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ABSTRACT 

Pokhrel, Mahesh, A Data-Driven Method for Damage Detection in an Open Deck Steel 

Truss Railroad Bridge under the Moving Train Load. Master of Science (MS), July, 2023, 

95 pp., 7 tables, 44 figures, references, 44 titles. 

Open-Deck (OD) steel truss railroad bridges are one of the most common types of 

railroad bridges in the United States. They are, however, significantly vulnerable to the dynamic 

effects of moving train load. In the long run, these dynamic effects cause fatigue damage to the 

structural members. The damage in most of the railroad bridges are monitored by visual 

inspections which are sometimes unreliable and inconsistent due to human error. This study 

explores the identification and classification of damage to an open deck railroad bridge from 

both time-domain (statistical features) and time-frequency domain features (Hilbert-Huang 

Transform) extracted through acceleration response using Machine Learning Classifier in 

MATLAB R2022a. A 3D finite element model of the bridge was created in SAP2000 and 

validated with the field-testing data. The changes in acceleration time-history responses 

obtained under the different damage cases are utilized to detect damage using two Machine 

Learning Classifiers: Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) 

algorithms. The extracted features are used to train and cross validate the algorithm and 

indicated high level of precision (more than 95%) in identifying and classifying the damage in 

the bridge and more than 85% in identifying defect in the rail.





iv 

DEDICATION 

The completion of my Master of Science studies would not have been possible without 

the love and support of my family. My mother, Ramma Pokhrel, my father, Megha Raj Sharma, 

my wife, Shova Subedi, and my son, Sameep Pokhrel, wholeheartedly inspired, motivated, and 

supported me by all means to accomplish this degree. Thank you for your love and patience. 





v 

ACKNOWLEDGMENTS 

The satisfaction and excitement on the successful completion of any important task would 

be incomplete without the mention of the people who made it possible, whose constant guidance 

and encouragement crowned my effort with success. 

I will always be grateful to Dr. Mohsen Amjadian, chair of my thesis committee, for all his 

mentoring, scholarly advice, and critical discussions. From research design, and data processing 

to manuscript editing, he continuously encouraged me to complete this process through his infinite 

patience and guidance. His constant scrutiny and suggestions supported me in the critical stages. 

My sincere thanks and deep gratitude go to my thesis committee members: Dr. Philip Park, and 

Dr. Mohamadhossein Noruzoliaee. Their advice, input, and comments on my thesis helped me to 

ensure the quality of my intellectual work. 

I am also grateful to the professors Dr. Jungseok Ho, Dr. Jong-Min Kim, Dr. Mohamed 

Abdel Raheem, Dr. Thang Pham, Dr. Fatemeh (Noosheen) Nazari, Dr. Yooseob Song and Dr. 

Thuy Vu for their excellent course works and cooperations during thesis work.  

I would like to gratefully acknowledge the support and assistance provided by The 

University of Texas Rio Grande Valley (UTRGV) in terms of the Presidential Research Fellowship 

Award. Also, I would like to thank my colleagues and friends at the University of Texas Rio 

Grande Valley who helped me directly and indirectly by providing information and documents for 

my research. 





vi 

TABLE OF CONTENTS 
Page 

ABSTRACT ................................................................................................................................... iii 

DEDICATION ............................................................................................................................... iv 

ACKNOWLEDGMENTS ...............................................................................................................v 

TABLE OF CONTENTS ............................................................................................................... vi 

LIST OF TABLES ......................................................................................................................... ix 

LIST OF FIGURES .........................................................................................................................x 

CHAPTER I. INTRODUCTION .....................................................................................................1 

1.1. Introduction .........................................................................................................................1 

1.2. Types of Railroad Bridges ..................................................................................................1 

1.3. Components of Railroad Bridges ........................................................................................3 

1.4. Railroad Bridges in the U.S. ...............................................................................................6 

1.5. Damage detection in railroad bridges .................................................................................7 

1.6. Objectives and Scope of the Work......................................................................................8 

CHAPTER II. LITERATURE REVIEW ......................................................................................10 

2.1. Damage to Railroad Bridges .............................................................................................10 

2.2. Effects of Wheel-Rail Contact ..........................................................................................17 

2.3. Structural Health Monitoring of Railroad Bridges ...........................................................18 



vii 

2.4. Machine Learning Classification ......................................................................................19 

2.5. Limitations of the Previous Research ...............................................................................21 

CHAPTER III. THEORY OF VIBRATION OF A SIMPLY SUPPORTED BEAM SUBJECTED 

TO MOVING LOADS ..................................................................................................................23 

3.1. Mathematical Formulation of moving load ......................................................................23 

3.1.1. Effect of Single Axle Load ......................................................................................23 

3.1.2. Impact Factor for Midpoint Displacement ...............................................................29 

3.1.3. Effects of Series of Moving Loads ..........................................................................31 

3.1.4. Resonance Conditions ..............................................................................................36 

3.1.5. Condition of Cancellation ........................................................................................37 

3.2 Validation of the Moving Load Model in SAP2000 ..........................................................38 

3.2.1. Single Axle Load .....................................................................................................38 

3.2.2 Double Axle Load .....................................................................................................41 

CHAPTER IV. FINITE ELEMENT MODELING OF A RAILROAD BRIDGE ........................45

4.1 Devon Railroad Bridge ......................................................................................................45 

4.2. Train Loading....................................................................................................................47 

4.3. Finite Element Model in SAP2000 ...................................................................................48 

4.4. Model Validation ..............................................................................................................50 

4.5. Natural Frequencies and Mode Shapes .............................................................................51 

4.6. Transient Time History Analysis ......................................................................................52 

4.6.1. Sensitivity Analysis: Time Step .................................................................................52 

4.6.2. Sensitivity Analysis: Damping Ratio .........................................................................53 

4.7. Resonance Speed ..............................................................................................................54 



viii 

CHAPTER V. DAMAGE QUANTIFICATION ...........................................................................56 

5.1. Damage to the Stringer-to-Girder Joints ...........................................................................56 

5.2. Defect in the Rail ..............................................................................................................60 

5.3. Vibration Features .............................................................................................................62 

5.3.1. Time Domain Features ...............................................................................................62 

5.3.2. Time-Frequency Domain Features: Hilbert-Huang Transform ..................................64 

5.3.3. Feature Scaling (Normalization) ................................................................................67 

CHAPTER VI. DAMAGE CLASSIFICATION ...........................................................................70 

6.1. Machine Learning Classifiers ...........................................................................................70 

6.1.1. Support Vector Machine (SVM) ................................................................................70 

6.1.2. K-Nearest Neighbor (KNN) .......................................................................................74 

6.2. Damage Classification ......................................................................................................75 

6.2.1. Damage in the Bridge Deck without Rail Defect .......................................................76 

6.2.2. Damage in the Bridge Deck with Rail Defect ............................................................80 

6.2.3. Combination of damages in Bridge and Rail .............................................................83 

CHAPTER VII. CONCLUSIONS .................................................................................................86 

REFERENCES ..............................................................................................................................88 

APPENDIX ....................................................................................................................................92 

BIOGRAPHICAL SKETCH .........................................................................................................95 





ix 

LIST OF TABLES 

Page 

Table 4.1: Axial and Bending members in the Devon railroad bridge. ......................................... 50 

Table 4.2: Natural frequencies of different modes from FE model and field study ...................... 50 

Table 4.3: Damping Ratio for different Modes of the Bridge ....................................................... 54 

Table 5.1: Statistical Features in the Time Domain used for the extraction of features. ............... 63 

Table 6.1: Evaluation metrics for ML classifiers used in the data-analytic study. ........................ 79 

Table 6.2: Evaluation metrics for ML classifiers used in the data-analytic study. ........................ 82 

Table 6.3: Evaluation metrics for ML classifiers used in the data-analytic study. ........................ 85 





x 

LIST OF FIGURES 

Page 

Figure 1.1 Some types of railroad bridges, (a) Through Truss Bridge, (b) Deck Truss Bridge ..... 2 

Figure 1.2 Types of railroad bridges, (a) Through Plate Girder Bridge, (b) Deck Plate Girder  

Bridge (Lindamood et al., 2003) ............................................................................................. 3 

Figure 1.3 Open deck railroad bridge (Lindamood et al., 2003) .................................................... 4 

Figure 1.4 (a) Common components of railroad structure (b) Rail details ..................................... 6 

Figure 1.5 Union Pacific train derailment due to broken rail on a Tempe, Ariz., bridge in July 

        2020 (source: FRA Factual Railroad Accident Report HQ-2020-1390 and Article by  

Johnny Diaz on The New York Times dated July 29, 2020) .................................................. 8 

Figure 3.1 Simply supported bridge subjected to a constant single axle moving load ................. 23 

Figure 3.2 Simply supported railroad bridge subject to (a) series of moving loads (b) actual  

train loads .............................................................................................................................. 31 

Figure 3.3 Simply supported bridge subjected to a constant single moving load......................... 38 

Figure 3.4 Vertical displacement of simply supported beam subjected to a moving load ........... 39 

Figure 3.5 Vertical displacement and acceleration of Simply supported beam subjected to a  

moving load at different speeds ............................................................................................ 40 

Figure 3.6 Maximum absolute vertical acceleration of Simply supported beam at different 

 speeds .................................................................................................................................... 40 

Figure 3.7 Maximum absolute vertical acceleration of Simply supported beam at different 

 speeds .................................................................................................................................... 40 



xi 

Figure 3.8 Simply supported bridge subjected to number of moving loads ................................. 41 

Figure 3.9 Vertical displacement plot of Simply supported Railroad bridge subjected to train 

 load........................................................................................................................................ 43 

Figure 3.10 Vertical acceleration plot of Simply supported Railroad bridge subjected to train 

 load,....................................................................................................................................... 43 

Figure 3.11 Midpoint response of Simply supported Railroad bridge subjected to a train  

load at resonance and cancellation speeds in SAP 2000 ...................................................... 44 

Figure 4.1 Photograph of Devon railroad bridge, Milford, Connecticut. (Malla et al., 2017) ..... 46 

