
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Theses and Dissertations 

5-2023 

Formation Control of Multiple Quadrotors Formation Control of Multiple Quadrotors 

Miguel Alejandro Garcia 
The University of Texas Rio Grande Valley 

Follow this and additional works at: https://scholarworks.utrgv.edu/etd 

 Part of the Electrical and Computer Engineering Commons 

Recommended Citation Recommended Citation 
Garcia, Miguel Alejandro, "Formation Control of Multiple Quadrotors" (2023). Theses and Dissertations. 
1216. 
https://scholarworks.utrgv.edu/etd/1216 

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more 
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F1216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.utrgv.edu%2Fetd%2F1216&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/1216?utm_source=scholarworks.utrgv.edu%2Fetd%2F1216&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


FORMATION CONTROL OF MULTIPLE QUADROTORS 

A Thesis 

by 

MIGUEL ALEJANDRO GARCIA 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

MASTER OF SCIENCE  IN ENGINEERING 

Major Subject: Electrical Engineering 

The University of Texas Rio Grande Valley 

May 2023 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

FORMATION CONTROL OF MULTIPLE QUADROTORS 

  

A Thesis  

by  

MIGUEL ALEJANDRO GARCIA  

  

  

  

  

  

COMMITTEE MEMBERS  

  

  

  

Dr. Wenjie Dong  

Chair of Committee  

  

  

Dr. Weidong Kuang  

Committee Member  

  

  

Dr. Alexander Domijan  

Committee Member  

  

  

  
 

 

May 2023 
 

 

 

 

 

 

 

 



 

 



Copyright 2023 Miguel Alejandro Garcia

All Rights Reserved 



 

 

 



iii 

ABSTRACT 

Garcia, Miguel A., Formation Control of Multiple Quadrotors. Master of Science in Engineering 

(MSE), May, 2023, 72 pp., 42 figures, references, 60 titles. 

This thesis studies formation control of multiple quadrotors under different conditions. 

Two controller design approaches are proposed. In the first approach, it is assumed that the 

dynamics of each quadrotor is unknown and there is disturbance. With the aid of distributed 

estimation and the universal approximation property of neural networks, distributed tracking 

controllers are proposed. Simulation shows the effectiveness of the proposed controllers. In the 

second approach, it is assumed that the inertia parameters are unknown. With the aid of 

distributed estimation, online data estimation, and optimal control theory, distributed sub-optimal 

tracking controllers are proposed. Simulation results show the effectiveness of the proposed 

controllers.
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CHAPTER I 

INTRODUCTION 

There has been an active case of research about control of quadcopters due to its potential 

applications in both civil and military uses such as surveillance, search and rescue missions and 

observation/monitoring objectives. Quadcopters have three degrees of freedom (DOF) in the 

translational motion allowing the vehicle to travel in the x, y, and z-axis in addition to the three 

DOF in the rotational motion that allow them to fly in any desired orientation. Essentially 

quadcopters can fly in any position with any desired orientation. In addition, quadcopters can 

operate in cluttered environments and have the benefit to hover for long period of time. On the 

other hand, a quadcopter generally has four inputs which makes the nature of the system an 

underactuated system which in return makes the control of the quadcopter a challenging 

dilemma.  

The dynamics of a quadcopter can be considered as a cascaded system which includes a 

position control subsystem and an orientation control subsystem. Taking into consideration aid 

of the featured cascade structure, a controller can be designed in a couple of steps. The first step 

would be to design a virtual controller such that the position of the quadcopter would converge 

to its designed position. The problem in the first step would be called the position tracking 

problem. The second step allows a controller to be designed with the aid of the virtual controller 

from the first step such that the position and orientation of the quadcopter converge to its desired 

position and orientation, respectively. The problem in this step is called the attitude tracking 

problem. Different controllers were proposed with the aid of the backstepping technique in [2-6]



2 

based on the cascade structure. In addition, different techniques applied allowed there to be the 

designing of controllers. Feedback linearization being applied helped design tracking controllers 

in [7,8]. In [9,10], controllers were proposed with the aid of model predictive control. [11,12] 

designed tracking controllers that were proposed using the sliding mode technique. Robust 

control techniques are effective tools dealing with non-parametric uncertainty. Different robust 

controllers have been proposed with the aid of different robust techniques. Sliding mode control 

techniques were applied to estimate disturbance which resulted in the sliding mode based 

tracking controller in [12]. Sliding mode techniques were applied to compensate for un-modeled 

dynamics and adaptive robust tracking controllers that were proposed in [13,14].  

The parameters of attitude of quadcopters in attitude tracking control can be represented 

by Euler angles, modified Rodrigues parameters (MRPs), or the unit quaternion. Controllers 

designed on Euler angles and MRPs have singularities which reduces the ability to achieve large 

angular maneuvers. In order to fix the issue stated, the unit quaternion is used to help define the 

attitude of a quadcopter and controllers are designed with the aid of the unit quaternion. Since 

quaternions have ambiguities in representing an attitude (two quaternions represent an attitude), 

the controllers design based on quaternions are sensitive to small measurement noises and may 

exhibit unwinding behavior where the UAV makes an unnecessary full rotation [15-17]. Hybrid 

controllers were proposed in [2,18] to overcome the unwinding dilemma. In the two-step 

controller design stated above a crucial assumption is made to obtain the well-defined 

controller, which is that the total thrust is nonzero at any given time. To satisfy this assumption 

many papers assume that the reference total thrust is bounded away from zero and the initial 

errors between the state of the system and the desired value of the state of the system are 

sufficiently small. Therefore, the controllers proposed in these papers are locally well-defined. 



Well-defined controllers for large attraction region with aid of saturation control in [19,20] is 

proposed to aid the issue. The tracking control of a quadcopter is not taken into account for 

when the mass and the moment of a quadcopter are unknown. 

Uncertainty is always in practice when discussing the control of quadcopters. Generally, 

there are two types of uncertainty.  The unknown information of the mass and the inertia 

moment of quadcopter is labeled as parametric uncertainty. The other type of uncertainty is the 

non-parametric uncertainty which involves un-modeled dynamics and disturbances. Different 

adaptive methods have been applied to design adaptive controllers when dealing with 

parametric uncertainty. Immersion and invariance techniques were applied to design adaptive 

controllers in [21,22]. In [23], adaptive backstepping technique was applied and an adaptive 

tracking controller was proposed. Adaptive backstepping technique and command-filter 

compensation were applied in [24] and adaptive tracking controllers were proposed without 

computation of derivatives of signals.

The need for sensors being equipped for measuring the linear and angular velocity is 

crucial because they become available for feedback control. Because of this attitude tracking 

control of quadcopters without velocity measurements was extensively studied. If angular 

velocity is not available for feedback control, the output based attitude tracking controllers were 

extensively studied. There are generally two types of output tracking controllers. Observer-based 

controllers are designed based on the observer-based approach and observer-free controllers 

which are designed by other approaches instead of the observer-based approach [18,27]. The 

observer-based approach basically dictates that an observer is designed first and the tracking 

controller is designed with the aid of the observer and other properties of the system [25,26]. For 

position and attitude tracking control of quadcopters, if the linear velocity is not available then 

 3
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an output controller is proposed using the aid of a singular perturbation listed in [28]. [29] 

proposes an output controller with the aid of a nonlinear observer design. There are few research 

results except for the paper [30] that discuss if both the linear and angular velocities are non-

available for feedback control of the quadcopters. 

More complex tasks have a better application for multiple quadcopters to perform the 

objective. Formation flying of multiple quadcopters has been on the latest research due to its 

wide applications of military and civilian use such as surveillance, search/rescue tasks, area 

exploration and many other needs. The limitless capacity of vertical taking-off and landing 

(VTOL) cues makes the quadcopter superior to other UAVs. The formation of multiple 

quadcopters can perform more complex tasks and provide better performance in comparison to 

the performance of a single quadcopter, however, the underactuated nature of a single quadcopter 

makes the cooperative control of multiple quadcopters even more challenging.  

One of the goals of formation control of multiple quadcopters is to coordinate a group 

of quadcopters to achieve a desired spatial geometric pattern. Several classical approaches have 

been proposed for multi-agent systems such as the behavioral approach, the virtual structure 

approach, leader-follower approach, and the graph theoretical approach. In the leader-follower 

approach [31,32], some agents are designed to be leaders and others are followers. The leader 

tracks the predefined trajectories while the followers track the state of their neighboring vehicles 

according to a given scheme. The behavioral approach [33-35] discusses the control action for 

each agent by being defined as a weight average of the control corresponding to each desired 

behavior of the agent. In the virtual structure approach [36-38], the entire formation is treated 

as a single rigid body. The structure in [36-38] moves along a desired trajectory and with a  

desired attitude. In the graph theoretical approach [39-42] the idea of each agent is considered 



as a node and the communication between the agents is presented in a communication graph 

which allows the control law to be designed by the difference of neighboring information.  

The formation control of multiple unmanned aerial vehicles (UAVs) has been studied 

extensively. In [43,44] the dynamics of each vehicle are represented by a simplified linear 

system and the formation control is studied based on multiple linear systems. [45-47] studies 

translational and rotational motions with linear and simplified models. Formation control of 

multiple UAVs has been studied in [48-51] based on a six DOF model, noting that UAVs are a 

multiple input/output system with high nonlinear and coupled dynamics. In [49,50] the 

formation control of multiple UAVs as studied with disturbances and robust distributed control 

laws were proposed using the same six DOF model. [51] studies non-smooth backstepping 

design on the distributed formation control of multiple UAVs and consensus techniques for the 

6 DOF model.  

The formation controllers in the above literatures secure the states of a UAV 

asymptotically converges to a desired formation as time continues to infinity. Finite-time 

distributed controllers are preferred in practical applications because they guarantee the states 

of a UAV converge to a desired formation within a finite time and reduce the disturbance 

rejection performance due to the closed loop systems. [52] studies the non-parametric 

uncertainties in formation control of multiple UAVs which resulted in the proposal of finite-

time controllers with the aid of finite-time distributed observers. The aid of homogenous 

systems was used in [46] to propose finite-time distributed controllers based on the linearized 

models without uncertainty. The Euler angles define the attitudes of the UAVs in [46,52]. To 

make the attitude control laws nonsingular, the Euler angles are given a limited interval. 

