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ABSTRACT

Mascorro, Miguel A., GMRES Convergence of Block Preconditionersfor Nonsymmetric

Matrices. Master of Science (MS), December, 2022, pp., 15 figures, references, 17 titles.

GMRES is an iterative method for solving linear systems that minimizes the residual
over the k-dimensional Krylov subspace at iteration k. Murphy, Golub and Wathen in [11]
show that saddle point type matrices can be preconditioned so that GMRES converges
in two or three steps. Ipsen in [10] extends this work to matrixes where the (2,2) block is
nonzero. However, the three step convergence result no longer holds in this case. In this
thesis we investigate how many more steps are needed for convergence as a function of

the size of that (2,2) block.
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CHAPTERI
INTRODUCTION

In this thesis we are going to consider matrices of the form
A B A B
Ao = and A= (1.1)
C D

where the former is often referred to as saddle point matrices or Karush-Kuhn-Tucker
(KKT) matrices [1][7][12] and where A € R"*", B € R"™*™, and C € R™*". We will also
assume throughout that both .4y and A are invertible.

For such matrices we are going to explore solving the system
Ax =b. (1.2)

where A € R(ttm)x(ntm) b e Rr+m and A and A are both invertible. However, often
the size of A is too large for Gaussian elimination to be practical. So, other numerical
methods have to be used to solve the problem in a more reasonable time frame. In
particular, we focus on working with the GMRES algorithm. In many instances, some
ideal preconditioner P for a linear system results in a coefficient matrix AP~ for
which the GMRES algorithm converges exactly in some small number of iterations. In fact,
in a paper from 2000, Murphy, Golub, and Wathen [11] proposed to precondition the KKT

matrix
A B*

Ao (1.3)

c 0



with the block matrix

A B*
Py = (1.4)
0 +CA1B*

Here, A € R"*",and B,C € R"*™ and it is assumed both A and A are invertible. Further,

this gives the right preconditioned system

AoPil = ! 0 1.5
Py = (1.5)
CA™1 FI

the degree-2 minimal polynomial (z — 1)(z + 1) for AgP; ! and (z — 1)? for AgP_", making
GMRES converge in two steps. Murphy, Golub, and Wathen [11] also consider the block-

diagonal preconditioner
A 0
0 CA !B

giving the preconditioned matrices AOP(; land 73(; 1 Ay the same three eigenvalues:

1++5 1-+5
;o M

M=1 A= (1.7)

Since the eigenvalues are not defective, when applied to the preconditioned linear system
Py L Apx = Py por AoP, ly = b with Ay nonsingular, the GMRES algorithm converges in
no more than three steps [17].

Ipsen [10] extends this idea to generalize the preconditioners (1.4) and (1.6) to the

generic block matrix
A B*
A= (1.8)
C D



via the Schur complement S := D — CA~1B*. If (1.8) is preconditioned by

A B*
Py = , (1.9)
0 =S
then
» I 0
AP = , (1.10)
CA-1 47

and Py A and AP;! have the minimal polynomial (z — 1)(z F 1). As such, the GMRES

algorithm still converges in at most two steps. However, if (1.8) is preconditioned by

A 0
P = ) (1.11)
0 —S

then the right-preconditioned matrix is [10]
AP 1= B . (1.12)

In this case, unfortunately, the GMRES algorithm convergence in three steps does not hold.

So, how many more steps does it take for GMRES to converge?
1.1 KKT Matrices

These types of matrices can arise from a quadratic optimization problem coupled

with linear constraints:

1
min or max f(x) = ExTQx +bTx+c

such that g(x) :=CTx =d



where Q € R"*", x,b € R", C € R"*™ is full rank, and # is often much larger than m. Note
that
Vflx)=Qx+b and Vg(x)=C

So, our first order conditions and constraints are satisfied if

Qx+b=CA

CTlx=d

or

This set of equations are an example of Karush-Kuhn-Tucker (KKT) [1] first order condi-

tions and can be succintly written as

Q C|| «x b
CT o =X d

These types of matrices also arise from the Stokes equations modeling fluid flow at low
Reynold numbers [1][7]. However, sometimes we may be interested in matrices of the

form

where A € R"" B e R"™™ C € R"",and D € R™*™ is a non-zero matrix.



1.2 GMRES

GMRES is an iterative method that aims to approximate the solution to (1.2) by

minimizing the residual over a finite-dimensional subspace [13]. In particular, GMRES at

iteration k solves

min  ||b — Ax]|
xexg+Ki(Arg)

where the k-th Krylov subspace is defined as
’Ck(A,Vo) = span{ro, AT(),AZT’(), . .,Akili’o}.

