stable and consistent (Creswell, 2015). I 

scored all pretest and posttest by myself to accommodate the inter-rater reliability. Inter-rater 

reliability is a concern in research studies due to ensuring raters' consistency in the performance 

level (Graham et al., 2012). 

The test’s reliability was evaluated by administering the test multiple times to a small 

group of students (n = 35) who did not participate in the study. Cronbach’s alpha value was 

calculated to measure the instrument’s internal consistency. The Cronbach’s alpha coefficient 

was evaluated using the guidelines suggested by George and Mallery (2019) where > .9 

excellent, > .8 good, > .7 acceptable, > .6 questionable, > .5 poor, and ≤ .5 unacceptable. The 

lower and upper bounds of Cronbach’s α were calculated using a 95.00% confidence interval. 

The items for conceptual understanding had a Cronbach’s alpha coefficient of .70, indicating 

acceptable reliability. Table 5 presents the results of the reliability analysis. 

Table 5 

Reliability Table for Conceptual Understanding 
Scale No. of Items α Lower Bound Upper Bound 

Conceptual Understanding 6 .70 .56 .83 

The items for procedural fluency had a Cronbach’s alpha coefficient of .74, indicating 

acceptable reliability. Table 6 presents the results of the reliability analysis. 
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Table 6 

Reliability Table for Procedural Fluency 

Scale No. of Items α Lower Bound Upper Bound 

Procedural Fluency 6 .74 .62 .85 

 The items for strategic competence had a Cronbach’s alpha coefficient of .74, indicating 

acceptable reliability. Table 7 presents the results of the reliability analysis. 

Table 7 

Reliability Table for Strategic Competence 

Scale No. of Items α Lower Bound Upper Bound 

Strategic Competence 6 .77 .65 .88 

Data Analysis 

Data analysis aimed to identify the differences regarding high school students’ 

conceptual understanding, procedural fluency, and strategic competence when solving high-

demanding quadratic functions problem-solving tasks between students who experienced 

supporting productive struggle teaching practice and those who received facilitated instruction. 

The independent variable in the analysis was the teaching method, which consists of two levels: 

Supporting productive struggle teaching practice and facilitated instruction. The dependent 

variable is the participants’ posttest scores. Students’ solutions for each posttest question were 

rated using Mathematics Understanding Rubric (Aguilar & Telese, 2018).  

Descriptive statistics was used initially to generate meaningful information about raw 

data. The descriptive analysis provides the initial details on study outcomes and participants’ 
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responses (Creswell, 2015). Descriptive statistics were implemented to determine the mean 

scores and standard deviations of pretest and posttest for comparison and treatment groups. 

After the descriptive analysis, the comparison and treatment group outcomes are 

compared to answer the hypothesis and the research question (Creswell, 2015). The author listed 

ANCOVA as one of the comparing statistics to compare the groups. Since the comparison and 

treatment group participants were not randomly assigned, there was a possibility of a difference 

between pretest scores. If a significant difference is identified, an analysis of covariance 

(ANCOVA) can be considered to statistically equate the groups (Gay et al., 2012). The author 

suggested that covariance (ANCOVA) analysis is one of the forms of analysis of variance 

(ANOVA). They also further stated that ANCOVA mainly controls extraneous variables and 

enhances statistical test power by reducing within-group variance. Since ANCOVA reduces the 

random sampling error, it improves the significance test’s power (Gay et al., 2012). The authors 

suggested that ANCOVA adjusts posttest scores by controlling the differences between pretest 

scores. 

Therefore, an Analysis of Covariance (ANCOVA) was conducted to assess if differences 

exist in students’ conceptual understanding, procedural fluency, and strategic competence in 

solving high-demanding quadratic functions tasks (posttest scores) between the comparison and 

treatment groups after controlling pretest scores. ANCOVA revealed the impacts of supporting 

productive struggle teaching practice on students’ conceptual understanding, procedural fluency, 

and strategic competence in solving high-demanding quadratic functions problems while 

controlling pretest scores co-vary with the posttest scores. Pretest scores were selected as a 

covariate because students’ initial knowledge and background information about quadratic 



44 

functions may affect their posttest performance. Controlling the pretest scores helped the 

researcher identify whether the teaching method affected students’ posttest performance. 

Summary 

Relying on a quasi-experimental design, this study answered the following: What is the 

difference regarding high school students’ conceptual understanding, procedural fluency, and 

strategic competence when solving high-demanding quadratic functions problem-solving 

questions between students who experienced productive struggle teaching practice and those 

who received facilitated instruction. This study used a pretest-posttest quasi-experimental 

research design. Analysis of covariance (ANCOVA) evaluated if there was a statistically 

significant difference between posttest scores of the treatment and comparison groups after 

controlling pretest scores. 
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CHAPTER IV 

RESULTS 

This study used a quasi-experimental design and collected quantitative data to explore 

how exposure to supporting productive struggle teaching practice impacts students’ conceptual 

understanding, procedural fluency, and strategic competence in the topic of quadratic functions. 

Data Analysis 

Data analysis focused on exploring the differences regarding high school students’ 

conceptual understanding, procedural fluency, and strategic competence on high-demanding 

quadratic functions problem-solving questions between students exposed to productive struggle 

teaching practice and those who received facilitated instruction. The Statistical Package for 

Social Sciences (SPSS, version 27) was used for computing all tests at a .05 significance level.  

The analysis of the data was organized according to the research question. The two groups were: 

supporting productive struggle teaching practice was the treatment group, and facilitated 

instruction was the comparison group. For both groups, pretests were scored by using 

Mathematics Understanding Rubric designed by Aguilar and Telese (2018). The rubric evaluates 

three categories as Conceptual Understanding (CU), Procedural Fluency (PF), and Strategic 

Competence (SC) in five levels from 0 to 4. Since the pretest had six questions, the minimum 
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test score could be 0, and the maximum test score could be 24 in each category. ANOVA was 

calculated separately for CU, PF, and SC. 

Pretest Performance Differences Between Treatment Conditions 

First, A one-way ANOVA was performed to compare both groups’ pretest scores in 

conceptual understanding (CU). A one-way ANOVA revealed that there was no statistically 

significant difference in the pretest conceptual understanding mean scores (CU) between the 

treatment and the comparison groups, F(1, 72) = 0.18, p = .669, indicating the differences in CU 

among the levels of the group were all similar (Table 8). The means and standard deviations are 

presented in Table 9. 