5 



1.1 Topics in the Thesis 

Motivating by the research work mentioned above and the work in [53–55], in this thesis 

we will study the formation control of multiple quadrotors with a leader by different techniques. 

In the first problem considered in this thesis, we study the formation control of multiple 

quadrotors with unknown dynamics. In this problem, it is assumed that the information of the 

leader system is not available to all follower systems and it is also assumed that the dynamics of 

each system is not well-known. In order to solve the formation problem, a multiple-step 

approach is proposed with the aid of distributed estimation, neural networks, and the 

backstepping techniques. Distributed controllers are proposed based on this approach. 

In the second problem considered in this thesis, we study the optimized formation control 

of multiple quadrotors with unknown dynamics. In this problem, it is assumed that the 

information of the leader system is not available to all follower systems and it is also assumed 

that the inertia parameters of each system is not well-known. In the controller design, it is 

required to propose distributed controllers such that some performance to be minimized. To this 

end, a multiple-step approach is proposed with the aid of distributed estimation, on-line 

parameter estimation, optimal control, and the backstepping techniques. Distributed controllers 

are proposed with the aid of this approach.  

1.2 Thesis Contribution 

The contributions of our work are as follows. 

• A new multi-step networked-based approach is proposed for formation control of multiple

quadrotors. In this approach, the unknown dynamics and uncertain environment are

approximated by neural networks. Due to the universal approximation property of neural

6



networks, the proposed distributed controllers can learn unknown dynamics and 

environment very well and make the performance of the whole system better. 

• A new multi-step optimized controller design approach is proposed for formation control of

multiple quadrotors. In this approach, the unknown parameters are estimated based on on-

line data and distributed controllers are proposed with the aid of optimal control theory. So,

the proposed controllers are sub-optimal in some sense of performance, which is better than

the controllers proposed without performance requirements.

The proposed controller design approach can be applied to design formation controller 

for other types of unmanned aerial vehicle.

 7
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CHAPTER II 

DISTRIBUTED TRACKING CONTROL OF MULTIPLE QUADROTORS WITH THE AID 

OF NEURAL NETWORKS 

Although there are many results on formation control of multiple quadcopters, how to 

improve the control performance is still challenging in the presence of uncertainty and coupling 

among neighboring quadrotors. Motivating by the research work in [53–55], in this chapter we 

study the formation control of multiple quadrotors with parametric and non-parametric 

uncertainties and propose new distributed control laws with the aid of neural networks such that 

the formation errors converge to zero and the attitude of each quadrotor converges to a desired 

attitude. In order to solve the formation control problem, a multi-step approach is proposed and 

distributed control laws are proposed. 

2.1 Problem Statement and Preliminaries 

2.1.1 Problem Statement 

Consider m quadrotors. Under some assumptions, the kinematics and dynamics of j-th quadrotor 

are defined by 

�̇�j = vj (2.1) 

�̇�j    = −𝑔 𝑒3 +  
1

𝑚𝑗
𝑓𝑗  𝑅𝑗  𝑒3 + 𝑑1𝑗

(2.2) 
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�̇�j =𝑅 𝑆(𝜔𝑗) (2.3) 

𝐽𝑗  𝜔�̇� = 𝑆(𝐽𝑗𝜔𝑗)𝜔𝑗 + 𝜏𝑗+𝑑2𝑗
 (2.4) 

where pj and vj are the position and the velocity of the mass center in the inertia frame, 

respectively, g is the gravitational acceleration, e3 = [0,0,1]⊤, fj ∈ Ɍ is the total thrust, Rj = 

[b1j,b2j,b3j] is the rotation matrix of the body frame with respect to the inertia frame, ωj is the 

angular velocity of the quadrotor in its body frame, Jj is the inertia moment of the quadrotor, d1j

and d2j denote non-parametric uncertainty and disturbance, S(ξ) for ξ = [ξ1,ξ2,ξ3]
 ⊤ is a skew- 

symmetric matrix defined by 

𝑆(ξ) = [

0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0
] 

and τj = [τ1j,τ2j,τ3j]⊤ is the torque input of the system. Let Θj = [φj,θj,ψj] ⊤ be the Euler angles of frame of the 

j-th vehicle, the attitude of the vehicle can be defined by Θj. The relation between the Euler angles and the

rotation matrix is 

𝑅𝑗 = [

𝑐𝜃𝑐𝜑 𝑠𝜃𝑗𝑐𝜑𝑗𝑠ϕ𝑗 − 𝑠φ𝑗𝑐ϕ𝑗 𝑠𝜃𝑗𝑐𝜑𝑗𝑐ϕ𝑗 + 𝑠φ𝑗𝑠ϕ𝑗

𝑐𝜃𝑗𝑠𝜑𝑗 𝑠𝜃𝑗𝑠𝜑𝑗𝑠ϕ𝑗 + 𝑐φ𝑗𝑐ϕ𝑗 𝑠𝜃𝑗𝑠𝜑𝑗𝑐ϕ𝑗 − 𝑐φ𝑗𝑠ϕ𝑗

−𝑠𝜃𝑗 𝑐𝜃𝑗𝑠ϕ𝑗 𝑐𝜃𝑗𝑐ϕ𝑗

]                (2.5)   

where cθj denotes cosθj and sθj denotes sinθj. To make the mapping from the attitude to the Euler angles 

one-to-one, we restrict the Euler angles to the following regions: 

ϕ𝑗  ∈  (
−𝜋

2
,

𝜋

2
) , θ𝑗  ∈  (

−𝜋

2
,

𝜋

2
) , φ𝑗 ∈  (−𝜋, 𝜋).    (2.6) 

By simple algebraic calculation, (2.3) can be written as 

�̇�j=W(Θj)ωj       (2.7) 
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where 

𝑊(Θ𝑗) =
1

𝑐𝑜𝑠𝜃𝑗
[

𝑐𝑜𝑠𝜃𝑗 sinϕ𝑗𝑠𝑖𝑛𝜃𝑗 cosϕ𝑗𝑠𝑖𝑛𝜃𝑗

0 cosϕ𝑗𝑐𝑜𝑠𝜃𝑗 −sinϕ𝑗𝑐𝑜𝑠𝜃𝑗

0 sinϕ𝑗 cosϕ𝑗

] 

and det(𝑊(Θ𝑗)) =
1

𝑐𝑜𝑠𝜃𝑗
. 𝑊 is nonsingular if 𝜃𝑗 ≠

(2𝑘−1)𝜋

2
 for any integer k. 

For multiple quadrotors, there are information flows between them with the aid of sensors or 

wireless communication. Consider each quadrotor as a node. The communication between 

quadrotors is defined by a directed graph G = {A,E} where A is the node set and E is the edge 

set. If there is an edge eij in E, it means that the information of node i is available to node j. Node 

i is called a neighbor of node j if the information of node i is available to node j. All neighbors of 

node j form a node set which is called the neighbor set of node j and is denoted by Nj. A directed 

path from node i to node j is a sequence of sets of edges that connect node i to node j by 

following their directions. Node i is said to be reachable to node j if there exists a directed path 

from node i to node j. Node i is said globally reachable if node i is reachable for every other node 

in A. 

In this chapter, we assume there are m follower quadrotors and one leader quadrotor. The 

leader quadrotor is operated by a human operator and does not receive any information from the 

follower quadrotors. Without loss of generality, the leader quadrotor is labeled as node 0. The 

follower quadrotors are labeled by 1, 2, ..., m. The communication between m + 1 quadrotors is 

defined by an augmented directed graph 𝐺𝑎 =  {𝐴𝑎, 𝐸𝑎} where Aa = A∪{0} and Ea  is a union of

E and the edges from node 0 to the followers. 



11 

For m follower quadrotors and a leader quadrotor, a desired formation can be defined by 

(m+1) vectors hj ∈ R3 which may be constant vectors or time-varying vectors. We say (m+1) 

quadrotors are in the desired formation if 

𝑝𝑖 − 𝑝𝑗 = ℎ𝑖 − ℎ𝑗 

for any 0 ≤ i,j ≤ m. We say m + 1 quadrotors come into the desired formation if 

lim
𝑡→∞

[(𝑝𝑖  −  ℎ𝑖)  −  (𝑝𝑗  − ℎ𝑗)]  =  0 

for any 0 ≤ i,j ≤ m. 

In the dynamics (2.1)-(2.4), the parametric uncertainty (i.e., mj and Jj) and non-parametric 

uncertainty (i.e., d1j and d2j) are called the system uncertainty. For each quadrotor, it is unknown 

whether the leader quadrotor is a neighbor or not. We say there is information uncertainty for 

each quadrotor. 

In this chapter, we consider the following control problem. 