Figure 4.2 Arrangement of principle members of Devon bridge (Baniya et al., 2015) ................ 46 

Figure 4.3 Top Chord plan (Baniya et al., 2015) .......................................................................... 47 

Figure 4.4 Bottom chord plan (Baniya et al., 2015)  .................................................................... 47 

Figure 4.5 Configuration of loading from Amtrak Acela Train ................................................... 48 

Figure 4.6 3D model of Amtrak Acela train and axle loads in SAP 2000 .................................... 48 

Figure 4.7 3D model of Devon Steel truss bridge in SAP 2000 ................................................... 49 

Figure 4.8 Mode shapes of the bridge resulted from the FE model. ............................................. 52 

Figure 4.9 Sensitivity analysis for optimum time step ................................................................. 53 

Figure 4.10 Sensitivity analysis for damping ratio ....................................................................... 53 

Figure 4.11 Midspan vertical deflection and acceleration vs moving speed of Amtrak Acela 

 Train....................................................................................................................................... 55 

Figure 5.1 example of Stringer-to-Girder joint with possibility of cracks  (Rageh, 2020)........... 56 

Figure 5.2 Details of a Joint including fatigue cracks(Rageh et al., 2020) ................................... 57 

Figure 5.3 Change of rotational stiffness with the progress of crack in the Stringer-to-Girder  

joint (Rageh et al., 2020) ....................................................................................................... 58 



xii 

Figure 5.4 Devon railroad bridge elevation and plan with location of sensors and damage ........ 59 

Figure 5.5 Example of a broken rail ............................................................................................. 60 

Figure 5.6 Modeling of a broken rail in the FE model. ................................................................ 61 

Figure 5.7 Sensitivity Analysis for length of Crack in rail with the variation of displacement and 

acceleration at joint 1663. ..................................................................................................... 61 

Figure 5.8 Joint 1663 in the stringer below the edge of gap in the rail (broken rail) ................... 62 

Figure 5.9 Hilbert spectral analysis of the acceleration signal recorded by S2 for train 

 speed of 15m/sec speed a) healthy rail healthy bridge acceleration b) healthy 

 rail damaged bridge acceleration c) Healthy rail and healthy bridge Hilbert 

 spectrum d) healthy rail damaged bridge Hilbert spectrum e) Rail defect 

 highly damaged bridge acceleration f) Rail defect highly damaged bridge 

 Hilbert spectrum ............................................................................................................... 66 

Figure 5.10 Energy and Instantaneous phase of recorded acceleration signals for S2 sensor  

location in the healthy rail and bridge compared to highly damaged bridge at 15 m/sec 
speed ..................................................................................................................................... 69 

Figure 6.1. Graphical representation of SVM classification with optimal and marginal 

 hyperplanes............................................................................................................................ 70 

Figure 6. 2 Scatter plot of Energy vs different features (Healthy Rail) ........................................ 77 

Figure 6. 3 Confusion matrix for SVM and KNN algorithms ...................................................... 78 

Figure 6. 4 Scatter plot of Energy vs different features (Damaged Rail) ..................................... 81 

Figure 6. 5 Confusion matrix for SVM and KNN algorithms (Rail defect) ................................. 82 

Figure 6. 6 Scatter plot of Energy vs different features (Damaged vs Undamaged Rail 

 & Bridge)............................................................................................................................... 84 

Figure 6. 7 Confusion matrix for SVM and KNN algorithms (Damaged vs Undamaged Rail)... 85 





1 

CHAPTER I 

INTRODUCTION 

1.1. Introduction 

Railroads are energy-efficient and cost-effective transportation modes for freight and 

people. The railroad structures have advanced significantly in recent years. Although there is not 

any specified material for railroad bridges, steel bridges are more widespread because of their 

easy installation and maintenance as well as replacement. Different materials used for the 

construction of railroad bridges have their own fits. 

1.2. Types of Railroad Bridges 

Simple-span bridges are the most common types of bridges for railroad alignment. More 

common types of railroad bridges and materials for different span lengths are described here. 

For shorter spans up to 16 ft in length, Timber stringers, Concrete slabs and Rolled steel 

beams are used. Likewise, up to 32 ft in length; Conventional and prestressed concrete box 

girders and beams and Rolled steel beams are used. Similarly, up to 50 ft length of the bridge; 

prestressed concrete box girders and beams, rolled steel beams, deck, and through girders are 

used. For medium Span bridges, from 80 ft to 125 ft, prestressed concrete beams, and Deck and 
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through plate girders are used. For Longer Spans of more than 125 ft in length, through 

and deck trusses are used (Sorgenfrei & Marianos, 2000). 

Truss Bridges: These bridges are the most common railroad bridges due to their 

efficiency and workability. Steel trusses are feasible for spans over 150 to 180 feet. Trusses are 

normally comprised of bottom and top chords connected by diagonal and vertical hangers. These 

parts are connected to form a bridge with the help of a bolt or rivet. Based on the type of 

connection of different parts and the position of the track, Truss railroad bridges can be 

categorized into three types. 

Through Truss Bridges: The rail runs between the trusses and the members of the trusses 

are located above and below the track level. In this type of bridge, normally there are cross-

bracings above and below the train.     

Deck Truss Bridges: In these types of bridges, the level of rail is located at the top of the 

truss. All the bracings and superstructure are positioned below the track. 

Suspended Deck Truss Bridges: The level of the rail is located on top of the truss, and the 

truss structure is supported by the truss at the top chord. 

 
 

(a) (b) 

Figure 1.1 Some types of railroad bridges, (a) Through Truss Bridge, (b) Deck Truss Bridge 

Plate Girder Bridges: One of the simplest type of bridges are the simple beam or girder 

railroad bridge. Two typical plate girder railroad bridges are (Kim & Spencer, 2015). 
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Through Plate Girder Bridge: The bridge consists of a girder with a track resting on the 

floor level. Normally these types of bridges have ties resting directly on the stringer. Through 

girder bridges are used to cross an obstacle when there is a concern of clearance below the bridge 

such as above the highway or crossing. 

Deck Plate Girder Bridge: It consists of two girder plates with composite cross sections 

and girders are located under the track level. An additional floor is not required to support the 

rail, so these types of bridges are more cost-effective than through-plate girder bridges. These 

bridges are used when the vertical clearances below the track system are not a concern. 

(a) (b) 

Figure 1.2 Types of railroad bridges, (a) Through Plate Girder Bridge, (b) Deck Plate Girder Bridge 

(Lindamood et al., 2003) 

1.3. Components of Railroad Bridges 

Railroad bridges are comprised of the structure, rails, ties or sleepers, and ballast. The 

rails are normally fixed to transverse sleepers which are set in a bed of crushed stone ballast. The 

bridges with the whole set of these components are called ballasted deck bridges. In some 

situations, sleepers and ballasts are not found in their position, but the rails are directly fastened 
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to the bridge deck, called open deck bridges. The ballasted deck is widely used in freight and 

regular-speed passenger routes, while the open deck is more common for high-speed routes. A 

ballasted deck provides a better riding track.  

This study focuses on the Open-Deck (OD) bridge which has lesser dead loads and lower 

maintenance cost however sensitive to vibrations and causes rough riding and damage to the key 

structural members. 

Figure 1.3 Open deck railroad bridge (Lindamood et al., 2003) 

Rail: Rail is the longitudinal element of steel material that directs the wheel continuously 

and uniformly throughout the length. It also provides a smooth riding surface and accommodates 

the wheel loads to distribute over the sleepers and further down to the bridge deck. A steel rail 

has an I-section with a flat bottom as shown in figure 4 below. 

Broken rails are a primary cause of train derailments resulting from track infrastructure 

faults. They can have severe effects on the service of rails in the U.S., and the large impact forces 

intensified during the passage of train at high speeds which causes a consequent rupture to rail 

and endanger running safety. 
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Fasteners: Fasteners connect the rails with the sleepers and resist the moments of the rails 

due to different loads from the wheel and temperature change. The selection of type of fastener 

depends on the geometry of the rail and type of sleeper. 

Rail Pad or Plate: A rail pad is installed between the sleeper and the rail. The rail pads 

provide insulation to electricity from the rails and protect the sleepers from wear and tear. 

Sleepers or Ties: Sleepers or Ties are the beams that span across the two rails to connect 

and tie them in position. The functions of sleepers are to receive the loads from the rail and 

distribute them over the ballast, hold the fasteners, and restrain the rail movement through the 

anchorage. Sleepers also provide a tilt to the rails to help develop proper wheel-rail contact and 

works as an electrical insulator between two rails. The ideal spacing between the sleepers is 

0.6m. 

Ballast: Ballast is the layer of crushed hard stone which provides support to the sleepers. 

The ballast helps in maintaining the stability of the track system by spreading loads from the 

sleepers uniformly across the bridge. It also provides a proper drainage system for water away 

from the rails and sleepers. The coarse stone particles have good properties to withstand and 

absorb shock from dynamic loads. At least 0.2 m depth of ballast is preferred to avoid damage to 

the bridge by repair machines and ensure uniform wheel load distributions. 
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1.4. Railroad Bridges in the U.S. 

The U.S. Rail network is one of the largest, safest, and most efficient transportation 

modes. Railroad bridges are the most critical components in the whole network. According to the 

analysis of the recent U.S. Department of Transportation’s (DOT) Bridge Inventory record, more 

than one-third, or 220,000 number of bridges out of total of 618,000, need structural repair, 

rehabilitation work, or replacement. Bridge inspections are done every 2 years. Bridge ratings are 

renewed when inspections are completed. There is an absolute need of calculating more precise 

structural capacity for railroad bridges  (ARTBA, 2021). 

The overall growth in the economy, as well as the population in the U.S., led to a 

significant expansion of railroad traffic levels by 1990s. The freight railroad system facilitates 

large volumes of freight movement cost-effectively (Kara, 2011). The U.S. freight rail network 

consists of 140,000 rail miles handled by seven Class I railroads with running income of more 

than $433.2 million that covers 21 regional railroads, and 510 local railroads. The funding 

(a) (b) 

Figure 1.4 (a) Common components of railroad structure (b) Rail details 



7 

partnerships have been increased to maintain and reconstruct railroad bridges in the whole USA. 