Table 8 
Analysis of Variance Table for CU by Group 

Term SS df F p ηp2 

Group 1.52 1 0.18 .669 0.00 

Residuals 595.34 72 

Table 9 
Mean, Standard Deviation, and Sample Size for CU by Group 

Combination M SD n 

Comparison 3.20 3.30 35 

Treatment 3.49 2.44 39 

Secondly, an analysis of variance (ANOVA) was conducted to determine whether there 

were significant differences in procedural fluency (PF) in comparison and treatment groups. The 

ANOVA was examined based on an alpha value of .05. The difference between the groups on 

pretest procedural fluency scores was not significant, F(1, 72) = 0.40, p = .527, indicating the 
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results in PF among the treatment and comparison groups were all similar (Table 10). The means 

and standard deviations are presented in Table 11. 

Table 10 

Analysis of Variance Table for PF by Group 

Term SS df F p ηp2 

Group 5.69 1 0.40 .527 0.01 

Residuals 1,011.72 72 

Table 11 

Mean, Standard Deviation, and Sample Size for PF by Group 

Combination M SD n 

Comparison 4.91 4.22 35 

Treatment 4.36 3.27 39 

Finally, ANOVA was conducted based on an alpha value of .05 to determine whether 

there were significant differences in Strategic Competence (SC) among the comparison and 

treatment groups. The results of the ANOVA suggested that there was no statistically significant 

difference in the pretest strategic competence (SC) mean scores between the treatment and the 

comparison groups, F(1, 72) = 0.03, p = .873, indicating the differences in SC among the levels 

of the group were all similar (Table 12). The means and standard deviations are presented in 

Table 13. 
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Table 12 
Analysis of Variance Table for SC by Group 

Term SS df F p ηp2 

Group 0.20 1 0.03 .873 0.00 

Residuals 568.84 72 

Table 13 
Mean, Standard Deviation, and Sample Size for SC by Group 

Combination M SD n 

Comparison 3.77 3.16 35 

Treatment 3.67 2.45 39 

An Analysis of Variance (ANOVA) revealed no statistical differences in the pretest 

scores between productive struggle and the facilitated instruction group for each category. There 

was no statistically significant difference in the model. As a result, posthoc comparisons were 

not conducted. 

Posttest Performance Differences Between Treatment Conditions 

An analysis of covariance (ANCOVA) was conducted to assess whether conceptual 

understanding, procedural fluency, and strategic competence posttest scores significantly differ 

across levels of the independent variable while controlling for pretest scores. ANCOVA 

provided information about whether mean outcome scores differed across the comparison and 

treatment groups. ANCOVA has several assumptions that need to be evaluated.  

Independence. The scores of the posttest are independent. The posttest questions were 

open-response questions, and students were not allowed to communicate with each other or share 
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their answers with their classmates during testing. Therefore, the independence of the 

observation assumption was met.  

Normality. The assumption of normality was assessed by plotting the quantiles of the 

model residuals against the quantiles of a Chi-square distribution, also called a Q-Q scatterplot 

(DeCarlo, 1997). For the assumption of normality to be met, the quantiles of the residuals must 

not strongly deviate from the theoretical quantiles. Strong deviations could indicate that the 

parameter estimates are unreliable. Figures 1, 2, and 3 present a Q-Q scatterplot of model 

residuals for conceptual understanding (CU), procedural fluency (PF), and strategic competence 

(SC) in order.  

Figure 1: CU Q-Q scatterplot for normality of the residuals for the regression model 
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Figure 2: PF Q-Q scatterplot for normality of the residuals for the regression model 

Figure 3: SC Q-Q scatterplot for normality of the residuals for the regression model 

Homoscedasticity. Homoscedasticity was evaluated by plotting the residuals against the 

predicted values (Field, 2017). The assumption of homoscedasticity is met if the points appear 

randomly distributed with a mean of zero and no apparent curvature. Figures 4, 5, and 6 present a 
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scatterplot of predicted values and model residuals for conceptual understanding (CU), 

procedural fluency (PF), and strategic competence (SC) in order. 

Figure 4: Residuals scatterplot testing homoscedasticity for CU 
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Figure 5: Residuals scatterplot testing homoscedasticity for PF 

Figure 6: Residuals scatterplot testing homoscedasticity for SC 

Outliers. Studentized residuals were calculated, and the absolute values were plotted 

against the observation numbers to identify influential points (Field, 2017; Pituch & Stevens, 

2015). Studentized residuals are calculated by dividing the model residuals by the estimated 
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residual standard deviation. An observation with a studentized residual greater than 3.21 in 

absolute value, the 0.999 quantiles of a t distribution with 73 degrees of freedom, was considered 

to influence the model’s results significantly. Figure 7, 8, and 9 presents the studentized residuals 

plot of the observations for conceptual understanding (CU), procedural fluency (PF), and 

strategic competence (SC) in order. Observation numbers are specified next to each point with a 

studentized residual greater than 3.21. 

Figure 7: Studentized residuals plot for outlier detection for CU 
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Figure 8: Studentized residuals plot for outlier detection for PF 

Figure 9: Studentized residuals plot for outlier detection for SC 

Homogeneity of regression slopes. The assumption for homogeneity of regression 

slopes was assessed by rerunning the ANCOVA, but this time including interaction terms 

between each independent variable and covariate (Field, 2017; Pituch & Stevens, 2015). If the 
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model with the covariate interaction terms explains significantly more variance than the original 

ANCOVA model, then there were significant interactions between the covariates and 

independent variables. The model with covariate-independent variable interactions did not 

explain significantly more variance for conceptual understanding posttest scores (PostCU) than 

the original model, F(1, 70) = 0.21, p = .651. The model with covariate-independent variable 

interactions did not explain significantly more variance for procedural fluency posttest scores 

(PostPF) than the original model, F(1, 70) = 1.64, p = .205. The model with covariate-

independent variable interactions did not explain significantly more variance for strategic 

competence posttest scores (PostSC) than the original model, F(1, 70) = 0.66, p = .419. This 

implies that none of the covariates interacted with the independent variables, and the assumption 

of homogeneity of regression slopes was met. 