Formation flying with a leader: For a leader quadrotor and m follower quadrotors, it is 

assumed that mj, Jj, d1j, and d2j are unknown for 1 ≤ j ≤ m. It is given the position and the 

orientation of a leader quarotor and a desired formation defined by hj for 0 ≤ j ≤ m, the control 

problem is to design distributed state feedback controllers fj and τj using its own information and 

its neighbors’ information such that 
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 lim
𝑡→∞

[(𝑝𝑗  − ℎ𝑗)  −  (𝑝0  −  ℎ0)]  =  0 (2.8) 

lim
𝑡→∞

[(𝜑𝑗(𝑡)  −  𝜑0(𝑡)) ]  =  0 (2.9) 

for 1 ≤ j ≤ m. 

In the defined problem, (2.8) means that the (m+1) quadrotors come into the desired 

formation and (2.9) means that the Y axes of the body frames of m + 1 quadrotors are parallel as 

time goes to infinity. 

In order to solve the defined problem, the following assumptions are made. 

Assumption 2.1. The mass mj of quadrotor j is an unknown constant and mj ≤ mj ≤ 𝑚𝑗̅̅̅̅  where mj

and 𝑚𝑗̅̅̅̅  are known constants. 

Assumption 2.2. The inertia matrix Jj of quadrotor j is an unknown constant matrix. 

Assumption 2.3. d1j and d2j are continuous functions and are bounded. 

Assumption 2.4. The communication graph Ga is a directed graph and the node 0 is globally 

reachable. 

Assumption 2.5. p0(t) is smooth‖ 𝑝0̈(𝑡) ‖and ‖ 𝑝0̈ ‖ are bounded. 

Assumption 2.6. ψ0 is smooth. ψ0(t) is bounded. 
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Figure 2.1: Biology of a neuron 

Figure 2.2: Structure of neural networks. 

2.1.2 Neural Networks 

We can learn things by our brains. In a brain, different areas have different functions. Some 

areas seem to have the same function in all humans (e.g., Broca’s region for motor speech); the 

overall layout is generally consistent. Some areas are more plastic, and vary in their function; 

also, the lower—level structure and function vary greatly. We don’t know how different 

functions are “assigned” or acquired. 

Brain function occurs as the result of the firing of neurons. Neurons connect to each other 

through synapses (see Fig. 2.1), which propagate action potential (electrical impulses) by



14 

releasing neurotransmitters. There are about 1011 neurons and about 1014 synapses in the human 

brain! 

Neural networks are made up of nodes or units, connected by links (see Fig. 2.2). Each link 

Figure 2.3: Connection of a node. 

Figure 2.4: Neural networks [1]. 

has an associated weight and activation level. Each node has an input function (typically 

summing over weighted inputs), an activation function, and an output. For each node (Fig. 2.3), 

the output is 

f = g(w⊤x) 
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where x = [1,x1,...,xn]
 ⊤ is the input vector, w = [w0,w1,...,wn]

 ⊤ is the weight vector, w0 is the bias, 

g(·) is the activation function. A sigmoid (logistic) activation function is 𝑔(𝑧) =
1

1+𝑒−𝑧. In a 

neural network (Fig. 2.4), the outputs the hidden layer are 

yi = g(Wi
⊤x), 1 ≤ i ≤ m 

where x = [1,x1,...,xn]
 ⊤ is the input vector, w = [w0i,w1i,...,wni]

 ⊤ is the weight vector, w0i is the 

bias, g(·) is the activation function. 

Figure 2.5: Function approximation of NNs 

The outputs of the output layer are 

𝑧𝑖 = 𝑔(Θ𝑖
⊤𝑦),   1 ≤ 𝑖 ≤ 𝑘

where y = [1,y1,...,ym]⊤, Θ = [θ0i,θ1i,...,θmi]⊤ is the weight vector, θ0i is the bias. 

Neural networks can be applied to classification, pattern recognization, approximation, 

prediction, etc. Before its application, the neural network should be trained off-line or on-line. 
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Off-line Training is to find the weights with the aid of a cost function for each layer for given 

input data and the desired output data. There are many methods for off-line training. See some 

textbooks. 

For control purpose, the neural network is used as an universal approximator. The neural 

network is trained on-line. The structure of function approximation with the aid of NNs is shown 

in Fig. 2.5 (see [1]). The ability of the approximation of NNs is as follows. 

Theorem: (Universal approximation) Any continuous function f(x) defined in a compact set 

Ω ∈ Rn can be approximated arbitrarily well by a neural network with at least 1 hidden layer with 

a finite number of weights. 

2.2 Controller Design 

In order to design distributed controllers, a two-step controller design procedure is 

proposed. In the first step, we design distributed estimators to estimate state of the leader vehicle 

using neighbors’ information. In the second step, we design a adaptive tracking controller for 

each system such that the state of the vehicle asymptotically tracks the estimated state of the 

leader vehicle. 

2.2.1 Distributed Estimator Design 

In this section, we apply the results in [56] to design distributed estimators. Let (�̂�𝑗𝑣𝑗, �̂�𝑗) 

be the estimate of the leader’s state (p0,v0,ψ0). Based on the results in [56], the distributed 

estimators for vehicle j are proposed as follows. 
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𝑝�̇̂� = − ∑ 𝑎𝑗𝑖(�̂�𝑗 − �̂�𝑖)
𝑖∈ℵ𝑗

− 𝛽𝑝𝑠𝑖𝑔𝑛 (∑ 𝑎𝑗𝑖(�̂�𝑗 − �̂�𝑖)
𝑖∈ℵ𝑗

) (2.10) 

𝑣�̇̂� = − ∑ 𝑎𝑗𝑖(𝑣𝑗 − 𝑣𝑖)
𝑖∈ℵ𝑗

− 𝛽𝑣𝑠𝑖𝑔𝑛 (∑ 𝑎𝑗𝑖(𝑣𝑗 − 𝑣𝑖)
𝑖∈ℵ𝑗

) (2.11) 

𝜑�̂�
̇ = − ∑ 𝑎𝑗𝑖(�̂�𝑗 − �̂�𝑖)

𝑖∈ℵ𝑗

− 𝛽𝜑𝑠𝑖𝑔𝑛 (∑ 𝑎𝑗𝑖(�̂�𝑗 − �̂�𝑖)
𝑖∈ℵ𝑗

) (2.12) 

where βp > maxt∈(0,∞){‖𝑝0̇‖}, βv > maxt∈(0,∞){‖�̇�0‖}, and βψ > maxt∈(0,∞){‖�̇�0‖}.

Lemma 2.1. For the distributed estimators in (2.10)-(2.12), if the leader’s information is 

globally reachable to all other vehicles, (�̂�j, 𝑣,�̂�j) converges to (p0,v0,ψ0) within a finite time T, 

i.e., after time T, (�̂�j, 𝑣,�̂�j) = (p0,v0,ψ0) .

2.2.2 Tracking Controller Design 

In this step, we design a tracking controller for each vehicle. Considering the cascade 

structure of the system, a backstepping tracking controller is proposed in the following steps.     

  Step 1: The dynamics in (2.1)-(2.2) can be written as 

mj�̈�j + mjge3 = fjRje3 + mjd1j (2.13) 

Since mj is a constant, the passivity property holds for the system. Let 
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sj = �̇�j − �̇̂�j − ℎ̇j + k1j(𝑝j − �̂�j − hj)

where k1j is positive, then 

mj�̇�j   =  fjRje3 + mjd1j − mjge3 − mj(�̈̂�j + ℎ̈j) + mjk1j(�̇�j − �̇̂�j − ℎ̇j).

Since mj and d1j are unknown, we use a neural network to approximate the unknown terms. 

Choose the basis function of the neural networks as Y1j, we have 

 𝑚𝑗𝑑1𝑗 − 𝑚𝑗𝑔𝑒3 − 𝑚𝑗(�̈̂�𝑗 + ℎ𝑗) + 𝑚𝑗𝑘1𝑗(�̇�𝑗 − �̇̂�𝑗 − ℎ̇𝑗) = 𝑌1𝑗𝑊1𝑗 +∈1𝑗 (2.14) 

where W1j is an ideal constant weight vector and ∈1𝑗 is the residue error vector. If the basis 

function is well chosen and the number of nodes is large enough, ‖∈1𝑗‖ ≤ 𝑐1𝑗 for a given 

positive constant c1j. So, 

𝑚𝑗�̇�j   =  fjRje3 + 𝑌1𝑗𝑊1𝑗 +∈1𝑗. (2.15) 

We choose a Lyapunov function 

𝑉1𝑗 =
1

2
𝑚𝑗𝑠𝑗

⊤𝑠𝑗 +
1

2
𝛾1𝑗(𝑊1𝑗 − �̂�1𝑗)⊤(𝑊1𝑗 − �̂�1𝑗)

where γ1j is a positive constant and Wˆ
1j is an estimate of W1j. Then, 
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�̇�1𝑗 = 𝑠𝑗
⊤(𝑓𝑗𝑅𝑗𝑒3 + 𝑌1𝑗𝜔1𝑗 +∈1𝑗) − 𝛾1𝑗(𝑊1𝑗 − �̂�1𝑗)�̂�1𝑗.

