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ABSTRACT

Torres, Diana, Particle Trajectories in Shallow Water Models. Master of Science (MS), Au-

gust, 2021, 64 pp., 41 figures, 22 references.

In this work, we study particle trajectories under shallow water waves. We examine equations

such as the Korteweg-de Vries and systems dealing with Boussinesq and Euler’s Equations to find

relationships between particles’ irrotational velocities. Their solutions and behavior when modeling

interacting surface waves will be explored. An attempt to find approximate solutions with different

parameters, such as small amplitude and long-crested waves, that will lead to new information and

study will be discussed.
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CHAPTER I

INTRODUCTION

The disturbance of the state of equilibrium of a type of wave is known as wave motion.

This can apply to most types of waves, whether they be water, light, or sound. In this work, water

waves will be our main focus, in particular, surface waves in water. The study of different waves is

often a topic of importance in physics and engineering. However, in mathematics, it is also a large

contributor of intrigue. The focus of this paper will be on particle trajectories under surface waves

and using different methods to study equations and how their possible solutions will lead to new

approximations.

1.1 Preface

1.1.1 Solitons and Particle Trajectories

Before introducing the work, we must understand what we will examine. Although waves

are our main focus, it is important to note what makes up these waves. The surface of a water

wave is a critical component that deserves a lot of attention. It is that barrier that seals any and

all particles and matter beneath it. The surface wave travels along the top of a substance. It holds

everything together and can be modeled through different mathematical equations that we will go

into detail further in this paper. The fluid we will study is going to be referred to as in-compressible

and in-viscid. This simply means the fluid flow has a constant density throughout and is considered

an ideal fluid with no viscosity.

Additionally, the word soliton will be heard throughout the paper, and it is important to

note what it describes. A soliton is a non-dispersive, solitary, traveling wave that can maintain its

shape and has constant velocity in its path. Soliton will be used to describe the surface wave and
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its characteristics. Underneath the surface wave, we have matter. This matter is made up of small

particles that travel with the wave in different movements and directions. The word irrotational

will be used to describe these particles throughout this paper. Simply put, it means the particles

underneath the surface wave do not rotate on their own axis. These particles and their trajectories

are going to be a great focus of study in this paper.

Figure 1.1: Particle Trajectory Model

In Figure 1.1, g represents the gravitational force, η(x, t) is representing the surface wave

we will study, h0 is the undisturbed depth, and below the surface wave the particle trajectory model

is shown.

1.1.2 Setting

For this thesis our setting will be simple. We will be looking at a cross section of a channel

with constant depth and approximate uniformity across the entire fluid. For this scenario, we will

have a small amplitude and long wavelength. The situation will be modeled using very small

parameters showcasing the circumstances at hand. We will also examine a scenario of a cross

section of a channel with multiple waves either traveling in the same or opposite direction. The

environment, however, remains the same. The fluid will be in-compressible and in-viscid as well as

irrotational. We will also ignore surface tension effects safely with these scenarios.

2



Figure 1.2: Wave Model Characteristics

1.2 Background

To study these water waves and the particles beneath them, we must have a general under-

standing of how to model the situation. Because of this, we will dive into popular mathematical

equations, systems, and approximations that will fit this scenario. More specifically, we will utilize

the work of mathematicians such as, Leonhard Euler, Joseph Boussinesq, Diederik Korteweg,

Gustav de Vries, and several others.

1.2.1 Euler Model

In the mid 1700s, Leonhard Euler, Swiss Mathematician, studied under the guidance of

Daniel Bernoulli, who’s great contributions to fluid dynamics and probability and statistics continue

to be studied today. Euler’s equations, used to relate velocity, pressure, and density of a fluid flow,

will be the main topic of study in this work. These equations are a system of low order, non-linear,

partial differential equations and are a more general, simplified form of the Navier-Stokes equations,

which include temperature and viscosity. Euler’s equations can be studied in the form of the

following:

Du
Dt

=−∇w+g

∇u = 0

3



where u is the velocity vector, w is work, and g is acceleration. ∇ is the gradient, and Du
Dt is the time

derivative. Additionally, for a flow with uniform density, the following holds:

w≡ ∇

( p
ρ0

)
=

1
ρ0

∇p (1.1)

where ρ0 is the density and p will denote pressure. In this work, Euler’s equations will be studied in

the two-dimensional form of:

ut +uux + vuz =−px (1.2)

vt +uvx + vvz =−pz−g (1.3)

These equations will be used to study particle trajectories, where u and v are the horizontal

and vertical velocities, respectively, p denotes pressure, and g will be the gravitational constant.

Unfortunately, this group of equations cannot be solved in a simple manner and the p term creates a

new difficulty. Our goal will be to find or approximate equations satisfying u and v in the system.

The method we will use to find these solutions will be by using educated assumptions to the solutions

for the particle trajectories. By imposing restrictions on u and v and deriving simpler models that

preserve the general characteristics of the Euler systems, we can reach a positive outcome.

If we discuss Euler’s Equations, it is a must for us to discuss Joseph Boussinesq’s, French

mathematician’s, contributions to this same matter. In fact, Boussinesq introduced the first model

dealing with a situation just like this.

1.2.2 Boussinesq

Joseph V. Boussinesq is well known for his paper that responds to theories about solitary

waves known as Boussinesq approximation. This approximation takes into account the velocity

flow in the horizontal and vertical directions. With this, a system of non-linear partial differential

equations (PDEs) are introduced as Boussinesq-type equations. This approximation is set for

long-crested wavelengths. Moreover, the Boussinesq approximation can be used to eliminate the

4



vertical coordinate from the equations used, and solely depend on the surface wave and horizontal

velocity. This strategy will be discussed later in this paper as well.

The general form of the Boussinesq equation is

ηtt− c2
ηxx−

3c2

h
(η2

x +ηηxx)−
c2h2

3
ηxxxx = 0 (1.4)

It describes the gravity-induced surface waves as they propagate at a constant linear speed,

c =
√

gh, in a canal of uniform depth h. Using the Boussinesq approximation will facilitate things

since the surface wave will be the main use.

The most popular way to find the solution for fluid dynamics systems is by asymptotic

expansion. The method of asymptotic expansion is used to derive different equations such as the

KdV equation or the Camassa-Holm equation by creating a formal series of functions with limiting

terms that approximate a given function. It will be studied in further detail as we go on.

Now that we have discussed the importance of using the Boussinesq equation among others,

it is imperative to continue with a well known and well defined model of shallow water waves

involving Diederik Korteweg and Gustav de Vries, Dutch mathematicians.

1.2.3 Korteweg-de Vries

The origin of this next equation modeling is said to be from Boussinesq and later rediscovered

and slightly altered by Dutch mathematicians, Diederik Korteweg and Gustav de Vries in the 1890s.

The Korteweg-de Vries equation, is a long studied mathematical equation that models the evolution

of long-crested traveling, shallow water waves at the surface of a fluid. The equation is a non-linear

PDE of a function, η , that depends on two real variables x, space, and t, time. It models as follows:

ηt +6ηηx +ηxxx = 0 (1.5)

The subscripts here ηt and ηx are partial derivatives of the function with respect to t and x re-

spectively. With this equation, there are no initial conditions or boundary conditions, and it only

5



represents solitary (alone standing) waves. Additionally, there is one solution that is well known for

this equation, generally called the solitary wave solution:

η(x, t) =
1
2

csech2√c(x− ct + x0) (1.6)

It is important to note that c > 0, leads to the wave always traveling to the right. This solution has

several parameters. c is our amplitude and x0 is the initial placement on the surface wave. We will

also see a scenario using the KdV Equation involing 2 solitons traveling in the same direction and

examine particle trajectories under the interacting surface waves.

Figure 1.3: Single Traveling Wave Example

6



CHAPTER II

A KDV MODEL FOR APPROXIMATION

Our topic in this chapter is studying the classical problem of elastic collisions of traveling

waves which arise as solutions of nonlinear partial differential equations. Examining these wave

collisions with new and intricate methods will allow us to explore properties of multiple solitary

waves, which emerge from the subtle balance between non-linearity and dispersion. It is also

important to note we are looking closely at the particular solutions of the wave equations during and

after collision. After wave collisions, these solutions have the quality of preserving their shapes and

velocities during propagation. To study the process during interaction, a simplified explicit solutions

or high precision approximations will be sought to facilitate theoretical and numerical approaches.

2.1 Model for Undirectional Waves

The equation under investigation is derived under the assumption of incompressibility

and inviscidness of a fluid. Moreover, it is supposed that the fluid flow is irrotational and two-

dimensional, and that the free surface can be described by a single-valued function η(x, t). Our

domain, which extends to infinity in the positive and negative x-direction, is the following:

{(x,z) ∈ R2|0 < z < h0 +η(x, t)} (2.1)

7



On this domain, h0 represents the undisturbed depth of the fluid. Additionally, Euler’s equations

can be studied and represented in two-dimensional manner previously mentioned as:

ut +uux + vuz =−px (2.2)

vt +uvx + vvz =−pz−g (2.3)

Here (u,v) represents the velocity field while p denotes the pressure and g denotes the

gravitational force and is constant. The density is assumed to be unity. These equations are used

in fluid dynamics and are used to describe the free surface elevation and the velocity potential on

the parameterized free surface. The two dimensional equations are non linear and have dynamical

boundary conditions.

The incompressibility of the fluid, and the irrotationality of the flow are expressed, respec-

tively, by ux + vz = 0 and ux− vz = 0. The free-surface boundary conditions are given by requiring

the pressure to be equal to atmospheric pressure at the surface if surface tension effects are neglected,

and the kinematic boundary condition: p = patm and ηt +uηx = v at z = h0 +η(x, t).

We will restrict the scenario by considering only unidirectional waves. By doing this, we

assume a relationship of the form w = η + ε f [η ]. This relationship is between w, the horizontal

velocity at the mean height, and the elevation η . The horizontal velocity w can be approximated by

the surface wave in different rates of approximations by following Borluk’s method as:

w = η +A(η)+δ
2B(η)+ ε

2C(η)+ εδ
2D(η)+δ

4E(η) (2.4)

Here ε and δ are arbitrary constants. In this instance ε = δ 2. This will be broken down later in

the paper. However, the Korteweg-de Vries (KdV) equation can be approximated by using some

conditions as A =−1
4η2 and B = 1

6(2−3σ)ηxx.

We are going to study the KdV equation in the non-dimensional form of:

ηt +ηx +
3
2

ηηx +
1
6

ηxxx = 0 (2.5)
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We also focus on the particle paths in the fluid due to the passage of a solitary wave at the

surface. The solitary-wave solution of the KdV equation in this case is given by

η = η0sech2
(√3η0

2
(x− x0− ct)

)
(2.6)

Where η0 is the amplitude, x0 is the initial location of the wave crest, and the phase velocity is given

by c = 1+ η0
2 Additionally, we have the relationship represented by f [η ] as:

f (x,z, t) = η− 1
4

η
2 +(

1
3
− d2

2
)ηxx (2.7)

according to Borluk. Here the depth level will be denoted by d. We attempt to find more solutions

using the Wronskian method. Let θi, j(x, t) = mi, jx− 4m3
j,it where j = 1,2, i = 1,2 and φ j =

∑
2
i=1 εieφ j,i and W be the Wronskian determinant defined as

W (φ1,φ2) =

∣∣∣∣∣∣∣
φ1 φ2

∂φ1
∂x

∂φ2
∂x

∣∣∣∣∣∣∣ (2.8)

We obtain solutions to the KdV equation and represent the surface wave as

η(x, t) = 2(log(W ))xx (2.9)

Plotting the surface wave with parameters m1 = 0.2 and m2 = 0.4 at different times will look like

the following
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Figure 2.1: KdV Unidirectional Waves t = -20

Figure 2.2: KdV Unidirectional Waves t = -10

We see two chasing solitons traveling to the right.
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Figure 2.3: KdV Unidirectional Waves t = 0

At t = 0 the waves collide and look like a single soliton. However, after the interaction they

regain their form and maintain their speed as seen below.

