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ABSTRACT

Mascorro, Miguel A., GMRES Convergence of Block Preconditionersfor Nonsymmetric

Matrices. Master of Science (MS), December, 2022, 42 pp., 15 figures, references, 17 titles.

GMRES is an iterative method for solving linear systems that minimizes the residual

over the k-dimensional Krylov subspace at iteration k. Murphy, Golub and Wathen in [11]

show that saddle point type matrices can be preconditioned so that GMRES converges

in two or three steps. Ipsen in [10] extends this work to matrixes where the (2,2) block is

nonzero. However, the three step convergence result no longer holds in this case. In this

thesis we investigate how many more steps are needed for convergence as a function of

the size of that (2,2) block.
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CHAPTER I

INTRODUCTION

In this thesis we are going to consider matrices of the form

A0 =

A B

C 0

 and A =

A B

C D

 (1.1)

where the former is often referred to as saddle point matrices or Karush-Kuhn-Tucker

(KKT) matrices [1][7][12] and where A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rm×n. We will also

assume throughout that both A0 and A are invertible.

For such matrices we are going to explore solving the system

Ax = b. (1.2)

where A ∈ R(n+m)×(n+m), b ∈ Rn+m, and A and A are both invertible. However, often

the size of A is too large for Gaussian elimination to be practical. So, other numerical

methods have to be used to solve the problem in a more reasonable time frame. In

particular, we focus on working with the GMRES algorithm. In many instances, some

ideal preconditioner P for a linear system (1.2) results in a coefficient matrix AP−1 for

which the GMRES algorithm converges exactly in some small number of iterations. In fact,

in a paper from 2000, Murphy, Golub, and Wathen [11] proposed to precondition the KKT

matrix

A0 =

A B∗

C 0

 (1.3)
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with the block matrix

P± =

A B∗

0 ±CA−1B∗

 (1.4)

Here, A ∈ Rn×n, and B,C ∈ Rn×m and it is assumed both A and A0 are invertible. Further,

this gives the right preconditioned system

A0P−1
± =

 I 0

CA−1 ∓I

 (1.5)

the degree-2 minimal polynomial (z− 1)(z+ 1) for A0P−1
+ and (z− 1)2 for A0P−1

− , making

GMRES converge in two steps. Murphy, Golub, and Wathen [11] also consider the block-

diagonal preconditioner

Pφ =

A 0

0 CA−1B∗

 (1.6)

giving the preconditioned matrices A0P−1
φ and P−1

φ A0 the same three eigenvalues:

λ1 = 1, λ2 =
1 +

√
5

2
, λ3 =

1 −
√

5
2

(1.7)

Since the eigenvalues are not defective, when applied to the preconditioned linear system

P−1
φ A0x = P−1

φ b or A0P−1
φ y = b with A0 nonsingular, the GMRES algorithm converges in

no more than three steps [17].

Ipsen [10] extends this idea to generalize the preconditioners (1.4) and (1.6) to the

generic block matrix

A =

A B∗

C D

 (1.8)
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via the Schur complement S := D − CA−1B∗. If (1.8) is preconditioned by

P± =

A B∗

0 ±S

 , (1.9)

then

AP−1
± =

 I 0

CA−1 ±I

 , (1.10)

and P−1
± A and AP−1

± have the minimal polynomial (z − 1)(z ∓ 1). As such, the GMRES

algorithm still converges in at most two steps. However, if (1.8) is preconditioned by

P =

A 0

0 −S

 , (1.11)

then the right-preconditioned matrix is [10]

AP−1 =

 I −B∗S−1

CA−1 −DS−1

 . (1.12)

In this case, unfortunately, the GMRES algorithm convergence in three steps does not hold.

So, how many more steps does it take for GMRES to converge?

1.1 KKT Matrices

These types of matrices can arise from a quadratic optimization problem coupled

with linear constraints:

min or max f (x) =
1
2

xTQx + bTx + c

such that g(x) := CTx = d

3



where Q ∈ Rn×n, x,b ∈ Rn, C ∈ Rn×m is full rank, and n is often much larger than m. Note

that

∇ f (x) = Qx + b and ∇g(x) = C

So, our first order conditions and constraints are satisfied if

Qx + b = Cλ

CTx = d

or

Qx + C(−λ) = −b

CTx = d

This set of equations are an example of Karush-Kuhn-Tucker (KKT) [1] first order condi-

tions and can be succintly written as

 Q C

CT 0


 x

−λ

 =

−b

d


These types of matrices also arise from the Stokes equations modeling fluid flow at low

Reynold numbers [1][7]. However, sometimes we may be interested in matrices of the

form

A =

A B

C D


where A ∈ Rn×n, B ∈ Rn×m,C ∈ Rm×n, and D ∈ Rm×m is a non-zero matrix.
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1.2 GMRES

GMRES is an iterative method that aims to approximate the solution to (1.2) by

minimizing the residual over a finite-dimensional subspace [13]. In particular, GMRES at

iteration k solves

min
x∈x0+Kk(A,r0)

∥b − Ax∥ (1.13)

where the k-th Krylov subspace is defined as

Kk(A,r0) = span{r0, Ar0, A2r0, . . . , Ak−1r0}.

Here, rk = b − Axk is the residual, and xk is the k-th iterate.

Notice then that x = x0 + y for y ∈ Kk(A,r0) and so we also have that

b − Ax = b − A(x0 + y) = b − Ax0 − Ay = r0 − Ay.