If fjRje3 were control input, we choose the virtual control input as 

𝛼𝑗 = [

𝛼1𝑗

𝛼2𝑗

𝛼3𝑗

] = −𝑘2𝑠𝑗 − 𝑌1𝑊1𝑗
̂ − 𝑐1𝑗

𝑠𝑖𝑔𝑛(𝑠𝑗)         (2.16) 

and the update law of W1j is 

𝑊1𝑗
̂̇ = 𝛾1𝑗

−1𝑌1𝑗

⊤𝑠𝑗 (2.17) 

With the aid of the virtual control input, we have 

�̇�1𝑗 = 𝑠𝑗
⊤(𝑓𝑗𝑅𝑗𝑒3 − 𝛼𝑗) − 𝑘2𝑠𝑗

⊤𝑠𝑗 + 𝑠𝑗
⊤ ∈1𝑗− 𝑐1𝑗𝑠𝑗

⊤𝑠𝑖𝑔𝑛(𝑠𝑗) (2.18) 

≤ 𝑠𝑗
⊤(𝑓𝑗𝑅𝑗𝑒3 − 𝛼𝑗) − 𝑘2𝑠𝑗

⊤𝑠𝑗 (2.19) 

Step 2: In this step, we find fj and virtual control inputs φdj and θdj for φj and θj. We choose 

fj = ‖𝛼𝑗‖. (2.20) 

Let fje3 = R⊤(Θdj)αj and ψdj = �̂�j, simple calculation gives 
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α1jcθdjcψdj + α2jcθdjsdjψdj − α3jsθdj = 0 (2.21)

  α1j(sθdjcψdjsφdj − sψdjcφdj) + α2j(sθdjsψdjsφdj + cψcφdj) + α3jcθdjsφdj = 0   (2.22) 

α1j(sθdjcψdjcφdj + sψdjsφdj) + α2j(sθdjsψdjcφdj − cψdjsφdj) + α3jcθdjcφdj = f            (2.23) 

where cθdj = cosθdj and sθdj = sinθdj. From (2.21) we have 

𝜃𝑑𝑗
= arctan (

𝛼1𝑗𝑐𝑜𝑠𝜑𝑑𝑗+𝛼2𝑗𝑠𝑖𝑛𝜑𝑑𝑗

𝛼3𝑗
) (2.24) 

(2.23)×sinφdj - (2.22)×cosφdj yields 

fj sinφdj = α1j sinψdj − α2j cosψdj. 

From this equation, we choose 

ϕ𝑑𝑗
= arcsin (

𝛼1𝑗𝑠𝑖𝑛𝜑𝑑𝑗−𝛼2𝑗𝑐𝑜𝑠𝜑𝑑𝑗

‖𝛼𝑗‖
)   (2.25) 

With the aid of the virtual control input Θdj = (ψdj,φdj,ψdj), (2.15) can be written as 

mj�̇�j= −k2jsj + Yj(�̂�j − mj) − k3jsign(sj) + mjd1j 

+‖𝛼𝑗‖R(Θdj)(R(Θj − Θdj) − I3)e3 (2.26) 

Step 3: In this step, we design the virtual control for ωj such that (2.8)-(2.9) are satisfied and 

the Euler angles (φj,θj,ψj) are in the restrict regions in (2.6). Let 
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  ξ𝑗 = [

𝑡𝑎𝑛ϕ𝑗 − 𝑡𝑎𝑛ϕ𝑑𝑗

𝑡𝑎𝑛θ𝑗 − 𝑡𝑎𝑛θ𝑑𝑗

𝑡𝑎𝑛
𝜑

2
− 𝑡𝑎𝑛

𝜑𝑑𝑗

2

] (2.27) 

then, 

�̇�j=G(Θj)W(Θj)ωj − G(Θdj)�̇�dj (2.28) 

where 

𝐺(Θ𝑗) = 𝑑𝑖𝑎𝑔 ([
1

cos2ϕ𝑗
,

1

cos2θ𝑗
,

1

2cos2
𝜑𝑗

2

]) 

It is obvious that Θj is in the regions in (2.6) and (2.9) holds if ξj is bounded and converges to 

zero. To design a virtual controller for ωj, we choose a Lyapunov function 

𝑉2𝑗 =
1

2
ξ𝑗

⊤ξ𝑗 .

Then, 

�̇�2𝑗 = ξ𝑗
⊤(𝐺(Θ𝑗)𝑊(Θ𝑗)𝜔𝑗 − 𝐺(Θ𝑑𝑗)Θ̇𝑑𝑗)

Choose the virtual controller of ωj as 
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ηj =(G(Θj)W(Θj))
−1(−kΘjξj + G(Θdj)�̇�dj) (2.29) 

where kΘj is a positive constant. If ωj = ηj, 

�̇�2𝑗 = −ξ𝑗
⊤𝑘Θ𝑗𝜉𝑗 ≤ 0

which means that ξj exponentially converges to zero. 

In (2.29), the inverse of G(Θj)W(Θj) always exists because Θj is in the regions defined in 

(2.6) with the controllers defined in the next step. 

Step 4: Since ωj is not a real control input and cannot be ηj, we let 

�̃�j = ωj − ηj. 

Then, 

ξ�̇� = −𝑘Θξ𝑗 +  𝐺(Θ𝑗)𝑊(Θ𝑗) 𝜔�̃�   (2.30) 

    𝐽𝑗�̇̃�𝑗 = 𝑆(𝐽𝑗𝜔𝑗)𝜔𝑗 + 𝜏𝑗 − 𝐽𝑗η̇𝑗 + 𝑑2𝑗 (2.31) 

Denote 
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𝐽𝑗 = [

𝐽11𝑗
𝐽12𝑗

𝐽13𝑗

𝐽21𝑗
𝐽22𝑗

𝐽23𝑗

𝐽31𝑗
𝐽32𝑗

𝐽33𝑗

] 

 and for any vector ζ = [ζ1,ζ2,ζ3]
> ∈ R3 we define an operator 

Γ(ζ) = [

ζ1 ζ2 ζ3

0 ζ1 0
0 0 ζ1

  
0 0 0
ζ2 ζ3 0
0 ζ2 ζ3

] 

then 

Jjζ = Γ(ζ)aj 

where aj = [J11j,J12j,J13j,J22j,J23j,J33j]⊤ is a collection of all elements of JJ. Equation (2.31) can be 

written as 

Jj�̇̃�j=  τj − [S(ωj)Γ(ωj) + Γ(�̇�j)]aj + d2j. (2.32) 

Since aj and d2j are unknown, we use a neural network to learn them. We choose a basis 

function Y2j to approximate d2j − [S(ωj)Γ(ωj) + Γ(�̇�j)]aj. Then 

𝑑2𝑗 − [𝑆(𝜔𝑗)Γ(𝜔𝑗) + Γ(�̇�𝑗)]𝑎𝑗 = 𝑌2𝑗𝑊2𝑗 +∈2𝑗     (2.33) 
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where W2j is the ideal weight vector, ∈2𝑗 is the residue error. For a given constant c2j, we can 

choose Y2j very well such that‖∈2𝑗‖ ≤ 𝑐2𝑗. Then, 

𝐽𝑗�̇̃�𝑗 = 𝜏𝑗 + 𝑌2𝑗𝑊2𝑗 +∈2𝑗. (2.34) 

In order to propose an adaptive control law such that (2.8)-(2.9) are satisfied, we choose a 

Lyapunov function 

𝑉3𝑗 = 𝑉2𝑗 +
1

2
�̃�𝑗

⊤𝐽𝑗�̃�𝑗 +
1

2
(𝑊2𝑗 − �̂�2𝑗)

⊤
𝛾2𝑗

−1(𝑊2𝑗 − �̂�2𝑗)

where γ2j is a positive definite constant matrix and �̂�2𝑗  is an estimate of W2j and will be designed 

later. The derivative of V3j along the solution of (2.30) and (2.34) is 

�̇�3𝑗 = −ξ𝑗
⊤𝑘Θjξ𝑗 + ξ𝑗

⊤𝐺(Θ𝑗)𝑊(Θ𝑗)𝜔�̃� + �̃�𝑗
⊤𝜏𝑗 + �̃�𝑗

⊤ ∈2𝑗+ �̃�𝑗
⊤𝑌2𝑗𝑊2𝑗 −

(𝑊2𝑗 − �̂�2𝑗)⊤𝛾2𝑗
−1�̇̂�2𝑗.

We choose the control law and the update law as follows 

τj = −kωj𝜔�̃�− [G(Θj)W(Θj)]⊤ξj + Y2j�̂�2𝑗  − c2jsign(𝜔�̃�)   (2.35) 

𝑊2𝑗
̂̇ = 𝛾2𝑗𝑌2𝑗

⊤𝜔�̃�  (2.36) 

where kωj is a positive constant. Then, 

�̇�3𝑗 = −ξ𝑗
⊤𝑘Θjξ𝑗 − �̃�𝑗

⊤𝑘𝜔𝑗�̃�𝑗 ≤ 0 (2.37) 
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which means that ξj and �̃�𝑗  converges to zero and �̂�2j is bounded. 

Based on the above controller design procedure, we have the following results. 

Lemma 2.2. With the control input (2.35)-(2.36), (2.9) holds. Furthermore, Θj − Θdj ∈ L2 ∩ L∞ 

and converges to zero. 

Proof: By the Lyapunov function V3j, we have (2.37), which means that V3j is bounded, ξj ∈ 

L2, and �̃�𝑗  ∈ L2. The boundedness of V3j means that ξj, �̃�𝑗  ∈ L∞. So, ξj and �̃�𝑗  converge to zero, 

respectively. Therefore, (2.9) holds because the transformation tan(·) is one-to-one mapping for 

angles in (−π/2,π/2). 

By the mean value theorem, we have 

𝑡𝑎𝑛ϕ𝑗 − 𝑡𝑎𝑛ϕ𝑑𝑗 =
1

𝑐𝑜𝑠ϕ𝑐𝑗
(ϕ𝑗 − ϕ𝑑𝑗)

where φcj is a value between φj and φdj. Since ϕ𝑗 , ϕ𝑑𝑗 ∈ (−
𝜋

2
,

𝜋

2
) ,

1

𝑐𝑜𝑠2ϕ𝑐𝑗
≤ 𝑐ϕj where cφj is a 

positive constant. Since ξj ∈ L2, φj − φdj ∈ L2. Similarly, it can be proved that θj − θdj ∈ L2 and ψj − 

ψdj ∈ L2. Therefore, Θj − Θdj ∈ L2 ∩ L∞. So, Θj − Θdj converges to zero.  Based on the above 

controller design procedure, we have the following results. 