Figure 2.4: KdV Unidirectional Waves t = 10
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Figure 2.5: KdV Unidirectional Waves t = 20

It will be particularly interesting to examine the particle trajectories below the surface wave

before, during, and after soliton interaction. This will be explored in the next section.

2.1.1 Particle Trajectories

We can represent the velocities u,v in Euler’s equations approximated by (x,z,t) as the

following:

u(x,z, t) = f +
1
2
(d2− z2) fxx (2.10)

v(x,z, t) =−z fx (2.11)

The velocities, u and v, can now be approximated by η and a new relationship has formed. Taking

the functions ξ (t) and ζ (t) to describe the x-coordinate and z-coordinate, respectively, of a particle

originally located at (x,z) = (ξ0,ζ0), the particle motion is described by the nonlinear system of

ODE
∂ξ

∂ t
= u(ξ (t),ζ (t), t) (2.12)
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∂ζ

∂ t
= v(ξ (t),ζ (t), t) (2.13)

In the case of a single soliton or periodic wave trend, the trajectories were studied by Constantin,

Borluk and Kalisch.

In order to follow the trajectories and determine a path that they take, we must solve the

system with (2.10) (2.11). By doing so using a computer algebra system, we can obtain models

such as the following.

Figure 2.6: KdV Particle Trajectories t = -20 d = 0.8

The figure above shows the path a particle takes under the surface wave at time t =−20 and

depth d = 0.8. It is a short span of time the particle raises and returns to its original depth in a quick

motion. This will be more notable when we compare paths at different times.
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Figure 2.7: KdV Particle Trajectories t =−20d = 0.8,0.5,0.1

Figure 2.7 shows particles’ path at different depth levels. You can see that the closer to the

surface the particle is the more it raises. Overlapping the surface wave and particle trajectories, we

can get a clearer picture of how they behave.

Figure 2.8: Surface Wave and Particle Trajectories Overlapped at t =−20
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Figure 2.9: Particle Trajectories under Unidirectional Multi-Soliton at t = −20,−10,0,10 and

d = 0.8,0.5,0.1

The activity when the waves interact is particularly interesting and can be seen up close

below.

Figure 2.10: Particle Trajectory t = 0 and d = 0.8
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Figure 2.11: Particle Trajectories t = 0 and d = 0.8,0.5,0.1

We can see the particle slowly rises as the first wave comes, then as the waves collide, the

particle moves up at a greater rate with the second wave’s momentum. Finally, as the waves separate,

the particle comes back down slowly.
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CHAPTER III

SMALL PARAMETER APPROXIMATION

In this chapter, we will look at approximating systems of different partial differential

equations that will relate the surface wave in our scenario to particle trajectory velocities.

3.1 Examining High Order Boussinesq Systems

The systems

ηt +wx +(wη)x +awxxx−bηxxt = 0,

wt +ηx +wwx + cηxxx−dwxxt = 0
(3.1)

and

ηt−bηxxt +b1ηxxxxt =−wx− (ηw)x−awxxx (3.2)

+b(ηw)xxx−
(

a+b− 1
3

)
(ηwxx)x−a1wxxxxx

wt−dwxxt +d1wxxxxt =−ηx− cηxxx−wwx− c(wwx)xx− (ηηxx)x

+(c+d−1)wxwxx +(c+d)wwxxx− c1ηxxxxx

of partial differential equations are explained in this section. Deriving these equations take a

standard approach, some, however, are derived for the first time. The system (3.1) is considered the

Boussinesq systems which are first-order approximations to the Euler equations. In this case, (3.2)

are second-order approximations. Higher order approximations are necessary to provide context
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for further modeling. Let Ωt , the derivative of Omega with respect to time, be the domain in R3,

the real coordinate space of 3 dimensions, which is occupied by an inviscid, incompressible fluid

at time t. The system describing the motion of such fluid, one that is not thick and has a constant

density under different pressures, is the classical Euler equations

∂~v
∂ t

+(~v ·∇)~v+∇p =−g~k, in Ωt , (3.3)

∇ ·~v = 0, in Ωt , (3.4)

where g denotes the acceleration of gravity, ∂ is the partial derivative,~v = u~i+v~j+~k denotes

the velocity field,~i, ~j,~k are the unit vectors along the x—, y—, and z—axis, respectively, in R3, ∇,

the gradient which describes the rate and direction of change in a scalar field, ∇ = ( ∂

∂x ,
∂

∂y ,
∂

∂ z)
T and

p denotes the pressure field. Assuming the initial velocity field is irrotational so that ∇×~v = 0,

the cross product, Helmholtz’s vorticity principle that states in the absence of rational external

forces, a fluid that is initially irrotational remains irrotational, implies that the velocity field remains

irrotational. Counting on a regular solution, we note that

~v = ∇φ (3.5)

for some potential function φ = φ((x,y,z), t). It follows from (3.4) that φ satisfies Laplace’s equation

∆φ = 0 (3.6)

in Ωt , for each t. In this instance, ∆ = ∇ ·∇ = ∇2 is the Laplace operator, given by the divergence

of the gradient of a function.∇· is the divergence operator and ∇ is the gradient operator. Here φ

plays the role of a twice-differentiable real-valued function. The Laplace operator maps a scalar

function to another scalar function.

View the boundary of Ωt as consisting of two parts: the fixed surface located at z =−h(x,y),

and the free surface z = η(x,y, t). The free surface refers to the changing wave motion style it
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takes. The domain is taken to be unbounded in the horizontal directions stretching from the negative

infinity to positive infinity so that lateral boundaries do not intrude at this stage. Note that η(x,y, t)

is a fundamental unknown of the problem. On the fixed portion of the boundary, the condition of

impermeability (no flow through the solid boundary)~v ·~n = 0 is satisfied with~n being the normal,

or perpendicular, direction of the surface, which means

φxhx +φyhy +φz = 0, on z = η(x,y, t), (3.7)

Recall that h is a function of a fixed surface, while η represents the free surface. Since the

free surface is a material surface, it satisfies the kinematic condition D(η−z)
Dt = 0, where D

Dt is the

usual material derivative ∂

∂ t +u ∂

∂x + v ∂

∂y +w ∂

∂ z . It is important to note that the material derivative

describes the — change of a certain small amount of fluid with time as it flows along its trajectory.

Thus, we have

ηt +φxηx +φyηy−φz = 0, on z = η(x,y, t). (3.8)

Assuming the pressure on the free surface is equal to the ambient air pressure, it follows from

(3.3) and (3.5) that the Bernoulli condition, which states that the flow must be steady so that flow

parameters at any point cannot change with time, the flow must be incompressible so even though

pressure changes, the density must remain constant along a streamline, and the flow’s friction by

viscous forces must be ignored, given by

∂φ

∂ t
+

1
2
|∇φ |2 +gz = 0, on z = η(x,y, t), (3.9)

where g is for gravitational acceleration, is satisfied on the free surface as well.

Summarizing the equations for the unknown functions η and φ , they consist of (3.6), (3.7),

(3.8), and (3.9). This system is challenging to solve either numerically or analytically because Ωt is

changing with time through the evolution of η and the boundary conditions (3.8) and (3.9) on the

free surface are nonlinear. Numerical methods are used to solve systems of algebraic equations of

linear or non-linear form and are also used to provide approximate solutions to governing equations.
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Analytically solving a system means gaining the exact solutions based on mathematical principal

which proves to be entirely more difficult in a case such as this. Either route taken can be a challenge.

Consider now a simpler case of an open channel in which the fluid motion is irrotational, inviscid,

and uniform in the direction of the fluid flow. Suppose the bottom of the channel to be flat and

horizontal and let h denote the undisturbed depth of the channel. Then the prior formulation reduces

to

φxx +φzz = 0, in −h < z < η(x, t),

φz = 0, on z =−h,

ηt +φxηx−φz = 0, on z = η(x, t),

φt +
1
2
(φ 2

x +φ
2
z )+gz = 0, on z = η(x, t),

where the undisturbed free surface is located at z = 0, −∞ < x <+∞, for all t ≥ 0. This system of

equations is posed together with suitable boundary conditions as x→±∞ and an initial condition at

t = 0.

Eliminating the y component, allows restrictions to be imposed. This simplifies the system,

which cannot be easily solved, and permits assumptions that will lead to approximate models that

preserve the characteristics of the system to be made.

Consider now a practical situation where the free surface has a small amplitude denoted by A,

long wavelength denoted by l, a constant channel depth of h, and the classical Stokes number S = α

β

is of order one. Stokes’ law refers to the assumptions for the behavior of a particle in a fluid which

are the following: Laminar flow meaning the particles flowing smooth paths in layers, spherical

particles, homogeneous or uniform material, smooth surfaces, and particles do not interfere with

each other. The Stokes number is a dimensionless number characterising the behavior of particles

suspended in the fluid flow often represented as a ratio. We can form the following conditions from
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the mentioned situation in the following form

α =
A
h
<< 1, β =

h2

l2 << 1, S =
α

β
=

Al2

h3 ≈ 1.

In this circumstance, the two small parameters α and β may be treated on an equal footing.

Choosing β to be the primary parameter, we seek to write solutions of (3.6)-(3.9) in a Taylor series

with respect to β , and thereby to obtain approximate equations corresponding to orders of accuracy

characterized by β n for n = 1,2, . . .

The procedure is most transparent when working with the variables scaled in such a way

that the dependent quantities and the initial data appearing in the initial-value problem are all of

order one, while the assumptions about small amplitude and long wavelength appear explicitly

connected with small parameters in the equation of motion. Simplifying such complex equations

can lead us to an approximate solution, and that is the goal. Such consideration leads to the scaled

dimensionless variables

x = lx̃, z = h(z̃−1), η = Aη̃ , t = lt̃/c0, φ = gAlφ̃/c0, (3.10)

where c0 =
√

gh. Note that we continue with η being the free surface, h as the undisturbed depth,

l is our wavelength, A is the small amplitude, g is the gravitational force, and φ is our potential

function. In these variables, the last set of equations becomes the system

β φ̃x̃x̃ + φ̃z̃z̃ = 0, in 0 < z̃ < 1+αη̃(x̃, t̃), (3.11)

φ̃z̃ = 0, on z̃ = 0, (3.12)

η̃t̃ +αφ̃x̃η̃x̃−
1
β

φ̃z̃ = 0, on z̃ = 1+αη̃(x̃, t̃), (3.13)

η̃ + φ̃t̃ +
1
2

αφ̃
2
x̃ = 0, on z̃ = 1+αη̃(x̃, t̃), (3.14)

for −∞ < x̃ < ∞, t̃ > 0. For clarity, we drop the tilde over the new variables in our further

machinations.
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The next procedure, which is a standard one known as a power series expansion with

infinitely many terms, begins by representing φ as a formal expansion,

φ(x,z, t) =
∞

∑
m=0

fm(x, t)zm.

Demanding that φ formally satisfy Laplace’s equation, seen in its form of (3.11), leads to the

recurrence relation

(m+2)(m+1) fm+2(x, t) =−β ( fm(x, t))xx, (3.15)

for m = 0,1,2, . . .. Let F = f0 denote the velocity potential at the bottom z = 0 and use (3.15)

repeatedly to obtain

f2k(x, t) =
(−1)kβ k

(2k)!
∂ 2kF(x, t)

∂x2k , k = 0,1,2, . . .