Therefore, we equivalently have that GMRES at iteration k

min
y∈Kk(A,r0)

∥r0 − Ay∥ (1.14)

where x = x0 + y.

In practice, we want to find an orthonormal basis for Kk(A,r0). Suppose {v1,v2, . . . ,vk}

is an orthonormal basis for Kk(A,r0). The orthonormal basis is constructed by applying

the modified Gram-Schmidt to the basis v1, Av2, Av3, Av4, Av5, . . .

If vj ∈ Kj, then

vj =
j−1

∑
l=0

cl Alr0

Avj =
j−1

∑
l=0

cl Al+1r0 ∈ Kj+1

5



So at step k+ 1 we project Avk onto a space orthogonal to Kk and then normalize as follows:

ṽk+1 = (I − vkv∗k) · · · (I − v1v∗1)Avk (1.15a)

vk+1 =
ṽk+1

∥ṽk+1∥
(1.15b)

Then,

Hk := V∗
k AVk

is a k × k upper Hessenberg matrix since

(Hk)jℓ = v∗j Avℓ

and Avℓ ∈ Kℓ+1, thus making (Hk)jℓ = 0 if j > ℓ+ 1.

We also know that ∥ṽk+1∥ = hk+1,k and thus from the equations in (1.15) we have

∥ṽk+1∥vk+1 = hk+1,kvk+1 = (I − VkV∗
k )AVkek

= AVkek − VkHkek

Thus,

Avk = VkHkek + hk+1,kvk+1

6



and since this equality holds for indeces 1 through k, we have that

Av1 Av2 · · · Avk

 =

V1H1e1 V2H2e2 · · · VkHkek

+

h2,1v1 h3,2v2 · · · hk+1,kvk+1


Av1 Av2 · · · Avk

 =

h1,1v1 + h2,1v2 h1,2v1 + h2,2v2 + h3,2v3 · · · VkHkeT
k + hk+1,kvk+1



AVk = VkHk +

0 · · · 0 hk+1,kvk+1


AVk = VkHk + hk+1,kvk+1eT

k (1.16)

where we can rewrite the second equation as the third since Hk is an upper Hessenberg

matrix. Next, recall that the product of a matrix multiplication is the sum of matrices

that are products of the columns of the left matrix and rows of the right matrix. So,

equation (1.16) can be rewritten as

AVK = v1h1 + v2h2 + · · ·+ vkhk + vk+1hk+1,keT
k

AVk = Vk+1H̃k (1.17)

where hj represent the rows of Hk and
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H̃k =



h1,1 h1,2 · · · h1,k

h2,1 h2,2
...

h3,2
. . . ...
. . . hk,k

hk+1,k


=

 Hk

hk+1,keT
k



is a (k + 1)× k matrix.

Now, note that

v1 = Vke1 = Vk+1e1 =
r0

∥r0∥
(1.18)

and since the span of the columns of Vk are the Krylov subspace, we have the following

equivalence

min
x∈Kk(A,r0)

∥r0 − Ax∥ ⇐⇒ min
c∈Ck

∥r0 − AVkc∥

Thus, from equations (1.17) and (1.18), we have

min
c∈Ck

∥r0 − AVkc∥ ⇐⇒ min
c∈Ck

∥∥r0∥Vk+1e1 − Vk+1H̃kc∥

and since the columns of Vk+1 are orthonormal, ∥Vk+1z∥= ∥z∥ for any z ∈ Ck and we have

min
c∈Ck

∥∥r0∥Vk+1e1 − Vk+1H̃kc∥ ⇐⇒ min
c∈Ck

∥Vk+1(∥r0∥e1 − H̃kc)∥

⇐⇒ min
c∈Ck

∥∥r0∥e1 − H̃kc∥

and thus at every step, we are solving a (k + 1)× k Hessenberg least squares problem.

Specifically, after specifying an initial guess x0 and some tolerance t, we are using algo-

rithm 1 [14] to solve the problem.
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Algorithm 1 GMRES

Input: A,b, t, x0
Output: xk

r0 = b − Ax0
v1 = r0/∥r0∥
for k = 1,2,3, . . . do

q = Avk
for j = 1 to k do

hj,k = v∗j q
q = q − hj,kvj

end for
hk+1,k = ∥q∥
vk+1 = q/hk+1,k
Find c to minimize ∥∥r0∥e1 − H̃kc∥ (= ∥rk∥)
xk = Vkc
if ∥∥r0∥e1 − H̃kc∥/∥r0∥ < t then return xk
end if

end for

1.3 GMRES Analysis

Interestingly, GMRES can be thought of as a polynomial optimization problem.

Consider y ∈ Kk(A,r0), then

y = c0r0 + c1Ar0 + c2A2r0 + . . . + ck−1Ak−1r0

= (c0 + c1A + c2A2 + . . . + ck−1Ak−1)r0

= q(A)r0, where q is a polynomial of order ≤ k − 1

and if yk solves (1.14), then

rk = r0 − Ayk = r0 − Aq(A)r0 = (I − Aq(A))r0

= (I − A(c0 + c1A + c2A2 + . . . + ck−1Ak−1))r0

= (I − c0A − c1A2 − c2A3 − . . . + ck−1Ak)r0

= p(A)r0

9



where p is a polynomial of order k and p(0) = I or 1.