Covariate-IV independence. Each independent variable and covariate must be 

independent (Miller & Chapman, 2001). Pretest was measured before starting the treatment to 

ensure that groups were as similar as possible using ANOVA as the results already presented for 

each category. There was no significant difference between the comparison and treatment in 

pretest scores before the implementation of the study. To assess independence, an ANOVA was 

conducted for each pair of numeric covariates and independent variables (Field, 2017). There 

were no significant models for any combination of covariates and independent variables based 

on an alpha of .05, indicating the assumption of independence between covariates and 

independent variables was met. 

An analysis of covariance (ANCOVA) was conducted to determine whether there were 

significant differences in conceptual understanding posttest scores (PostCU) among the 

comparison and treatment groups while controlling for conceptual understanding pretest scores 
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(PreCU). The results of the ANCOVA were significant, F(2, 71) = 19.60, p < .001, indicating 

significant differences among the values of the comparison and the treatment groups (Table 14). 

The eta squared was 0.14, indicating group levels explain approximately 14% of the variance in 

PostCU. The means and standard deviations are presented in Table 15. 

Table 14 

Analysis of Covariance Table for PostCU by Group 

Term SS df F p ηp
2 

Group 277.45 1 12.02 < .001 0.14 
PreCU 584.39 1 25.31 < .001 0.26 
Residuals 1,639.05 71 

Figure 10: Mean value of PostCU by the levels of Group with 95.00% CI Error Bars 

Table 15 

Marginal Means, Standard Error, and Sample Size for PostCU by Group Controlling for PreCU 

Combination Marginal Means SE n 
Comparison 11.26 0.81 35 
Treatment 15.15 0.77 39 
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Estimated marginal mean contrasts were calculated to examine the differences between 

the level combinations using Tukey comparisons based on an alpha of .05. For the main effect of 

group, the mean of conceptual understanding posttest scores for the comparison group (M = 

11.26, SD = 4.81) was significantly smaller than for treatment (M = 15.15, SD = 4.81), p < .001. 

Second, ANCOVA was conducted to determine whether the group had significant 

differences in procedural fluency posttest scores (PostPF) while controlling for procedural 

fluency pretest scores (PrePF). The results of the ANCOVA were significant, F(2, 71) = 26.48, p 

< .001, indicating significant differences among the values of the comparison and the treatment 

groups (Table 16). The eta squared was 0.18, indicating group levels explain approximately 18% 

of the variance in PostPF. The means and standard deviations are presented in Table 17.  

Table 16 

Analysis of Covariance Table for PostPF by Group 

Term SS df F p ηp
2 

Group 299.32 1 15.13 < .001 0.18 
PrePF 816.56 1 41.28 < .001 0.37 
Residuals 1,404.53 71 
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Figure 11: Mean value of PostPF by the levels of Group with 95.00% CI Error Bars 

Table 17 

Marginal Means, Standard Error, and Sample Size for PostPF by Group Controlling for PrePF 
Combination Marginal Means SE n 
Comparison 12.97 0.75 35 
Treatment 17.01 0.71 39 

Estimated marginal mean contrasts were calculated to examine the differences between 

the level combinations using Tukey comparisons based on an alpha of .05. For the main effect of 

the group, the mean of PostPF for the comparison group (M = 12.97, SD = 4.45) was 

significantly smaller than for treatment group (M = 17.01, SD = 4.45), p < .001. 

Finally, ANCOVA was conducted to determine whether there were significant 

differences in strategic competence posttest scores (PostSC) among comparison and treatment 

groups controlling for strategic competence pretest scores (PreSC). The results of the ANCOVA 

were significant, F(2, 71) = 20.01, p < .001, indicating significant differences among the values 
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of groups (Table 18). The eta squared was 0.21, indicating that the group explains approximately 

21% of the strategic competence posttest scores variance. The means and standard deviations are 

presented in Table 19. 

Table 18 

Analysis of Covariance Table for PostSC by Group 

Term SS df F p ηp
2 

Group 393.76 1 18.47 < .001 0.21 
PreSC 475.41 1 22.30 < .001 0.24 
Residuals 1,513.84 71 

Figure 12: Mean value of PostSC by the levels of Group with 95.00% CI Error Bars 

Table 19 

Marginal Means, Standard Error, and Sample Size for PostSC by Group Controlling for PreSC 

Combination Marginal Means SE n 
Comparison 10.58 0.78 35 
Treatment 15.20 0.74 39 

Estimated marginal mean contrasts were calculated to examine the differences between 

the level combinations using Tukey comparisons based on an alpha of .05. For the main effect of 



60 

the group, the mean of PostSC for the comparison group (M = 10.58, SD = 4.62) was 

significantly smaller than for treatment group (M = 15.20, SD = 4.62), p < .001. 

While pre-test scores were not significantly different, the posttest scores were statistically 

significant, as reported by an ANCOVA. An examination of the ANCOVA results revealed that 

there were statistically significant differences in posttest conceptual understanding, procedural 

fluency, and strategic competence mean scores between the treatment and comparison groups. 

The mean scores of the productive struggle teaching practice group for each category were 

higher than the facilitated instruction group.  

Summary 

The current study sought answers to the following research question: 

Research Question 

What are the differences regarding high school students’ conceptual understanding, 

procedural fluency, and strategic competence when solving high-demanding quadratic functions 

problem-solving tasks between students exposed to productive struggle teaching practice and 

those who received facilitated instruction? 

Null Hypotheses (H0). The mean of the posttest scores for conceptual understanding, 

procedural fluency, and strategic competence is equal for the treatment and comparison groups 

after controlling for the effects of the pretest scores.  
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Alternative Hypotheses (H1). The mean of the posttest scores for conceptual 

understanding, procedural fluency, and strategic competence is not equal for the treatment and 

comparison groups after controlling for the effects of the pretest scores. 

In response to the research question, the results revealed statistically significant 

differences in the scores for conceptual understanding, procedural fluency, and strategic 

competence of the treatment group exposed to supporting productive struggle teaching practice, 

and the comparison group received facilitated instruction. Though the initial scores of the pretest 

were not significantly different, the treatment group performed significantly higher than the 

comparison group, as computed using an ANCOVA. 
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CHAPTER V 

SUMMARY AND CONCLUSION 

Research on the benefit of intentional struggle-filled learning has a long history involving 

Dewey (1933), Piaget (1977), and Vygotsky (1980), emphasizing that exposing children to 

challenging learning will allow them to construct their understanding (Vazquez et al., 2020). 