Equation (3.12) implies that f1(x, t) = 0, so

f2k+1(x, t) = 0, k = 0,1,2, . . . ,

and therefore

φ(x,z, t) =
∞

∑
k=0

(−1)kβ k

(2k)!
∂ 2kF(x, t)

∂x2k z2k.

Substitute the latter representation into (3.13) and (3.14) to obtain a system of equations for η(x, t)

and F(x, t), as a result we get

ηt +αηx

∞

∑
k=0

(−1)kβ k

(2k)!
∂ 2k+1F
∂x2k+1 z2k−

∞

∑
k=1

(−1)kβ k−12k
(2k)!

∂ 2kF
∂x2k z2k−1 = 0,

η +
∞

∑
k=0

(−1)kβ k

(2k)!
∂ 2k+1F

∂x2k+1∂ t
z2k +

1
2

α

{
∞

∑
k=0

(−1)kβ k

(2k)!
∂ 2k+1F
∂x2k+1 z2k

}2

+
1
2

α

β

{
∞

∑
k=0

(−1)kβ k2k
(2k)!

∂ 2kF
∂x2k z2k−1

}2

= 0,
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on

z = 1+αη(x, t).

Substituting the value of z into the last two equations leads to

ηt +αηx

∞

∑
k=0

{
(−1)k

(2k)!
∂ 2k+1F
∂x2k+1 (1+αη)2k

}
β

k (3.16)

+
∞

∑
k=0

{
(−1)k

(2k+1)!
∂ 2k+2F
∂x2k+2 (1+αη)2k+1

}
β

k = 0,

and

η +
∞

∑
k=0

{
(−1)k

(2k)!
∂ 2k+1F
∂x2k∂ t

(1+αη)2k
}

β
k (3.17)

+
1
2

α

{
∞

∑
k=0

(−1)k

(2k)!
∂ 2k+1F
∂x2k+1 (1+αη)2k

β
k
}2

+
1
2

αβ

{
∞

∑
k=0

(−1)k

(2k+1)!
∂ 2k+2F
∂x2k+2 (1+αη)2k+1

β
k
}2

= 0.

Account is now taken of the formal order of the various terms appearing in (3.16) and (3.17).

The parameters α and β have the same small order, while F and η have been scaled so that they

and their partial derivatives are of order one. Keeping only the terms in (3.16) and (3.17) which are

of lowest order, there obtains the system

ηt +
∂ 2F
∂x2 = terms linear in α , β ,

η +
∂F
∂ t

= terms linear in α , β .

Differentiate the second equation with respect to x and let ∂F(x,t)
∂x = u(x, t), the scaled horizontal

velocity at the bottom of the channel. With this new dependent variable at hand, the last equation
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becomes

ηt +ux = terms linear in α , β , (3.18)

ηx +ut = terms linear in α , β , (3.19)

which is simply the linear wave equation if the terms of formal order α and β are ignored.

The next order of approximation keeps all the terms in (3.16)-(3.17) which are at most linear

in α or β . This leads to the system

ηt +
∂ 2F
∂x2 +αηx

∂F
∂x

+αη
∂ 2F
∂x2 −

1
6

β
∂ 4F
∂x4 = terms quadratic in α , β ,

η +
∂F
∂ t
− 1

2
β

∂ 3F
∂x2∂ t

+
1
2

α

(
∂F
∂x

)2

= terms quadratic in α , β .

Differentiate the second equation with respect to x and substitute u for dF
dx as before to recover the

first-order Boussinesq system,

ηt +ux +αηxu+αηux−
1
6

βuxxx = terms quadratic in α , β , (3.20)

ηx +ut +αuux−
1
2

βuxxt = terms quadratic in α , β . (3.21)
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CHAPTER IV

A BOUSSINESQ MODEL FOR 2 SOLITONS

In this chapter, we will use the Boussinesq equation and model system for traveling surface

waves in unidirectional and opposite directions.

4.1 Unidirectional Waves

The focus will be the 2-soliton solutions, thus we will look at the dimensionless form of the

Boussinesq equation as such:

utt +a1uxx +a2(u2)xx +a3uxxxx = 0 (4.1)

where ai, i = 1,2,3 are real numbers and a2a3 6= 0. In the special case where a3 > 0 it is known as

the good Boussinesq equation and is the following:

vtt +(v2)xx + vxxxx = 0 (4.2)

by using the transformation

u(x, t) =− a1

2a2
+

a3

a2
v(x,
√

a3t). (4.3)

The ’good’ Boussinesq equation can be defined as:

utt−uxx +(u2)xx +
1
3

uxxxx = 0 (4.4)

This will create a relationship dealing with a uni-directional velocity and eliminate the need

of the vertical component. The equation is also invariant when changing the variables x=−x, t =−t.
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One of our goals is to provide constructive analysis of the process of asymptotic expansion using

this particular equation. We are going to consider the general ’good’ Boussinesq equation in the

form

utt−uxx +(u2)xx +
1
3

uxxxx = 0 (4.5)

Then, solutions can be obtained by using the Hirota ’log’ substitution, v(x, t) = 2log(φ)xx

for some potential function φ , which are solutions to

φxxx−
3
4

φx = λφ (4.6)

for some real λ . The equation above (4.6) is the space equation from the Lax pair. A Lax pair is a

pair of operators that correspond to a differential equation. From here, We will continue to look for

solutions and approximations using various Boussinesq systems.

We can use the seed solution of

φ(x, t) = A1em1(x−m1t)+A2em2(x−m2t)+A3em3(x−m3t) (4.7)

for equation (4.6). Here A1,A2,A3 are real constants and m1,m2,m3 are the roots of the cubic

equation

µ
3− 3

4
µ = λ (4.8)

In an attempt to obtain more solutions, we can use the Wronskian method and the Hirota

’log’ substitution. Let θ j,i(x, t) = m j,ix−m2
j,it +α j,i, j = 1, . . . ,n, i = 1,2,3 and φ j = ∑

3
i=1 εieθ j,i

and W be the Wronskian determinant defined as
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W (φ1, . . . ,φN) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1 . . . φN

...
...

...

∂ jφ1
∂x j . . . ∂ jφN

∂x j

...
...

...

∂ N−1φ1
∂xN−1 . . . ∂ N−1φN

∂xN−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.9)

We can obtain a solution to the ’good’ Boussinesq equation as the following

v = 2(logW )xx = 2
WWxx−W 2

x
W 2 (4.10)

We will study this to gain a better understanding of the dynamics between multiple solutions.

From here we will use the notations of J. L. Bona, M. Chen, and J.-C Saut. Consider the potential

for a function f = logW , which will be defined later, and z = 0, recall h is the undisturbed depth of

a channel,

φ(x,z, t) =− ft(x, t)+
z2

2
ftxx(x, t) (4.11)

, the surface wave η(x, t) = fxx, the auxillary function u(x, t) = ftx(x, t) satisfy the following relation

ηt +ux +αηxu+αηux−
1
6

βuxxx = terms quadratic in α , β , (3.20)

ηx +ut +αuux−
1
2

βuxxt = terms quadratic in α , β . (3.21)

Here we set the potential function (4.11) in a special form. From here we will be approximating the

solution.

Different parameters will yield different results. In this case, we will be using the parameters

where m1 = cos(a) and m2 = cos(b4π

3 ) and a and b will be set to π

4 and π

12 , respectively. Setting

this conditions, we are able to plot the surface wave and see the following results.
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Figure 4.1: Boussinesq Unidirectional Waves t = -35

Figure 4.2: Boussinesq Unidirectional Waves t = -20
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Figure 4.3: Boussinesq Unidirectional Waves at t = 0

Figure 4.4: Boussinesq Unidirectional Waves at t = 15
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Figure 4.5: Boussinesq Unidirectional Waves at t = 35

In this case, the smaller wave is chasing the larger wave. It is peculiar compared to the

previous model from chapters before using the KdV approximation where the larger wave chased

the smaller wave. Obviously, these are different conditions when plotting the surface wave, but it is

still important to note. It could mean an error was made at some point. However, the parameters

that were used led to this.

4.1.1 Particle Trajectories

Substituting φ and η = fxx directly into Euler’s Equations we get for 0 < z < 1+η

φxx +φzz =− f txx+
z2

2
ftxxx + ftxx =

z2

2
ftxxx = O(λ 5) (4.12)

for z = 0, φz = z ftxx = 0 and on the surface level z = 1+η = 1+ fxx

ηt +φxηx−φz = fxxt +(− ftx +
z2

2
ftxxx) fxxx− z ftxx|z=1+η (4.13)

=
(1+ fxx)

2

2
ftxxx fxxx− fxx ftxx− ftx fxxx = O(λ 5)
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η +φt +
1
2
(φ 2

x +φ
2
z ) = fxx− ftt +

(1+ fxx)
2

2
fttxx (4.14)

+
1
2

(
(− fxt +

z2

2
ftxxx)

2 +(1+ fxx)
2 f 2

txx

)
= fxx− ftt +

1
2

f 2
tx +

1
2

fttxx +O(λ 5).

Solving this system in a similar manner as before, will give us the particle trajectory paths

underneath the surface wave at different depth levels. The results are shown below.

Figure 4.6: Particle Trajectory Path at t = -35 z = 0.8

Figure 4.6 shows a particle path beneath the surface wave at time t =−35 and depth level

of z = 0.8. The behavior of this particle raises some intrigue. The particle seems to move up and

come back down to the original depth level before moving up again at a much greater height then

returning. Below we can see the behavior at the same time for different levels of depth.
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Figure 4.7: Particle Trajectory Path at t = -35 and z = 0.8, 0.5, 0.1

There are similar behaviors at these various depth levels with the largest variant closer to

the surface. This can be examined closely in the figure below where the surface wave and particle

trajectories are overlapped.

Figure 4.8: Surface Wave and Particle Trajectories Overlapped at t = -35
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Figure 4.9: Particle Tarjectory Paths at t = -35, -20, 0 and z = 08, .5, 0.1

At different times and depth levels the particles behave accordingly. Figure 4.9 shows the

difference in paths taken by each particle depending on time and depth. We can also try to examine

the situation at t = 0 a little more closely since the path changes from its previous forms. This is the

moment of wave interaction.

Figure 4.10: Particle Trajectory Path at t = 0 and z = 0.8, 0.5, 0.1
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These path have a similar flow as the ones in chapter 2 where we modeled using the KdV

equation. There is no deviation from the path once it returns to its original depth level.

4.2 Particular Function for Opposite Traveling Waves

The goal in this section is to study the Wronskian solution for the following equation

fxx− ftt +
1
2
( ftx)2 +

1
2

fttxx = 0 (4.15)

If we take the mixed derivative ftx and replace it with fxx we can attain the regularized Boussinesq

equation. For a single traveling wave ft = c fx and the two equations are equivalent to that of

Boussinesq’s. We will consider a case with higher order approximation of λ 4+ to the original Euler

system in the setting of asymptotic approximation for the parameter λ compared to previously used

method of λ ≈ (α)
1
2 (β )

1
4 .

The one soliton or single soliton solution considered will be

f = 6log(1+ e
2kx± 2k√

1−2k2
t
) (4.16)

Two solitons traveling in opposite directions can be obtained by setting

m2 =−m1,n2 = m1
(
1−

m2
1

2
)− 1

2

and thus,

W (x, t) = 1+ em1x−n1t + e−m1x−n1t + e−n1t = coshm1x+ coshn1t ≥ 1. (4.17)

Additionally, the surface wave will be defined as

fxx = 6m2
1

coshm1xcoshn1t +1
(coshm1x+ coshn1t)2 (4.18)

for f = 6logW .
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Figure 4.11: Opposite Traveling Waves, m1 = 0.1, t = -10

Figure 4.12: Opposite Traveling Waves, m1 = 0.1, t = 0

Figure 4.13: Opposite Traveling Waves, m1 = 0.1, t = 5
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Figure 4.14: Opposite Traveling Waves, m1 = 0.1, t = 15

Figure 4.15: Opposite Traveling Waves Overlapped t = -10,0,5,15

The equation (4.18) can be considered as approximating fxx and we define the ’error’

function

E(x, t) = fxx−
(

ftt +3( ftx)2 +
1
2

fttxx

)
=

m2
1−n2

1−m2
1n2

1 +(m2
1−n2

1 +
1
2m2

1n2
1)coshm1xcoshn1t

(coshm1x+ coshn1t)2 .