Thus, GMRES is equivalent to

min
p∈Pk

p(0)=1

∥p(A)r0∥

at iteration k and we can bound the relative residual as

∥rk∥ = min
p∈Pk

p(0)=1

∥p(A)r0∥ ≤ min
p∈Pk

p(0)=1

∥p(A)∥∥r0∥

and thus
∥rk∥
∥r0∥

≤ min
p∈Pk

p(0)=1

∥p(A)∥. (1.19)

To bound the relative residual then, we shift our focus to what is sometimes referred to as

the Ideal GMRES problem seen above [8][15].

1.3.1 Some Known Bounds

The minimal polynomial of A provides some insight into GMRES convergence.

Here, the minimal polynomial qA(z) of a matrix A is the unique monic polynomial of least

degree that annihilates A [9].

Theorem 1. Let A ∈ Cn×n be invertible, d be the order of the minimal polynomial qA of A, and rk

be the k-th residual vector produced by the GMRES algorithm in 1. Then, GMRES converges in at

most d steps.

Proof. Note that qA(λ) = 0 if and only if λ is an eigenvalue of A [9]. So, for a nonsingular

matrix A, qA(0) ̸= 0. That is, for a nonsingular matrix A, we can always construct a

polynomial p̃(z) such that p̃(0) = 1 if we let

p̃(z) :=
qA(z)
qA(0)

. (1.20)
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Then, since p̃ is also of order d,

∥rd∥
∥r0∥

≤ min
p∈Pd

p(0)=1

∥p(A)∥ ≤ ∥ p̃(A)∥ = 0. (1.21)

Hence, GMRES must converge in at most d steps.

Furthermore, the interpretation of the GMRES algorithm as a polynomial optimiza-

tion problem allows us to understand its convergence via spectral sets of the matrix A. First

note that when A is normal, A = UΛU∗ for unitary U and a diagonal matrix Λ consisting

of the eigenvalues of A, the following is true [15]:

min
p∈Pk

p(0)=1

∥p(A)∥ = min
p∈Pk

p(0)=1

∥Up(Λ)U∗∥ = min
p∈Pk

p(0)=1

max
λ∈σ(A)

|p(λ)| (1.22)

where σ(A) is the set of eigenvalues of A. With this in mind, the first bound [15] we

present for the relative residual using a spectral set of A is the following:

Theorem 2. Suppose that A is invertible and diagonalizable, and that A = VΛV−1 where Λ is a

diagonal matrix consisting of the eigenvalues of A, then

∥rk∥
∥r0∥

≤ ∥V∥∥V−1∥ min
p∈Pk

p(0)=1

max
λ∈σ(A)

|p(λ)|. (1.23)

Proof. Recall that we know (1.19), and since we also have that

min
p∈Pk

p(0)=1

∥p(A)∥ = min
p∈Pk

p(0)=1

∥p(VΛV−1)∥

≤ min
p∈Pk

p(0)=1

∥V∥∥p(Λ)∥∥V−1∥

= ∥V∥∥V−1∥ min
p∈Pk

p(0)=1

max
λ∈σ(A)

|p(λ)|

11



where the last equality comes from (1.22), the desired inequality is proven.

When ∥V∥∥V−1∥ is large or infinite, the ε-pseudospectra of A provides an alter-

native approach that can be more descriptive [15]. This ε-pseudospectra of A is denoted

σε(A) and defined as

σε(A) = {z ∈ C : ∃v ∈ Cn such that v∗v = 1,∥Av − zv∥ < ε} (1.24)

= {z ∈ C : z ∈ σ(A + E) for some ∥E∥ < ε} (1.25)

= {z ∈ C :
∥∥∥(zI − A)−1

∥∥∥ > 1/ε}. (1.26)

We use the convention that ∥M−1∥ = ∞ when M is singular. Trefethen and Embree use

a Dunford-Taylor integral to arrive at the bound we know for GMRES [15] that uses the

pseudospectra of A:

Theorem 3. Let A ∈ Cn×n be nonsingular and rk be the k-th residual vector produced by the

GMRES algorithm in 1. Then,

∥rk∥
∥r0∥

≤ Lε

2πε
min
p∈Pk

p(0)=1

max
z∈∂σε(A)

|p(z)| (1.27)

for ε > 0, where Lε is the arc length of ∂σε(A).

Proof. Let Γ := ∂σε(A). Since σ(A), which are all the poles of (zI − A)−1, are contained in

σε(A), then

∥p(A)∥ =
∥∥∥∥ 1

2πi

∫
Γ

p(z)(zI − A)−1dz
∥∥∥∥

≤ 1
2π

∫
Γ
|p(z)|

∥∥∥(zI − A)−1
∥∥∥ |dz|

≤ 1
2π

max
z∈∂σε(A)

|p(z)|1
ε
Lε

=
Lε

2πε
max

z∈∂σε(A)
|p(z)|
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by the definition of pseudospectra, and the desired inequality follows from (1.19).

Interestingly, we can also bound the GMRES algorithm using the field of values of

a matrix, also known as the numerical range [4][5]. In a paper by Michel Crouzeix [4], he

proves the following bound for matrix polynomials:

Theorem 4. For any matrix A ∈ Cn×n and any polynomial p : C → C,

∥p(A)∥ ≤ 11.08 sup
z∈W(A)

|p(z)| (1.28)

where

W(A) = {x∗Ax : x∗x = 1, x ∈ Cn}. (1.29)

Knowing this, another bound for GMRES is given by

∥rk∥
∥r0∥

≤ 11.08 min
p∈Pk

p(0)=1

sup
z∈W(A)

|p(z)| (1.30)

via (1.19).