However, US mathematics instruction does not engage students in an active struggle with 

mathematics concepts (Banilower et al., 2006). Hiebert et al. (2005) analyzed 83 videos recorded 

from United States classrooms. They stated that even when students were presented with 

challenging problems and had a chance to struggle productively, teachers lowered the cognitive 

demand of the tasks and lessons by providing procedures.  

The productive struggle has become a hot topic in mathematics education due to 

NCTM’s (2014) effective mathematics teaching practice recommendations and CCSSM’s (2010) 

standards of mathematics practices. Even though it is a hot topic, only recent studies have begun 

providing empirical evidence about productive struggle’s benefits (Vazquez et al., 2020). This 

study examined the impact of supporting productive struggle teaching practice on students’ 

conceptual understanding, procedural fluency, and strategic competence.  

Supporting productive struggle in learning mathematics is one of the research-informed 

effective mathematics teaching practices identified and recommended by NCTM (2014), which 

is the world’s most extensive and leading mathematics education organization for mathematics 
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teachers in the United States. This study explored the impact of supporting productive 

instructions as anticipating students’ struggles, giving time to struggle, helping students realize 

that confusion and mistakes are a natural part of learning, praising students for their effort, and 

probing guidance and affordance (Kapur, 2011; NCTM, 2014; Warshauer, 2015; Zeybek, 2016) 

on three strands of mathematical proficiency (i.e., conceptual understanding, procedural fluency, 

and strategic competence). The findings were interpreted by connecting them to the literature.  

The following sections include the discussion of the results in the light of the reviewed 

literature as well as in light of current views and perspectives. The limitations of the study, 

implications, and future research directions are then discussed. 

Discussion 

Overall results of this study indicated that students in the supporting productive struggle 

teaching practice group performed significantly better than students who received facilitated 

instruction in every three strands of mathematical proficiency (i.e., conceptual understanding, 

procedural fluency, and strategic competence).  These findings are supported by the Third 

International Mathematics and Science Study (TIMSS) video study. The goal of TIMSS was to 

assess the teaching methods that high-achieving countries like Japan and Hong Kong, for 

instance, used in 8th-grade math and science classes. They found that students in the high 

achieving countries provided chances to engage in struggle-inducing activities using their 

method and previous knowledge to solve problems (Hiebert et al., 2005). Kapur (2011, 2016) 

also found that engaging in productive failure, much like a productive struggle, improved 

material retention, conceptual understanding, and using various methods to solve complex math 

problems.  
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The studies in cognitive science also supported how productive struggle can enhance 

deeper learning and understanding. For example, engaging students in challenging activities help 

students build relevant associations (Carpenter, 2009) and improve their awareness of what they 

know and do not know (Toppino & Cohen, 2010).  

Performance Differences between the Treatment and Comparison Groups 

Research Question: What are the differences regarding high school students’ conceptual 

understanding (CU), procedural fluency (PF), and strategic competence (SC) on high-demanding 

quadratic functions problem-solving questions between students exposed to productive struggle 

teaching practice and those who received facilitated instruction? 

The research question explored the scores for conceptual understanding, procedural 

fluency, and strategic competence differences using ANOVA and ANCOVA. A summary of key 

findings followed by a discussion of intersections with recent research is presented below.  

The students began with similar levels, as evidenced by pretest results. When controlling 

the pretest, both the comparison and treatment group improved their scores. The implementation 

of supporting productive struggle teaching practice resulted in the treatment group improving 

CU, PF, and SC more than the comparison group. The supporting productive struggle group 

participants outperformed the facilitated instruction group in each category (i.e., conceptual 

understanding, procedural fluency, and strategic competence). Students exposed to supporting 

productive struggle teaching experience had more correct answers than those who experienced 

facilitated instruction. Students’ responses were scored by using Mathematics Understanding 

Rubric designed by Aguilar and Telese (2018). The results of ANCOVA were significant, 

indicating significant differences among the treatment conditions. The conceptual understanding 
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posttest scores of the treatment group who exposed supporting productive struggle teaching 

practice scored 14 percent higher than the facilitated instruction group. The supporting 

productive struggle teaching practice group scored 18 percent higher in the procedural fluency 

posttest scores and 21 percent higher in the strategic competence posttest scores than the 

facilitated instruction group.  

This finding aligns with that Kapur’s (2016) findings. Kapur (2016) found that students 

engaged in productive failure perform higher and gain a deeper mathematical understanding than 

the direct instruction group. Thus, in concurrence with recent research findings (Kapur, 2016), 

data from this study highlighted significantly CU, PF, and SC performance differences between 

students receiving supporting productive struggle instruction than those facilitated instruction, 

while controlling the pretest.  

This finding contributes to the development of a clearer understanding of previous 

research regarding supporting productive struggle in learning mathematics teaching practice. 

Several studies focus on various aspects of productive struggle as struggle types and teacher 

actions (Warshauer, 2015), preservice teachers’ struggle types and how engaging in high-level 

non-routine tasks fosters productive struggle (Zeybek, 2016), parents’ beliefs about productive 

struggle, and the relationship between parents’ belief and their math homework help (Vazquez et 

al., 2020). However, none of these studies examined the impacts of productive struggle on 

students’ learning.  

After reviewing high-ranked mathematics education journals, which are presented in 

William et al.’s (2017) article such as Educational Studies in Mathematics (ESM), Journal for 

Research in Mathematics Education (JRME), Journal for Mathematical Behavior (JMB), and 
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International Journal of Math Education in Science and Technology (IJMEST), etc. the 

researcher could not find any study that directly examines how supporting productive struggle 

teaching practice impacts students mathematical proficiency. Some articles in practitioner 

journals review how productive struggle affects students’ mathematical understanding. For 

example, Baker et al. (2020) unpacked the idea of productive struggle from a teacher and student 

perspective by using a specific scenario focused on a conversation between a student and a 

teacher. The student was assigned a problem that allowed productive struggle, and the teacher 

paid close attention to the students thinking by supporting productive struggle without 

immediately correcting the student’s mistakes. Baker et al. (2020) found that struggle can 

become productive when the appropriate learning opportunities are available. They also 

emphasized the importance of recognizing and supporting the signs of productive struggle such 

as verbal, gestures, and frustration that will help students pursue deep learning. 