Setting the relation

m2
1−n2

1 +
1
2

m2
1n2

1 = 0
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it follows that n1 =± m1√
z−

m2
1

2

and

|E(x, t)|= |− 3
2

m2
1n2

1
W 2 | ≤

3
2

m4
1√

1− m2
1

2

= O(λ 4)

since λ = |m1|. The magnitude of fxx is as expected O(m2
1) and it approaches the exact single

soliton solution when |t| → ∞.

4.2.1 Particle Trajectories

In this section we will examine the particles underneath the surface wave. Here we focus on

the path the particles take. The system for particle trajectories with potential φ =− ftx + z2

2 ftxxxx is

ξ
′(t) =− fxt(ξ (t), t)+

ξ 2(t)
2

ftxxx(ξ (t), t) (4.19)

ζ
′(t) = ζ (t) ftxx(ξ (t), t) (4.20)

with initial conditions ξ (t0) = x0,ζ (t0) = z0 describing the particle position at time t0. We can use

if ofr general f , including for the Boussinesq equation, but for the particular case described in the

section above f simplifies.

In the special case m2 =−m1,n2 = n1 = m1
(
1− m2

1
2

)− 1
2 ,

f (x, t) = 6log(coshm1x+ coshn1t)> 0.

the derivatives then are

ftx =−m2
1n1

sinhm1xsinhn1t
(coshm1x+ coshn1t)2

ftxx =−m1n1
sinhn1t(coshm1xcoshn1t− cosh2 m1x)+2

(coshm1x+ coshn1t)3

ftxxx =−m3
1n1

sinhm1xsinhn1t(cosh2 m1x+ cosh2 n1t−4coshm1xcoshn1t)−6
(coshm1x+ coshn1t)4
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Using MatLab, the system above can be solved. The code can be found in Appendix A. For m1 = 0.5

the trajectories at different times will be shown below.

Figure 4.16: Particle Trajectory Path at t = -10, z = 0.8

Figure 2.6 shows a particle trajectory at time -10 and depth 0.8. The close up shows how the

left wave distributes the particle upwards and to the left, then the right wave arrives and moves the

particle backwards.

Figure 4.17: Particle Trajectory Path at t = -10, z = 0.8, 0.5, 0.1

At different depths the particles behave accordingly. Their amplitude changes the closer it is

to the surface of the wave. From top to bottom we have the particle trajectories at depths 0.8, 0.5,

and 0.1 respectively, all at the same time t =−10.
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Figure 4.18: Particle Trajectory Path at t = -10, 0, 5, 15, z = 0.8, 0.5, 0.1

From left to right the particle trajectories shown are for the times t =−10,0,5,15. From top

to bottom, the particles follow the depth from the previous figure 2.7. It is particularly interesting

the activity at t = 0. We can examine closer by using the figure below.

Figure 4.19: Particle Trajectory Path at t = 0, z = 0.8, 0.1

The particle follows an almost asymptotic behavior and goes vertically up and back down.

This occurs when the waves collide and pass through each other.
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CHAPTER V

CONCLUSION

It has been evident that the procedures that were taken in this paper have been done prior by

Borluk for the KdV model of approximation. However, using that work along with the higher order

Boussinesq system and with the help of the MatLab programs, new results were attained. The steps

for examination were consistent throughout the work for multiple mathematical models beginning

with plotting the soliton solutions, creating PDE or ODE systems using Euler’s Equations, then

solving said system to approximate the particle trajectory paths. The particle trajectories were able

to be studied in an efficient and effective manner for unidirectional and opposite traveling surface

waves.

This topic is extensive and can be continually studied to gain more information and methods

of approximation. Additionally, more mathematical models can be used for these approximations

using the same methods described in the paper. There is no doubt that the research and work for a

topic as broad as this one will be sought out for many years to come.
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APPENDIX A

MATLAB CODES

1.1 KdV Unidirectional Multi Soliton Waves

1.1.1 Surface Wave

syms m1 r1 n1 q1 m2 r2 n2 q2 x z t; r1 = 4*m13;q1 = 4 ∗ n13;h1 = exp(m1 ∗ x−

r1 ∗ t) + exp(2 ∗ (m1 ∗ x− r1 ∗ t));h2 = exp(n1 ∗ x− q1 ∗ t)− exp(2 ∗ (n1 ∗ x− q1 ∗ t));h1x =

di f f (h1,x);h2x = di f f (h2,x); f = h1∗h2x−h1x∗h2;etaxx = 2∗di f f (log( f ),x,2);

function surfwavekdv=surfwavekdv(x,t)

m1=.2;n1=.4;

etaxx =(2.*(n1.3.∗ cosh(−4.∗ t.∗m1.3 + x.∗m1).∗ cosh(−4.∗ t.∗n1.3 + x.∗n1)−m1.3.∗

sinh(−4. ∗ t. ∗m1.3 + x. ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + x. ∗ n1)+m1. ∗ n1.2. ∗ sinh(−4. ∗ t. ∗m1.3 +

x.∗m1).∗ sinh(−4.∗ t.∗n1.3 + x.∗n1)−m1.2.∗n1.∗ cosh(−4.∗ t.∗m1.3 + x.∗m1).∗ cosh(−4.∗

t.∗n1.3 + x.∗n1)))./(n1.∗ cosh(−4.∗ t.∗m1.3 + x.∗m1).∗ cosh(−4.∗ t.∗n1.3 + x.∗n1)−m1.∗

sinh(−4.∗ t.∗m1.3+x.∗m1).∗ sinh(−4.∗ t.∗n1.3+x.∗n1))− (2.∗ (m1.2.∗cosh(−4.∗ t.∗m1.3+

x.∗m1).∗sinh(−4.∗t.∗n1.3+x.∗n1)−n1.2.∗cosh(−4.∗t.∗m1.3+x.∗m1).∗sinh(−4.∗t.∗n1.3+

x.∗n1)).2)./(n1.∗cosh(m1.∗x−4.∗m1.3.∗ t).∗cosh(n1.∗x−4.∗n1.3.∗ t)−m1.∗ sinh(m1.∗x−

4.∗m1.3.∗ t).∗ sinh(n1.∗ x−4.∗n1.3.∗ t)).2;

figure(10);plot(x,x.*0,x,1+etaxx); end

Note, in this code, the surface wave is reffered to as ’etaxx’ where as in the paper it is η

input example surfwaveKDV([-35:.1:35],20); where [-35:.1:35] is the range for x and t =

20

to see a continuous flow from one time to another input the following:
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for t=-35:0.5:35 surfwaveKDV([-50:.1:50],t);end;

1.1.2 Particle Trajectories

Same input from previous section along with the system

u = diff(diff(f,x),t); ux = diff(u,x); uxx = diff(u,x,2);

function dy = trajKdV(t,y)

dy=zeros(2,1);

m1=.2; n1=.4;

u =((m1.2. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)− n1.2. ∗

cosh(−4.∗ t.∗m1.3 + y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3 + y(1).∗n1)).∗ (4.∗m1.4.∗ cosh(−4.∗ t.∗

m1.3+y(1).∗m1).∗sinh(−4.∗t.∗n1.3+y(1).∗n1)−4.∗n1.4.∗cosh(−4.∗t.∗m1.3+y(1).∗m1).∗

sinh(−4.∗ t.∗n1.3+y(1).∗n1)+4.∗m1.∗n1.3.∗cosh(−4.∗ t.∗n1.3+y(1).∗n1).∗sinh(−4.∗ t.∗

m1.3+y(1).∗m1)−4.∗m1.3.∗n1.∗cosh(−4.∗t.∗n1.3+y(1).∗n1).∗sinh(−4.∗t.∗m1.3+y(1).∗

m1)))./(n1. ∗ cosh(m1. ∗ y(1)− 4. ∗m1.3. ∗ t). ∗ cosh(n1. ∗ y(1)− 4. ∗ n1.3. ∗ t)−m1. ∗ sinh(m1. ∗

y(1)−4.∗m1.3.∗ t).∗ sinh(n1.∗y(1)−4.∗n1.3.∗ t)).2− (4.∗n1.5.∗cosh(−4.∗ t.∗m1.3 +y(1).∗

m1).∗cosh(−4.∗ t.∗n1.3+y(1).∗n1)−4.∗m1.5.∗ sinh(−4.∗ t.∗m1.3+y(1).∗m1).∗ sinh(−4.∗

t.∗n1.3 +y(1).∗n1)−4.∗m1.2.∗n1.3.∗ cosh(−4.∗ t.∗m1.3 +y(1).∗m1).∗ cosh(−4.∗ t.∗n1.3 +

y(1). ∗ n1) + 4. ∗m1.3. ∗ n1.2. ∗ sinh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗

n1))./(n1.∗cosh(−4.∗ t.∗m1.3+y(1).∗m1).∗cosh(−4.∗ t.∗n1.3+y(1).∗n1)−m1.∗sinh(−4.∗

t.∗m1.3 + y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3 + y(1).∗n1));

ux=(4.*m1.6. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)− 4. ∗

n1.6. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1) + 4. ∗m1.2. ∗ n1.4. ∗

cosh(−4.∗ t.∗m1.3+y(1).∗m1).∗sinh(−4.∗ t.∗n1.3+y(1).∗n1)−4.∗m1.4.∗n1.2.∗cosh(−4.∗

t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)− 4. ∗m1. ∗ n1.5. ∗ cosh(−4. ∗ t. ∗ n1.3 +

y(1).∗n1).∗ sinh(−4.∗ t.∗m1.3+y(1).∗m1)+4.∗m1.5.∗n1.∗cosh(−4.∗ t.∗n1.3+y(1).∗n1).∗

sinh(−4.∗ t.∗m1.3+y(1).∗m1))./(n1.∗cosh(−4.∗ t.∗m1.3+y(1).∗m1).∗cosh(−4.∗ t.∗n1.3+

y(1). ∗ n1)−m1. ∗ sinh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1))− (2. ∗