Due to increased investments and initiatives in the US rail system, there is always a demand for 

more research on the advancement and response of critical railroad structures (TxDOT, 2019). 

There are approximately 100,000 railroad bridges in the U.S., among them 60% were 

built before 1950. The trend of increasing limits is very common for the railroad industry. Their 

key structural members are aging with the increased traffic density and the loads. There are 

always chances of unpredicted and catastrophic structural failures. One of the first high-speed 

train projects connecting Houston and Dallas cities in the United States has been proposed by 

Texas Central Partners, LLC with expected service beginning in early 2026. This rail line will 

have approximately 240 miles to travel in less than 90 minutes. So, considering such increased 

speed and evolving high-speed rail service, it is important to monitor the status of existing 

bridges and communicate potential failures well in advance.  

1.5. Damage detection in railroad bridges 

Most of the railroad bridges are monitored by visual inspections which are sometimes 

unreliable and inconsistent due to human error. Identifying damage by measuring the change in 

dynamic response of railroad bridge in both time and frequency domains has become the 

increased area of interest. For this purpose, sensors can be installed on the bridge to measure 

acceleration responses and signals. These signals can be characterized by the Hilbert Huang 

Transform (HHT) which is a powerful method for identifying non-stationary and non-linear 

anomalies hidden in the time series signals. For example, acceleration of an OD railroad bridge 

is contaminated with the nonlinear effects caused by the axle’s impact load.  
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Ultimately, this study intends to detect damage in an open deck steel truss railroad bridge 

under the moving train load using machine learning. 

1.6. Objectives and Scope of the Work 

The overall objective of this research is to detect damage in an open deck steel truss 

railroad bridge with the impact of broken rail under moving train using machine learning 

methods. The specific objectives comprise of three tasks.  

i) Develop simple model of bridge with single and double axle moving load and validate the

result with analytical solution. Then, develop an accurate model of existing steel truss railroad 

bridge and validate with field study.  

ii) Perform dynamic analysis with moving train load in different speeds for healthy and damaged

bridge cases and get the response in terms of acceleration signal from different sensor locations. 

Figure 1.5 Union Pacific train derailment due to broken rail on a Tempe, Ariz., bridge in July 

2020 (source: FRA Factual Railroad Accident Report HQ-2020-1390 and Article by Johnny 

Diaz on The New York Times dated July 29, 2020) 
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ii) Employ machine learning classifier to detect and classify damage after the extraction of

damage features from Hilbert Huang Transform. Ultimately, expand it to predict the condition of 

bridge effectively. 

The system is linear in the state of geometry, material properties and boundary 

conditions. Cross sectional area is constant throughout the length. The number of concentrated 

loads represent the train axle loads. The damage has been considered at the mid-section of the 

bridge in the joint between stringer and cross girder. The broken rail is considered at the mid-

point of the bridge for greater impact. 
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CHAPTER II 

LITERATURE REVIEW 

2.1. Damage to Railroad Bridges 

The damage to railroad bridges due to moving load has been widely studied. Azim and 

Gul presented a method for element level damage detection of railroad truss bridges with the 

analysis of acceleration and strain data. The acceleration and strain time-history data were 

received from the field through the cluster of sensors during the passage of trains. A combined 

damage index was obtained from both acceleration and strain analysis and validated with a finite 

element (FE) model of a railroad truss bridge (Azim & Gül, 2021).  

Zhao and Zhang produced structural damage identification method based on the change 

of modal data before and after the presence of damage. In this method, the assumption was that 

the reduction in structural stiffness due to damage is the summation of each element stiffness 

matrix times damage coefficient. The damage coefficient can then be solved alternatively from 

the equation of motion. Another term, the modal assurance criteria (MAC) was used to verify the 

correlation of mode shapes with the undamaged and the damaged structure. Numerical model of 

six-span truss beam was used to verify the method (Zhao & Zhang, 2012).  
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Mousavi et. al. studied the application of full ensemble empirical mode decomposition 

with adaptive noise technique to identify the damage on a steel truss bridge model built at 

laboratory with white noise excitations. The authors extracted key features from the intrinsic 

mode functions such as energy, instantaneous amplitude, unwrapped phase, and instantaneous 

frequency to localize and quantify the damage. Damage indices were also proposed based on two 

statistical time-history features namely kurtosis and entropy. The experimental results reveal the 

method to be better in addressing the damage detection compared to other available techniques 

(Mousavi et al., 2022).  

Malekjafarian et. al. prepared training data set from an artificial neural network (ANN) 

using the vehicle responses measured from multiple passage over a healthy bridge. The Discrete 

Fourier Transform (DFT) plot of the acceleration was used to predict the response from its speed. 

The differences between the predicted and measured responses for each passage was calculated 

as a prediction error using root mean square error. To identify the changes in the feature, a 

damage indicator was outlined using a Gaussian process (Malekjafarian et al., 2019).  

Rageh et. al. trained the ANN using bridge computational models to simulate damage 

scenarios. The procedure for generating training data was based on measured structural response 

from the numerical model. The efficiency and accuracy of damage detection methods were found 

to be significantly influenced by the level of modeling uncertainties (MUs).  The authors 

investigated the applicability of the proposed framework to in-service bridges analyzing the 

effect of MUs. As per the results obtained, the damage location and intensity were detected 

accurately for the studied cases; however, accuracy reduced with the increase of MUs (Rageh et 

al., 2020).  
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Mehrjoo et. al. estimated the damage intensities of joints for truss bridges using back-

propagation based neural network. The substructural identification method was utilized to solve 

the issues related to many unknown parameters. The neural network used natural frequencies and 

mode shapes as input parameters for damage identification. Numerical models were used for 

validating the accuracy and efficiency of the proposed method (Mehrjoo et al., 2008).  

Onur Avci et al reviewed the studies on vibration based structural damage detection from 

traditional methods to Machine Learning and Deep Learning methods. They presented the main 

features of the traditional methods and a thorough review of the most recent ML and DL 

algorithms utilized for vibration-based structural damage detection (Avci et al., 2021).  

Svendsen et al suggested an approach for identifying damaged joint in existing steel 

bridges. With the help of appropriate instrumentation, the methodology combined the use of 

temporal moments from the response measurements. Damaged joint connections are identified 

by comparing statistical parameters based on temporal moments to a baseline parameter 

evaluated for all considered joints. The method was found applicable to open-deck steel bridges 

and localization of damaged joint is performed by applying the instrumentation framework (B. 

Svendsen et al.,2020).  

The beam element model is the simplest form of bridge model. The dynamic responses of 

bridges under train loads can be modeled the train as a point load and the bridge as a simple 

Euler-Bernoulli beam. For a beam traversed by a single load, the mass of the beam is negligible 

compared to the moving load. Many researchers proposed analytical solutions for simplified and 

fundamental problems, with some variations on the moving force. At the instance of load arrival, 

the beam is at rest, thus possesses neither deflection nor velocity. There are some research which 

have studied moving loads to simulate trains with multiple cars for single and multi-span beams. 
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Moving load model does not consider the inertia effect of the moving vehicle, so these are valid 

only when the mass of the vehicle is small relative to the mass of the bridge.  

Zhongquan et al., 2009, studied the static behavior of a reinforced concrete small span 

railway bridge using finite element method. The load distribution was studied in the support and 

in bearings, and similarly the effect of the stress distribution was also studied. The analysis 

results were validated with the field load testing results. The result showed that the influence of 

load distribution was not significant, while those of supporting width and additional support were 

considerable; and the spatial effect was also found to be significant (Zhongquan et al., 2009).  

The numerical analysis for railway bridges is time consuming because of the complexity 

of load configurations and increased speed of high-speed trains. For practical purposes and time 

efficient simulation, simplified models of bridge, track and train are always preferred. One of the 

railway bridges in Stockholm named “New Arsta Railway Bridge” was taken for this study. The 

simplified Bernoulli-Euler beam element FE model was initially adjusted based on static load. 

Most influencing parameters in modeling were identified and optimized in FE model using 

statistical identification. To validate the model, several static and dynamic field tests were done 

with a loaded train. The systems were found to work efficiently. It was found that the complex 

bridge can be simplified by beam theory and corresponding equivalent modulus of elasticity for 

reliable results. The equivalent modulus of elasticity for the concrete grade was found to be 25% 

larger than the specified mean value. The moving load was simulated with high-speed train loads 

in the optimized FE model. The vertical acceleration of the bridge deck was much below the 

allowable value. So, multi-span continuous concrete bridges are not so sensitive to train induced 

vibrations but may be suitable for high-speed trains. The appropriate area of introducing simple 

FE model with updated procedure was addressed by the study. (Wiberg, n.d.)  
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Baniya Surendra, 2015 used Devon truss railroad bridge over Housatonic River in 

Milford to determine dynamic response under moving trains. Natural frequencies and 

displacements were compared with the field test data. The authors studied the effects of different 

modes in vertical response of bridge and did analysis for 40 MPH speed for three different trains. 

Among the three trains studied, they found Amtrak Accela train giving the highest response in 

terms of vertical and lateral displacement in every mode.    