Similarly, Taylor and Lee (2021) implemented a STEM task that engaged students in 

productive struggle. Teachers in this study reported that students developed an awareness of 

perseverance when students are not simply struggling but rather teachers have a structure to help 

them work toward mathematical success. These are some examples from the classroom that have 

a small sample. However, empirical research on productive struggle is limited (Warshauer, 

2015), so this study contributed to the literature by examining how supporting productive 

struggle teaching practices impacts mathematical proficiency. 

Teaching Strategies that Supported Students’ Struggle 

When students struggled and could not progress, the teacher asked manageable questions 

that helped students to move on to the next step and solve the question correctly. The result of 
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this study coincides with the results obtained by Hiebert and Wearne (2003). They found that 

asking more questions improved students’ understanding and computation rather than practicing 

demonstrated procedures. Other studies also supported that questioning helps students organize 

their thinking (Sorto et al., 2009), and scaffolding questions allow productive exchange and 

improve student learning (Warshauer, 2015). 

Using multiple representations such as tables, graphs, models, and equations helped 

students to understand the concept better. Most students did not start solving tasks using tables or 

graphs. After discussing how they could progress on solving the tasks, they started making a 

table and were able to process. Using multiple representations allows students to comprehend 

math concepts from different perspectives (Duval, 2006). Smith’s (2017) framework supported 

this finding by referring that engaging in a problematic situation, recording the data using 

multiple representations (e.g., table, graph, verbal), and finding patterns develop algebraic 

thinking. 

Verifying answers helped the teacher to check if they knew what they were doing. For 

instance, if they knew what the variable represents in the equation. When students had a hard 

time getting a part of the question, they asked questions to the teacher, and the teacher answered 

the question without lowering the cognitive demand. Asking questions about their struggle is 

listed as one of the students’ actions supporting productive struggle in learning mathematics by 

NCTM (2014). 

Visualization using physical and virtual manipulatives was another strategy the teacher 

used to support students’ productive struggle. For instance, students used algebra tiles in 

completing the square lesson. Algebra tiles clearly explain the notion of completing the square 
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because available pieces could be used to form a perfect square (Miranda, 2010).  Arcavi (2003) 

claimed that visualization is helpful and beneficial for both illustration and actual concept. A 

visual image analyzes the data and guides through the analytical development of a solution 

(Radford, 2010). The use of physical objects was stressed in teaching and learning algebra by 

NCTM standards (NCTM, 2000). Using physical or virtual manipulatives provides visual models 

of mathematical ideas (NCTM,2014). Aburime (2007) reported that manipulatives increased 

students` mathematics achievement.  

Revoicing also helped students to resolve their struggles. The teacher pointed out 

something students had already figured out that enabled them to process the question. Warshauer 

(2015) also suggested revoicing to help students clarify their solutions. Students used the 

graphing calculator from time to time to graph, visualize, and calculate during the lessons. 

 Tools and technology also play a crucial role in meaningful mathematics learning 

because they support learners in exploring mathematics, making sense of the concept, and 

engaging students in mathematical reasoning (NCTM,2014). Graphing calculators were used in 

the classroom during the treatment for calculations and to explore different aspects of the tasks. 

For example, students used calculators to explore how a parameter change affects the graph. 

Ndlovu and Ndlovu (2020) conducted a mixed-method study to investigate the effects of the 

graphing calculator on eleventh-grade students’ achievement in quadratic inequality problem-

solving. They found that the treatment group that received instruction with graphing calculators 

performed significantly better than a comparison group taught without a graphing calculator. 

Additionally, students in the treatment group used more multiple solution strategies than the 

comparison group.  
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Implications 

Overall, the results reported here should serve as positive news for researchers, teachers, 

and education reformers. Statistically, mathematical proficiency is significantly impacted by 

supporting productive struggle teaching practice. For the productive struggle to be effective, 

teachers should select the appropriate tasks that allow productive struggle by ensuring that tasks 

can be solved using multiple pathways, and teachers support and guide students without lowering 

the cognitive demand of the task. Students need sufficient time to solve challenging math 

problems and to develop curiosity (Goldenberg et al., 2015). Students’ struggle does not cause 

frustration if the teacher provides feedback, asks manageable questions, have students make 

connections between multiple representations (Kapur, 2011; Warshauer, 2015). 

Education reformers, decision-makers, and department coaches can consider ways to 

educate teachers on the purpose and efficacy of supporting productive struggle in learning 

mathematics approach for helping students to improve mathematics proficiency. Teachers do not 

have to change their teaching structure completely. For example, practicing procedural skills can 

still support productive struggle if novel problems are implemented in the lessons and students 

justify why a procedure works (Vazquez et al., 2020). However, US math education tends to 

convert highly structured problems designed for deeper thinking into routine exercises (Hiebert 

et al., 2005). Thus, teachers must resist stepping in and explaining to students everything step by 

step (Kapur, 2011).  

Teacher training institutions should assume the lead in developing teachers on how to 

integrate supporting productive struggle teaching practice in their classes. Teachers should create 

a classroom structure in that struggle is viewed as a natural part of the learning process (Star, 
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2015) and highlights perseverance to make sense of learning mathematics (CCSSM, 2010). The 

idea of productive struggle may be unfamiliar and take time to become a classroom routine. 

Teachers may consider connecting with colleagues to observe and guide each other.  

Learning the teaching strategies that support students’ productive struggle may help 

teachers to integrate these strategies into their classrooms. For example, asking questions without 

giving the answer and lowering the cognitive demand helped the participants of this study to 

comprehend the concept and solve the tasks correctly. Teachers may try to anticipate students’ 

struggles, design lessons accordingly, and guide students by asking questions. Learning 

strategies that support students' productive struggle may help educators or curriculum developers 

embed scaffold tasks that allow productive struggle. Also, I expect that, as students have more 

opportunities to engage in productive struggle, they will develop a deeper understanding of 

mathematics and become more responsible for their learning.  