(m1.2.∗cosh(−4.∗ t.∗m1.3+y(1).∗m1).∗sinh(−4.∗ t.∗n1.3+y(1).∗n1)−n1.2.∗cosh(−4.∗ t.∗
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m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)). ∗ (4. ∗ n1.5. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗

m1).∗cosh(−4.∗ t.∗n1.3+y(1).∗n1)−4.∗m1.5.∗ sinh(−4.∗ t.∗m1.3+y(1).∗m1).∗ sinh(−4.∗

t.∗n1.3 +y(1).∗n1)−4.∗m1.2.∗n1.3.∗ cosh(−4.∗ t.∗m1.3 +y(1).∗m1).∗ cosh(−4.∗ t.∗n1.3 +

y(1). ∗ n1) + 4. ∗m1.3. ∗ n1.2. ∗ sinh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗

n1)))./(n1. ∗ cosh(m1. ∗ y(1)− 4. ∗m1.3. ∗ t). ∗ cosh(n1. ∗ y(1)− 4. ∗ n1.3. ∗ t)−m1. ∗ sinh(m1. ∗

y(1)− 4. ∗m1.3. ∗ t). ∗ sinh(n1. ∗ y(1)− 4. ∗ n1.3. ∗ t)).2− ((n1.3. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗

m1).∗cosh(−4.∗ t.∗n1.3 +y(1).∗n1)−m1.3.∗ sinh(−4.∗ t.∗m1.3 +y(1).∗m1).∗ sinh(−4.∗ t.∗

n1.3 + y(1). ∗ n1)+m1. ∗ n1.2. ∗ sinh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗

n1)−m1.2. ∗ n1. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ cosh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)). ∗ (4. ∗

m1.4.∗cosh(−4.∗ t.∗m1.3+y(1).∗m1).∗sinh(−4.∗ t.∗n1.3+y(1).∗n1)−4.∗n1.4.∗cosh(−4.∗

t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)+ 4. ∗m1. ∗ n1.3. ∗ cosh(−4. ∗ t. ∗ n1.3 +

y(1).∗n1).∗ sinh(−4.∗ t.∗m1.3+y(1).∗m1)−4.∗m1.3.∗n1.∗cosh(−4.∗ t.∗n1.3+y(1).∗n1).∗

sinh(−4.∗ t.∗m1.3 + y(1).∗m1)))./(n1.∗ cosh(m1.∗ y(1)−4.∗m1.3.∗ t).∗ cosh(n1.∗ y(1)−4.∗

n1.3.∗ t)−m1.∗ sinh(m1.∗y(1)−4.∗m1.3.∗ t).∗ sinh(n1.∗y(1)−4.∗n1.3.∗ t)).2 +(2.∗ (m1.2.∗

cosh(−4.∗ t.∗m1.3+y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3+y(1).∗n1)−n1.2.∗cosh(−4.∗ t.∗m1.3+

y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3 +y(1).∗n1)).2.∗ (4.∗m1.4.∗cosh(−4.∗ t.∗m1.3 +y(1).∗m1).∗

sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)− 4. ∗ n1.4. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗

n1.3+y(1).∗n1)+4.∗m1.∗n1.3.∗cosh(−4.∗ t.∗n1.3+y(1).∗n1).∗sinh(−4.∗ t.∗m1.3+y(1).∗

m1)−4.∗m1.3.∗n1.∗cosh(−4.∗t.∗n1.3+y(1).∗n1).∗sinh(−4.∗t.∗m1.3+y(1).∗m1)))./(n1.∗

cosh(m1.∗y(1)−4.∗m1.3.∗t).∗cosh(n1.∗y(1)−4.∗n1.3.∗t)−m1.∗sinh(m1.∗y(1)−4.∗m1.3.∗

t).∗ sinh(n1.∗ y(1)−4.∗n1.3.∗ t)).3;

uxx =(3.*(4.*n1.5.∗ cosh(−4.∗ t.∗m1.3 + y(1).∗m1).∗ cosh(−4.∗ t.∗n1.3 + y(1).∗n1)−

4.∗m1.5.∗ sinh(−4.∗ t.∗m1.3+y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3+y(1).∗n1)−4.∗m1.2.∗n1.3.∗

cosh(−4.∗ t.∗m1.3+y(1).∗m1).∗cosh(−4.∗ t.∗n1.3+y(1).∗n1)+4.∗m1.3.∗n1.2.∗sinh(−4.∗

t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)). ∗ (n1.3. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗

m1).∗cosh(−4.∗ t.∗n1.3 +y(1).∗n1)−m1.3.∗ sinh(−4.∗ t.∗m1.3 +y(1).∗m1).∗ sinh(−4.∗ t.∗

n1.3 + y(1). ∗ n1)+m1. ∗ n1.2. ∗ sinh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗
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n1)−m1.2. ∗ n1. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ cosh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)))./(n1. ∗

cosh(m1.∗y(1)−4.∗m1.3.∗t).∗cosh(n1.∗y(1)−4.∗n1.3.∗t)−m1.∗sinh(m1.∗y(1)−4.∗m1.3.∗

t).∗sinh(n1.∗y(1)−4.∗n1.3.∗t)).2−(4.∗n1.7.∗cosh(−4.∗t.∗m1.3+y(1).∗m1).∗cosh(−4.∗t.∗

n1.3+y(1).∗n1)−4.∗m1.7.∗sinh(−4.∗t.∗m1.3+y(1).∗m1).∗sinh(−4.∗t.∗n1.3+y(1).∗n1)+

8.∗m1.∗n1.6.∗ sinh(−4.∗ t.∗m1.3 + y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3 + y(1).∗n1)+4.∗m1.4.∗

n1.3. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ cosh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)− 4. ∗m1.3. ∗ n1.4. ∗

sinh(−4.∗ t.∗m1.3 + y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3 + y(1).∗n1)−8.∗m1.6.∗n1.∗ cosh(−4.∗

t. ∗m1.3 + y(1). ∗m1). ∗ cosh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1))./(n1. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗

m1). ∗ cosh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)−m1. ∗ sinh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗

n1.3 + y(1).∗n1))+(3.∗ (m1.2.∗ cosh(−4.∗ t.∗m1.3 + y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3 + y(1).∗

n1)− n1.2. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)). ∗ (4. ∗m1.6. ∗

cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)− 4. ∗ n1.6. ∗ cosh(−4. ∗ t. ∗

m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1) + 4. ∗m1.2. ∗ n1.4. ∗ cosh(−4. ∗ t. ∗m1.3 +

y(1).∗m1).∗sinh(−4.∗t.∗n1.3+y(1).∗n1)−4.∗m1.4.∗n1.2.∗cosh(−4.∗t.∗m1.3+y(1).∗m1).∗

sinh(−4.∗ t.∗n1.3+y(1).∗n1)−4.∗m1.∗n1.5.∗cosh(−4.∗ t.∗n1.3+y(1).∗n1).∗sinh(−4.∗ t.∗

m1.3+y(1).∗m1)+4.∗m1.5.∗n1.∗cosh(−4.∗t.∗n1.3+y(1).∗n1).∗sinh(−4.∗t.∗m1.3+y(1).∗

m1)))./(n1. ∗ cosh(m1. ∗ y(1)− 4. ∗m1.3. ∗ t). ∗ cosh(n1. ∗ y(1)− 4. ∗ n1.3. ∗ t)−m1. ∗ sinh(m1. ∗

y(1)− 4. ∗m1.3. ∗ t). ∗ sinh(n1. ∗ y(1)− 4. ∗ n1.3. ∗ t)).2 +((m1.4. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗

m1).∗ sinh(−4.∗ t.∗n1.3 + y(1).∗n1)−n1.4.∗ cosh(−4.∗ t.∗m1.3 + y(1).∗m1).∗ sinh(−4.∗ t.∗

n1.3+y(1).∗n1)−2.∗m1.∗n1.3.∗cosh(−4.∗ t.∗n1.3+y(1).∗n1).∗sinh(−4.∗ t.∗m1.3+y(1).∗

m1)+2.∗m1.3.∗n1.∗cosh(−4.∗ t.∗n1.3+y(1).∗n1).∗ sinh(−4.∗ t.∗m1.3+y(1).∗m1)).∗ (4.∗

m1.4.∗cosh(−4.∗ t.∗m1.3+y(1).∗m1).∗sinh(−4.∗ t.∗n1.3+y(1).∗n1)−4.∗n1.4.∗cosh(−4.∗

t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)+ 4. ∗m1. ∗ n1.3. ∗ cosh(−4. ∗ t. ∗ n1.3 +

y(1).∗n1).∗ sinh(−4.∗ t.∗m1.3+y(1).∗m1)−4.∗m1.3.∗n1.∗cosh(−4.∗ t.∗n1.3+y(1).∗n1).∗

sinh(−4.∗ t.∗m1.3 + y(1).∗m1)))./(n1.∗ cosh(m1.∗ y(1)−4.∗m1.3.∗ t).∗ cosh(n1.∗ y(1)−4.∗

n1.3.∗ t)−m1.∗ sinh(m1.∗y(1)−4.∗m1.3.∗ t).∗ sinh(n1.∗y(1)−4.∗n1.3.∗ t)).2− (6.∗ (m1.2.∗

cosh(−4.∗ t.∗m1.3+y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3+y(1).∗n1)−n1.2.∗cosh(−4.∗ t.∗m1.3+

47



y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3 + y(1).∗n1)).2.∗ (4.∗n1.5.∗ cosh(−4.∗ t.∗m1.3 + y(1).∗m1).∗

cosh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)− 4. ∗m1.5. ∗ sinh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗

n1.3 + y(1). ∗ n1)− 4. ∗m1.2. ∗ n1.3. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ cosh(−4. ∗ t. ∗ n1.3 +

y(1). ∗ n1) + 4. ∗m1.3. ∗ n1.2. ∗ sinh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗

n1)))./(n1. ∗ cosh(m1. ∗ y(1)− 4. ∗m1.3. ∗ t). ∗ cosh(n1. ∗ y(1)− 4. ∗ n1.3. ∗ t)−m1. ∗ sinh(m1. ∗

y(1)−4.∗m1.3.∗ t).∗sinh(n1.∗y(1)−4.∗n1.3.∗ t)).3+(6.∗(m1.2.∗cosh(−4.∗ t.∗m1.3+y(1).∗

m1). ∗ sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)− n1.2. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗

t. ∗ n1.3 + y(1). ∗ n1)).3. ∗ (4. ∗m1.4. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗ n1.3 +

y(1).∗n1)−4.∗n1.4.∗ cosh(−4.∗ t.∗m1.3 + y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3 + y(1).∗n1)+4.∗

m1.∗n1.3.∗cosh(−4.∗ t.∗n1.3+y(1).∗n1).∗ sinh(−4.∗ t.∗m1.3+y(1).∗m1)−4.∗m1.3.∗n1.∗

cosh(−4.∗ t.∗n1.3+y(1).∗n1).∗ sinh(−4.∗ t.∗m1.3+y(1).∗m1)))./(n1.∗cosh(m1.∗y(1)−4.∗

m1.3.∗t).∗cosh(n1.∗y(1)−4.∗n1.3.∗t)−m1.∗sinh(m1.∗y(1)−4.∗m1.3.∗t).∗sinh(n1.∗y(1)−

4.∗n1.3.∗t)).4−(6.∗(m1.2.∗cosh(−4.∗t.∗m1.3+y(1).∗m1).∗sinh(−4.∗t.∗n1.3+y(1).∗n1)−

n1.2.∗cosh(−4.∗t.∗m1.3+y(1).∗m1).∗sinh(−4.∗t.∗n1.3+y(1).∗n1)).∗(n1.3.∗cosh(−4.∗t.∗

m1.3 +y(1).∗m1).∗cosh(−4.∗ t.∗n1.3 +y(1).∗n1)−m1.3.∗ sinh(−4.∗ t.∗m1.3 +y(1).∗m1).∗

sinh(−4. ∗ t. ∗ n1.3 + y(1). ∗ n1)+m1. ∗ n1.2. ∗ sinh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ sinh(−4. ∗ t. ∗

n1.3 + y(1). ∗ n1)−m1.2. ∗ n1. ∗ cosh(−4. ∗ t. ∗m1.3 + y(1). ∗m1). ∗ cosh(−4. ∗ t. ∗ n1.3 + y(1). ∗

n1)).∗(4.∗m1.4.∗cosh(−4.∗ t.∗m1.3+y(1).∗m1).∗sinh(−4.∗ t.∗n1.3+y(1).∗n1)−4.∗n1.4.∗

cosh(−4.∗ t.∗m1.3 + y(1).∗m1).∗ sinh(−4.∗ t.∗n1.3 + y(1).∗n1)+4.∗m1.∗n1.3.∗ cosh(−4.∗

t. ∗ n1.3 + y(1). ∗ n1). ∗ sinh(−4. ∗ t. ∗m1.3 + y(1). ∗m1)− 4. ∗m1.3. ∗ n1. ∗ cosh(−4. ∗ t. ∗ n1.3 +

y(1).∗n1).∗sinh(−4.∗t.∗m1.3+y(1).∗m1)))./(n1.∗cosh(m1.∗y(1)−4.∗m1.3.∗t).∗cosh(n1.∗

y(1)−4.∗n1.3.∗ t)−m1.∗ sinh(m1.∗ y(1)−4.∗m1.3.∗ t).∗ sinh(n1.∗ y(1)−4.∗n1.3.∗ t)).3;

dy(1)=u-y(2)2/2∗uxx;

dy(2)=ux*y(2);

input example [ti,po]=ode45(@trajKdV,[-35 35],[-10; 0.8]); figure(7); hold on; plot(po(:,1),po(:,2));

hold off;

where t = -10 (time) and z = 0.8 (depth level)
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1.2 Boussinesq Unidirectional Waves