Differential settlement has been found as one of the major issues in the rail industry at 

stiffness transition points between bridge and road interface. In this study, the authors used a 

coupled multibody and finite element method to find rail settlement. Wheel-rail contact is found 

based on Hertzian penalty formulation. The model was decomposed into different linear model 

of track substructure such as rails, fasteners, sleepers, ballast, sub-ballast, and subgrade to 

improve the efficiency. To feed into a nonlinear FEA model, the contact forces between the 

wheel and rail are obtained from the multibody simulation that determines the settlement of the 

soil. In this way, an elasto-viscoplastic soil model is presented to determine the permanent 

settlement of the soil. As the yield is small, the linear stiffness of the multibody model is still 

relatively accurate. The simulations can be used to help find settlement and assess mitigation 

techniques. (Foster & Kulkarni, 2021)  

Although extremely complex vehicle, track, and bridge models can be derived to 

represent the real condition, simpler models are still well used to identify the key parameters 

controlling the railroad bridge responses. The speed parameter, which is a non-dimensional 

property that is adopted to demonstrate the relationship between the speed of the vehicle and the 

responses of the bridge, is computed. 
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Ticona Melo et al. studied one of the railway bridges to standardize the numerical model 

considering the interaction among the vehicle, rail and the bridge deck. Sensors were placed at 

different critical points of the structure to measure ambient vibration and computed the modal 

parameters. The behavior of the system was identified and tested after comparing the 

experimental with numerical values. During modeling, the deficiency in the ballast material was 

found in between the half-decks at the boundaries of longitudinal joint. A correction factor was 

determined to adjust experimental and numerical values on the displacements and accelerations. 

Regarding deck accelerations, the damping coefficients were found to be critical. (Ticona Melo, 

Ribeiro, et al., 2020)  

There are very few studies which focus primarily on the dynamic response of the railway 

bridge. This study provided some modelling choices for the train-bridge interface. The important 

factors are recognized for study and provided basis to determine an appropriate degree of 

complexity in modelling interaction between train and bridge. The responses in terms of 

interaction between train and bridge are compared changing other key parameters. The authors 

observe the combination of these parameters to reduce the bridge response. (Arvidsson & 

Karoumi, 2014)  

Ping Lou used the finite element method for dynamic analysis of bridge–track–train 

interaction. The author modeled the set of wheels by a mass–spring–damper system. The rails 

and decks were modeled as Bernoulli–Euler beam elements. Similarly, the elasticity and 

damping of the rail were modeled as continuous springs and dampers. The validation of the 

suggested method is shown by a comparison of numerical value with the existing literature. Two 

vehicle models were used to identify the effects on different bridge models. The damping values 
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of bridges were also varied for the maximum dynamic responses of train, track, and bridges.  

(Lou, 2007) 

The dynamic behavior of the critical zone at transition between a bridge and open track 

was studied for a moving train using a two-dimensional finite element approach. The effect of 

different layers and backfills on the track behavior was studied. It was evaluated that the reduced 

sleeper spacing improved the performance of the critical zone. The numerical model was 

confirmed with the field data mentioned in the previous literature. The subgrade soil significantly 

affects the track response on the outer side of the critical zone. One side after entering the bridge 

is stiffer and another side above subgrade soil is softer. Once the subgrade becomes stiffer and 

stronger, the contribution of the ballast and sub ballast to the overall track displacement 

increases. It was found that the track stiffness was significantly increased with wedge shaped 

backfill (Punetha et al., 2021) 

Yang et al., 2004 did analytical study of the resonance and cancellation phenomena of 

elastic support bridges caused by a sequence of moving loads at constant interval. The resonance 

condition in terms of different speeds is the same for the beam with both the elastic and simple 

supports. As the elastic support beam has a lower frequency of vibration, it has a lower resonant 

speed; due to which it can be more easily excited than simply supported beams. The speed 

parameter for the cancellation condition to occur increases slightly as the stiffness ratio 

increases. However, since the frequency of vibration is slightly smaller for an elastically 

supported beam, it turns out that the real cancellation speed for an elastically supported beam 

remains close to that for the simply supported beam. Whenever the cancellation speed comes 

close to or coincides with the resonance speed, the phenomenon of resonance will be suppressed. 

The cancellation condition is more decisive than the resonance condition. Once a resonance 
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condition is reached for an elastically supported beam, much larger peak responses will be 

induced on the beam, compared with those of the simply supported beam.  

2.2. Effects of Wheel-Rail Contact 

Rail is a critical component that directly carries the impact of train load. Under the long-

term service and the effect of train load, the rails are subject to various damages. The broken rail 

has a significant impact on wheel-rail contact and running safety of trains. Once the rails are 

broken, the continuity of rails are damaged. The discontinuity caused by the broken rail results in 

the loss of torsional stiffness. During the passage of wheel over the broken rail, a strong dynamic 

force of wheel-rail impact will be excited, exacerbating the wheel-rail contact and vibration of 

rail. In addition, the broken rail can cause derailment and ultimately catastrophic structural 

failure in the railroad bridge structure (Gao et al., 2021). 

Ticona Melo, Malveiro, et al., 2020 studied the non-linear actions of the track-deck 

connections having irregularities in the track. A specific finite element model was developed 

with a track-deck interface, having a group of a friction contact element and a non-linear spring. 

The longitudinal resistance of the track is changed, based on the locations of loads. The findings 

indicated that especially for medium and large span bridges, the effects of temperature variations 

influenced the responses of the track-deck interface rather than the live loads. Under train live 

loads, the extension of the regions with plastic actions were extended with the change in the 

horizontal stiffness of the support. The plastic hinge was found to be extended upto 55% of span 

for medium and large span bridges. The evaluation of the plastic attacks was achieved at the 

track-deck interface for different types of bridges. Reduced stiffness ultimately causes the 

increase in vertical movements of the bridge (Ticona Melo, Malveiro, et al., 2020). 
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The simulation of local irregularity showed that at the time of deterioration of harmonic 

local irregularity, even if the amplitude is small, there is serious deterioration of wheel-rail with 

strong shock and vibration. The amplitude of harmonic local irregularity is directly proportional 

to the maximum wheel-rail vertical force. When deterioration of the amplitude exceeds a certain 

value or limit derailment happens. The wheel-rail dynamic interaction also increases with 

increasing speed. Considering constant speed, harmonic local irregularity settlement 

deterioration and harmonic local irregularity raised deterioration increases the maximum wheel-

rail vertical force by 14.4%. So, local irregularity deterioration and the speed of the locomotive 

are found to be controlling factors.  (Chen et al., 2014) 

If a derailment occurs on railroad bridges, especially at high speeds, it may cause 

significant damage to the life and properties. There is always the probability of a train being 

exposed to natural hazards while it is running over a structure such as bridge. This paper presents 

a comprehensive literature review of the issues with the train running safety assessment on 

railroad bridges for the assessment of the derailment risk  (Montenegro et al., 2021). 

2.3. Structural Health Monitoring of Railroad Bridges 

The main objectives of Structural Health Monitoring are to identify damage in the 

structure at its real-time and prompt action can be made to keep the structures operational and 

safe. For these reasons, there is an increased demand for smart approaches which can support 

decision-making for maintenance of structures. These are based on a cost-effective and reliable 

monitoring system which is called Structural Health Monitoring. 
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The author intends to provide an approach to Structural Health Monitoring of bridges 

which focuses on damage detection using data-based methods. The data is collected in healthy as 

well as damaged states of the structure. Then the data collected under the healthy state is used for 

training Artificial Neural Networks, as the primary algorithm of the proposed method. 

Afterwards, new data collected under healthy or damaged states can be directly compared with 

the corresponding projections. Finally, Artificial Neural Networks for the assessment of 

structural condition is appropriately used. This is put into effect by adjustments to enhance the 

performance of the algorithm. This research work intends to contribute for proactive 

maintenance by which data is continuously collected and analyzed in almost real-time to support 

decision-making (Neves, n.d.).  

Physics based approach to Structural Health Monitoring (SHM) has practical 

shortcomings such as conditions of simple structure under controlled environments. Sensors and 

sensor networks were being utilized to collect data. Lack of sensor data corresponding to 

different damage scenarios continues to remain a challenge. Most of the supervised Machine 

Learning, when trained using limited data, lack robustness and generalizability. In this study, 

physics informed learning (integration of domain knowledge) in to learning process is presented 

(Neves, n.d.). 

2.4. Machine Learning Classification 

The railroad industry needs to explore the potential of applying artificial intelligence and 

machine learning in bridge structures because machine learning is capable of handling complex 

problems with high computational efficiency. This can assist stakeholders in decision making 

process. The damage detection in an open deck steel truss railroad bridge with proper extraction 
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of features using machine learning is yet to be properly addressed. This study offers the extent to 

machine learning applications in damage detection of railroad bridges. The critical task in 

generating any Machine Learning algorithm is to gather enough reliable data to prove suitable 

metrics, with most of this data being used for training and validation purposes. After training the 

machine learning model correctly, it expands itself to be able to forecast effectively and can 

make decisions.  

Chalouhi et al., 2017 detected and localized damage in railway bridges using machine 

learning. For this study, air temperature and deck acceleration data were measured. The major 

stages of the study are collection of data in reference condition, preprocessing of acceleration 

time histories and aimed at extracting crossing train characteristics (speed, running direction and 

number of axles), Training of ANN using data collected in reference condition and health 

classification of bridge in current condition comparing predicted and measured responses. A set 

of neural networks are trained to predict deck acceleration under every environment and 

operational condition. The responses are compared with acceleration predicted. Changes in 

behavior due to damage are detected as discrepancy between predicted and measured responses. 

The study has shown good agreement with the results from previous studies based on mode 

shape variation. Ultimately it confirmed the possibility of applying machine learning to real 

bridges (Chalouhi et al., 2017). 

There are different types of sensors used in structural health monitoring of Railroad 

Bridges. Different applications are used for sensors such as electrical, optical, geodetical and 

acoustical. A lot of parameters like displacement, stress and strain can be supervised using 

sensors. Some conventional sensors to measure displacement and accelerations are strain gauges 

and accelerometers. However, fiber optic sensors and lasers are available as modern and efficient 
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sensors. They are easy to install and can collect data with very less human effort automatically, 

which saves a lot of time. For railway bridges these days, remote monitoring can be the only way 

to monitor a structure. (Enckell, 2006) 

To improve the accuracy and efficiency of damage detection methods, bridge response 

data collected from the embedded sensors in the model has been intended to be used for machine 

learning. These computational resources open the opportunity for monitoring and control 

applications to use computing approaches beyond traditional methods to data-driven by means of 

machine learning (Hou et al., 2022). 