Limitations 

This study has several limitations that are important to consider. This study was limited 

to a group of students from a single school selected using a non-random assignment of 

participants. Another limitation of this study was assigning participants to the treatment and 

comparison groups because the researcher used preexisting classrooms. The sample size was 

small. Although this allowed me to analyze the results deeply, I cannot make claims that can 

extend to all students.  
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Conclusion 

This study explored how exposure to supporting productive struggle teaching experience 

impacts students’ procedural fluency, conceptual understanding, and strategic competence. The 

treatment group exposed to supporting productive struggle teaching practice performed 

significantly better than the comparison group that received facilitated instruction. Based on the 

study results, it can be said that supporting productive struggle teaching practice is an effective 

method to improve students’ conceptual understanding, procedural fluency, and strategic 

competence.  

Future studies could examine how supporting productive struggle teaching practice 

impacts the other two strands of mathematical proficiency (i.e., adaptive reasoning and 

productive disposition). Also, the same research question could be examined with a larger 

population to confirm if the results are generalizable. 
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 QUADRATIC FUNCTIONS PRETEST AND POSTTEST 

These questions require you to show your work and explain your reasoning. You may use 

drawings, words, and numbers in your explanation. Your answer should be clear enough so that 

another person could read it and understand your thinking. It is important that you show all 

your work. 

Question 1: The observed bunny rabbit population on an island is given by the function p = 

−0.4t2 + 130t + 1200, where t is the time in months since they began observing the rabbits.

(a) When is the maximum population attained?

(b) What is the maximum population?

(c) When does the bunny rabbit population disappear from the island?

Question 2: Audrey throws a ball in the air, and the path the ball makes is modeled by the 

parabola y – 8 = −0.018 (x – 20)2, measured in feet. What is the maximum height the ball 

reaches, and how far (horizontally) from Audrey is the ball at its maximum height? How far does 

the ball travel before it hits the ground? 
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Question 3: 

Your company is going to make frames as part of a new product they are launching. The frame 

will be cut out of a piece of steel, and to keep the weight down, the final area should be 28 cm2. 

The inside of the frame has to be 11 cm by 6 cm. What should the width x of the metal be? 

Question 4: A rectangular rose garden is being built against the back of a house with a fence 

around it, but we only have 120 feet of fencing available. What would be the dimensions (length 

and width) of the garden, with one side attached to the house, to make the area of the garden as 

large as possible? What is this maximum area? 

Question 5: Marco has started a new blog about sports at 

Imagination High School (mascot: the fighting unicorns) that he has decided to call "I 

Site". He created a logo for the website that looks like this: 

He is working on creating the logo in various sizes to be placed on different pages on the 

website. Marco developed the following designs: 
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How many squares will be needed to create the size 100 logo? Develop a mathematical model 

for the number of squares in the logo for size n. 

Question 6: The first 3 figures in a pattern of tiles are shown below. The pattern of tiles contains 

50 figures. 

Describe the 20th figure in this pattern, including the total number of tiles it contains and how 

they are arranged. Then explain the reasoning that you used to determine this information. Write 

a description that could be used to define any figure in the pattern. 
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Mathematics Understanding Rubric by Aguilar & Telese (2018) 

Performance 
Level 

Procedural 
Fluency 

Conceptual 
 Understanding 

Problem Solving- Strategic 
Competency 

0 No response. Lack of evidence to determine 
knowledge, or no attempt made. 

No response. 

1 Incorrect or very 
limited use of 
operations, more 
than one major 
error or omissions. 

Wide gaps in concept 
understanding, major errors 
made based on lack of 
conceptual knowledge. 

Unworkable approach, 
incorrect or no use of 
mathematical 
representations, poor use of 
estimation, evidence for lack 
of understanding. 

2 Some correct use 
of number 
operations but a 
major error or 
with 
several minor 
errors. 

Some evidence of conceptual 
understanding, but difficulty in 
using models, diagrams, and 
symbols for representing 
concepts or translating from one 
mode to another mode. Some 
evidence of the  concept’s 
properties. 

Appropriate approach, 
estimation used, 
implemented a strategy, 
possibly reasoned 
decision making, 
solution with 
observations. 

3 Appropriate use of 
number operations 
with possible slips 
or omissions, but 
without significant 
errors. 

Good evidence of conceptual 
knowledge. No major 
misconceptions; responses 
contain accurate use of models, 
diagrams, and symbols with 
evidence of translation from one 
mode to the other. Recognition 
of the meaning and 
interpretation 
of concepts. Some evidence of 
using concepts to verify or 
explain procedures. 

Workable approach, used 
estimation effectively, 
mathematical 
representation used 
appropriately, reasoned 
decision-making 
inferred, judge 
reasonableness of solution. 

4 Extended use of 
number operations 
without errors in 
calculations; 
appropriate use of 
models or 
representations. 

Clear understanding of concepts 
and associated procedures. 
Effective use of models, 
diagrams, and symbols with 
broad translation from one mode 
to another. Recognition of the 
meaning and interpretation of 
concepts to explain or verify 
procedures or conclusions. 

Efficient/sophisticated 
approach, estimation used 
effectively, extensive use of 
mathematical 
representations, explicit 
reasoned decision-making 
Solutions with connections, 
synthesis or abstraction. 
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TASK 1: EGG LAUNCH CONTEST 

Mr. Rhodes’ class is holding an egg launching contest on the football field. Teams of students 

have built catapults that will hurl an egg down the field. Ms. Monroe’s class will judge the 

contest. They have various tools and ideas for measuring each launch and how to determine 

which team wins. 

Team A used their catapult and hurled an egg down the football field. Students used a motion 

detector to collect data while the egg was in the air. They came up with the table of data below. 

Distance from the Goal Line 

(in Feet) 

Height (in Feet) 

7 19 

12 90 

14 101 

19 90 

21 55 

24 0 

Team B’s egg flew through the air and landed down the field. The group of students tracking the 

path of the egg determined that the equation y = –0.8𝑥𝑥2 + 19x – 40 represents the path the egg 

took through the air, where x is the distance from the goal line, and y is the height of the egg 

from the ground. (Both measures are in feet.) 
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When Team C launched an egg with their catapult, some of the judges found that the graph to 

below shows the path of the egg.  