1.2.1 Surface Wave

syms m1 r1 n1 q1 m2 r2 n2 q2 x z t; r1 = 4*m13;q1 = 4 ∗ n13;h1 = exp(m1 ∗ x−

r1 ∗ t) + exp(2 ∗ (m1 ∗ x− r1 ∗ t));h2 = exp(n1 ∗ x− q1 ∗ t)− exp(2 ∗ (n1 ∗ x− q1 ∗ t));h1x =

di f f (h1,x);h2x = di f f (h2,x); f = h1∗h2x−h1x∗h2;etaxx = 6∗di f f (log( f ),x,2);

function surfwavebuni=surfwavebuni(x,t)

a=pi/4;b=pi/12;

m1=cos(a);m2=cos(a+4*pi/3);n1=cos(b);n2=cos(b+4*pi/3);

etaxx=(2.*((n1.3.∗exp(−t.∗n1.2 +x.∗n1)−n2.3.∗exp(−t.∗n2.2 +x.∗n2)).∗ (exp(−t.∗

m1.2+x.∗m1)+exp(−t.∗m2.2+x.∗m2))−(m1.3.∗exp(−t.∗m1.2+x.∗m1)+m2.3.∗exp(−t.∗

m2.2+x.∗m2)).∗ (exp(−t.∗n1.2+x.∗n1)−exp(−t.∗n2.2+x.∗n2))− (m1.2.∗exp(−t.∗m1.2+

x.∗m1)+m2.2.∗exp(−t.∗m2.2+x.∗m2)).∗(n1.∗exp(−t.∗n1.2+x.∗n1)−n2.∗exp(−t.∗n2.2+

x. ∗ n2))+ (n1.2. ∗ exp(−t. ∗ n1.2 + x. ∗ n1)− n2.2. ∗ exp(−t. ∗ n2.2 + x. ∗ n2)). ∗ (m1. ∗ exp(−t. ∗

m1.2+x.∗m1)+m2.∗exp(−t.∗m2.2+x.∗m2))))./((n1.∗exp(−t.∗n1.2+x.∗n1)−n2.∗exp(−t.∗

n2.2 + x. ∗ n2)). ∗ (exp(−t. ∗m1.2 + x. ∗m1)+ exp(−t. ∗m2.2 + x. ∗m2))− (exp(−t. ∗ n1.2 + x. ∗

n1)− exp(−t. ∗ n2.2 + x. ∗ n2)). ∗ (m1. ∗ exp(−t. ∗m1.2 + x. ∗m1) +m2. ∗ exp(−t. ∗m2.2 + x. ∗

m2)))−(2.∗((n1.2.∗exp(−t.∗n1.2+x.∗n1)−n2.2.∗exp(−t.∗n2.2+x.∗n2)).∗(exp(−t.∗m1.2+

x.∗m1)+exp(−t.∗m2.2+x.∗m2))−(m1.2.∗exp(−t.∗m1.2+x.∗m1)+m2.2.∗exp(−t.∗m2.2+

x. ∗m2)). ∗ (exp(−t. ∗ n1.2 + x. ∗ n1)− exp(−t. ∗ n2.2 + x. ∗ n2))).2)./((n1. ∗ exp(n1. ∗ x− n1.2. ∗

t)−n2.∗exp(n2.∗x−n2.2.∗ t)).∗ (exp(m1.∗x−m1.2.∗ t)+exp(m2.∗x−m2.2.∗ t))− (exp(n1.∗

x−n1.2.∗ t)−exp(n2.∗x−n2.2.∗ t)).∗(m1.∗exp(m1.∗x−m1.2.∗ t)+m2.∗exp(m2.∗x−m2.2.∗

t))).2;

figure(12);plot(x,x.*0,x,1+etaxx);

input example surfwavebuni([-45:.1:-10],-35);

1.2.2 Particle Trajectories

function dy = trajGBuni(t,y)
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dy=zeros(2,1);

a=pi/4;b=pi/12;

m1=cos(a);m2=cos(a+4*pi/3);n1=cos(b);n2=cos(b+4*pi/3);

u =(((n1.2.∗ exp(−t.∗n1.2 +y(1).∗n1)−n2.2.∗ exp(−t.∗n2.2 +y(1).∗n2)).∗ (exp(−t.∗

m1.2+y(1).∗m1)+exp(−t.∗m2.2+y(1).∗m2))−(m1.2.∗exp(−t.∗m1.2+y(1).∗m1)+m2.2.∗

exp(−t. ∗m2.2 + y(1). ∗m2)). ∗ (exp(−t. ∗ n1.2 + y(1). ∗ n1)− exp(−t. ∗ n2.2 + y(1). ∗ n2))). ∗

((n1.3.∗exp(−t.∗n1.2+y(1).∗n1)−n2.3.∗exp(−t.∗n2.2+y(1).∗n2)).∗(exp(−t.∗m1.2+y(1).∗

m1) + exp(−t. ∗m2.2 + y(1). ∗m2))− (m1.3. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) +m2.3. ∗ exp(−t. ∗

m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2))+(m1.2.∗exp(−t.∗

m1.2+y(1).∗m1)+m2.2.∗exp(−t.∗m2.2+y(1).∗m2)).∗(n1.∗exp(−t.∗n1.2+y(1).∗n1)−n2.∗

exp(−t.∗n2.2+y(1).∗n2))− (n1.2.∗exp(−t.∗n1.2+y(1).∗n1)−n2.2.∗exp(−t.∗n2.2+y(1).∗

n2)).∗(m1.∗exp(−t.∗m1.2+y(1).∗m1)+m2.∗exp(−t.∗m2.2+y(1).∗m2))))./((n1.∗exp(n1.∗

y(1)−n1.2.∗ t)−n2.∗exp(n2.∗y(1)−n2.2.∗ t)).∗ (exp(m1.∗y(1)−m1.2.∗ t)+exp(m2.∗y(1)−

m2.2. ∗ t))− (exp(n1. ∗ y(1)− n1.2. ∗ t)− exp(n2. ∗ y(1)− n2.2. ∗ t)). ∗ (m1. ∗ exp(m1. ∗ y(1)−

m1.2. ∗ t) +m2. ∗ exp(m2. ∗ y(1)−m2.2. ∗ t))).2− ((n1.4. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2.4. ∗

exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (exp(−t. ∗m1.2 + y(1). ∗m1) + exp(−t. ∗m2.2 + y(1). ∗m2))−

(m1.4. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) +m2.4. ∗ exp(−t. ∗m2.2 + y(1). ∗m2)). ∗ (exp(−t. ∗ n1.2 +

y(1). ∗ n1)− exp(−t. ∗ n2.2 + y(1). ∗ n2)))./((n1. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2. ∗ exp(−t. ∗

n2.2 + y(1). ∗ n2)). ∗ (exp(−t. ∗m1.2 + y(1). ∗m1) + exp(−t. ∗m2.2 + y(1). ∗m2))− (exp(−t. ∗

n1.2 + y(1). ∗ n1)− exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (m1. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) + m2. ∗

exp(−t.∗m2.2 + y(1).∗m2)));

ux=(((n1.3.∗exp(−t.∗n1.2+y(1).∗n1)−n2.3.∗exp(−t.∗n2.2+y(1).∗n2)).∗ (exp(−t.∗

m1.2+y(1).∗m1)+exp(−t.∗m2.2+y(1).∗m2))−(m1.3.∗exp(−t.∗m1.2+y(1).∗m1)+m2.3.∗

exp(−t.∗m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2))+(m1.2.∗

exp(−t.∗m1.2+y(1).∗m1)+m2.2.∗exp(−t.∗m2.2+y(1).∗m2)).∗(n1.∗exp(−t.∗n1.2+y(1).∗

n1)− n2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2))− (n1.2. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2.2. ∗ exp(−t. ∗

n2.2 + y(1). ∗ n2)). ∗ (m1. ∗ exp(−t. ∗m1.2 + y(1). ∗m1)+m2. ∗ exp(−t. ∗m2.2 + y(1). ∗m2))). ∗
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((n1.3.∗exp(−t.∗n1.2+y(1).∗n1)−n2.3.∗exp(−t.∗n2.2+y(1).∗n2)).∗(exp(−t.∗m1.2+y(1).∗

m1) + exp(−t. ∗m2.2 + y(1). ∗m2))− (m1.3. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) +m2.3. ∗ exp(−t. ∗

m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2))−(m1.2.∗exp(−t.∗

m1.2+y(1).∗m1)+m2.2.∗exp(−t.∗m2.2+y(1).∗m2)).∗(n1.∗exp(−t.∗n1.2+y(1).∗n1)−n2.∗

exp(−t.∗n2.2+y(1).∗n2))+(n1.2.∗exp(−t.∗n1.2+y(1).∗n1)−n2.2.∗exp(−t.∗n2.2+y(1).∗

n2)).∗(m1.∗exp(−t.∗m1.2+y(1).∗m1)+m2.∗exp(−t.∗m2.2+y(1).∗m2))))./((n1.∗exp(n1.∗

y(1)−n1.2.∗ t)−n2.∗exp(n2.∗y(1)−n2.2.∗ t)).∗ (exp(m1.∗y(1)−m1.2.∗ t)+exp(m2.∗y(1)−

m2.2. ∗ t))− (exp(n1. ∗ y(1)− n1.2. ∗ t)− exp(n2. ∗ y(1)− n2.2. ∗ t)). ∗ (m1. ∗ exp(m1. ∗ y(1)−

m1.2.∗t)+m2.∗exp(m2.∗y(1)−m2.2.∗t))).2−(2.∗((n1.2.∗exp(−t.∗n1.2+y(1).∗n1)−n2.2.∗

exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (exp(−t. ∗m1.2 + y(1). ∗m1) + exp(−t. ∗m2.2 + y(1). ∗m2))−