In this work, a data-driven damage detection approach that considers the true behavior of 

a bridge is proposed. The approach is based on the bridge dynamic response data due to a 

standard train loading, identify features and make decisions with minimal human interventions. 

In this study, typically the finite element model (FEM) of the railroad bridge in SAP 

2000, has been utilized and validated with field data. Despite relying on the physical model of 

the structure, the model is dependent on statistical pattern recognition (PR), which is used by 

machine learning algorithms (Malekloo et al., 2021).    

2.5. Limitations of the Previous Research 

Several studies have been performed to improve the identification and detection of 

damage in different types of bridges. However, none of these studies, to the best of the author’s 

knowledge, have presented damage detection in an open deck steel truss railroad bridges using 

proper feature extraction technique such as HHT and classification of damage using machine 

learning. There is sufficient potential of applying machine learning in monitoring and detecting 
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damage in railroad bridge structures because it has the capability of handling complex problems 

with high computational efficiency. This study focuses on the damage detection of typical open 

deck steel truss railroad bridge using Hilbert Huang Transform for feature extraction and 

Machine Learning for classification. Impact of broken rail on bridge damage detection has also 

been considered. Ultimately, machine learning will be used to identify and classify the status of 

the bridge. 
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CHAPTER III 

THEORY OF VIBRATION OF A SIMPLY SUPPORTED BEAM SUBJECTED TO 

MOVING LOADS 

3.1. Mathematical Formulation of moving load 

3.1.1. Effect of Single Axle Load 

In this section, a simply supported beam bridge with finite element model has been 

presented and validated with analytical solution. A single span simply supported railroad bridge 

subjected to single axle load (P) moving at constant speed (V) can be simplified with the 

assumption of linear elastic model. The bridge is assumed to have uniform cross section with 

constant mass and EI values.  

Figure 3. 1 Simply supported bridge subjected to a constant single axle moving load 

The analytical solutions for the vertical displacement of the above simply supported 

single span bridge can be derived as follows. u (x, t) is the displacement of the beam along the y
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axis at position x and time t, L the length of the bridge, m the mass per unit length, ce the 

external damping coefficient, ci the internal damping coefficient, E the modulus of elasticity, and 

I the moment of inertia of the bridge. During simplification process, following assumptions are 

made for the computation equally considering the accuracy. 

i) The bridge is homogeneous and having constant cross section, ii) only one moving load at a 

time is allowed on the bridge, iii) only the force is considered, and the inertia effect is neglected, 

iv) speed v is constant throughout the bridge, v) the bridge is initially at rest vi) surface 

irregularity of the bridge and track is not considered. 

The equation of motion of a simply supported beam traversed by a force p at constant 

speed v is given by. 

(3.1) 

Where, primes (′) and dots (˙) denote differentiation with respect to coordinate x and time 

t, respectively, and δ is the Dirac delta function. The boundary conditions are. 

,  ,  ,   

The beam is assumed to be at rest prior to the arrival of the moving vehicle so the initial 

conditions are. 

,   

The transverse deflection of the beam u (x, t) due to only the nth mode of vibration can 

be written as, 

(3.2) 
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Where, Φn is the nth vibration mode which satisfies boundary conditions. qn(t) represents 

the generalized coordinate for nth vibration mode. 

Substituting value of equation (3.2) in equation (3.1), Multiplying both sides of Eq. (3.1) 

by Φn and integrating with respect to x from 0 to L, the generalized equation of motion of the 

beam is obtained as 

(3.3) 

 

Where, 

 

Let us denote the vibration frequency ωn of the nth mode of the beam as 

(3.4) 

We can write, ce = αem, and ci = αiE and ξn is the corresponding damping coefficient 

for nth mode of vibration given by, 
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 Then equation (3.3) becomes 

(3.5) 

This equation of motion is valid only when the acting position vt of the moving load is 

located within the beam, i.e., 0 ≤ vt ≤ L. Once the moving load leaves the beam, only free 

vibration remains.  

For a simply supported beam, the nth mode shape of vibration is  

 and the frequency of vibration ωn obtained from Eq. (3.4) is 

Substituting the value into Eq. (3.5) yields the equation of motion for the nth mode of the 

simply supported beam as 

(3.6) 

which is uncoupled from the other modes of vibration. From this equation, the 

generalized coordinate of qn for the nth mode can be solved as 
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(3.7) 

Where, ωdn is the damped frequency of vibration of the beam and given by 

Ωn is the excitation frequency. 

Sn is the non-dimensional speed parameter defined as the ratio of the frequency of 

excitation of the moving load to the nth frequency of vibration of the beam 

(3.8) 

Consequently, the total displacement u(x, t) of the beam caused by all the vibration 

modes can be summed as follows: 
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(3.9) 

This is the solution for displacement of the beam caused by a single moving load with 

considering the effect of damping.  

In the above Eq. (3.9), the terms containing Ωnt represents the forced vibration of the 

bridge induced by the moving load, and the terms with ωdnt are the free vibration. This equation 

applies within the limit of the beam length. After the load has passed, the response is a free 

vibration with initial conditions equal to the conditions in the beam at the moment when the 

force leaves the span. 

Practically, the effect of damping on the bridge is so small, due to the short acting time of 

the moving loads. So, it can be ignored completely. By neglecting the effect of damping, the total 

displacement u (x, t) can be written as; 

(3.10) 

This is the equation of displacement of the simple beam at section x subjected to the 

moving load p acting at position vt without damping effect. 



29 
 

The result obtained for the midpoint displacement by considering the first mode only is 

sufficient, because all the anti-symmetric modes of vibration have zero contribution to the 

midpoint displacement. This gives the sense of using only the first mode which can yield 

generally good approximate solutions for vehicle-induced response (Yang et al., 2004). 

 

3.1.2. Impact Factor for Midpoint Displacement 

The results presented in this section cover a wide range of applications, as they are all 

expressed in terms of the nondimensional speed parameter. 

The impact response induced by a single moving load on the beam is generally larger 

than that induced by multi or continuous moving loads due to the suppression effect of the 

simultaneous acting loads. Thus, the impact formulas for a single moving load should be 

regarded as reasonable higher value for the responses considered. 

Impact factor, I can be given by. 

(3.11) 

Where, ud(x) and us(x) are the maximum dynamic and static response of the bridge at 

section x due to moving load. 

For a simple beam, both the maximum dynamic and static displacement occur at the 

midpoint. The maximum static displacement of the beam under the static load p is given as, 
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Whereas the dynamic response for the midpoint displacement of the beam can be 

obtained from Eq. (3.10) by plugging the value of x = L/2, 

(3.12) 

With these substitution, for n = 2, 4,..... the shape function sin(nπ/2) become extinct at the 

midpoint, as it turns out to be asymmetrical. Thus, only the modes with n = 1, 3,..... i.e., the 

symmetrical modes, contribute to deflection of the midpoint. 

Likewise, the impact factor for the midpoint deflection of the simple beam caused by the 

moving load p acting at position vt is 

(3.13) 

This term is independent of the magnitude p of the moving load. As there are contribution 

of higher order terms decreased by a factor n−4, the effect of higher order terms in equation (3.13) 

can be neglected. We can also say that 96/π4 = 1. 

Then the equation (3.13) becomes 

(3.14) 

The impact factors for the midpoint displacement can be calculated using Eqs. (3.13) and 

(3.14), considering either multi-modes or the first mode only. The midpoint displacement impact 

response of the simple beam is dominated by the first mode (Yang et al., 2004). 
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3.1.3. Effects of Series of Moving Loads 

A train is modeled representing two sets of moving loads at constant intervals. To 

simplify the solution within the range of accuracy, bridge and track irregularities are not 

considered. 

(a) 

(b) 

Figure 3. 2 Simply supported railroad bridge subject to (a) series of moving loads (b) actual train 

loads 

The train is supposed to have N number of identical cars, and each car is supported by 

two bogies and two axles. Let us consider Lc as the distance between the two axles of a car, and 
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Ld as the distance of axles between two cars. A train has been represented as a series of moving 

wheel loads p. We can see a time lag of Lc/v between the two sets of moving loads. Based on the 

above configuration, the wheel load function F(t) for the train can be given as. 

(3.15) 

Where, 

(3.16) 

δ is dirac delta function, x is coordinate of the beam, H is step function, tj is arriving time 

of the jth load at the beam, tj = (j − 1)d/v, and N - total number of moving loads.  

The action of the jth moving load is effective by the term H(t−tj) once entering the beam, 

and will be disabled by the term H(t − tj − L/v) while it leaves the beam. 

Then equation (4.15) can be modified to. 

(3.17) 

This is applicable once neglecting the effect of inertia of the moving masses and the train 

bridge interaction. Again, the forcing function Fn(t) for the nth generalized coordinate can be 

given by 

(3.18) 

If only the effects of moving loads are considered, the equation of motion in terms of 

generalized coordinate qn 
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(3.19) 

(3.20) 

where ωdn is the damped frequency of vibration of the beam given by 

The function Pn(v, t) can be expressed as 

(3.21) 

Here the value of A and B are found as, 

(3.22) 
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(3.23) 

Where, Ωn denotes the exciting frequencies of the moving loads, Ωn = nπv/L, and the 

speed parameter, Sn = nπv/(ωnL). 

The terms Pn(v, t) and Pn(v, t − tc) in Eq. (3.20) represent the dynamic responses excited 

by the two sets of wheel loads, and the second set has a time lag tc after the front set of loads. 

Neglecting the effect of damping and considering only the first mode of vibration, the 

dynamic response of the beam can be derived as 

u(x, t) =
2pL3

EIπ4
×

1

1 − Sn
2 sin

πx

L
[P1(v, t) + P1(v, t − tc)] (3.24) 

where the response function P1(v, t) for the first set of wheel loads is given by. 

P1(v, t) = ∑ {[sin Ω1(t − tj) − S1 sin ω1(t − tj)] × H(t − tj)

N

k=1

+ sin Ω1 (t − tj −
L

v
)

− S1 sin ω1 (t − tj −
L

v
) × H (t − tj −

L

v
)} 

(3.25) 
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The terms P1(v, t) and P1(v, t − tc) denote the contribution of the front and rear wheel 

loads, respectively. 