Here, rp = b — Axy is the residual, and x; is the k-th iterate.

Notice then that x = xo + y for y € K¢ (A, rp) and so we also have that
b—Ax=b—A(xo+y)=b— Axy — Ay =19 — Ay.
Therefore, we equivalently have that GMRES at iteration k
min |[rp— A
yein o — Ayl

where x = x¢ + y.

(1.13)

(1.14)

In practice, we want to find an orthonormal basis for (A, 7). Suppose {v1,vs, ..., vk}

is an orthonormal basis for (A, rg). The orthonormal basis is constructed by applying

the modified Gram-Schmidt to the basis vy, Avy, Avs, Avy, Avs, ...

If 0j € /C], then

j—1
U]' = Z CIAIT’O
I=0

j—1
AU]' = ZClAlJrlTQ S ’C]'+1
1=0



So at step k 4 1 we project Avy onto a space orthogonal to Ky and then normalize as follows:

Op1 = (I —ov) -+ (I — v107) Ay (1.15a)
Vppq = Tt (1.15b)
[y
Then,

is a k x k upper Hessenberg matrix since
(Hy)jo = vj Avg

and Av, € Ky, thus making (Hy)jp = 0if j > £ + 1.

We also know that ||y 1]| = ltx11 4 and thus from the equations in (1.15) we have

| Fkt1 V%41 = Bt k%41 = (I — ViV) AV

= AVkek - Vkaek

Thus,

Avy = Vi Hyex + hjiq (U4



and since this equality holds for indeces 1 through k, we have that

AV, =

ViHie

ViH +

VoHyey -+ ViHger| T |hoiv1 h3pvo

hy11v1 4+ hy1v2  hypv1 + hppvo + h3 503

0 hyi1,k0k41

AVj = ViHy + hyy 1 k0 16}

ViHgel +

M1 k%41

R 1 k%1

(1.16)

where we can rewrite the second equation as the third since Hy is an upper Hessenberg

matrix. Next, recall that the product of a matrix multiplication is the sum of matrices

that are products of the columns of the left matrix and rows of the right matrix. So,

equation (1.16) can be rewritten as

AVk = vihy +v2hy + -+ - + oy + vk+1hk+1,ke:f

AVj = Vi Hy

where h; represent the rows of Hy and

(1.17)




1111 12 Mg |
ho1 hap "
e o2 - iia kel
N
i Niy1 k]
isa (k+ 1) x k matrix.
Now, note that
v1=Vier = Ve = % (1.18)

and since the span of the columns of Vj are the Krylov subspace, we have the following
equivalence

min ||rg — Ax|| <= min||rg — AVic||
xeKr(A,r) ceCk

Thus, from equations (1.17) and (1.18), we have
min ||rg — AVic|| <= min||||ro||Vir1er — Vi1 Hiel|
ceCk ceCk
and since the columns of Vj; are orthonormal, || Vj_1z|| = ||z|| for any z € C* and we have

min ||[|ro||Vi+1e1 — Visr Hcel| <= min || Vi1 (Jlroller — Hic) |
ce ceCk

<= minl|||[rolle; — Hc|
ceCk

and thus at every step, we are solving a (k+ 1) x k Hessenberg least squares problem.
Specifically, after specifying an initial guess xp and some tolerance t, we are using algo-

rithm 1] [14] to solve the problem.



Algorithm 1 GMRES

Input: A,b,t,xg
Output: x;
ro = b— AX()
v1 =ro/ ol
fork=1,2,3,...do
q = Avy
forj=1tokdo
hix = v;‘q
q=q—hjxv;
end for
ek = |9
Ok+1 = q/ hrg1k )
Find ¢ to minimize ||||rolle1 — Hkc|| (= ||7ll)
X — VkC
if ||||7oller — Hycll/||ro|| < t then return x;
end if
end for

1.3 GMRES Analysis

Interestingly, GMRES can be thought of as a polynomial optimization problem.

Consider y € IC(A,1p), then

Yy = coro + c1Arg + 0 A%rg+ ...+ ck_lAkflro
= (C() + 1A+ C2A2 + ...+ Ck_lAkil)i’o

= q(A)ro, where g is a polynomial of order < k — 1

and if yy solves (1.14), then

rk =10 — Ayx = ro — Aq(A)ro = (I — Aq(A))ro
=(I—A(co+c1A+ C2A2 +...+ CkflAk_l))i’o
= (I — oA — C1A2 — C2A3 — ...+ Ck,lAk)i’o

=p(A)ro



where p is a polynomial of order k and p(0) = I or 1.