Which team do you think won the contest? Why? 
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 SAMPLE LESSON PLAN 

Engage The teacher will pass out Egg Launch Contest handouts and have students read the 

activity sheet individually (give time to struggle). Students will make a prediction 

individually and write an explanation with reasoning. The task is a high 

demanding problem-solving task that is challenging and within reach of students. 

The teacher will anticipate possible solutions and difficulties that students may 

face. Students may graph Team A and Team B and compare with Team C. They 

may struggle to compare the quadratic function in three different forms. If students 

ask questions to the teacher, teacher will question them to reveal their thinking. The 

teacher will guide students without giving the answer and lowering the demand 

of the task. When students make a mistake, teacher will point out that mistakes 

are natural part of learning.  

Explore Students will work in groups to construct a viable argument for who they believe is 

the winner of the Egg Launch Competition. Students should grabble in groups with 

what information they have and what form would be most helpful. Students will be 

encouraged to be creative in thinking approaches and find the ways to evaluate the 

usefulness and correctness of their hypothesized solutions. The teacher will not 

direct their thinking. The teacher will praise students for their efforts and 

willingness to find different techniques to explain their thinking.  
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After students had time to construct a group argument, the teacher will select and 

sequence groups to present. Students will be encouraged to critique the reasoning 

of others by asking questions and comparing methods. The teacher can ask 

some questions to reveal students thinking and may be used to spark the discussion. 

Anticipated possible questions could be: 

How many points did it take to find the complete equation? Why is this so? 

Was it easy to write all three forms? Explain. 

Explain different strategies that could be used to find the maximum height of the 

egg? Which is the most efficient.  

What group used the structure of the forms of quadratics to help write an equation. 

Did another group use the same information in a different way? 

The class will come to conclusion based on the winner of the competition for height 

and the winner for distance.  

After students complete Egg Launch Contest activity, they will work on three 

forms of quadratic functions and making sense of them task. Students will be 

passed out the handout and work in groups of four. This task involves open-ended 

problem-solving activities some of the parts presented below.  
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1. A piece of paper and a hammer are dropped off the top of your school

which is 90 feet high. They are both dropped from a still position (𝑉𝑉0 = 0).

If we ignore the air resistance, which object (hammer or paper) hits the

ground first? Provide a mathematical argument!

2. A potato is fired from a spud-gun at a height of 3m and initial velocity of

25m/s. How high the potato reaches and at what time does this occur?

3. Two competing catapults launch pumpkins. Catapult A launches from a

starting height of 10ft and initial upward velocity of 45ft/sec. Catapult B

launches from a starting height of 25ft and initial upward velocity of

40ft/sec. Which pumpkin, A or B, achieves a greater maximum height?

Which pumpkin A or B is in the air longer? Is it possible from this scenario

to determine the distance traveled horizontally by each pumpkin? Explain

your choice and justify your answer.
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Evaluate Closing activity is Skeleton Tower task from MARS. 

Students will have time to individually think about the problem followed by a 

collaborative time with a partner. As students work, the teacher will monitor 

their progress towards developing different forms of quadratics in order to select 

and sequence a class presentation. Students will make a conclusion that even 

though their expression for a tower of n cubes looks different, they are all 

equivalent.  
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CHILD ASSENT FORM 

Purpose 

I am studying how exposure to effective mathematics teaching practices (e.g., productive 
struggle) from the National Research of Council of Mathematics (NCTM) impacts students’ 
conceptual understanding, procedural fluency, and strategic competence in solving quadratic 
functions problem-solving tasks. You can decide if you would like to participate in the study. 
There will be no consequences of any type, and you can drop from the study at any moment.  I 
will be discussing this with your parents too.  Your parents are not allowed to have you 
participate unless you agree. 

Description of the Study 

Throughout the quadratic functions unit, you will be engaged in high-quality mathematics tasks 
to help you understand quadratic functions. You will not do any extra assignment or activity 
other than the work you would already be doing in this class. As you learn math, I will video-
record your teacher implementing the lesson plan. You will take a pretest at the beginning of the 
study and a posttest at the end. Neither your pretest nor posttest will impact your grading.  

If you decide not to participate in the study, you will be attending your Algebra 2 class as you 
usually do, with the same instruction provided by the same teacher, but your data will not be 
included in this study.  

Risks 

Being in this study involves no greater risk than what you ordinarily encounter in daily life. Your 
participation in this research will be held strictly confidential, and only a code number will be 
used to identify your stored data.  

Benefits 

You will be exposed to an innovative teaching method that will help you to improve your 
mathematics skills. In addition, you will have an opportunity to experience how productive 
struggle enhances your mathematics learning and knowledge acquisition of topics related to 
quadratics function.  
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Mathematics teachers, administrators, policymakers, researchers in mathematics education will 
benefit from this study by better understanding the importance of supporting the use and 
implementation of productive struggle teaching practices on students’ mathematics proficiency. 
The study results will reveal how productive struggle teaching practices could help students 
improve their mathematical proficiency. 

Who to talk to about questions 

If you have questions about the study, you can ask us now or later. Your parents have been given 
our contact information. 

If you have questions about your rights in the study, contact The University of Texas Rio Grande 
Valley Institutional Review Board at (956) 665-3598 or irb@utrgv.edu. 

I agree to take part in the study. 

Child’s Name       Signature         Date 



97 

APPENDIX F 



98 

APPENDIX F 

PARENT/GUARDIAN PERMISSION FORM FOR CHILD PARTICIPATION IN RESEARCH 

Study Title: The Impacts of Supporting Productive Struggle Teaching Practice on Students’ 
Conceptual Understanding, Procedural Fluency, and Strategic Competence: The Case of 
Quadratic Functions. 

Permission Form Name: Parent/Guardian Permission Form for child participation in research 

Principal Investigator:  Sumeyra Karatas Telephone: (956) 778-6211

Emergency Contact: Sumeyra Karatas Telephone: (956) 778-6211

Key points you should know 

• I am inviting your child to be in a research study that I am conducting. Your child’s
participation is voluntary, and this means it is up to you and your child to decide if they
want to be in the study.  Even if you choose to have your child join the study, you are free
to have them leave at any time if you change your mind.

• I want to invite your child to participate in my research study to learn how exposure to
one of the effective mathematics teaching practices (e.g., productive struggle) from the
National Council of Teachers of Mathematics (NCTM) impacts students’ conceptual
understanding, procedural fluency, and strategic competence in solving quadratic
functions problem solving tasks.