Crouzeix and Palencia expanded upon this work in a 2017 paper [5] where they

develop a tighter bound:

Theorem 5. For any matrix A ∈ Cn×n and any polynomial p : C → C,

∥p(A)∥ ≤
(

1 +
√

2
)

sup
z∈W(A)

|p(z)|. (1.31)

With this, we have yet another bound for the relative residual:

∥rk∥
∥r0∥

≤
(

1 +
√

2
)

min
p∈Pk

p(0)=1

sup
z∈W(A)

|p(z)| (1.32)

once again via (1.19).
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In a 1999 seminal paper [6], Bernard and Francois Delyon showed that for a smooth,

bounded, convex domain Ω ⊂ C, there exists a best constant CΩ such that for all rational

functions f , there holds

∥ f (A)∥ ≤ CΩ sup
z∈Ω

| f (z)| (1.33)

whenever A is a bounded linear operator in a complex Hilbert space (H, ⟨, ⟩,∥∥) whose

numerical range

W(A) := {⟨Av,v⟩ : v ∈ H,∥v∥ = 1}

satisfies W(A) ⊂ Ω. Though it has been shown in [4] that Q := supΩ CΩ is 2 ≤Q≤ 11.08

and more recently in [5] that 2 ≤ Q ≤ 1 +
√

2, Crouzeix conjectures [3][4][5] that Q = 2,

but it remains an open problem.
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CHAPTER II

CONDITIONING AND PRECONDITIONING

This condition number of a linear system Ax = b defined by

κ(A) = ∥A∥∥A−1∥

and it measures the sensitivity of the solution to small perturbations in the input data

A. We say a problem is well-conditioned when it has a low condition number, and it is

ill-conditioned if it has a high condition number. That is, an ill-conditioned problem is

more susceptible to large changes in the answer even when there is a small change in the

inputs.

However, the idea of preconditioning a system has less to do with it’s condition

number and more to do with the rate of convergence of the iterative method applied to it.

So, if we wish to solve the m × m nonsingular system

Ax = b, (2.1)

notice that for any nonsingular m × m matrix M, the systems

M−1Ax = M−1b (2.2)

and AM−1Mx = b (2.3)

have the same solution. However, if we solve (2.2) iteratively, the convergence will depend

on the properties of M−1A rather than those of A. Thus, if the preconditioner M is well

15



chosen, convergence for (2.2) might be much faster than that of (2.1).

Of course, since it must be possible to compute the operation represented by the

product M−1A efficiently, we do not explicitly construct the inverse M−1, rather we

construct the solution of systems of equations of the form

My = c.

Additionally, since how well a preconditioner performs depends on the problem.

We say a preconditioner M is good if M−1A is not too far from normal and its eigenvalues

are clustered [14]. However, since it is hard to discern when a particular preconditioner

will be better than another, Wathen [16] when he says

“There is, of course, no such concept as a best preconditioner: the only two

candidates for this would be P = I, for which the preconditioning takes no time

at all, and P = A, for which only one iteration would be required for solution

by any iterative method. However, every practitioner knows when they have

a good preconditioner which enables feasible computation and solution of

problems. In this sense, preconditioning will always be an art rather than a

science.”
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CHAPTER III

CAN THE FIELD OF VALUES BOUND BE USED IF THE FIELD OF VALUES CONTAINS

ZERO?

Recall from Section 1.3.1 that for GMRES applied to any system Ax = b where

A ∈ Cn×n is nonsingular and b ∈ Cn,

∥rk∥
∥r0∥

= min
p∈Pk

p(0)=1

∥p(A)∥ ≤ C min
p∈Pk

p(0)=1

max
z∈W(A)

|p(z)| (3.1)

where C = 1 +
√

2, rk is the relative residual at iteration k, and Pk is the set of polynomials

of degree k or less. Note that the above follows from [5]

∥p(A)∥ ≤ C max
z∈W(A)

|p(z)|. (3.2)

We would like to be able to use this bound to describe GMRES convergence, but is

it possible to use this bound when 0 ∈ W(A)?

Well, suppose 0 ∈ W(A). Then, if we choose p̃(z) = 1, p̃ ∈ Pk, p̃(0) = 1, and we

have

min
p∈Pk

p(0)=1

max
z∈W(A)

|p(z)| ≤ max
z∈W(A)

| p̃(z)| ≤ 1 (3.3)

Furthermore, for any polynomial p such that p(0) = 1,

1 ≤ max
z∈W(A)

|p(z)|
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and thus

1 ≤ min
p∈Pk

p(0)=1

max
z∈W(A)

|p(z)| (3.4)

Hence, by (3.3) and (3.4), we have

∥rk∥
∥r0∥

= min
p∈Pk

p(0)=1

∥p(A)∥ ≤ C min
p∈Pk

p(0)=1

max
z∈W(A)

|p(z)| = C (3.5)

and we obtain a bound that is not very useful.

However, a paper by Greenbaum and Choi [2] from 2015 tells us that we can, in

fact, use the field of values bound when 0 ∈ W(A). To do this, we want to use the roots

of A. Notice that if we let B = A1/ℓ, Bℓ = A, and if p(A) is a polynomial of order k, then

p(A) = p(Bℓ) = q(B) where q is a polynomial of order ℓk and has only powers that are

multiples of ℓ. Thus, we have

∥p(A)∥ = ∥p(Bℓ)∥ = ∥q(B)∥ ≤ C max
z∈W(B)

|q(z)|

= C max
z∈W(A1/ℓ)

|p(zℓ)|

= C max
z∈(W(A1/ℓ))ℓ

|p(z)|

In particular, notice that if (W(A1/ℓ))ℓ can be contained in a ball centered at c with radius R,

then we may be able to use this idea to give us a practical bound for the GMRES algorithm.