Theorem 2.1. For the systems in (2.1)-(2.4) and a leader vehicle, if the information of the leader 

vehicle is globally reachable the control inputs (fj,τj) in (2.20) and (2.35) with the update laws in 

(2.17) and (2.36) ensure that (2.8)-(2.9) are satisfied and (Wˆ
1j,W

ˆ
2j) is bounded. 

Proof: By Lemma 2.2, eqn. (2.9) holds and Θj − Θdj ∈ L2 ∩ L∞. Furthermore, it can be shown 

that (R(Θj − Θdj) − I3)e3 ∈ L2 ∩ L∞. So, 
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𝑉1𝑗 ≤ −𝑘2𝑗𝑠𝑗
⊤𝑠𝑗 + 𝑠𝑗

⊤‖𝛼𝑗‖𝑅(Θ𝑑𝑗)(𝑅(Θ𝑗 − Θ𝑑𝑗) − 𝐼3)𝑒3

≤ −𝑘2𝑗𝑠𝑗
⊤𝑠𝑗 + 0.5𝑘2𝑗𝑠𝑗

⊤𝑠𝑗 +
1

2𝑘2𝑗
‖𝛼𝑗‖

2
(2(1 − 𝑐(�̃�𝑗 − �̃�𝑑𝑗)𝑐(ϕ𝑗 − ϕ𝑑𝑗) + 𝑠2(ϕ𝑗 − ϕ𝑑𝑗)

= 0.5𝑘2𝑗𝑠𝑗
⊤𝑠𝑗 +

1

2𝑘2𝑗
‖𝛼𝑗‖

2
(2(1 − 𝑐(�̃�𝑗 − �̃�𝑑𝑗)𝑐(ϕ𝑗 − ϕ𝑑𝑗) + 𝑠2(ϕ𝑗 − ϕ𝑑𝑗))

Integrating both sides of the above inequality and noting that Θdj −Θj ∈ L2∩L∞, it can be shown 

that sj ∈ L2 ∩ L∞. Furthermore, it can be shown that sj converges to zero. So, (2.8) holds.  

Remark 2.1. In order to implement the controllers in Theorem 2.1, derivatives of η and Θd

should be obtained. Calculation of them is tedious. To overcome this, the command filters 

proposed in [57] and [58] can be applied to estimate �̇�j and �̇�dj. For given qd, the command filter 

�̇�1 = 𝜔𝑛𝑞2 

�̇�2 = −2ζ𝜔𝑛𝑞2 − 𝜔𝑛(𝑞1 − 𝑞𝑑) 

Figure 2.6: Configuration of a quadrotor 
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ensures that ‖𝜔𝑛𝑞2  −  �̇�𝑑  ‖is small by letting 0 < ζ < 1 and ωn(> 0) large.

2.3 Simulation Results 

 The proposed results can be applied to design distributed controllers for formation flying 

of multiple quadrotors. Considered five quadrotors. The dynamics of quadrotor j can be written 

as (2.1)(2.4), where the total thrust fj and the generalized moment vector τj are generated by the 

four rotors. For simplicity, we ignore the dynamics of each rotor and consider fj and τj as control 

inputs. In the simulation, it is assumed that mj = 1kg and inertia tensor Jj = diag([1,1,1])kg m2. In 

the controller design, mj and Jj are not exactly known. However, it is known that mj ∈ [0.8,1.2]kg, 

i.e., �̅� = 1.2kg and m = 0.8kg.

Simulation results are presented to illustrate the effectiveness of the proposed controllers. 

Without loss of generality, for j-th quadrotor it is assumed that mj = 1kg and inertia tensor 

Jj = diag([1,1,1])kg m2. In the controllers, mj and Jj are unknown and mj ∈ [0.8,1.2]. 

In the simulation, it is assumed that the trajectory p0 and ψ0 of the leader quadrotor are 

𝑝0(𝑡) = [10 (1 − 𝑐𝑜𝑠
𝜋𝑡

360
) , 10𝑠𝑖𝑛

𝜋𝑡

360
, 1]

⊤

𝜑𝑑 =
𝜋

3
sin (0.01𝑡) 
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Figure 2.7: Communication graph between quadrotors 

Figure 2.8: Desired formation 

The communication directed graph is shown in Fig. 2.7. It is can be verified that node 0 is 

globally reachable. 

The desired formation for quadrotors is shown in Fig. 2.8, where h0 = [0,0,0]⊤, h1 = [0,15,0]⊤, 

h2 = [−15,0,0]⊤, and h3 = [0,−15,0]⊤. 

Distributed control laws can be designed with the aid of the procedure in the last section. The 

simulation was done for a group of control parameters. Figs. 2.9-2.11 show the estimate errors p0

−pˆj, v0 −vˆj, and ψ0 −ψˆ
j for 1 ≤ j ≤ 3. It is shown that the estimates of the state of the leader

converge to the desired value within finite time. 



29 

Fig. 2.12 shows the time response of pj − hj − (p0 − h0) for 1 ≤ j ≤ 3. It is shown that the 

vehicles come into the desired formation and follow the leader vehicle. The time response of sj is 

shown in Fig. 2.13, which shows that sj converges to zero for 1 ≤ j ≤ 3. The time response of q˜j is 

shown in Fig. 2.14, which shows that the orientation of each vehicle converges to the orientation 

of the leader vehicle. Fig. 2.15 show the response of ω˜j. They are converge to zero. 

Figure 2.9: Estimate errors p0 − pˆj for 1 ≤ j ≤ 3 
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Figure 2.10: Estimate errors v0 − vˆj for 1 ≤ j ≤ 3 

Figure 2.11: Estimate errors ψ0 − ψˆ
j for 1 ≤ j ≤ 3 
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Figure 2.12: Tracking errors pj − hj − (p0 − h0) for 1 ≤ j ≤ 3 

Figure 2.13: Tracking errors sj for 1 ≤ j ≤ 3 
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Figure 2.14: Tracking errors q˜j for 1 ≤ j ≤ 3 

Figure 2.15: Tracking errors ω˜j for 1 ≤ j ≤ 3 
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2.4 Conclusion 

This chapter considered the formation flying of multiple vehicles with a desired attitude 

in the presence of parametric and non-parametric uncertainty. With the aid of the distributed 

estimation, sliding mode control theory, and adaptive control theory, distributed control laws 

were proposed. Simulation results show the effectiveness of the proposed controllers for 

formation flying of three vehicles.
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CHAPTER III 

DISTRIBUTED TRACKING CONTROL OF MULTIPLE QUADROTORS WITH THE AID 

OF OPTIMAL CONTROL THEORY

3.1 Introduction 

Although there are many results on formation control of multiple quadrotors, how to 

improve the control performance is still challenging in the presence of uncertainty and coupling 

among neighboring quadrotors. Motivating by the research work in [53–55], in this chapter we 

study the optimal formation control of multiple quadrotors with parametric uncertainty and 

propose new distributed control laws with the aid of optimal control theory such that the 

formation errors converge to zero and the attitude of each quadrotor converges to a desired 

attitude. 

3.2 Problem Statement and Preliminaries 

3.2.1 Problem Statement  

 Consider m quadrotors. Under some assumptions, the kinematics and dynamics of j-th 

quadrotor are defined by 

�̇�j = vj (3.1) 
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 �̇�j    = −𝑔 𝑒3 +  
1

𝑚𝑗
 𝑓𝑗  𝑅𝑗  𝑒3 (3.2) 

 �̇�j =𝑅 𝑆(𝜔𝑗) (3.3) 

                                     𝐽𝑗  𝜔�̇� = 𝑆(𝐽𝑗𝜔𝑗)𝜔𝑗 + 𝜏𝑗                                            (3.4) 

where pj and vj are the position and the velocity of the mass center in the inertia frame, 

respectively, mj is the mass of the j-th vehicle, g is the gravitational acceleration, e3 = [0,0,1]⊤, fj ∈ 

< is the total thrust, Rj = [b1j,b2j,b3j] is the rotation matrix of the body frame with respect to the 

inertia frame, ωj is the angular velocity of the quadrotor in its body frame, Jj is the inertia 

moment of the quadrotor, S(ξ) for ξ = [ξ1,ξ2,ξ3]⊤ is a skew-symmetric matrix defined by 

𝑆(ξ) = [

0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0
] 

and τj = [τ1j,τ2j,τ3j]⊤ is the torque input of the system. 

For multiple quadrotors, there are information flows between them with the aid of sensors or 

wireless communication. Consider each quadrotor as a node. The communication between 

quadrotors is defined by a directed graph G = {A,E} where A is the node set and E is the edge 

set. If there is an edge eij in E it means that the information of node i is available to node j. Node i 

is called a neighbor of node j if the information of node i is available to node j. All neighbors of 

node j form a node set which is called the neighbor set of node j and is denoted by Nj. A directed 

path from node i to node j is a sequence of sets of edges that connect node i to node j by 

following their directions. Node i is said to be reachable to node j if there exists a directed path 

from node i to node j. Node i is said globally reachable if node i is reachable for every other node 

in A. 
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In this chapter, we assume there are m follower quadrotors and one leader quadrotor. The 

leader quadrotor is operated by a human operator and does not receive any information from the 

follower quadrotors. Without loss of generality, the leader quadrotor is labeled as node 0. The 

follower quadrotors are labeled by 1, 2, ..., m. The communication between m + 1 quadrotors is 

defined by an augmented directed graph Ga = {Aa,Ea} where Aa = A∪{0} and Ea is a union of E 

and the edges from node 0 to the followers. 