Depending on the bridge/car length ratio L/d, there may be different number of wheel 

loads or no loads acting on the railroad bridge during the passage of the train. So, The most 

severe case occurs when the front wheel load of the (N − 1)th car has left the bridge, and the front 

wheel load of the Nth car has entered the bridge, namely, when the rear wheel load of the (N − 

1)th car and the front wheel load of the Nth car are simultaneously acting on the bridge.

The dynamic response of the beam has been excited to the maximum by the former N − 1 

cars that have passed the bridge. For this case, tN < t < (tN + L/v) and the equation (3.25) 

becomes 

(3.26) 

The term containing H(t − tN) represents the dynamic response of the beam induced by 

the motion of the Nth front wheel load of the train, and the term containing H(t − tN −1− L/v) is the 

free vibration caused by the former N−1 front wheel loads that have passed the bridge. 

Since the two response functions P1(v, t) and P1(v, t − tc) are similar in nature, only the 

function P1(v, t) for the first set of wheel loads are considered in the above equation (3.26). 
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3.1.4. Resonance Conditions 

The response of the simply supported beam will be maximum when the denominator of 

the second term of equation (3.26) is zero.  

Hence we can say,  ;       or     for i = 1, 2, 3,.... 

This is the condition for resonance of the beam to occur under repetitive loads. For this 

condition, the response function P1(v, t) in Eq. (3.26) turns out to be indeterminate.  

By the relation tN = (N −1)d/v and L’Hospital’s rule, it can be shown that 

(3.27) 

Accordingly, the response will be as per following equation. 

(3.28) 

This is the response case when the Nth wheel load is acting on the beam and the N-1th 

wheel load has already passed the beam. The last term containing H (t−tN−1 − L/v) indicates that 

under the condition of resonance, the response of the beam will be continuously advanced with 

more loads passing the beam. 

For resonance condition, the critical car length d of the train traveling over the beam can 

be given as, 
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We have the car length d and beam span length L, the speed parameter S1 can be found 

from the resonance condition as  

We can see from the relation that if the beam is longer, the speed for resonance will occur 

at lower value. Substituting the values of i = 1, 2, 3... from the above equation, resonance may 

occur at the following speeds: S1 = 0.50d/L, 0.25d/L, 0.167d/L, 0.125d/L, ..., with declining 

values. 

Here, the speed at 0.5 d/L is the primary resonant speed, and all the remaining are the 

secondary resonant speeds (Yang et al., 2004). 

3.1.5. Condition of Cancellation 

In the Equation (3.26), if cos(ω1L/2v) = 0; the excitation effects of all the former N −1 

wheel loads passed over the beam will be equals to zero. In this case, no remaining response will 

be developed by the loads that passed through the beam. Such a condition is called the condition 

of cancellation. Then the response function P1(v, t) will be. 

(3.29) 

This equation (3.29) indicates that if the condition of cancellation is happened, the 

response of the beam is determined by the last wheel load (Nth load) acting on the beam, as the 

free vibrations produced by all the former wheel loads have been cancelled. 

Moreover, at the condition of cancellation, no remaining response will be seen on the 

beam after the last wheel load passes the beam. 
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We know that S1 = πv/(ω1L), for the condition of cancellation, the speed parameter can 

be determined as: 

From the above equation, the cancellation can be found at speed parameters, S1 = 1, 1/3, 

1/5,.... From the equation (3.26) we can see that the condition of cancellation is more significant 

and dominant than resonance. 

3.2 Validation of the Moving Load Model in SAP2000 

3.2.1. Single Axle Load 

This simple moving load example was taken for the validation of the model because it is 

also possible to check and validate analytically.  

Figure 3. 3 Simply supported bridge subjected to a constant single moving load 

The analysis was performed with finite element software SAP 2000 and the results were 

compared with solution of analytical equation (3.10) in MATLAB code. The vertical mid-span 

displacement is computed and compared with the output from Finite element model normalized 
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with respect to maximum static displacement as presented below. Figure 3.3 shows the 

normalized displacement of mid span of beam with static displacement, (Udynamic/Ustatic)mid, in 

term of load position on the beam. 

Figure 3. 4 Vertical displacement of simply supported beam subjected to a moving load 

The maximum normalized displacement obtained from the analytical calculation in 

MATLAB (see code in Appendix-A) and FE model in SAP 2000 are particularly matching. In 

addition to this, the outcome from the current model for the maximum midpoint displacement are 

also validated with the results in the literatures (Karoumi, n.d.) and (Björklund, n.d.). 

The maximum midpoint displacement and acceleration at different speeds of moving load 

from the FE model are plotted below. 
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Figure 3. 5: Vertical displacement and acceleration of Simply supported beam subjected to a 

moving load at different speeds 

Figure 3. 6 Maximum absolute vertical displacement of Simply supported beam at different speeds 

Figure 3. 7 Maximum absolute vertical acceleration of Simply supported beam at different speeds 
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3.2.2 Double Axle Load 

The solution for the condition of resonance and cancellation has been numerically 

investigated and validated. The final element solution of SAP 2000 was utilized to validate the 

result and response. 

Consider simply supported bridge with L = 20 m, I = 3.81 m4, E = 29.43 GPa, m = 34, 

088 kg/m, for which the first frequency of vibration is ω1 = 44.75 rad/s. The train has N = 5 cars 

of identical length d = 24 m. The two-wheels of the car is separated by 18 m (Lc) and Ld = 6 m. 

The mass of each wheel assembly is M = 22000 kg, corresponding to P = 215.6 KN. For the 

current scenario, the maximum static deflection (us) happens when two-wheel loads p of interval 

Ld are located symmetrically on the beam as shown in Fig. 3.8: 

Figure 3. 8: Simply supported bridge subjected to number of moving loads 

Where,  for this case. 

The speed parameter S1 is selected by putting i = 5, S1 = d/(2iL) = 0.12, the resonance 

speed can be calculated as;  
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= 34m/sec 

Again, for the condition of cancellation, the speed parameter S1 is selected to meet the 

condition. 

By putting i = 6, S1 = 1/(2i − 1) = 1/11, the speed of cancellation is found to be 

= 25.9 m/sec 

By modeling the train as a set of wheel loads, the midpoint responses of the beam 

subjected to the action of the wheel loads moving at the above two speeds have been plotted 

through the finite element solutions by dividing the beam into 16 elements. 

For this case, d/L = 1.2. So, the points of resonance are at different speed parameter 

values: S1 = 0.60, 0.30, 0.20, 0.15, 0.12, 0.10 and the points of cancellation are: S1 = 1.00, 0.33, 

0.20, 0.143, 0.111, 0.091. Similarly, the speeds of resonance which are calculated as v = 171, 

85.5, 56.9, 42.75, 34, 28.5 m/sec and the speeds of cancellation are v = 284.89, 94, 57, 40.7, 

31.6, 25.9 m/sec.  

The resonance points with S1 = 0.60, 0.15, 0.12 can generally be observed, while the 

other resonance points are merely suppressed as they are near the points of cancellation. The first 

resonance point (S1 = 0.6) should be avoided in practical design for its large value of response. 

Similarly, from the FE model in SAP 2000, the resonance points are found plotting the 

maximum vertical displacements at different speeds of train load model. The resonance speeds 
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found from the plots are 25, 34 and 43 m/sec which are quite matching with the analytical 

solution of resonance. 

Figure 3. 9 Vertical displacement plot of Simply supported Railroad bridge subjected to train 

load 

Figure 3. 10 Vertical acceleration plot of Simply supported Railroad bridge subjected to train 

load 

In both the displacement and acceleration plots from FE model, the resonance and 

cancellation speeds are found at the same points. So, the model in the SAP 2000 is found to be 

more accurate and valid for a number of moving loads (train load). 
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Figure 3. 11 Midpoint response of Simply supported Railroad bridge subjected to a train load at 

resonance and cancellation speeds in SAP 2000 

As shown in figure 3.11, Once the resonance condition happens by number of moving 

loads, the response of the beam increased as there are more wheel loads passing through the 

beam and reaches a maximum after passing last wheel load into the beam. FE model in SAP 

2000 for the midpoint response in the simply supported beam model at resonance and 

cancellation speed are particularly matching with the previous literature (Yang et al., 2004). 
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CHAPTER IV 

FINITE ELEMENT MODELING OF A RAILROAD BRIDGE 

4.1 Devon Railroad Bridge 

The bridge under study is located at Milford, Connecticut and is an open-deck steel truss 

railroad bridge. It is on the Northeast Rail Corridor between Washington, D.C. and Boston, 

Massachusetts allocated for higher speed trains. This bridge having seven-span, double track 

through truss with 325.2m length was built around year 1900 over the Housatonic River. There 

are two independent parallel bridge structures sharing the abutments and piers. One of the spans 

near the east abutment with 66.15m length has been taken for this analysis. The tracks are spaced 

laterally at 3.86 m center-to-center. The rails rest on wood ties that are supported by stringers 

spaced laterally at 1.98 m on center.  

The truss span is 66.15 m long and contains seven panels with stringers connected to 

floor beams that are spaced 9.45 m on-center longitudinally. A lateral wind bracing system is 

provided using top and bottom laterals. Truss end-bracings, verticals and top chords are built-up 

members while midspan diagonals and bottom chords are eye bars of different numbers. Bottom 

lateral bracing members are single angles, while top lateral bracings are channel sections. The 

detailed elevation and plan view of the studied truss span is shown in Fig. 4.2 to Fig. 4.4. The
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stringers are divided into 14 panels with floor beams longitudinally spaced at 4.725 m. Floor 

beams are built-up I-sections having a web plate and flanges constructed using angles and cover 

plates of varying number and thickness. Stringers are rolled, W 36×150, I-beams (Malla et al., 

2017).  