Also of note is the fact that Greenbaum and Choi prove in [2] that for any nonsingular

matrix A and any positive integer ℓ, limℓ→∞[W(A1/ℓ)]ℓ = exp[W(log A)] where log A is

defined using the same branch cut used to define the ℓ-th root of A. Using the inequality

above, we have that
∥rk∥
∥r0∥

≤ C min
p∈Pk

p(0)=1

max
z∈(W(A1/ℓ))ℓ

|p(z)| (3.6)
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and if we choose p̃(z) =
(
1 − z

c
)k, then p̃ ∈ Pk, p̃(0) = 1, and

p̃(c + Reiθ) =

(
1 − c + Reiθ

c

)k

=

(
1 − 1 − Reiθ

c

)k

=
Rkeikθ

ck .

Thus, for any z ∈ ∂BR(c)

| p̃(z)| =
(

R
|c|

)k

and if (W(A1/ℓ))ℓ ⊂ BR(c) where BR(c) is a ball of radius R centered at c, we have

C min
p∈Pk

p(0)=1

max
z∈(W(A1/ℓ))ℓ

|p(z)| ≤ C min
p∈Pk

p(0)=1

max
z∈∂BR(c)

|p(z)| (3.7)

≤ C max
z∈∂BR(c)

| p̃(z)| (3.8)

= C
(

R
|c|

)k
. (3.9)

Hence, we hope to use a ball with R < |c| containing (W(A1/ℓ))ℓ but not 0 to bound the

rate of convergence of the GMRES algorithm since otherwise this bound is not useful.

Unfortunately, in our tests, we could not find any such ball for multiple values of

ℓ. Figure 3.1 shows the tests for matrices AP−1 ∈ R55×55 for A of the form A = I + 1.5B

where I is the 55 × 55 identity matrix and B ∈ R55×55 is a random normalized matrix, and

for P as described in (1.11). Figure 3.2 shows the test for matrices A0P−1
+ ∈ R55×55 for

A as defined in (1.3) and P+ as defined in (1.4) and where A ∈ R50×50 is an orthogonal

random matrix, B ∈ R5×50 is a random matrix, and C ∈ R5×50 is a random normalized

matrix. In both of these figures, the eigenvalues of the base matrix are shown as red dots

and the origin is shown as a blue dot.

In fact, these figures provide some intuition for the following theorem.
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Figure 3.1: (W((AP−1)1/ℓ))ℓ for values of ℓ = 1,2, . . . ,10 where the line with the deepest
red is ℓ = 1, the one with the brightest yellow is ℓ = 10, the green dashed line is ℓ = 50, the
black dashed line is ℓ = 100, the magenta dashed line is ℓ = 1000, and the blue dashed line
is exp[W(log(AP−1))].

Figure 3.2: (W((A0P−1
+ )1/ℓ))ℓ for values of ℓ = 1,2, . . . ,10 where the line with the deepest

red is ℓ = 1, the one with the brightest yellow is ℓ = 10, and the blue dashed line is
exp[W(log(A0P−1

+ ))].

Theorem 6. Let A ∈ Cn×n be nonsingular and A1/ℓ be the matrix such that (A1/ℓ)ℓ = A. Then,

if the eigenvalues of A cannot be contained by a ball BR(c) of radius R centered at c such that

0 /∈ BR(c), then there does not exist such a ball to contain (W(A1/ℓ))ℓ but not 0.

Proof. Notice that the eigenvalues of A must be contained in (W(A1/ℓ))ℓ for any ℓ. Indeed,

suppose λA1/ℓ is an eigenvalue of A1/ℓ and λA is an eigenvalue of A, then for some nonzero
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vector x

λAx = Ax = (A1/ℓ)ℓx = λℓ
A1/ℓx.

Thus, λA1/ℓ = λ1/ℓ
A . Then, since λ1/ℓ

A ∈ W(A1/ℓ), λA ∈ (W(A1/ℓ))ℓ.

Hence, if there does not exist a ball that can contain the eigenvalues of A but not 0,

there does not exist a ball to contain (W(A1/ℓ))ℓ but not 0.
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CHAPTER IV

RELATIVE RESIDUAL BOUND

We are attempting to answer the question of how many more steps does it take

for the GMRES algorithm to converge when applied to the preconditioned linear system

AP−1x = b given that the (2,2) block in A, D, is nonzero. To do this, we can think of

AP−1 as a perturbation of the preconditioned matrix A0P−1. To put it in more general

terms, if we have a fixed perturbation E =AP−1 −A0P−1, and if

∥rk∥ = min
p∈Pk

p(0)=1

∥p(A0P−1)b∥ and ∥ρk∥ = min
p∈Pn

p(0)=1

∥ϕ(A0P−1 + E)b∥

are the residuals produced by GMRES applied to

A0P−1x = b and (A0P−1 + E)x = b,

respectively, how far does the residual ρk lag behind rk? To answer this question, we

need to find the norm of the difference between these residuals, but a bound can also be

enlightening.