For m follower quadrotors and a leader quadrotor, a desired formation can be defined by 

(m+1) vectors hj ∈ R3 which may be constant vectors or time-varying vectors. We say (m+1) 

quadrotors are in the desired formation if 

𝑝𝑖 − 𝑝𝑗 = ℎ𝑖 −  ℎ𝑗  

for any 0 ≤ i,j ≤ m. We say m + 1 quadrotors come into the desired formation if 

lim
𝑡→∞

[(𝑝𝑖  −  ℎ𝑖)  −  (𝑝𝑗  −  ℎ𝑗)]  =  0  

for any 0 ≤ i,j ≤ m. 

In the dynamics (3.1)-(3.4), the parametric uncertainty (i.e., mj and Jj) is called the system 

uncertainty. For each quadrotor, it is unknown whether the leader quadrotor is a neighbor or not. 

We say there is information uncertainty for each quadrotor. 

In this chapter, we consider the following control problem. 

Formation flying with a leader: For a leader quadrotor and m follower quadrotors, it is 

assumed that mj and Jj are unknown for 1 ≤ j ≤ m. It is given the position and the orientation of a 
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leader quadrotor and a desired formation defined by hj for 0 ≤ j ≤ m, the control problem is to 

design distributed reinforcement learning based state feedback controllers fj and τj using its own 

information and its neighbors’ information such that 

lim
𝑡→∞

[(𝑝𝑗  −  ℎ𝑗)  − (𝑝0  −  ℎ0)]  =  0                                        (3.5) 

lim
𝑡→∞

[(𝑏2𝑗(𝑡)  −  𝑏2,0(𝑡)) ]  =  0                                                          (3.6) 

for 1 ≤ j ≤ m. 

In the defined problem, (3.5) means that the (m+1) quadrotors come into the desired 

formation and (3.6) means that the Y axes of the body frames of m + 1 quadrotors are parallel as 

time goes 

to infinity. 

In order to solve the defined problem, the following assumptions are made. 

Assumption 3.1. The mass mj of vehicle j is an unknown constant. 

Assumption 3.2. The inertia matrix Jj of vehicle j is an unknown diagonal constant matrix and 

its elements on the diagonal are the element of a vector aj. 

Assumption 3.3. The communication graph Ga is a directed graph and the node 0 is globally 

reachable. 
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Assumption 3.4. p0(t) is smooth, ‖�̈�0(𝑡) ‖ and ‖�̈�0 ‖  are bounded. 

Assumption 3.5. b2,0(t) is smooth. �̇�2,0 and �̈�2,0 are bounded.𝑏2,0
⊤ (𝑡)𝑏3,0(𝑡) = 0 for any time 

where𝑏3,0(𝑡) =
�̈�0(𝑡)+𝑔𝑒3

‖�̈�0(𝑡)+𝑔𝑒3‖2. 

The above assumptions are reasonable in practice. 

The attitude of the j-th vehicle can be defined by a unit quaternion 𝑞𝑗 = [η𝑗 , ∈𝑗
⊤]

⊤
where ηj ∈ 

Ɍ and ∈𝑗∈  Ɍ3. The relation between qj and Rj is defined by 

𝑅𝑗 = Ɍ(q𝑗) = 𝐼 + 2η𝑗𝑆(∈𝑗) + 2𝑆2(∈𝑗). 

For the j-th vehicle, (3.3) can be written as 

 �̇�𝑗 =
1

2
𝐴(𝑞𝑗)𝜔𝑗 (3.7) 

where 

 𝐴(𝑞𝑗) = [
−∈𝑗

⊤

η𝑗𝐼 + 𝑆(∈𝑗)
]. (3.8)
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3.3 Controller Design 

In order to design distributed controllers, a multiple-step controller design procedure is 

proposed. In the first step, we design distributed estimators to estimate state of the leader vehicle 

using neighbors’ information. In the second step, we estimate the unknown inertia parameters 

with the aid of data. Next, we design optimal controllers for each system such that the state of the 

vehicle asymptotically tracks the estimated state of the leader vehicle and minimize a cost 

function. 

3.3.1 Distributed Estimator Design 

In this section, we apply the results in [56] to design distributed estimators. Let (𝑝�̂�, 𝑣�̂�,ψˆ
j)

be the estimate of the leader’s state (p0,v0,ψ0). Based on the results in [56], the distributed 

estimators for vehicle j are proposed as follows. 

𝑝�̇̂� = 𝑣�̂�                                                                           (3.9) 

𝑣�̇̂� = 𝑘𝑣𝑗 −  ∑ 𝑎𝑗𝑖(𝑣�̂� − 𝑣�̂�)
𝑖∈ℵ𝑗

+ 𝑘 ∑ 𝑎𝑗𝑖(𝑝�̂� − 𝑝�̂�) − 𝛽𝑣𝑠𝑖𝑔𝑛 (∑ 𝑎𝑗𝑖(𝑣�̂� − 𝑣�̂� −
𝑖∈ℵ𝑗𝑖∈ℵ𝑗

𝑘𝑝�̂� + 𝑘𝑝�̂�))  (3.10) 

𝑟�̇� = − ∑ 𝑎𝑗𝑖(𝑟𝑗 − 𝑟𝑖)
𝑖∈ℵ𝑗

− 𝛽𝑟𝑠𝑖𝑔𝑛 (∑ 𝑎𝑗𝑖(𝑟𝑗 − 𝑟𝑖)
𝑖∈ℵ𝑗

) (3.11) 
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where 𝑟0 = 𝑏20 𝑘 > 0, 𝛽𝑝 > 𝑚𝑎𝑥𝑡∈(0,∞){‖�̇�0‖}, 𝛽𝑣 > 𝑚𝑎𝑥𝑡∈(0,∞){‖�̇�0 + 𝑘𝑝0‖} , and 𝛽𝑟 >

𝑚𝑎𝑥𝑡∈(0,∞){‖�̇�20‖}. 

Lemma 3.1. For the distributed estimators in (3.9)-(3.11), if the leader’s information is 

globally reachable to all other vehicles, (�̂�𝑗,𝑣𝑗 ,rj) converges to (p0,v0,b20) within a finite time 

T, i.e., after time T, (�̂�𝑗,𝑣𝑗,rj) = (p0,v0,b20) . 

3.3.2 Parameter Estimation 

 In the dynamics (3.1)(3.4), mj and Jj are unknown. They should be estimated with the aid 

of the measured data. To this end, we integrate (3.2) and (3.4) over time interval [t,t + δt] for 

some stabilizing controller fj and τj. Then, 

𝑚𝑗(𝑣𝑗(𝑡 + 𝛿𝑡) − 𝑣𝑗(𝑡) + 𝑔𝑒3𝛿𝑡) =  ∫ 𝑓𝑗𝑅𝑗𝑒3𝑑τ
𝑡+𝛿𝑡

𝑡

 

𝐽𝑗 (𝜔𝑗(𝑡 + 𝛿𝑡) − 𝜔𝑗(𝑡)) =  − ∫ 𝑆(𝜔𝑗)𝑑𝑖𝑎𝑔(𝜔𝑗)𝑑τvec(J𝑗) +
𝑡+𝛿𝑡

𝑡

∫ 𝜏𝑗𝑑𝜏
𝑡+𝛿𝑡

𝑡

 

So, 

𝑚𝑗 =
(𝑣𝑗(𝑡+𝛿𝑡)−𝑣𝑗(𝑡)+𝑔𝑒3𝛿𝑡)⊤ ∫ 𝑓𝑗𝑅𝑗𝑒3𝑑𝜏

𝑡+𝛿𝑡
𝑡

‖𝑣𝑗(𝑡+𝛿𝑡)−𝑣𝑗(𝑡)+𝑔𝑒3𝛿𝑡‖
2        (3.12) 
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𝑣𝑒𝑐(𝐽𝑗) = (𝑑𝑖𝑎𝑔 (𝜔𝑗(𝑡 + 𝛿𝑡) − 𝜔𝑗(𝑡)) +  ∫ 𝑆(𝜔𝑗)𝑑𝑖𝑎𝑔(𝜔𝑗)𝑑𝜏)
𝑡+𝛿𝑡

𝑡
)

−1

∫ 𝜏𝑗𝑑𝜏
𝑡+𝛿𝑡

𝑡
     (3.13) 

In (3.12) and (3.13), some terms should be nonsingular. To avoid singularity of these terms, 

one can integrate (3.2) and (3.4) over multiple time intervals. 

In order to find mj and Jj, one needs to integrate some signals. To this end, one can let these 

signals go through first integrators with zero initial conditions. If we define the following 

auxiliary variables 

ξ1𝑗
̇ =  𝑓𝑗𝑅𝑗𝑒3, ξ1𝑗(𝑡) = [0,0,0]⊤ (3.14) 

ξ2𝑗
̇ = 𝑆(𝜔𝑗)𝑑𝑖𝑎𝑔(𝜔𝑗), ξ2𝑗(𝑡) = 03𝑋3  (3.15) 

ξ3𝑗
̇ = 𝜏𝑗, ξ3𝑗(𝑡) = 03𝑋1 (3.16) 

then (3.12) and 3.13) can be written as 

𝑚𝑗 =
(𝑣𝑗(𝑡+𝛿𝑡)−𝑣𝑗(𝑡)+𝑔𝑒3𝛿𝑡)⊤ ξ1𝑗(𝑡+𝛿𝑡)

‖𝑣𝑗(𝑡+𝛿𝑡)−𝑣𝑗(𝑡)+𝑔𝑒3𝛿𝑡‖
2 (3.17) 

𝑣𝑒𝑐(𝐽𝑗) = (𝑑𝑖𝑎𝑔 (𝜔𝑗(𝑡 + 𝛿𝑡) − 𝜔𝑗(𝑡)) + ξ2𝑗(𝑡 + 𝛿𝑡))
−1

ξ3𝑗(𝑡 +

 𝛿𝑡)  (3.18) 
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3.3.3 Optimal Tracking Controller Design 

In this step, we design a tracking controller for each vehicle with the aid of optimal 

control theory. With the aid of the distributed estimator and the estimates of mj and Jj, for time t ≥ 

T the estimator for system j can be written as 

                                                             �̇�j=vj                                                                                                                    (3.19) 

 �̇�j    = −𝑔 𝑒3 +  
1

𝑚𝑗
 𝑓𝑗  𝑅𝑗  𝑒3 (3.20) 

Considering the cascade structure of the system, a backstepping tracking controller is 

proposed in the following steps when time t ≥ T. 