Figure 4.1 Photograph of Devon railroad bridge, Milford, Connecticut. (Malla et al., 2017) 

Figure 4.2 Arrangement of principle members of Devon bridge (Baniya et al., 2015) 
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Figure 4.3: Top Chord plan (Baniya et al., 2015) 

Figure 4.4: Bottom chord plan (Baniya et al., 2015) 

4.2. Train Loading 

The approach of modeling trains is very similar to the number of vehicle systems. The 

wheels and the track kept in contact, neglecting the influence of mass inertia. There is no option 

to model the train as a moving mass system in SAP 2000 so the moving load analysis can only 

be solved for moving constant forces. For this study, Amtrak Acela train has been considered. 

The configuration of axle load and spacing for this train is considered as per Figure 4.5.  
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Amtrak Acela train and axle loads have been simulated in SAP 2000 for finite element 

modeling. 

Figure 4.6: 3D model of Amtrak Acela train and axle loads in SAP 2000 

4.3. Finite Element Model in SAP2000 

A 3D numerical model of the Devon railroad bridge is developed using the FE software 

SAP2000. In the analysis, only the superstructure members of bridge with track system of rails 

are considered whereas the substructure components such as abutment, column and bearings are 

not included. The track system of rail sits on the stringers. Loadings from the train system is 

directly transferred to the rail and subsequently to the stringers and cross girders. The track 

consists of two rails that are modeled as linear beam elements. Vertical connections between 

Figure 4.5: Configuration of loading from Amtrak Acela Train 
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stringers, fasteners and rails are modeled by rigid links. Two sets of guard rails for each track are 

considered for modeling. End support of the bridge at the West end was modelled as hinge in 

which the translations in all the three directions are restrained whereas the support at the East 

side was modelled as a roller in which the translation in longitudinal direction is released but 

restrained the translations in two other directions. For the simplification of complex steel truss 

railroad bridge without compromising the accuracy of result, it is assumed that all the main 

members of bridge are joined together at the intersection of their centerlines that pass through the 

centroid of their cross sections. The centerlines of rails, guardrails, and sleepers are also assumed 

to be joined at the intersection of their centerlines. These are placed at the top of the stringers i.e., 

17.5 inches above the centerline of stringers. A rigid element is used to connect them. 

The geometry and section properties of the bridge are considered as per the actual 

drawings and modeled in section designer of FE software. 

Figure 4.7: 3D model of Devon Steel truss bridge in SAP 2000 

For finite element modeling, different members as per the actual bridge condition are 

considered to be axial and bending members as segregated in the table below.  
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Table 4. 1 : Axial and Bending members in the Devon railroad bridge. 

S.N Bending members Axial members 
1. Floor beams 1. Bottom chords (eye bars)
2. Stringers 2. Top horizontal member
3. Sleepers 3. Top cross bracing
4. Rails 4. Diagonals
5. Vertical members 5. Bottom cross bracing
6. End slope members
7. Hangers
8. Top chords

4.4. Model Validation 

The field test data of Devon Bridge that was performed with accelerometers and linear 

variable differential transducers (LVDT) during the passage of trains are used for validation 

(Malla et al., 2017). The modal analysis of the Bridge was performed to obtain the mode shapes 

and natural frequencies of vibration. There are several elements in a truss bridge which create 

local modes of vibrations. The model is correlated and validated with the experimental data. 

Natural frequencies of the bridge model obtained are quite close to the data from the field 

experiment.  

Table 4. 2: Natural frequencies of different modes from FE model and field study 

Mode Number (Global) 
Natural Frequency (Hz) 

FE model Field data (Malla et al., 2017) 

First lateral mode (Mode 1) 1.6 1.6 
Second lateral mode (Mode 2) 2.5 3.3 

First vertical mode (Mode 4) 4.4 4.6 
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Table 4.2 compares the natural frequencies of modes 1, 2, and 4 of FE model with those 

computed by processing the acceleration data collected on the Devon railroad bridge during a 

field study performed by Malla et. al. (2017). It is seen that there is a small difference between 

the natural frequencies of FE model and those computed from the field testing. 

4.5. Natural Frequencies and Mode Shapes 

The modal analysis of the bridge was performed to obtain the mode shapes and natural 

frequencies of vibration. A total of 50 mode shapes and frequencies were considered in the FE 

model. The global natural frequencies and mode shapes obtained from the FE model are 

considerably close to the field experimental data. The major mode shapes are captured from the 

model and presented below.  

(a) Mode 1 (First lateral mode) (b) Mode 2 (Second lateral mode)

Figure 4.8 Mode shapes of the bridge resulted from the FE model. 

(a) (b) 
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(c) Mode 4 (First vertical mode)

Figure 4.8, contd. 

4.6. Transient Time History Analysis 

The transient time history analysis of the finite element model was performed to obtain 

the acceleration response at different damage cases. For this analysis, Amtrak Acela train was 

moved in the track at North side with various speeds. Higher speed of moving trains excites 

larger frequencies of vibrations in the calculation of response of bridge. 

The influence of damage can be seen as acceleration sparks in the measured acceleration 

signals. The vertical acceleration has been utilized as it is more sensitive to the damage and loss 

of stiffness of deck members. 

4.6.1. Sensitivity Analysis: Time Step 

Selection of a proper time step is very critical to achieve precise results in dynamic time 

history analysis of bridges especially when there is an impact load. In this sensitivity analysis, 

the optimum time step has been analyzed considering impact load as well as the efficient 

computational time of FE model. 

(c)
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Figure 4.9: Sensitivity analysis for optimum time step 

From the plots of vertical acceleration and displacement shown in figure 4.9, the 

optimum time-step for the analysis was found to be 0.01 sec which can capture the impact 

considering the efficient computational time. 

4.6.2. Sensitivity Analysis: Damping Ratio 

Sensitivity Analysis – Damping Ratio 

Figure 4.10: Sensitivity analysis for damping ratio 
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Based on the field test results (Malla et al., 2017), the following damping values for 

different modes are obtained. 

Table 4. 3 Damping Ratio for different Modes of the Bridge 

Modes Damping Ratio (%) 
First Lateral Mode 3.84 
First Vertical Mode 2.17 

Comparing the sensitivity analysis with the field test results, it was concluded that the 

damping ratio values from the field test can be used for further analysis. Accordingly, the same 

values were used for finite element modeling of the railroad bridge. 

4.7. Resonance Speed 

The response of bridge under a moving train load is complicated because the frequency 

contents in the excitation involve not only characteristics from a moving load but also repeated 

load pulses from consecutive carriages. There are mainly two concerning parts; one is the 

variation of the natural frequencies of the bridge during the passage of train loads called driving 

frequency and the another is the frequency contents in the trainload excitation and their effect in 

the bridge response called dominant frequency. 

Critical speed is the condition under which a bridge reaches the maximum response when 

subjected to a single moving load. However, when multiple loads are involved, the frequency of 

the excitation will feature the apparent dominant frequencies that associate with time intervals 

between consecutive loads, in addition to the driving frequencies. Consequently, the resonance is 

expected to exhibit a different character beyond the context of the critical speed. It has been 
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generally understood that when a specific dominant frequency from the multiple loads coincides 

with one of the first few bridges natural frequencies, especially the first bridge natural frequency, 

resonance to a certain degree would occur. 

The response of the bridge under a series of moving loads at the resonance speed will 

always tend to increase. It is the rate of increase between the consecutive moving loads that 

determines the severity of the resonance effect (Mao & Lu, 2013). 

The assessment of the bridge resonance under the excitation of Amtrak Acela train loads, 

without considering the mass has been obtained and demonstrated as below. 

Figure 4.11: Midspan vertical deflection and acceleration vs moving speed of Amtrak Acela Train 

Figure 4.11 shows the deflection and acceleration at midspan of the bridge, it can be clearly seen 

that the intense resonance is excited at around 180 km/hr (50 m/s), whereas the next peaks 

appear at around 62 km/hr (17.3 m/sec) and 130 km/hr (36 m/s). 
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CHAPTER V 

DAMAGE QUANTIFICATION 

5.1. Damage to the Stringer-to-Girder Joints 

Damage may appear on the deck of a steel railroad bridge due to different factors 

including the impact load of train wheels and its effects on response of the deck members to 

fatigue load that can result in either strength loss or stiffness loss. The structural integrity of open 

deck railroad bridges depends mostly on the condition of the steel girders and stringers that form 

the framework of the bridge. Corrosion, fatigue load and excessive weight can all cause damage 

to these components, leading to potential safety hazards. In finite element modeling, this problem 

can be demonstrated by reducing the rotational stiffness of the affected zone as reported in 

various literatures (Rageh et al., 2020) (Al-Emrani, 2005). Change in the rotational stiffness of 

Stringer-to-Girder (StG) joint can represent real damage in the railroad bridges. Figure 5.1 shows 

an example of a such a joint with the possibility of cracks.  

Figure 5. 1 example of Stringer-to-Girder joint with possibility of cracks  (Rageh, 2020) 



57 

Figure 5.2. shows the details of the joint including stringer, floor beam (cross girder), 

angles, and the pattern of cracks due to fatigue.  

Figure 5. 2 Details of a Joint including fatigue cracks(Rageh et al., 2020) 

Figure 5.3. shows how the development of cracks changes the rotational stiffness of the 

stringer. Gradual reduction in the rotational stiffness of the connections was observed because of 

crack development in the connection angles. This reduction was accompanied by a decrease in 

the amount of restrained stringer-end rotation and the corresponding forces acting on the 

connection. Consequently, there was a significant impact on the propagation rate of the cracks, 

leading to a noticeable decrease. The increase in bending stress in the mid-span of the stringers 

during different stages of crack propagation could be monitored, which clearly demonstrated this 

behavior. 
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Figure 5. 3: Change of rotational stiffness with the progress of crack in the Stringer-to-Girder 

joint (Rageh et al., 2020)  

The joint considered for the damage modeling includes only the middle panel of deck as 

shown in Figure 5.4 below. For this study, different scenarios are considered for modeling 

damage in the bridge. Change in rotational stiffness of the stringers with the change in Moment 

of Inertia of the joint section because of damage is given as:  ID = αIH, with different values of 

α=0.01 (or α≈0 as highly damaged case), α=0.50 (low damage), and α=1.0 (no damage or healthy 

case). Where, ID is the moment of inertia of the damaged stringer section and IH is the moment 

of inertia of the healthy stringer section. Note that the rotational stiffness of stringers at the 

stringer-to-girder joints is described by Kθ = μ EI⁄L3 where L is the length of the stringer and μ 

is a constant that depends on the stiffness of both the stringer and cross girder (or support 

condition). 
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Healthy and damage cases are considered for the dynamic analysis of the railroad bridge 

to detect damage from the acceleration signal measured by sensors deployed around the damage 

zone (See Figure 5.4). In this study, total 12 number of sensors are installed in different locations 

of the bridge model to measure acceleration signals. The change in responses for different 

damage cases from all the sensors are used to identify damage in the bridge through different 

features.  