Fortunately, in a paper from 2017, Ymbert, Embree, and Sifuentes [17] show that for

any δ > ϵ := ∥E∥,

∥ρk∥
∥b∥ ≤ ∥rk∥

∥b∥ +

(
ϵ

δ − ϵ

)(
Lδ

2πδ

)
sup

z∈∂σδ(A0P−1)

|pk(z)| (4.1)

where Lδ is the length of the boundary ∂σδ(A0P−1) of the δ-pseudospectrum of A0P−1
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and pk is some polynomial of degree k or less satisfying pk(0) = 1 for which the GMRES

residual vector at step k takes the form

rk = pk(A0P−1)b.

Further, since A0P−1 has a low-degree polynomial for any of the preconditioners

described before, GMRES will converge exactly in just a few steps. Let d denote the degree

of this minimal polynomial. Then, if k ≥ d, rk = 0 and we can write [17] rk = pk(A0P−1)b

for any polynomial of the form

pk(z) = α(z)q(z)

where α is the degree d polynomial that annihilates A0P−1 and q is a polynomial of

degree k − d or less, with α(0) = q(0) = 1. As such, when k ≥ d, (4.1) bounds the residual

remaining for the perturbed preconditioned problem [17]:

∥ρk∥
∥b∥ ≤

(
ϵ

δ − ϵ

)(
Lδ

2πδ

)
min

deg(q)≤k−d
q(0)=1

sup
z∈∂σδ(A0P−1)

|α(z)||q(z)| (4.2)

Ymbert, Embree, and Sifuentes [17] expand upon this further by assembling a

bound for the preconditioner (1.6) via estimates of the pseudospectra of A0P−1 using the

spectral projectors Πj for its eigenvalues λj. Specifically, if we let ∥Πj∥ ≤ κj, then

σδ(A0P−1) ⊆ Sδ :=
3⋃

j=1

{z ∈ C : |z − λj| ≤ 3δκj}

and if ∥AP−1 −A0P−1∥ ≤ ϵ′ < δ, for k ≥ 3

∥ρk∥
∥b∥ ≤ 3

(
ϵ′

δ − ϵ′

)
(κ1 + κ2 + κ3) sup

z∈∂Sδ

|pk(z)| (4.3)
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where

pk(z) = (1 − z)d1

(
1 − z

ϕ

)d2
(

1 − z
1 − ϕ

)d3

and d1 + d2 + d3 = k are chosen to minimize |pk(z)| over ∂Sδ. We can apply this bound to

our prpblem for own bound on the relative residual:

Theorem 7. Let A∈C(n+m)×(n+m) be the 2× 2 block matrix defined in (1.8), A0 ∈C(n+m)×(n+m)

be the matrix defined in (1.3), P be the preconditioner defined in (1.11), Πj be the spectral projectors

of A0P−1, and ρk be the residual at iteration k of GMRES applied to the system AP−1x = b. If

∥Πj∥ ≤ κj and ε :=
∥∥AP−1 −A0P−1

∥∥ < δ, then

∥ρk∥
∥b∥ ≤ 3

(
ε

δ − ε

)
(κ1 + κ2 + κ3) sup

z∈∂Sδ

|pk(z)| (4.4)

Proof. The proof follows immediately from the inequality (4.3).

Thus, if we can bound ∥AP−1 −A0P−1∥, then we can bound the relative residual

for GMRES applied to the inexact preconditioned problem.

4.1 A Bound for the Difference Between the Perturbed System and the Unperturbed

One

We have the preconditioned systems

AP−1 =

 I −B∗S−1

CA−1 −DS−1


and

A0P−1 =

 I −B∗S−1
0

CA−1 0


where

A =

A B∗

C D

 ,
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AP−1 is the preconditioned matrix with eigenvalues 1, the golden ratio, and its conjugate,

and

S0 = −CA−1B∗

S = D − CA−1B∗

Theorem 8. Let A ∈ C(n+m)×(n+m) be the 2 × 2 block system defined in (1.8), P be the precondi-

tioner defined in (1.11), δ′ := ∥D∥, and γ := ∥S−1
0 ∥. If ∥DS−1

0 ∥ < 1, then

ε :=
∥∥∥AP−1 −A0P−1

∥∥∥ ≤
δ′γ

√
∥B∗∥2 γ2 + 1

1 − δ′γ
.

Proof. We have

∥AP−1 −A0P−1∥ =

∥∥∥∥∥∥∥
 I −B∗S−1

CA−1 −DS−1

−

 I −B∗S−1
0

CA−1 0


∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥
0 −B∗S−1 + B∗S−1

0

0 −DS−1


∥∥∥∥∥∥∥

≤
√∥∥∥−B∗S−1 + B∗S−1

0

∥∥∥2
+ ∥−DS−1∥2

=

√∥∥∥B∗S−1
0 − B∗S−1

∥∥∥2
+ ∥DS−1∥2

So, notice

B∗S−1
0 − B∗S−1 = B∗S−1

0 − B∗(D + S0)
−1

= B∗(S−1
0 − (D + S0)

−1)

= B∗(S−1
0 − ((DS−1

0 + I)S0)
−1)

= B∗(S−1
0 − S−1

0 (I + DS−1
0 )−1)