Step 1: Let  

𝑥𝑗 =  [
𝑝𝑗 − 𝑝�̂�

𝑣𝑗 − 𝑣�̂�
] 

then  

          

      𝑥�̇� =  𝐴𝑗𝑥𝑗 + 𝐵𝑗𝑓𝑗𝑅𝑗𝑒3 − 𝐵𝑗𝑣�̇̂�        (3.21) 

 

where 

   

𝐴𝑗 =  [
03𝑋3 𝐼3𝑋3

03𝑋3 03𝑋3
], 𝐵𝑗 =  [

03𝑋3

𝐼3𝑋3
]. 
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       Define a cost function 

𝐽1𝑗 =  ∫ ((𝑥𝑗
⊤𝑄𝑗𝑥𝑗 + [𝑗𝑓𝑗𝑅𝑗𝑒3 − 𝑣�̇̂�]⊤𝑁𝑗[𝑓𝑗𝑅𝑗𝑒3 − 𝑣�̇̂�])

∞

0

where Qj and Nj are known positive definite matrices. We design a virtual control input αj for 

fjRje3 such that xj converges to zero and J1j is minimized. 

With the aid of the linear quadratic regulation (LQR) optimal control theory, the optimal con- 

troller is 

αj = −Kjxj + �̇�j (3.22) 

where 

𝐾𝑗 = 𝑁𝑗
−1𝐵𝑗

⊤ 𝑃𝑗 (3.23) 

and Pj is a positive definite solution of the following Lyapunov function 
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      (𝐴𝑗 − 𝐵𝑗𝐾𝑗)⊤𝑃𝑗 + 𝑃𝑗(𝐴𝑗 − 𝐵𝑗𝐾𝑗) + 𝑄𝑗 + 𝐾𝑗
⊤𝑁𝑗𝐾𝑗 = 0                                 (3.24) 

 

Substitute Kj to the above equation, Pj is the symmetric positive definite solution to the following 

well-known algebraic Riccati equation (ARE). 

 

𝐴𝑗
⊤𝑃𝑗 + 𝑃𝑗𝐴𝑗 + 𝑄𝑗 − 𝑃𝑗𝐵𝑗𝑁𝑗

−1𝐵𝑗
⊤𝑃𝑗 = 0.                                            (3.25) 

 

Step 2: In this step, we find fj and the desired orientation Rj
d for j-th vehicle. Let  

      𝑓𝑗𝑅𝑗
𝑑𝑒3 = 𝛼𝑗                                       (3.26)  

where 𝑅𝑗
𝑑 = [𝑏1𝑗

𝑑 , 𝑏2𝑗
𝑑 , 𝑏3𝑗

𝑑 ], then 

𝑓𝑗 =  ‖𝛼𝑗‖                                                    (3.27) 

 

𝑏3𝑗
𝑑 =

𝛼�̇�

‖𝛼�̇�‖
                                                     (3.28) 

In (3.28), 𝑏3𝑗
𝑑  is not defined if αj = 0. In this case, we define 𝑏3𝑗

𝑑 as follows 

𝑏3𝑗
𝑑 =

𝛼2𝑗̇

‖𝛼2𝑗̇ ‖
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To define 𝑏1𝑗
𝑑  and 𝑏2𝑗

𝑑 , the information b2,0 is required. Based on the distributed estimator in 

(3.11), the estimate rj of b20 for j-th vehicle is known. We choose 

𝑟�̅� =  𝑟𝑗 − 𝑟𝑗
⊤𝑏3𝑗

𝑑 𝑏3𝑗
𝑑                                                       (3.29) 

 

𝑏2𝑗
𝑑 =

𝑟�̅�

‖𝑟�̅�‖
                                                                     (3.30) 

 

𝑏1𝑗
𝑑 = 𝑏2𝑗

𝑑  𝑥 𝑏3𝑗
𝑑                                                             (3.31) 

The desired attitude of Rj is chosen as 

      𝑅𝑗
𝑑 = [𝑏1𝑗

𝑑 , 𝑏2𝑗
𝑑 , 𝑏3𝑗

𝑑 ]                                                            (3.32) 

and the desired quaternion𝑞𝑗
𝑑 = [η𝑗

𝑑, (∈𝑗
𝑑)⊤]

⊤
 is calculated by the equations (166)-(168) in [59] 

which are omitted here. The desired angular velocity is calculated by    

     𝜔𝑗
𝑑 = 2𝐴(𝑞𝑗

𝑑)⊤ 𝑑𝑞𝑗
𝑑

𝑑𝑡
.                                                         (3.33) 

Step 3: Let the difference between qj and qj
d be       

    𝑞�̃� = (𝑞𝑗
𝑑)−1 ⊗  𝑞𝑗 = [η�̃�, −∈̃𝑗

⊤]⊤ ,                                      (3.34) 

The derivative of 𝑞�̃�is          

    𝑞�̇̃� =  
1

2
𝐴(𝑞�̃�)(𝜔𝑗 − �̃�𝑗

⊤𝜔𝑗
𝑑)      (3.35) 
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where �̃�j = (Rj
d)⊤Rj. 

Let             

          �̃�𝑗 =  𝜔𝑗 − �̃�𝑗
⊤𝜔𝑗

𝑑 − 𝐾1 ∈̃𝑗                                                  (3.36) 

where K1 is a symmetric positive definite constant matrix, then     

    �̇̃�𝑗 = − 
1

2
 𝐴(�̃�𝑗)𝐾1 ∈̃𝑗                                                                     (3.37) 

    𝐽𝑗  𝜔�̇� = 𝑆(𝐽𝑗𝜔𝑗)𝜔𝑗 + 𝜏𝑗 − 𝐽𝑗
𝑑

𝑑𝑡
(�̃�𝑗

⊤𝜔𝑗
𝑑) − 𝐽𝑗𝐾1 ∈̃𝑗

̇     

              = −𝑆(�̃�𝑗)J𝑗�̃�𝑗 − S(�̃�𝑗)𝐽𝑗(�̃�𝑗
⊤𝜔𝑗

𝑑)J𝑗�̃�𝑗   

                                                   −𝑆(�̃�𝑗
⊤𝜔𝑗

𝑑)𝐽𝑗�̃�𝑗
⊤𝜔𝑗

𝑑 + τ𝑗 − J𝑗
𝑑

𝑑𝑡
(�̃�𝑗

⊤𝜔𝑗
𝑑) − 𝐽𝑗𝐾1 ∈̃𝑗

̇                (3.38) 

The following result has been proved in [60]. 

Lemma 3.2. For the system in (3.37), if �̃�j is bounded and converges to zero, then ∈̃𝑗 and 𝜔�̃� all 

converge to zero. 

With the aid of Lemma 3.2, we design control input τj such that ω˜j converges to zero. First, 

we consider the optimal control problem of the following system 

�̃��̇� = −𝐽𝑗
−1𝑆(�̃�𝑗)𝐽𝑗�̃�𝑗 + 𝐽𝑗

−1𝜏�̅�       (3.39) 

with a cost function 

 𝐽2𝑗 =
1

2
∫ (�̃�𝑗

⊤∞

0
𝐾2�̃�𝑗 + 𝜏𝑗

−⊤𝐾2
−1𝜏�̅�)𝑑𝑡 (3.40) 

where K2 is a symmetric positive definite matrix, 𝜏�̅� is a virtue input. 



47 
 

Let the value function 

 𝑉𝑗(�̃�𝑗(𝑡), �̃�𝑗) =
1

2
∫ (�̃�𝑗

⊤∞

0
𝐾2�̃�𝑗 + 𝜏𝑗

−⊤𝐾2
−1𝜏�̅�)𝑑𝑡 (3.41) 

The HJB equation is 

 𝐻𝑗(�̃�𝑗 , �̃�𝑗 , 𝜏�̅�) =
1

2
(�̃�𝑗

⊤𝐾2�̃�𝑗 + 𝜏𝑗
−⊤𝐾2

−1𝜏�̅�) +
𝜕𝑉𝑗

𝜕�̃�𝑗
(−𝐽−1𝑆(�̃�𝑗)𝐽�̃�𝑗 + 𝐽−1𝜏�̅�) (3.42) 

The optimal control is 

 𝜏�̅�
∗ = −𝑘1 ∈̃𝑗− 𝐾2𝐽−1 [

𝜕𝑉𝑗

𝜕�̃�𝑗
]

⊤

 (3.43) 

and the value function corresponding to 𝜏�̅�
∗ is 

 𝑉𝑗
∗ =

1

2
�̃�𝑗

⊤𝐽�̃�𝑗. (3.44) 

With the aid of Vj
∗, the optimal control input is       

       𝜏�̅�
∗ = −𝐾2�̃�𝑗       (3.45) 

This means that with the aid of the Lyapunov function Vj
∗ the optimal control can be derived as 

(3.45). 