Thus, GMRES is equivalent to

i A
min |p(A)rol|

p(0)=1

at iteration k and we can bound the relative residual as

o Al < i )
7l min |p(A)ro < min [p(A) 7ol

p(0)=1 p(0)=1
and thus
7] -
- < min A)ll. 1.19
< min [p(a)] (1.19)
p(0)=1

To bound the relative residual then, we shift our focus to what is sometimes referred to as

the Ideal GMRES problem seen above [8][15].
1.3.1 Some Known Bounds

The minimal polynomial of A provides some insight into GMRES convergence.
Here, the minimal polynomial g4 (z) of a matrix A is the unique monic polynomial of least

degree that annihilates A [9]].

Theorem 1. Let A € C"*" be invertible, d be the order of the minimal polynomial q 4 of A, and ry
be the k-th residual vector produced by the GMRES algorithm in |1, Then, GMRES converges in at

most d steps.

Proof. Note that g4(A) = 0if and only if A is an eigenvalue of A [9]. So, for a nonsingular
matrix A, g4(0) # 0. That is, for a nonsingular matrix A, we can always construct a

polynomial f(z) such that 5(0) = 1 if we let

p(z) = 142 (1.20)



Then, since f is also of order d,

7] )
i < min < A)|| =0. 1.21
ol = min [lp(A)] = lIp(A)] (1.21)
p(0)=1
Hence, GMRES must converge in at most d steps. O

Furthermore, the interpretation of the GMRES algorithm as a polynomial optimiza-
tion problem allows us to understand its convergence via spectral sets of the matrix A. First
note that when A is normal, A = UAU" for unitary U and a diagonal matrix A consisting

of the eigenvalues of A, the following is true [15]:

min [[p(A)ll = min [Up(AU7|| = min max [p()] (1.22)
p(0)=1 p(0)=1 p(0)=1

where 0(A) is the set of eigenvalues of A. With this in mind, the first bound [15] w

present for the relative residual using a spectral set of A is the following;:

Theorem 2. Suppose that A is invertible and diagonalizable, and that A = VAV~ where A is a

diagonal matrix consisting of the eigenvalues of A, then

il

| 1
— VIV ™ mm max 1.23
P(0)=1

Proof. Recall that we know (1.19), and since we also have that

i A)| = mi VAV
min [[p(A)[} = min {[p( )|

p(0)=1 p(0)=1
< min |V -1
< min VI (A)IHV
p(0)=1
= V|||V
=[[VII|lV~| n;lgp \max, lp(M)]
P(0)=1

11



where the last equality comes from (1.22), the desired inequality is proven. O

When ||V||||V~!]| is large or infinite, the e-pseudospectra of A provides an alter-
native approach that can be more descriptive [15]. This e-pseudospectra of A is denoted

0:(A) and defined as

0e(A) ={z€C:3Jv e C"suchthatv'v=1,||Av — zv|| < ¢} (1.24)
={ze€C:z€0(A+E) forsome |E|| < e} (1.25)
={zeC: H(zl—A)—lH >1/e). (1.26)

We use the convention that ||[M~!|| = co when M is singular. Trefethen and Embree use
a Dunford-Taylor integral to arrive at the bound we know for GMRES [15] that uses the

pseudospectra of A:

Theorem 3. Let A € C"*" be nonsingular and ry be the k-th residual vector produced by the
GMRES algorithm in[l} Then,

UL m m 27
| || 2 ¢ 'Ze)g’: zeaoil(x)m(Z)' (127
p(0

for e > 0, where L, is the arc length of do(A).

Proof. LetT := do:(A). Since o(A), which are all the poles of (zI — A)~1, are contained in

0:(A), then
()= | 537 )1 = 4) e
— At
_Zn/|p et =4y~
<_
2nzer5}3(x)lp( )| Le
_ Lo max |p(z)]
27T€ z€d0:(A)



by the definition of pseudospectra, and the desired inequality follows from (1.19). O

Interestingly, we can also bound the GMRES algorithm using the field of values of
a matrix, also known as the numerical range [4][5]. In a paper by Michel Crouzeix [4], he

proves the following bound for matrix polynomials:

Theorem 4. For any matrix A € C"*" and any polynomial p : C — C,

Ip(A)[| <11.08 sup [p(z)] (1.28)
zeW(A)
where
W(A)={x*Ax:x*x=1,x e C"}. (1.29)
Knowing this, another bound for GMRES is given by
H 11.08 rmjgl sup |p(z)| (1.30)
€
0 p;zo)_klzeW(A)
via (1.19).
Crouzeix and Palencia expanded upon this work in a 2017 paper [5] where they
develop a tighter bound:

Theorem 5. For any matrix A € C"*" and any polynomial p : C — C,

Ip(A)] < (14 v2) sup |p(z)l. (1.31)

zeW(A)

With this, we have yet another bound for the relative residual:

7l

— 1++2) min su z 1.32

s )ﬁg)ﬂ)klzm&)w( ) 132)
p fr—

once again via (1.19).

13



In a 1999 seminal paper [6], Bernard and Francois Delyon showed that for a smooth,
bounded, convex domain Q) C C, there exists a best constant C, such that for all rational

functions f, there holds

()] < Cnsgg f(2)] (1.33)

whenever A is a bounded linear operator in a complex Hilbert space (H, (,), ||||) whose
numerical range

W(A):={(Av,v) :v € H,||v|| =1}

satisfies W(A) C Q). Though it has been shown in [4] that Q := sup, Cn is 2 < Q < 11.08

and more recently in [5] that2 < Q <1 + V2, Crouzeix conjectures [3][4][5] that O =2,

but it remains an open problem.

14



CHAPTERII
CONDITIONING AND PRECONDITIONING

This condition number of a linear system Ax = b defined by

x(A) = AlllA7

and it measures the sensitivity of the solution to small perturbations in the input data
A. We say a problem is well-conditioned when it has a low condition number, and it is
ill-conditioned if it has a high condition number. That is, an ill-conditioned problem is
more susceptible to large changes in the answer even when there is a small change in the
inputs.

However, the idea of preconditioning a system has less to do with it’s condition
number and more to do with the rate of convergence of the iterative method applied to it.

So, if we wish to solve the m x m nonsingular system

Ax =D, 2.1)

notice that for any nonsingular m x m matrix M, the systems

M 1Ax=M"1p (2.2)

and AM~'Mx =1b (2.3)

have the same solution. However, if we solve (2.2) iteratively, the convergence will depend

on the properties of M~ ! A rather than those of A. Thus, if the preconditioner M is well

15



chosen, convergence for (2.2) might be much faster than that of (2.1).
Of course, since it must be possible to compute the operation represented by the
product M~'A efficiently, we do not explicitly construct the inverse M~!, rather we

construct the solution of systems of equations of the form

My =c.

Additionally, since how well a preconditioner performs depends on the problem.
We say a preconditioner M is good if M~! A is not too far from normal and its eigenvalues
are clustered [14]. However, since it is hard to discern when a particular preconditioner

will be better than another, Wathen [16] when he says

“There is, of course, no such concept as a best preconditioner: the only two
candidates for this would be P = I, for which the preconditioning takes no time
at all, and P = A, for which only one iteration would be required for solution
by any iterative method. However, every practitioner knows when they have
a good preconditioner which enables feasible computation and solution of
problems. In this sense, preconditioning will always be an art rather than a

science.”

16



CHAPTER III

CAN THE FIELD OF VALUES BOUND BE USED IF THE FIELD OF VALUES CONTAINS
ZERO?

Recall from Section that for GMRES applied to any system Ax = b where

A € C"*"" is nonsingular and b € C",

7l

Wkl < 1

ol lpggl p(A)| <C gggp Zglvg(x lp(2)| (3.1)
p(0)=1 p(0)=1

where C =1+ /2, ¢ is the relative residual at iteration k, and P is the set of polynomials

of degree k or less. Note that the above follows from [5]

Ip(A)] < Czénm?(ﬁ) p(2)]. (3.2)

We would like to be able to use this bound to describe GMRES convergence, but is
it possible to use this bound when 0 € W(A)?

Well, suppose 0 € W(A). Then, if we choose fi(z) =1, p € Pk, #(0) =1, and we

have
< <1 3.3
%2)132 Zglwa(x)lp( z)| énwa(x)lp( z)| < (3.3)
p(0

Furthermore, for any polynomial p such that p(0) =1,

1<
nga(x)lp( z)|

17



and thus

1< mi 3.4
< min Zé“m"’(z)' (3.4)
p(0)=1

Hence, by and (3.4), we have

7]

—— = min A)|l <C min max z)|=C 3.5
= min [p(A)] <C min_max p(z) (5
p(0)=1 p(0)=1

and we obtain a bound that is not very useful.