• Why is your child being asked to be in this study?
• Only students taking Algebra 2 during the 2021-22 school year will participate in

the study.
• What will your child do if you agree for them to be in the study?

• The participant students will receive high-quality mathematics instruction, be
involved in high-leverage mathematical thinking activities, and develop a deep
understanding of mathematical concepts. Two Algebra II classes will be selected
as the comparison group, and the other two will be in the treatment group. Both
comparison and treatment groups will be taught the same content and engaged in
the same math tasks. The teacher will implement the same lesson content and
tasks using her regular teaching style and standard pedagogy in the comparison
group, whereas the teacher will be using the productive struggle teaching practice
for the treatment group. Not providing the treatment will not deprive the
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comparison group of quality instruction or content. If the treatment group 
outperformed the comparison group in the posttest, then the treatment will be 
offered to the comparison group students. Participants will be asked to take a pre 
and posttest at the beginning and the end of the study. Treatment group will be 
exposed to supporting productive struggle teaching practices during the quadratic 
functions unit for approximately five weeks. I will be video-recording the 
teacher’s implementation of the lesson plan. The video recordings will only be 
used to ensure lesson plans are appropriately implemented. I will analyze 
students’ pretests and posttests to determine their mathematical proficiency in the 
unit of quadratic functions. Please indicate whether you will allow us to do so by 
initialing one of the following: 

• _____(initials) Yes, I give permission for
[videotaping/audiotaping]

• _____ (initials) No, I do not give permission for
[videotaping/audiotaping]

• Can your child be harmed by being in this study?
• This project presents minimal risks, which may come from regular anxiety of

being recorded during class time and knowing that the researcher will analyze the
video. To minimize the anxiety, the teacher will explain to students that the
videos will be analyzed to ensure that the lesson plans are implemented properly.
There will not be any grading as a result of videos.

• Risks to your child’s personal privacy and confidentiality: Your child’s
participation in this research will be held strictly confidential, and only a code
number will be used to identify their stored data.  The data will be stored in the
researcher’s password-protected at UTRGV archives.

• All information gathered in this research study will be stored in secure electronic
and/or physical locations and protected to the extent afforded by law.

• If we learn something new and important while doing this study that would likely
affect whether you want your child to be in the study, we will contact you to let
you know what we have learned.

• What are the costs of being in the study?
• There is no cost of being in this study.
• You will not receive any payments for taking part in this study.

• What other choices do you have if you decide not to have your child be in the study?
• Your child will be attending his/her Algebra 2 class with the same instruction

provided by the same teacher, but his/her data will not be included in this study.
• Could your child be taken out of the study?

• Your child could be removed from the study if you or your child do not want to
participate or discontinue at any time and without asking any questions.
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Can the information we collect be used for other studies? 

Information that could identify your child will be removed, and the information your child gave 
us may be used for future research by other researchers or us; we will not contact you to sign 
another consent form if we decide to do this. 

We will not use or distribute information your child gave us for any other research by other 
researchers or us in the future. Data, with all identifying information removed, will be kept for 
three years and may be used for future research by the researchers in this study or by others.  

What happens if I say no or change my mind? 

• You can say you do not want your child to be in the study now, or if you change your
mind later, you can stop their participation at any time.

• No one will treat your child differently, and your child will not be penalized.

How will my child’s privacy be protected? 

• We will share your child’s information by assigning indirect identifiers as pseudonyms
when reposting students’ data.

• Your child’s information will be stored with a code instead of identifiers (such as name,
date of birth, email address, etc.).

• No published scientific reports will identify your child directly.
• If it is possible that your child’s participation in this study might reveal behavior that

must be reported according to state law (e.g., abuse, intent to harm self or others),
disclosure of such information will be reported to the extent required by law.

Who to contact for research related questions 

For questions about this study or to report any problems your child experiences as a result of 
being in this study, contact Sumeyra Karatas at (956) 778-6211 or 
sumeyra.karatas01@utrgv.edu.  

Who to contact regarding your child’s rights as a participant 

This research has been reviewed and approved by the University of Texas Rio Grande Valley 
Institutional Review Board for Human Subjects Protections (IRB).  If you have any questions 
about your child’s rights as a participant, or if you feel that your child’s rights as a participant 
were not adequately met by the researcher, please contact the IRB at (956) 665-3598 or 
irb@utrgv.edu. 
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Signatures 

By signing below, you indicate that you voluntarily agree to have your child participate in this 
study and that the procedures involved have been described to your satisfaction. The researcher 
will provide you with a copy of this form for your own reference.  

__________________________________________________ ____/_____/______ 

Parent/Guardian’s Signature Date 

Child’s Full Name: ___________________________________ 
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 PARENT RECRUITMENT FORM 

Hello! My name is Sumeyra Karatas; I am a doctoral student in mathematics education at the 
University of Texas Rio Grande Valley (UTRGV).  I want to invite your child to participate in 
my research study to learn how exposure to one of the effective mathematics teaching practices 
(e.g., productive struggle) from the National Council of Teachers of Mathematics (NCTM) 
impacts students’ conceptual understanding, procedural fluency, and strategic competence in the 
learning of topics related to quadratic functions.  

The UTRGV Institutional Review Board for the Protection of Human Subjects (IRB) has 
reviewed and approved this research study.  

Only students taking Algebra 2 during the 2021-22 school year will participate in the study. 
Participation in this research is entirely voluntary; your child may choose not to participate 
without penalty. The participant students will receive high-quality mathematics instruction, 
engage in high-leverage mathematical thinking activities, and develop a deep understanding of 
mathematical concepts. 

Participants will be asked to take a pre and post-test at the beginning and the end of the study. 
They will be exposed to supporting productive struggle teaching practices during the quadratic 
functions unit for approximately five weeks. I will be video-recording the teacher’s 
implementation of the lesson plan  
If you let your child participate in this research study, please turn in the signed Child Assent 
Form and Parent/Guardian Permission Form.  

If you have questions, please contact me by telephone at (956) 778-6211 or email at 
sumeyra.karatas01@utrgv.edu. You may also contact my faculty advisor, Dr. Jupp, at 
james.jupp@UTRGV.edu or Dr. Rodriguez at ignacio.rodriguez@utrgv.edu. 
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