(m1.2. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) +m2.2. ∗ exp(−t. ∗m2.2 + y(1). ∗m2)). ∗ (exp(−t. ∗ n1.2 +

y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2))).2.∗((n1.3.∗exp(−t.∗n1.2+y(1).∗n1)−n2.3.∗exp(−t.∗

n2.2+y(1).∗n2)).∗(exp(−t.∗m1.2+y(1).∗m1)+exp(−t.∗m2.2+y(1).∗m2))−(m1.3.∗exp(−t.∗

m1.2+y(1).∗m1)+m2.3.∗exp(−t.∗m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗

n2.2+y(1).∗n2))+(m1.2.∗exp(−t.∗m1.2+y(1).∗m1)+m2.2.∗exp(−t.∗m2.2+y(1).∗m2)).∗

(n1. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2))− (n1.2. ∗ exp(−t. ∗ n1.2 +

y(1). ∗ n1)− n2.2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (m1. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) + m2. ∗

exp(−t. ∗m2.2 + y(1). ∗m2))))./((n1. ∗ exp(n1. ∗ y(1)− n1.2. ∗ t)− n2. ∗ exp(n2. ∗ y(1)− n2.2. ∗

t)). ∗ (exp(m1. ∗ y(1)−m1.2. ∗ t) + exp(m2. ∗ y(1)−m2.2. ∗ t))− (exp(n1. ∗ y(1)− n1.2. ∗ t)−

exp(n2. ∗ y(1)− n2.2. ∗ t)). ∗ (m1. ∗ exp(m1. ∗ y(1)−m1.2. ∗ t) + m2. ∗ exp(m2. ∗ y(1)−m2.2. ∗

t))).3− ((n1.5. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2.5. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (exp(−t. ∗

m1.2+y(1).∗m1)+exp(−t.∗m2.2+y(1).∗m2))−(m1.5.∗exp(−t.∗m1.2+y(1).∗m1)+m2.5.∗

exp(−t.∗m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2))−(m1.4.∗

exp(−t.∗m1.2+y(1).∗m1)+m2.4.∗exp(−t.∗m2.2+y(1).∗m2)).∗(n1.∗exp(−t.∗n1.2+y(1).∗

n1)− n2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2))+ (n1.4. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2.4. ∗ exp(−t. ∗

n2.2+y(1).∗n2)).∗(m1.∗exp(−t.∗m1.2+y(1).∗m1)+m2.∗exp(−t.∗m2.2+y(1).∗m2)))./((n1.∗

exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (exp(−t. ∗m1.2 + y(1). ∗m1)+
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exp(−t.∗m2.2+y(1).∗m2))−(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2)).∗(m1.∗

exp(−t.∗m1.2+y(1).∗m1)+m2.∗exp(−t.∗m2.2+y(1).∗m2)))+(2.∗((n1.2.∗exp(−t.∗n1.2+

y(1).∗n1)−n2.2.∗exp(−t.∗n2.2+y(1).∗n2)).∗(exp(−t.∗m1.2+y(1).∗m1)+exp(−t.∗m2.2+

y(1).∗m2))−(m1.2.∗exp(−t.∗m1.2+y(1).∗m1)+m2.2.∗exp(−t.∗m2.2+y(1).∗m2)).∗(exp(−t.∗

n1.2 + y(1). ∗ n1)− exp(−t. ∗ n2.2 + y(1). ∗ n2))). ∗ ((n1.4. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2.4. ∗

exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (exp(−t. ∗m1.2 + y(1). ∗m1) + exp(−t. ∗m2.2 + y(1). ∗m2))−

(m1.4. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) +m2.4. ∗ exp(−t. ∗m2.2 + y(1). ∗m2)). ∗ (exp(−t. ∗ n1.2 +

y(1). ∗ n1)− exp(−t. ∗ n2.2 + y(1). ∗ n2))))./((n1. ∗ exp(n1. ∗ y(1)− n1.2. ∗ t)− n2. ∗ exp(n2. ∗

y(1)− n2.2. ∗ t)). ∗ (exp(m1. ∗ y(1)−m1.2. ∗ t)+ exp(m2. ∗ y(1)−m2.2. ∗ t))− (exp(n1. ∗ y(1)−

n1.2.∗ t)−exp(n2.∗y(1)−n2.2.∗ t)).∗ (m1.∗exp(m1.∗y(1)−m1.2.∗ t)+m2.∗exp(m2.∗y(1)−

m2.2.∗ t))).2;

uxx =(6.*((n1.2.∗exp(−t.∗n1.2+y(1).∗n1)−n2.2.∗exp(−t.∗n2.2+y(1).∗n2)).∗(exp(−t.∗

m1.2+y(1).∗m1)+exp(−t.∗m2.2+y(1).∗m2))−(m1.2.∗exp(−t.∗m1.2+y(1).∗m1)+m2.2.∗

exp(−t. ∗m2.2 + y(1). ∗m2)). ∗ (exp(−t. ∗ n1.2 + y(1). ∗ n1)− exp(−t. ∗ n2.2 + y(1). ∗ n2))).3. ∗

((n1.3.∗exp(−t.∗n1.2+y(1).∗n1)−n2.3.∗exp(−t.∗n2.2+y(1).∗n2)).∗(exp(−t.∗m1.2+y(1).∗

m1) + exp(−t. ∗m2.2 + y(1). ∗m2))− (m1.3. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) +m2.3. ∗ exp(−t. ∗

m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2))+(m1.2.∗exp(−t.∗

m1.2+y(1).∗m1)+m2.2.∗exp(−t.∗m2.2+y(1).∗m2)).∗(n1.∗exp(−t.∗n1.2+y(1).∗n1)−n2.∗

exp(−t.∗n2.2+y(1).∗n2))− (n1.2.∗exp(−t.∗n1.2+y(1).∗n1)−n2.2.∗exp(−t.∗n2.2+y(1).∗

n2)).∗(m1.∗exp(−t.∗m1.2+y(1).∗m1)+m2.∗exp(−t.∗m2.2+y(1).∗m2))))./((n1.∗exp(n1.∗

y(1)−n1.2.∗ t)−n2.∗exp(n2.∗y(1)−n2.2.∗ t)).∗ (exp(m1.∗y(1)−m1.2.∗ t)+exp(m2.∗y(1)−

m2.2. ∗ t))− (exp(n1. ∗ y(1)− n1.2. ∗ t)− exp(n2. ∗ y(1)− n2.2. ∗ t)). ∗ (m1. ∗ exp(m1. ∗ y(1)−

m1.2. ∗ t) +m2. ∗ exp(m2. ∗ y(1)−m2.2. ∗ t))).4− ((n1.6. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2.6. ∗

exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (exp(−t. ∗m1.2 + y(1). ∗m1) + exp(−t. ∗m2.2 + y(1). ∗m2)) +

(m1.2. ∗ exp(−t. ∗m1.2 + y(1). ∗m1)+m2.2. ∗ exp(−t. ∗m2.2 + y(1). ∗m2)). ∗ (n1.4. ∗ exp(−t. ∗

n1.2 + y(1). ∗ n1)− n2.4. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2))− (m1.4. ∗ exp(−t. ∗m1.2 + y(1). ∗m1)+

m2.4.∗exp(−t.∗m2.2+y(1).∗m2)).∗(n1.2.∗exp(−t.∗n1.2+y(1).∗n1)−n2.2.∗exp(−t.∗n2.2+
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y(1).∗n2))−(m1.6.∗exp(−t.∗m1.2+y(1).∗m1)+m2.6.∗exp(−t.∗m2.2+y(1).∗m2)).∗(exp(−t.∗

n1.2+y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2))−2.∗(m1.5.∗exp(−t.∗m1.2+y(1).∗m1)+m2.5.∗

exp(−t. ∗m2.2 + y(1). ∗m2)). ∗ (n1. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2. ∗ exp(−t. ∗ n2.2 + y(1). ∗

n2))+2.∗(n1.5.∗exp(−t.∗n1.2+y(1).∗n1)−n2.5.∗exp(−t.∗n2.2+y(1).∗n2)).∗(m1.∗exp(−t.∗

m1.2 + y(1). ∗m1) +m2. ∗ exp(−t. ∗m2.2 + y(1). ∗m2)))./((n1. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)−

n2.∗exp(−t.∗n2.2+y(1).∗n2)).∗(exp(−t.∗m1.2+y(1).∗m1)+exp(−t.∗m2.2+y(1).∗m2))−

(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2)).∗ (m1.∗exp(−t.∗m1.2+y(1).∗m1)+

m2.∗exp(−t.∗m2.2+y(1).∗m2)))+(((n1.3.∗exp(−t.∗n1.2+y(1).∗n1)−n2.3.∗exp(−t.∗n2.2+

y(1). ∗ n2)). ∗ (exp(−t. ∗m1.2 + y(1). ∗m1)+ exp(−t. ∗m2.2 + y(1). ∗m2))− (m1.3. ∗ exp(−t. ∗

m1.2+y(1).∗m1)+m2.3.∗exp(−t.∗m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗

n2.2+y(1).∗n2))+(m1.2.∗exp(−t.∗m1.2+y(1).∗m1)+m2.2.∗exp(−t.∗m2.2+y(1).∗m2)).∗

(n1. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2))− (n1.2. ∗ exp(−t. ∗ n1.2 +

y(1). ∗ n1)− n2.2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (m1. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) + m2. ∗

exp(−t. ∗m2.2 + y(1). ∗m2))). ∗ ((n1.4. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2.4. ∗ exp(−t. ∗ n2.2 +

y(1). ∗ n2)). ∗ (exp(−t. ∗m1.2 + y(1). ∗m1)+ exp(−t. ∗m2.2 + y(1). ∗m2))− (m1.4. ∗ exp(−t. ∗

m1.2+y(1).∗m1)+m2.4.∗exp(−t.∗m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗

n2.2 + y(1). ∗ n2))− 2. ∗ (m1.3. ∗ exp(−t. ∗m1.2 + y(1). ∗m1)+m2.3. ∗ exp(−t. ∗m2.2 + y(1). ∗

m2)).∗(n1.∗exp(−t.∗n1.2+y(1).∗n1)−n2.∗exp(−t.∗n2.2+y(1).∗n2))+2.∗(n1.3.∗exp(−t.∗

n1.2 + y(1). ∗ n1)− n2.3. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (m1. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) +

m2. ∗ exp(−t. ∗m2.2 + y(1). ∗m2))))./((n1. ∗ exp(n1. ∗ y(1)− n1.2. ∗ t)− n2. ∗ exp(n2. ∗ y(1)−

n2.2. ∗ t)). ∗ (exp(m1. ∗ y(1)−m1.2. ∗ t)+ exp(m2. ∗ y(1)−m2.2. ∗ t))− (exp(n1. ∗ y(1)− n1.2. ∗

t)−exp(n2.∗y(1)−n2.2.∗ t)).∗ (m1.∗exp(m1.∗y(1)−m1.2.∗ t)+m2.∗exp(m2.∗y(1)−m2.2.∗

t))).2−(6.∗((n1.2.∗exp(−t.∗n1.2+y(1).∗n1)−n2.2.∗exp(−t.∗n2.2+y(1).∗n2)).∗(exp(−t.∗

m1.2+y(1).∗m1)+exp(−t.∗m2.2+y(1).∗m2))−(m1.2.∗exp(−t.∗m1.2+y(1).∗m1)+m2.2.∗

exp(−t. ∗m2.2 + y(1). ∗m2)). ∗ (exp(−t. ∗ n1.2 + y(1). ∗ n1)− exp(−t. ∗ n2.2 + y(1). ∗ n2))).2. ∗

((n1.4.∗exp(−t.∗n1.2+y(1).∗n1)−n2.4.∗exp(−t.∗n2.2+y(1).∗n2)).∗(exp(−t.∗m1.2+y(1).∗

m1) + exp(−t. ∗m2.2 + y(1). ∗m2))− (m1.4. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) +m2.4. ∗ exp(−t. ∗
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m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2))))./((n1.∗exp(n1.∗

y(1)−n1.2.∗ t)−n2.∗exp(n2.∗y(1)−n2.2.∗ t)).∗ (exp(m1.∗y(1)−m1.2.∗ t)+exp(m2.∗y(1)−

m2.2. ∗ t))− (exp(n1. ∗ y(1)− n1.2. ∗ t)− exp(n2. ∗ y(1)− n2.2. ∗ t)). ∗ (m1. ∗ exp(m1. ∗ y(1)−

m1.2.∗t)+m2.∗exp(m2.∗y(1)−m2.2.∗t))).3+(3.∗((n1.4.∗exp(−t.∗n1.2+y(1).∗n1)−n2.4.∗

exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (exp(−t. ∗m1.2 + y(1). ∗m1) + exp(−t. ∗m2.2 + y(1). ∗m2))−