= B∗S−1
0 (I − (I + DS−1

0 )−1)
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Since
∥∥∥DS−1

0

∥∥∥ < 1, then

(I + DS−1
0 )−1 =

∞

∑
j=0

(−DS−1
0 )j

Now,

∥∥∥I − (I + DS−1
0 )−1

∥∥∥ =

∥∥∥∥∥ ∞

∑
j=1

(−DS−1
0 )j

∥∥∥∥∥
≤

∞

∑
j=1

(δ′γ)j

=
1

1 − δ′γ
− 1 − δ′γ

1 − δ′γ

=
δ′γ

1 − δ′γ

Therefore,

∥∥∥B∗S−1
0 − B∗S−1

∥∥∥ ≤
∥∥∥B∗S−1

0

∥∥∥∥∥∥I − (I + DS−1
0 )−1

∥∥∥ ≤
∥B∗∥

∥∥∥S−1
0

∥∥∥δ′γ

1 − δ′γ
=

∥B∗∥δ′γ2

1 − δ′γ

Additionally,

∥∥∥DS−1
∥∥∥ =

∥∥∥D(D + S0)
−1

∥∥∥
=

∥∥∥D(S0(S−1
0 D + I))−1

∥∥∥
=

∥∥∥D(I + S−1
0 D)−1S−1

0

∥∥∥
≤ ∥D∥

∥∥∥(I + S−1
0 D)−1

∥∥∥∥∥∥S−1
0

∥∥∥
≤ δ′γ

1
1 − δ′γ

=
δ′γ

1 − δ′γ
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Hence,

√∥∥∥B∗S−1
0 − B∗S−1

∥∥∥2
+ ∥DS−1∥2 ≤

√
∥B∗∥2 δ′2γ4

(1 − δ′γ)2 +
δ′2γ2

(1 − δ′γ)2

=
δ′γ

√
∥B∗∥2 γ2 + 1

1 − δ′γ

That is, ∥∥∥AP−1 −A0P−1
∥∥∥ ≤

δ′γ
√
∥B∗∥2 γ2 + 1

1 − δ′γ
.

4.2 The Bound

Finally then, we can construct a more specific bound for the relative residual of

GMRES applied to the problem preconditioned by (1.11).

Theorem 9. Let A∈C(n+m)×(n+m) be the 2× 2 block matrix defined in (1.8), A0 ∈C(n+m)×(n+m)

be the matrix defined in (1.3), P be the preconditioner defined in (1.11), δ′ := ∥D∥, γ := ∥S−1
0 ∥,

Πj be the spectral projectors of A0P−1, and ρk be the residual at iteration k of GMRES applied to

the system AP−1x = b. If ∥DS−1
0 ∥ < 1, ∥Πj∥ ≤ κj, and δ′γ

√
∥B∗∥2γ2+1
1−δ′γ < δ, then

∥ρk∥
∥b∥ ≤ 3

 δ′γ
√
∥B∗∥2 γ2 + 1

δ − δδ′γ − δ′γ
√
∥B∗∥2 γ2 + 1

 (κ1 + κ2 + κ3) sup
z∈∂Sδ

|pk(z)| (4.5)

Proof. The proof follows from theorem 7.

4.3 An Important Result

Theorem 10. Suppose A0 and P defined in (1.3) and (1.11) are both invertible. If m < n, the right

and left invariant subspaces R1 and L1 of AP−1 for A defined in (1.8) and associated with λ1 = 1
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have dimension n − m:

R1 =


Az

0

 : z ∈ Ker(C)

 , L1 =


z

0

 : z ∈ Ker(B)

 . (4.6)

Proof. Since A0 is invertible, B and C must have full row rank. Recall that the Ipsen

preconditioned matrix is

AP−1 =

 I −B∗S−1

CA−1 −DS−1


where S = D − CA−1B∗.

To compute R1, note that a right eigenvector u = [xTyT]T where x ∈ Cn and y ∈ Cm,

associated with λ1 = 1 satisfies

x − B∗S−1y = x

CA−1 − DS−1y = y

Since B has full row rank and S is invertible, the first equation implies y = 0. That reduces

the second equation to the condition A−1x ∈ Ker(C), establishing the form for R1 in (4.6).

The computation for L1 is similar: the left eigenvector v = [rTsT]T where r ∈ Cn and s ∈ Cm

satisfies (AP−1)∗, that is,

r + A−∗C∗s = r

−S−∗Br − S−∗Ds = s

Since C has full row rank and A is invertible, the first equation implies s = 0. That reduces

the second equation to the condition r ∈ Ker(B), and thus we have the formula for L1

in (4.6). Since B,C ∈ Cm×n have full row rank and m ≤ n, dim(Ker(B)) = dim(Ker(C)) =

n − m, establishing the dimensions of R1 and L1.
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Theorem 11. Suppose A0 and P defined in (1.3) and (1.11) are both invertible. If m < n, then the

GMRES algorithm applied to the system AP−1x = b for A defined in (1.8) converges in 2m + 1

steps or less.

Proof. Since AP−1 is invertible, theorem 1 tells us that GMRES converges in an amount of

steps that is at most equivalent to the degree of the minimal polynomial of AP−1.

So, to find the minimal polynomial of AP−1, consider its Jordan canonical form.