However, a paper by Greenbaum and Choi [2] from 2015 tells us that we can, in
fact, use the field of values bound when 0 € W(A). To do this, we want to use the roots
of A. Notice that if we let B= A'/f, B’ = A, and if p(A) is a polynomial of order k, then
p(A) = p(BY) = q(B) where g is a polynomial of order £k and has only powers that are

multiples of /. Thus, we have

lp(A)ll = Ip(BY)Il = lla(B)|| < C max. |9(2)]

—C ¢
,cmax, [Pzl

= Cze(vrvr(lgggf))z p(2)]

In particular, notice that if (W (A/?))* can be contained in a ball centered at ¢ with radius R,
then we may be able to use this idea to give us a practical bound for the GMRES algorithm.
Also of note is the fact that Greenbaum and Choi prove in [2] that for any nonsingular
matrix A and any positive integer ¢, lim_,,[W(A//)]* = exp[W(log A)] where log A is
defined using the same branch cut used to define the ¢-th root of A. Using the inequality

above, we have that

[l .

—— < C min max z 3.6

’7’0” - ;?g)?klze(w(m/z))g'p( )| ( )
p =

18



and if we choose p(z) = (1 — %)k, then p € P, (0) =1, and

ok
) R19
ﬁ(c—i—Rele):( _C+Ce)
N k
RezG
=(1-1-
(1170
RkeikQ
= .

Thus, for any z € dBg(c)

P(2)| = (ﬁ)k

and if (W(A/%))¢ C Bg(c) where Bg(c) is a ball of radius R centered at ¢, we have

C mi < C mi 3.7
i Vrvrg%é))élp(Z)l <Cmin max p(2)] (3.7)
p(0)=1 p(0)=1

<C max [p(z) (3.8)

z2€0BRr(c)

R k
—c(2) 3.9
(\c|) 59

Hence, we hope to use a ball with R < |c| containing (W(A!/%))¢ but not 0 to bound the
rate of convergence of the GMRES algorithm since otherwise this bound is not useful.

Unfortunately, in our tests, we could not find any such ball for multiple values of
(. Figure 3.1shows the tests for matrices AP~ € R¥®** for A of the form A = I + 1.5B
where I is the 55 x 55 identity matrix and B € R%*®° is a random normalized matrix, and
for P as described in . Figure 3.2/ shows the test for matrices AyP;! € R%* for
A as defined in and P, as defined in lb and where A € R%%%0 js an orthogonal
random matrix, B € R°* is a random matrix, and C € R°*% is a random normalized
matrix. In both of these figures, the eigenvalues of the base matrix are shown as red dots
and the origin is shown as a blue dot.

In fact, these figures provide some intuition for the following theorem.
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Figure 3.1: (W((AP~1H)/4))! for values of £ = 1,2,...,10 where the line with the deepest
red is ¢ =1, the one with the brightest yellow is ¢ = 10, the green dashed line is ¢ = 50, the
black dashed line is ¢ = 100, the magenta dashed line is £ = 1000, and the blue dashed line
is exp[W (log(AP~1))].

Figure 3.2: (W((AoP1)1%))! for values of £ = 1,2,...,10 where the line with the deepest
red is ¢ = 1, the one with the brightest yellow is ¢ = 10, and the blue dashed line is
exp[W (log(AoP1))]-

Theorem 6. Let A € C"*" be nonsingular and A" be the matrix such that (A/*)" = A. Then,
if the eigenvalues of A cannot be contained by a ball Bg(c) of radius R centered at ¢ such that

0 ¢ Br(c), then there does not exist such a ball to contain (W (AY )¢ but not 0.

Proof. Notice that the eigenvalues of A must be contained in (W (A/))’ for any /. Indeed,

suppose A 41/¢ is an eigenvalue of A'/? and A 4 is an eigenvalue of A, then for some nonzero
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vector x

Aax = Ax = (AYHx = quwx.