(m1.4. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) +m2.4. ∗ exp(−t. ∗m2.2 + y(1). ∗m2)). ∗ (exp(−t. ∗ n1.2 +

y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2))).∗((n1.3.∗exp(−t.∗n1.2+y(1).∗n1)−n2.3.∗exp(−t.∗

n2.2+y(1).∗n2)).∗(exp(−t.∗m1.2+y(1).∗m1)+exp(−t.∗m2.2+y(1).∗m2))−(m1.3.∗exp(−t.∗

m1.2+y(1).∗m1)+m2.3.∗exp(−t.∗m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗

n2.2+y(1).∗n2))−(m1.2.∗exp(−t.∗m1.2+y(1).∗m1)+m2.2.∗exp(−t.∗m2.2+y(1).∗m2)).∗

(n1. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2))+ (n1.2. ∗ exp(−t. ∗ n1.2 +

y(1). ∗ n1)− n2.2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (m1. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) + m2. ∗

exp(−t. ∗m2.2 + y(1). ∗m2))))./((n1. ∗ exp(n1. ∗ y(1)− n1.2. ∗ t)− n2. ∗ exp(n2. ∗ y(1)− n2.2. ∗

t)). ∗ (exp(m1. ∗ y(1)−m1.2. ∗ t) + exp(m2. ∗ y(1)−m2.2. ∗ t))− (exp(n1. ∗ y(1)− n1.2. ∗ t)−

exp(n2. ∗ y(1)− n2.2. ∗ t)). ∗ (m1. ∗ exp(m1. ∗ y(1)−m1.2. ∗ t) + m2. ∗ exp(m2. ∗ y(1)−m2.2. ∗

t))).2+(3.∗((n1.2.∗exp(−t.∗n1.2+y(1).∗n1)−n2.2.∗exp(−t.∗n2.2+y(1).∗n2)).∗(exp(−t.∗

m1.2+y(1).∗m1)+exp(−t.∗m2.2+y(1).∗m2))−(m1.2.∗exp(−t.∗m1.2+y(1).∗m1)+m2.2.∗

exp(−t. ∗m2.2 + y(1). ∗m2)). ∗ (exp(−t. ∗ n1.2 + y(1). ∗ n1)− exp(−t. ∗ n2.2 + y(1). ∗ n2))). ∗

((n1.5.∗exp(−t.∗n1.2+y(1).∗n1)−n2.5.∗exp(−t.∗n2.2+y(1).∗n2)).∗(exp(−t.∗m1.2+y(1).∗

m1) + exp(−t. ∗m2.2 + y(1). ∗m2))− (m1.5. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) +m2.5. ∗ exp(−t. ∗

m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2))−(m1.4.∗exp(−t.∗

m1.2+y(1).∗m1)+m2.4.∗exp(−t.∗m2.2+y(1).∗m2)).∗(n1.∗exp(−t.∗n1.2+y(1).∗n1)−n2.∗

exp(−t.∗n2.2+y(1).∗n2))+(n1.4.∗exp(−t.∗n1.2+y(1).∗n1)−n2.4.∗exp(−t.∗n2.2+y(1).∗

n2)).∗(m1.∗exp(−t.∗m1.2+y(1).∗m1)+m2.∗exp(−t.∗m2.2+y(1).∗m2))))./((n1.∗exp(n1.∗

y(1)−n1.2.∗ t)−n2.∗exp(n2.∗y(1)−n2.2.∗ t)).∗ (exp(m1.∗y(1)−m1.2.∗ t)+exp(m2.∗y(1)−

m2.2. ∗ t))− (exp(n1. ∗ y(1)− n1.2. ∗ t)− exp(n2. ∗ y(1)− n2.2. ∗ t)). ∗ (m1. ∗ exp(m1. ∗ y(1)−

m1.2.∗t)+m2.∗exp(m2.∗y(1)−m2.2.∗t))).2−(6.∗((n1.2.∗exp(−t.∗n1.2+y(1).∗n1)−n2.2.∗
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exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (exp(−t. ∗m1.2 + y(1). ∗m1) + exp(−t. ∗m2.2 + y(1). ∗m2))−

(m1.2. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) +m2.2. ∗ exp(−t. ∗m2.2 + y(1). ∗m2)). ∗ (exp(−t. ∗ n1.2 +

y(1).∗n1)−exp(−t.∗n2.2+y(1).∗n2))).∗((n1.3.∗exp(−t.∗n1.2+y(1).∗n1)−n2.3.∗exp(−t.∗

n2.2+y(1).∗n2)).∗(exp(−t.∗m1.2+y(1).∗m1)+exp(−t.∗m2.2+y(1).∗m2))−(m1.3.∗exp(−t.∗

m1.2+y(1).∗m1)+m2.3.∗exp(−t.∗m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗

n2.2+y(1).∗n2))+(m1.2.∗exp(−t.∗m1.2+y(1).∗m1)+m2.2.∗exp(−t.∗m2.2+y(1).∗m2)).∗

(n1. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2))− (n1.2. ∗ exp(−t. ∗ n1.2 +

y(1). ∗ n1)− n2.2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (m1. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) + m2. ∗

exp(−t. ∗m2.2 + y(1). ∗m2))). ∗ ((n1.3. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2.3. ∗ exp(−t. ∗ n2.2 +

y(1). ∗ n2)). ∗ (exp(−t. ∗m1.2 + y(1). ∗m1)+ exp(−t. ∗m2.2 + y(1). ∗m2))− (m1.3. ∗ exp(−t. ∗

m1.2+y(1).∗m1)+m2.3.∗exp(−t.∗m2.2+y(1).∗m2)).∗(exp(−t.∗n1.2+y(1).∗n1)−exp(−t.∗

n2.2+y(1).∗n2))−(m1.2.∗exp(−t.∗m1.2+y(1).∗m1)+m2.2.∗exp(−t.∗m2.2+y(1).∗m2)).∗

(n1. ∗ exp(−t. ∗ n1.2 + y(1). ∗ n1)− n2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2))+ (n1.2. ∗ exp(−t. ∗ n1.2 +

y(1). ∗ n1)− n2.2. ∗ exp(−t. ∗ n2.2 + y(1). ∗ n2)). ∗ (m1. ∗ exp(−t. ∗m1.2 + y(1). ∗m1) + m2. ∗

exp(−t. ∗m2.2 + y(1). ∗m2))))./((n1. ∗ exp(n1. ∗ y(1)− n1.2. ∗ t)− n2. ∗ exp(n2. ∗ y(1)− n2.2. ∗

t)). ∗ (exp(m1. ∗ y(1)−m1.2. ∗ t) + exp(m2. ∗ y(1)−m2.2. ∗ t))− (exp(n1. ∗ y(1)− n1.2. ∗ t)−

exp(n2.∗y(1)−n2.2.∗t)).∗(m1.∗exp(m1.∗y(1)−m1.2.∗t)+m2.∗exp(m2.∗y(1)−m2.2.∗t))).3;

dy(1)=u-y(2)2/2∗uxx;

dy(2)=ux*y(2);

1.3 Boussinesq Opposite Traveling Waves

1.3.1 Surface Wave

function twosoliton = twosoliton(x, t);

range for x and fixed time t

m1=.5;n1=m1/sqrt(1-m12/2);

define the surface wave

fxx=6*m12 ∗ (cosh(m1∗ x).∗ cosh(n1∗ t)+1)./(cosh(m1∗ x)+ cosh(n1∗ t)).2;
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figure(20);plot(x,fxx);

twosoliton=fxx;

input example twosoliton([-20:0.5:20], 10);

1.3.2 Particle Trajectories

function dy = TrajNew(t,y)

dy=zeros(2,1);

m1=.5;n1=m1/sqrt(1-m12/2);

dy(1) =(6*m1*n1*sinh(n1*t)*sinh(m1*y(1)))/(cosh(n1*t) + cosh(m1*y(1)))2− (3∗m13 ∗

n1 ∗ y(2)2 ∗ sinh(n1 ∗ t) ∗ sinh(m1 ∗ y(1)) ∗ (cosh(n1 ∗ t)2 + cosh(m1 ∗ y(1))2− 4 ∗ cosh(n1 ∗ t) ∗

cosh(m1∗ y(1))−6))/(cosh(n1∗ t)+ cosh(m1∗ y(1)))4;

dy(2)=-(6*m12∗n1∗y(2)∗sinh(n1∗t)∗(cosh(n1∗t)∗cosh(m1∗y(1))−cosh(m1∗y(1))2+

2))/(cosh(n1∗ t)+ cosh(m1∗ y(1)))3;

input example [T,Y] = ode45(@TrajNew, [-50 50],[-6,.7]); figure(71); hold on;plot(Y(:,1),Y(:,2));hold

off;

56



APPENDIX B

57



APPENDIX B

EXTENDED RESEARCH

2.1 Further Examination of Euler’s Equations

To expand our research we revisit Euler’s Equations and approximate a solution.

ut +uux + vuz =−px (2.2)

vt +uvx + vvz =−pz−g (2.3)

The most popular way to find the solution is by Asymptotic expansion of equation (2.4). This

method was mentioned earlier. Using the KdV equation, whcih can be solved, we can approximate

the solutions to the Euler’s Equations.

If we know the solutions to the asymptotic expansion, we can go back to the Euler’s

equations. Using u and v from equations (2.8) and (2.9) we want to see how they relate to Euler’s

Equations. With this equations, we are going to avoid pressure. Therefore, if u and v are solutions,

then there is a necessary condition to consider when looking at the right hand side of the equations.

That is

pxz = pzx (2.1)

Once the partial derivatives are applied to the entire equations we get

(ut +uux + vuz =−px)z = utz +uzux +uuxz + vzuz + vuzz =−pxz (2.2)

(vt +uvx + vvz =−pz−g)x = vtx +uxvx +uvxx + vxvz + vvzx =−pzx (2.3)
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This should yield identical or to the very least similar graphs when plotted. We take the partial

derivatives for each equation that results to equations (2.14) and (2.15) and plot the surface.

2.1.1 Single Soliton Plots

For a single soliton, we have the following results. First, we have the surface wave below.

Figure B.1: Single Soliton t =−10,z = 0.1

Now, we plot the surface of equations (2.14) and (2.15) using the same parameters as the

surface wave. Note that these equations are completely dependant on η . When we do this plotting

we get the following for t =−10 and z = 0.1.
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Figure B.2: utz +uzux +uuxz + vzuz + vuzz =−pxz (2.14)

Figure B.3: vtx +uxvx +uvxx + vxvz + vvzx =−pzx (2.15)

To truly see how close these surface plots are, we can plot the difference error and examine
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Figure B.4: Difference Error in Single Soliton Plot

Visually, we can see a completely flat surface at 0. Additionally, the calculations bring the

result of the difference to 0. This means that our approximations of u and v are solutions to the two

dimensional Euler Equations from before.

2.1.2 Multi Soliton or 2-Soliton Plots

The procedure here will be similar to the one before. We begin by plotting the surface wave.

Notice here two unidirection waves.
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Figure B.5: Unidirectional Waves t =−10,z = 0.1

Now, we plot the same equations from before (2.14) (2.15) with these new parameters.

Figure B.6: utz +uzux +uuxz + vzuz + vuzz =−pxz (2.14)
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Figure B.7: vtx +uxvx +uvxx + vxvz + vvzx =−pzx (2.15)

From here, we can now plot the difference error to see how close these surface plots are.

Figure B.8: Difference Error for 2-Soliton Plot

The results are similar as before.From our trials and different parameters we see a nice result

and can actually plot the difference of the two surfaces and see that it is 0. Here we notice the

solutions for the KdV can be used to approximate the Euler’s Equations.
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