Since A0 and P are invertible and m < n, then from theorem 10 we know that the geometric

multiplicity of the eigenvalue λ1 = 1 of AP−1 is n − m. Let the algebraic multiplicity of

λ1 = 1 be r. Then r ≥ n − m, and since the Jordan canonical form will have a 1 just above

the its main diagonal corresponding to each eigenvalue with a missing eigenvector, the

Jordan canonical form of AP−1 can be written

J = T−1AT =


In−m−1

J1

J2

 (4.7)

where T is the matrix containing all eigenvectors and generalized eigenvectors corre-

sponding to the eigenvalues of AP−1, In−m−1 is the (n − m − 1)× (n − m − 1) identity

matrix,

J1 =



1 1

1 . . .
. . . 1

1


∈ C(r−(n−m)+1)×(r−(n−m)+1), (4.8)

and J2 ∈ C(n+m−r)×(n+m−r) is the matrix containing all other Jordan blocks corresponding

to the eigenvalues of AP−1. Note that if the eigenvalue λ1 = 1 is nondefective, J1 = 1 and

J2 ∈ C2m×2m.
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The minimal polynomial pJ of such a matrix is

pJ(z) = (1 − z)(1 − z)r−(n−m)qJ2(z) = (1 − z)r−(n−m)+1qJ2(z) (4.9)

where qJ2 is the minimal polynomial of J2 which must have order n + m − r or less. Indeed,

notice

pJ(z) = TpJ(J)T−1

and

pJ(J) = (I − J)r−(n−m)+1qJ2(J)

=


0

(I − J1)
r−(n−m)+1

(I − J2)
r−(n−m)+1




qJ2(I)

qJ2(J1)

0



=


0

0

(I − J2)
r−(n−m)+1




qJ2(I)

qJ2(J1)

0


= 0

since r − (n − m) + 1 is the size of I − J1 and

(I − J1)
r−(n−m)+1 =



0 −1

0 . . .
. . . −1

0



r−(n−m)+1

= 0.
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Thus, since the degree of qJ2 is at most n + m − r,

deg(pJ) ≤ r − (n − m) + 1 + n + m − r

= 2m + 1.

Hence, GMRES converges in at most 2m + 1 steps.
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CHAPTER V

NUMERICAL EXAMPLES

In this chapter, we apply the bounds developed in Chapter IV to matrices A of

the form described in (1.8) that have been preconditioned with P as defined in (1.11). In

figures 5.1-5.8, these matrices are randomly generated with A ∈ R50×50, B,C ∈ R50×5, and

D ∈ R5×5, the solid black line is the relative residual produced by GMRES applied to the

system A0P−1x = b, and the dashed line is the residual produced by GMRES applied to

the perturbed preconditioned system AP−1x = b. In all of the examples where bound (4.4)

or (4.5) is used, κj = ∥Πj∥ and

µ =
δ′γ

√
∥B∗∥2 γ2 + 1

1 − δ′γ
.

Figures 5.1 and 5.2 demonstrate the bounds (4.4) and (4.5), respectively, on the

same randomly generated matrix. Figures 5.3 and 5.4 demonstrate the bounds (4.4)

and (4.5), respectively, on the same randomly generated matrix. Figures 5.5 and 5.6

demonstrate the bounds (4.4) and (4.5), respectively, on the same randomly generated

matrix. Figures 5.7 and 5.8 demonstrate the bounds (4.4) and (4.5), respectively, on the

same randomly generated matrix.

In figures 5.9-5.13, the dashed lines are the residuals produced by GMRES applied

to the preconditioned system AP−1x = b for different values of n and m and the red line is

the vertical line at the 2m + 1 iteration. That is, these figures are demonstrating the bound

on GMRES convergence as described in theorem 11. In figures 5.12-5.13, A ∈ R1000×1000

and δ′ ranges from 10−10 to 10.
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Figure 5.1: Here, ε = 1.80 × 10−8, δ′ = 10−8, and the gray lines are the bounds using (4.3)
using δ = ε10j for j = 0.1,0.2, . . . 1.

Figure 5.2: Here, ε = 1.80 × 10−8, δ′ = 10−8, and the gray lines are the bounds using (4.3)
using δ = µ10j for j = 0.1,0.2, . . . 1.
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Figure 5.3: Here, ε = 9.53 × 10−9, δ′ = 10−9, and the gray lines are the bounds using (4.3)
using δ = ε10j for j = 0.1,0.2, . . . 1.

Figure 5.4: Here, ε = 9.53 × 10−9, δ′ = 10−9, and the gray lines are the bounds using (4.3)
using δ = µ10j for j = 0.1,0.2, . . . 1.

34



Figure 5.5: Here, ε = 1.52 × 10−10, δ′ = 10−10, and the gray lines are the bounds using (4.3)
using δ = ε10j for j = 0.1,0.2, . . . 1.

Figure 5.6: Here, ε = 1.52 × 10−10, δ′ = 10−10, and the gray lines are the bounds using (4.3)
using δ = µ10j for j = 0.1,0.2, . . . 1.
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Figure 5.7: Here, ε = 5.79 × 10−11, δ′ = 10−11, and the gray lines are the bounds using (4.3)
using δ = ε10j for j = 0.1,0.2, . . . 1.

Figure 5.8: Here, ε = 5.79 × 10−11, δ′ = 10−11, and the gray lines are the bounds using (4.3)
using δ = µ10j for j = 0.1,0.2, . . . 1.
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Figure 5.9: Here, δ′ = 3.99, m = 5, and n = 5 × 2ℓ for ℓ = 1, · · · ,12.

Figure 5.10: Here, δ′ = 14.71, m = 50, and n = 5 × 2ℓ for ℓ = 4, · · · ,12.
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Figure 5.11: Here, δ′ = 44.30, m = 500, and n = 5 × 2ℓ for ℓ = 7, · · · ,12.

Figure 5.12: Here, m = 10, n = 990, and δ′ = 10ℓ for ℓ = −10, · · · ,1.
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Figure 5.13: Here, m = 100, n = 900, and δ′ = 10ℓ for ℓ = −10, · · · ,1.
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