Thus, A 410 = AY/“. Then, since AY/* € W(AYY), A4 € (W(AV))".
Hence, if there does not exist a ball that can contain the eigenvalues of A but not 0,

there does not exist a ball to contain (W (A!/4))¢ but not 0. O
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CHAPTER IV
RELATIVE RESIDUAL BOUND

We are attempting to answer the question of how many more steps does it take
for the GMRES algorithm to converge when applied to the preconditioned linear system
AP 1x =b given that the (2,2) block in A, D, is nonzero. To do this, we can think of
AP~ as a perturbation of the preconditioned matrix Ao . To put it in more general

terms, if we have a fixed perturbation E = AP~ — AyP~!, and if

el = min [[p(AgP~")b|| and ||kl = min [[¢p(AeP "+ E)b||
pEka pETn
p(0)=1 p(0)=1

are the residuals produced by GMRES applied to
AOP_lx =b and (.»407)_1 +E)x=0b,

respectively, how far does the residual p; lag behind r,? To answer this question, we
need to find the norm of the difference between these residuals, but a bound can also be
enlightening.

Fortunately, in a paper from 2017, Ymbert, Embree, and Sifuentes [17] show that for

any 6 > €:=||E||,

okl _ 7l ( € ) < Ls )
: - su z (4.1)
Il Il 5—¢) \2mé Zea%(Alzpl)’Pk( )|

where L; is the length of the boundary do;(AgP 1) of the 5-pseudospectrum of AyP !
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and py is some polynomial of degree k or less satisfying py(0) = 1 for which the GMRES

residual vector at step k takes the form

re = pe(AoP ).

Further, since AyP ! has a low-degree polynomial for any of the preconditioners
described before, GMRES will converge exactly in just a few steps. Let d denote the degree
of this minimal polynomial. Then, if k > d, r, = 0 and we can write [17] r, = px(AoP )b

for any polynomial of the form

where a is the degree d polynomial that annihilates .AgP~! and g is a polynomial of
degree k — d or less, with «(0) = g(0) = 1. As such, when k > d, bounds the residual

remaining for the perturbed preconditioned problem [17]:

x| < € ) ( Ls > _
< min su x(z z 4.2)
|0l 6—e€) \2mé dgé;((%))g_;;_dzea%mlzpl)| (2)|]9(2)]

Ymbert, Embree, and Sifuentes [17] expand upon this further by assembling a
bound for the preconditioner via estimates of the pseudospectra of AyP~! using the
spectral projectors I1; for its eigenvalues A;. Specifically, if we let ||I1;|| < ;, then

3

o5(AP 1) CSsi=|J{z€C: |z — Ajl < 35k}
j=1

and if |AP 1 — AP~ <€ <6, fork>3

¢
M <3 ( 6/) (K1 + 1 + K3) sup |pk(z)| (4.3)

26855
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where

)= (1 -2 (1- 5)51 (1- 1f¢)d3

and di + dy + d3 = k are chosen to minimize |pi(z)| over dS;. We can apply this bound to

our prpblem for own bound on the relative residual:

Theorem 7. Let A € C#Hm)*(1n4m) po the 2 x 2 block matrix defined in , A € Cn+m)x(n+m)
be the matrix defined in , P be the preconditioner defined in , I1; be the spectral projectors
of AgP 1, and py. be the residual at iteration k of GMRES applied to the system AP~ 'x =b. If
15| < &jand e := || AP~ — AgP 1| <6, then

€
o 5 ( ) (k1 + 12 + K3) sup [pi(2)] (4.4)
151l 0—¢ zeas;
Proof. The proof follows immediately from the inequality (4.3). O

Thus, if we can bound || AP~! — AgP~!||, then we can bound the relative residual

for GMRES applied to the inexact preconditioned problem.

4.1 A Bound for the Difference Between the Perturbed System and the Unperturbed
One

We have the preconditioned systems

. I —B*S™1
AP =
CA-1 —Ds1
and
I  —B*s-!
./4073_12 0
CA-1 0
where
A B*
c pl
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AP~ is the preconditioned matrix with eigenvalues 1, the golden ratio, and its conjugate,

and

So=—CA™'B*
S=D—-CA™'B*

Theorem 8. Let A € C"+M)*("+m) be the 2 x 2 block system defined in , P be the precondi-
tioner defined in , 0" :=||D||, and v == ||Sy M ||. If | DS || < 1, then

e [apt—agp] <SP

1—J6y

Proof. We have

= » I —B*s! I —B*S,!
AP~ — AgP || = -
CA~1 —-Ds! CA™! 0

0 —B*S~1+4B*S;!
0 —Ds 1

1|2 2
< H—B*S—1+B*SO_ H +||-Ds1|

-l

wa—1 ca1l|? ~112
BS;! = Bes!| + DS

So, notice

B*S;! — B*S™ 1 =B*S;! — B*(D + Sp) *

B*(Sy" = (D+50)7")