Since the equation (3.38) and equation (3.39) are similar, it is believed that Vj
∗ is a sub-

optimal value function for the optimal control of systems (3.38) with the cost function (3.40). We 

choose a Lyapunov function 
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 �̅�𝑗 = 𝑉𝑗
∗ (3.46) 

The derivative of �̅�𝑗 is  

                               �̇̅�𝑗 = �̃�𝑗
⊤𝐽�̇̃�𝑗 

                                   = �̃�𝑗
⊤(−𝑆(�̃�𝑗)𝐽𝑗�̃�𝑗 − 𝑆(�̃�𝑗)𝐽𝑗�̃�𝑗

⊤𝜔𝑗
𝑑 − 𝑆(�̃�𝑗

⊤𝜔𝑗
𝑑)𝐽𝑗�̃�𝑗 

                                       −𝑆(�̃�𝑗
⊤𝜔𝑗

𝑑)𝐽𝑗�̃�𝑗
⊤𝜔𝑗

𝑑 + 𝜏𝑗 − 𝐽𝑗
𝑑

𝑑𝑡
(�̃�𝑗

⊤𝜔𝑗
𝑑) − 𝐽𝑗𝐾1 ∈̇̃𝑗 (3.47) 

Choose the control input 

 𝜏𝑗 = −𝐾2�̃�𝑗 + 𝑆(�̃�𝑗)𝐽𝑗�̃�𝑗 + 𝑆(�̃�𝑗)�̃�𝑗
⊤𝜔𝑗

𝑑 + 𝑆(�̃�𝑗
⊤𝜔𝑗

𝑑)𝐽𝑗�̃�𝑗 

                                           +𝑆(�̃�𝑗
⊤𝜔𝑗

𝑑)𝐽𝑗�̃�𝑗
⊤𝜔𝑗

𝑑 + 𝐽𝑗
𝑑

𝑑𝑡
(�̃�𝑗

⊤𝜔𝑗
𝑑) + 𝐽𝑗𝐾1 ∈̇̃𝑗 (3.48) 

then             

      �̇̅�j = −�̃�𝑗
⊤𝐾2�̃�𝑗.       (3.49) 

It can be shown that �̃�𝑗  converges to zero. 

Based on the above controller design procedure, we have the following results. 

Theorem 3.1. For the systems in (3.1)-(3.4) and a leader vehicle, if the information of the leader 

vehicle is globally reachable the control inputs (fj,τj) in (3.27) and (3.48) ensure that (3.5)-(3.6) 

are satisfied. 
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Proof: With the aid of (3.49), it can be proved that �̃�𝑗  is bounded and converges to zero. By 

Lemma 3.2,  converges to zero. So, eqn. (3.6) is satisfied. 

 

With the aid of the above design, the algorithm for control is as follows. 

Control Algorithm: 

1. Initialization: Apply a control input (Fj,τj) for a small amount of time. Based on the measured 

data, calculate mj and Jj using (3.12)-(3.13). 

2. On-line Control: Apply the control law fj and τj in (3.28) and (3.48) where (pˆj,vˆj,rj) are 

defined in (3.9)-(3.11). 

Remark 3.1. In order to implement the controllers in Theorem 3.1, derivatives of some terms 

should be obtained. Calculation of them is tedious. To overcome this, the command filters 

proposed in [57] and [58] can be applied to estimate the derivatives. For a given qd, the 

command filter 

                      �̇�1 = 𝜔𝑛𝑞2 

�̇�2 = −2ζ𝜔𝑛𝑞2 − 𝜔𝑛(𝑞1 − 𝑞𝑑) 

ensures that ‖𝜔𝑛𝑞2  −  �̇�𝑑‖ is small by letting 0 < ζ < 1 and ωn(> 0) large. 
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3.4 Simulation Results 

The proposed results can be applied to design distributed controllers for formation flying 

of multiple quadrotors. Considered five quadrotors. The dynamics of quadrotor j can be written 

as (2.1)-(2.4), where the total thrust fj and the generalized moment vector τj are generated by the 

four rotors. For simplicity, we ignore the dynamics of each rotor and consider fj and τj as control 

inputs. 

Figure 3.1: Configuration of a quadrotor 

In the simulation, it is assumed that mj = 1kg and inertia tensor Jj = diag([1,1,1])kg m2. In the 

controller design, mj and Jj are not exactly known. However, it is known that mj ∈ [0.8,1.2]kg, 

i.e., m¯ = 1.2kg and m = 0.8kg. Simulation results are presented to illustrate the effectiveness of

the proposed controllers. Without loss of generality, for j-th quadrotor it is assumed that mj = 1kg 

and inertia tensor Jj = diag([1,1,1])kg m2. In the controllers, mj and Jj are unknown and mj ∈ 

[0.8,1.2]. 



51 
 

In the simulation, it is assumed that the trajectory p0 and ψ0 of the leader quadrotor are 

 

𝑝0(𝑡) = [100𝑐𝑜𝑠
𝑡

20
, 100𝑠𝑖𝑛

𝑡

20
, 10 − 10exp (−0.1𝑡)]

⊤

 

𝑏2,0 = [sin (𝜋 ∗
𝑡

60
), cos (𝜋 ∗

𝑡

360
),0]

⊤

 

 

The communication directed graph is shown in Fig. 3.2. It is can be verified that node 0 is 

globally reachable. The desired formation for quadrotors is shown in Fig. 3.3, where h0 = 

[0,0,0]⊤, h1 = [0,15,0] ⊤, h2 = [−15,0,0] ⊤, h3 = [0,−15,0] ⊤, and h4 = [15,0,0] ⊤. 

Distributed control laws can be designed with the aid of the procedure in the last section. The 

simulation was done for one group of control parameters. Figs. 3.4-3.12 show the estimate errors 

𝑝0 − �̂�𝑗, 𝑣0 − 𝑣𝑗 , and b2,0 −rj for 1 ≤ j ≤ 3. It is shown that the estimates of the state of the leader 

converge to the desired value within finite time. 

 

Figure 3.2: Communication graph between quadrotors 
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Figure 3.3: Desired formation

                          

Figure 3.4: Estimation error p0 − pˆ1.

                    

Figure 3.5: Estimation error v0 − vˆ1. 
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Figure 3.6: Estimation error b2,0 − rˆ1. 

 

Figure 3.7: Estimation error p0 − pˆ2. 
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Figure 3.8: Estimation error v0 − vˆ2. 

 

Figure 3.9: Estimation error b2,0 − rˆ2. 
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Figure 3.10: Estimation error p0 − pˆ3. 

 

Figure 3.11: Estimation error v0 − vˆ3. 

                                                   

Figure 3.12: Estimation error b2,0 − rˆ3. 
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Figure 3.13: Time response of the estimate of  𝑚𝑗. 

Figs. (3.13)-(3.14) show the estimates of 𝑚𝑗 and  𝐽𝑗. It is shown that the estimates are very 

close to their real values. 

Figs. 3.15-3.17 show the time response of pj − hj − (p0 − h0) for 1 ≤ j ≤ 3. It is shown that the 

vehicles come into the desired formation and follow the leader vehicle. Figs. 3.18-3.20 show the 

time response of vj − v0 for 1 ≤ j ≤ 3. It is shown that the velocity of the vehicles converge to the 

desired velocity. Figs. 3.21-3.23 show the time response of q˜j for 1 ≤ j ≤ 3. It is shown that the 

orientation of the vehicles converge to the orientation of the lead vehicle. Figs. 3.24-3.26 show 

the time response of ω˜j for   1 ≤ j ≤ 3. It is shown that the angular velocity of the vehicles 

converge to the desired angular velocity. 
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3.5 Conclusion 

This chapter considered the formation flying of multiple vehicles with the aid of optimal 

control theory. The proposed approach integrates the distributed estimation, parameter 

identification, and 

Figure 3.14: Time response of the estimate of  𝐽𝑗. 
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Figure 3.15: The tracking error p1 − h1 − (p0 − h0). 

 

Figure 3.16: The tracking error p2 − h2 − (p0 − h0). 

 

Figure 3.17: The tracking error p3 − h3 − (p0 − h0). 
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Figure 3.18: The tracking error v1 − v0. 

 

Figure 3.19: The tracking error v2 − v0. 

 

Figure 3.20: The tracking error v3 − v0. 
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Figure 3.21: The tracking error q˜1. 

 

Figure 3.22: The tracking error q˜2. 

 

Figure 3.23: The tracking error q˜3. 
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Figure 3.24: The tracking error ω˜1. 

 

Figure 3.25: The tracking error ω˜2. 
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Figure 3.26: The tracking error ω˜3. 

optimal tracking control. Simulation results show the effectiveness of the proposed controllers 

for formation flying of three vehicles. 
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CHAPTER IV 

FUTURE WORK 

  In this thesis, we solved the formation flying of multiple quadrotors with the aid of 

distributed estimation, neural network approximation property, and optimal control theory. The 

obtained results are preliminary. Further research should be done on both research topics. In the 

future, the following research topics will be done. 

• In this thesis, distributed controllers were design with the aid of the distributed estimation 

and the tracking controller design. The distributed estimation and the tracking control are 

separately steps. In the future, we will combine these two steps together. 

• In this thesis, we studied the formation control of quadrotors. In the future, we will study the 

formation control of other types of vehicles, such as wheeled mobile robots, surface vehicles, 

etc. 

• Reinforcement learning is a powerful tool in dealing with unknown environment. In the 

future, we will study distributed control of multiple vehicles with the aid of reinforcement 

learning instead of optimal control theory. 

• Other distributed control problems. 
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