B*(Sy!' — ((DSy ! +1)Se) ™)

B*(Sy' —So(I+ DSy ™)

=B*S; 1 (I— (I+DS; )™
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Since HDSO_1H <1, then

j=0
Now,
HI I+ DSy H: Y (-=Ds;t)
=1
<Y (0'y)
=1
1 1-dy
11—y 1-48y
_
=1
Therefore,

181 sa" | o'y 3ey o2
xo—1 xco—1 xg—1
e B [ e

Additionally,

o5 < [pro-s0°

= ||D(So(Sy D + 1))

~ | b1+ 551 D)5

< i |+ s3"0) 7 Jsq7
, 1
§57Tj§;
_ v
C1—0dy
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Hence,

J

o B* 25/2 4 5122
B'S; !~ Brs 1|+ DS < \/ =5 P a5y

I/ IB P 41

1—46y

That is,

HAszl_AOp—lu §5’7\/||B*||272+1'

1— 06y

4.2 The Bound

Finally then, we can construct a more specific bound for the relative residual of

GMRES applied to the problem preconditioned by (1.11).

Theorem 9. Let A € C(*+)*("+m) pe the 2 x 2 block matrix defined in (1.8), Ay € Crm)x (ntm)
be the matrix defined in , P be the preconditioner defined in , 8 :=||D||, y:= ||SO’1 IP
I1; be the spectral projectors of AoP 1, and oy be the residual at iteration k of GMRES applied to
the system AP 1x =b. If | DSy || < 1, 11| < xj, and M—W < 6, then

5/ 1B P92 + 1
% <3 (k1 + K2 +x3) sup |px(z)] (4.5)
§— 88"y — &/ IIB** 2 +1 2€35;
Proof. The proof follows from theorem O

4.3 An Important Result

Theorem 10. Suppose Ay and P defined in and are both invertible. If m < n, the right
and left invariant subspaces Ry and L1 of AP~ for A defined in and associated with A1 =1
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have dimension n — m:

Az z
R = :z€Ker(C) p, L= :z € Ker(B) ». (4.6)

0 0

Proof. Since Ay is invertible, B and C must have full row rank. Recall that the Ipsen
preconditioned matrix is
I —B*s7!
cA™t -Ds™!
where S=D — CA~!B*.
To compute Ry, note that a right eigenvector u = [xTy”]T where x € C" and y € C"",

associated with A; = 1 satisfies

x—B*Sly=x

CA ' -DsSly=y

Since B has full row rank and S is invertible, the first equation implies y = 0. That reduces
the second equation to the condition A~'x € Ker(C), establishing the form for R; in .
The computation for £ is similar: the left eigenvector v = [rs”]T where r € C" and s € C"

satisfies (AP~1)*, that is,

r+ A *C's=r

—S *Br—S *Ds=s

Since C has full row rank and A is invertible, the first equation implies s = 0. That reduces
the second equation to the condition r € Ker(B), and thus we have the formula for £;
in (4.6). Since B,C € C"™*" have full row rank and m < n, dim(Ker(B)) = dim(Ker(C)) =

n — m, establishing the dimensions of R; and £;. [
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Theorem 11. Suppose Ag and P defined in and are both invertible. If m < n, then the
GMRES algorithm applied to the system AP~ 'x = b for A defined in converges in 2m + 1

steps or less.

Proof. Since AP~ ! is invertible, theorern tells us that GMRES converges in an amount of
steps that is at most equivalent to the degree of the minimal polynomial of AP L.

So, to find the minimal polynomial of AP~1, consider its Jordan canonical form.
Since Ag and P are invertible and m < 1, then from theorem [10jwe know that the geometric
multiplicity of the eigenvalue A; = 1 of AP~!is n — m. Let the algebraic multiplicity of
A1 =1ber. Thenr > n —m, and since the Jordan canonical form will have a 1 just above
the its main diagonal corresponding to each eigenvalue with a missing eigenvector, the

Jordan canonical form of AP~! can be written
In—m—l
J=T AT = I (4.7)

]2

where T is the matrix containing all eigenvectors and generalized eigenvectors corre-
sponding to the eigenvalues of AP, I, _,, 1 is the (n —m — 1) x (n —m — 1) identity

matrix,

]1 _ c C(r—(n—m)—|—1)X(r—(n—m)—Fl), (48)

and J, € C(n+m=r)x(n+m=7) jg the matrix containing all other Jordan blocks corresponding
to the eigenvalues of AP~1. Note that if the eigenvalue A = 1 is nondefective, J; = 1 and

]2 c C2m><2m.
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The minimal polynomial p; of such a matrix is

pi(2) = (1 —2)(1—2)"0"gp(z) = (1 —2) """ gy (2) (4.9)

where g, is the minimal polynomial of ], which must have order n + m — r or less. Indeed,

notice

p(z) =Tp; ()T~

and

pr(1) = (I =D~ g,())

0 Wz(I)
= (I— Jp)r—(nmmit (1)
(I _ ]z)r—(n—m)—i-l 0

0 q]z(I)

- 0 q]z(]l)
(I _ ]2)1’*(7’17711)4’1 0

- -4 r—(n—m)+1

(I . ]1)7‘*(1’17"1)4’1 _ N =0.
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Thus, since the degree of g, is at most n +m —r,

deg(p;) <r—(n—m)+1+n+m—r

=2m+1.

Hence, GMRES converges in at most 2m + 1 steps.
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CHAPTER V
NUMERICAL EXAMPLES

In this chapter, we apply the bounds developed in Chapter [V|to matrices A of
the form described in that have been preconditioned with P as defined in (I.TI). In
tigures these matrices are randomly generated with A € R°**%, B,C € R>*°, and
D € R>*>, the solid black line is the relative residual produced by GMRES applied to the
system AgP~lx = b, and the dashed line is the residual produced by GMRES applied to
the perturbed preconditioned system AP ~!x = b. In all of the examples where bound

or (4.5) is used, x; = ||I1;]| and

S'y\/||B|[P 92 +1

1—06y

Figures and demonstrate the bounds and (4.5), respectively, on the
same randomly generated matrix. Figures and demonstrate the bounds
and (4.5), respectively, on the same randomly generated matrix. Figures and
demonstrate the bounds and (4.5), respectively, on the same randomly generated
matrix. Figures[5.7/and [5.§ demonstrate the bounds and (4.5), respectively, on the
same randomly generated matrix.

In figures the dashed lines are the residuals produced by GMRES applied
to the preconditioned system AP~ !x = b for different values of n and m and the red line is
the vertical line at the 2m + 1 iteration. That is, these figures are demonstrating the bound
on GMRES convergence as described in theorem 11| In figures A € R1000x1000

and ¢’ ranges from 1071 to 10.
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Figure 5.1: Here, e = 1.80 X 1078, 5’ = 1078, and the gray lines are the bounds using (4.3)
using 6 = €10/ for j = 0.1,0.2,...1.
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Figure 5.2: Here, ¢ = 1.80 x 1078, 6’ = 1078, and the gray lines are the bounds using
using 6 = u10/ for j =0.1,0.2,...1.

33



10°
\
10° \
\
—
1010 \
\
A Y
0"
1 2 3 4 5 6 7 8 9

Figure 5.3: Here, e = 9.53 X 1077, 6’ = 1077, and the gray lines are the bounds using (4.3)
using 6 = €10/ for j = 0.1,0.2,...1.
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Figure 5.4: Here, ¢ = 9.53 X 1077, 6’ = 1077, and the gray lines are the bounds using
using 6 = u10/ for j =0.1,0.2,...1.
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Figure 5.5: Here, ¢ = 1.52 X 10719, 6’ = 1010, and the gray lines are the bounds using

using 6 = €10/ for j =0.1,0.2,...1.
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Figure 5.6: Here, e = 1.52 x 10719, 6’ =101, and the gray lines are the bounds using
using 6 = u10/ for j = 0.1,0.2,...1.
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Figure 5.7: Here, ¢ = 5.79 x 101, ' = 107 !!, and the gray lines are the bounds using
using 6 = €10/ for j =0.1,0.2,...1.
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Figure 5.8: Here, ¢ =5.79 X 10~1, 5’ = 10—, and the gray lines are the bounds using
using 6 = 10/ for j =0.1,0.2,...1.
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Figure 5.9: Here, &' =3.99,m =5,and n =5 x 2/ for { =1,---,12.
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Figure 5.10: Here, 8 =14.71,m=50,and n =5 x 2 for ¢ =4,--- ,12.
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Figure 5.11: Here, 8 =4430,m =500,and n=5x 2 for ¢ =7,--- ,12.
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Figure 5.12: Here, m = 10, n = 990, and ¢’ = 10’ for £ = —10, -

38



100 150 200 250

Figure 5.13: Here, m = 100, n =900, and ¢’ = 10¢ for ¢ = —10,---,1.
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