The vertical acceleration of deck is very sensitive to the passage of trains and usually it 

has a significantly higher magnitude than accelerations in other directions. For this reason, 

vertical acceleration is more capable to detect the damage and loss of stiffness of Stringer-to-

Girder joint.  

Figure 5. 4: Devon railroad bridge elevation and plan with location of sensors and damage 
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5.2. Defect in the Rail 

Rail is a major component of the railroad system as it performs two critical functions, 

namely, transferring the wheel loads to the track bed and guiding the train cars along the track. 

However, due to its constant exposure to the moving load of the train, the rail is susceptible to 

rolling contact fatigue and wear. This gradual wear and tear can eventually cause the rail to break 

and lead to train derailment. If such an accident occurs on a railroad bridge, it can cause severe 

damage to the structure. For instance, the Tempe Town Lake steel railroad bridge suffered 

structural failure in July 2020, costing $11 million to repair. Thus, early detection of any defects 

in the railroad bridge can prevent catastrophic accidents and irreversible damage. 

Figure 5. 5 Example of a broken rail 
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Figure 5.6 Modeling of a broken rail in the FE model. 

For this case, the damage is considered as broken rail. This damage is considered in the 

mid part of rail-bridge that has been modeled by considering the reduced value of modulus of 

elasticity of rail element as: ED=αEH as shown in Figure 5.6.  

Figure 5.7 shows the variation of the displacement and acceleration of a joint very close 

to the damage zone (Joint No. 1663 at the edge of gap in Figure 5.8) with the size of gap of the 

broken rail denoted by δ in cm. A sensitivity analysis is performed to see how the gap size (or δ) 

changes the response of the FE model (see figure 5.7). It is seen that the change in the gap from 

0.5 cm to 2.0 cm does not really change these two responses. In this study, it is assumed that the 

size of gap is 5 mm. 

Figure 5.7 Sensitivity Analysis for length of Crack in rail with the variation of displacement 

and acceleration at joint 1663. 
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Figure 5.8 Joint 1663 in the stringer below the edge of gap in the rail (broken rail) 

5.3. Vibration Features 

In this study, we quantify damage by calculating the vibration features of acceleration 

signals measured by the accelerometers S1, S2, …, S12.  

5.3.1. Time Domain Features 

When damage occurs, the stiffness of the bridge structure around the damage area 

changes, which can cause impulse in the response of the bridge. This impulse may further result 

in the variation of the collected acceleration signals changing amplitudes and distributions of 

these time–domain features. Below are some common statistical features in the time domain 

considered in this study for the extraction of features from the acceleration signal to detect the 

level of damage (Lei, 2016).  



63 

Table 5.1  Statistical Features in the Time Domain used for the extraction of features. 

T1 Mean value 

T2 Root Mean Square 

T3 Standard Deviation 

T4 Skewness 

T5 Kurtosis 

T6 Peak 

T7 Crest 

In Table 5.1, the signal's average is denoted by Xm, and its standard deviation is 

represented by Xsd. The root mean square of the signal is denoted by Xrms, and the signal's peak 

by Xpeak, which reflects its vibration amplitude and energy. These four features can distinctly 

reflect the degree of damage in a structure when it becomes more severe. However, they are not 

sensitive enough to detect mild damage. When mild damage occurs, Skewness (Xskewness), 

kurtosis value (Xkurtosis), and crest factor (Xcrest) can be used to represent the time series 

distribution of the signals in the time domain. 

It should be noted that the kurtosis and crest values are specifically used to measure the 

impulse existing in vibration signals induced by not only the moving wheel load but also the 

damage in both StG and rail (Lei, 2016). 

The kurtosis value and crest factor are reliable indicators for detecting early damages and 

are strong at varying operating conditions. They are effective in indicating the spikiness of sharp 

impulses generated by defects in the bearing mating surfaces. It is worth noting that the kurtosis 

value is highly sensitive to early damage, and its value can gradually increase as the degree of 
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severity increases. However, for more severe damage, the kurtosis value unexpectedly decreases, 

making it unsuitable as an indicator for such cases.  

In the formulas described in Table 5.1, x(n) is a signal (acceleration) series for n = 1, 2, 

…, N and N is the number of data points. 

5.3.2. Time-Frequency Domain Features: Hilbert-Huang Transform 

The Hilbert-Huang transform (HHT) is a powerful tool for performing time-frequency 

analysis of non-stationary and non-linear signals to unearth the complex implications hidden in 

the time series data that otherwise cannot be revealed by traditional data analysis such as Fourier 

Transform (FT)(Huang & Wu, 2008). The acceleration signals recorded by accelerometers on a 

railroad bridge when a train passes by are examples of non-stationary and non-linear time series 

data that can be analyzed by HHT to describe them in term of time, frequency, and energy at the 

same time.  

The HHT of acceleration signal ü(t) is computed in two steps: (1) the empirical mode 

decomposition (EMD) and (2) the Hilbert spectrum (HS). In the first step, the acceleration signal 

ü(t) is decomposed into a finite number of intrinsic mode functions (IMFs) as follows,  

(5.1) 

Where, ẍi(t) is the i-th IMF signal and ẍ0(t) is the residue. Each IMF signal must satisfy

the following conditions (Roveri & Carcaterra, 2012): (1) the number of extrema and the number 

of zero-crossings in the signal must be either equal or differ at most by one, and (2) the mean 

value of envelope defined by the local maxima and the envelope defined by the local minima is 

zero. These conditions ensure that each IMF signal is mono-component and has a well-behaved 

Hilbert Transform (HT), that is, at any time the signal must have a single positive instantaneous 
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frequency defined by the derivative of its phase function. In the second step, the analytic signal 

z̈i(t) is defined for the i-th IMF signal as follows,

(5.2) 

Where, j is the imaginary unit and ÿi(t) is the HT of i-th IMF signal that is defined as

(Huang & Wu, 2008), 

(5.3) 

The analytic signal z̈i(t) is a complex-valued function that can be described in the

following polar form,  

(5.4) 

Where, ai(t) and ϕi(t) are the instantaneous amplitude and phase of signal that are given

by, 

(5.5) 

The instantaneous angular (circular) frequency of i-th IMF signal can be calculated by 

taking the first derivative of ϕi(t),

(5.6) 

The instantaneous energy of i-th IMF signal describing its intensity is given by, 

(5.7) 

Finally, the time-frequency distribution of instantaneous amplitude in the 3D space 

 is called Hilbert spectrum (HS) for i-th IMF that is denoted by . The HS of 

original acceleration signal ü(t) is defined as, 
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(5.8) 

Figure 5. 9 Hilbert spectral analysis of the acceleration signal recorded by S2 for train speed of 

15m/sec speed a) healthy rail healthy bridge acceleration b) healthy rail damaged bridge 

acceleration c) Healthy rail and healthy bridge Hilbert spectrum d) healthy rail damaged 

bridge Hilbert spectrum e) Rail defect highly damaged bridge acceleration f) Rail defect highly 

damaged bridge Hilbert spectrum 
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Figure 5. 9, contd. 

5.3.3. Feature Scaling (Normalization) 

The feature properties of the data will vary depending on the source of the data. Data 

normalization is an important pre-processing technique that involves either rescaling or 

converting data to ensure that each feature has an equal contribution. Normalizing features is an 

effective technique that limits the values of all features to predefined ranges. This helps to 

enhance the quality of data and consequently, the performance of machine learning algorithms. 

Normalization addresses two significant issues of data that impede the learning process of 

machine learning algorithms, namely the existence of dominant features and outliers. Various 

techniques are employed to adjust the data to a specific range using statistical parameters derived 
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from the original data. It is crucial to select the appropriate normalization method and range 

since normalization can alter the data's structure and can impact the results of multivariate 

analysis and calibration utilized in pattern recognition (Singh & Singh, 2020). 

In this study, the dataset with f number of features is normalized and represented by damage 

indices (DI) as below. 

(5.9) 

Where, i=m, rms, sd, kurtosis, skewness, peak, crest (time domain features) 

The damage at the joint between stringer to cross girder in the middle panel is quantified 

and normalized by time domain features DIm, DIrms, DIsd, DIkurtosis, DIskewness, DIpeak, and 

DIcrest and time-frequency domain features DIE and DIϕ describing the changes in the energy 

and phase of recorded acceleration signals. DI > 0 indicates the presence of damage in the StG 

of a deck, and DI = 0 indicates no damage. The energy damage index DIE is defined as, 

(5.10) 

Where SE is the area below the energy function E(t) that is defined as, 

(5.11) 

The phase damage index DIϕ is defined as,

DIϕ = |1 −
(ϕ̅)D

(ϕ̅)H

| × 100 (5.12) 

Where, ϕ̅ is the average of instantaneous phase of recorded acceleration signal taken over 

time and of IMFs which is defined as: 

(5.13) 
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Figure 5. 10 Energy and Instantaneous phase of recorded acceleration signals for S2 sensor 

location in the healthy rail and bridge compared to highly damaged bridge at 15 m/sec speed 
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CHAPTER VI 

DAMAGE CLASSIFICATION 

6.1. Machine Learning Classifiers 

6.1.1. Support Vector Machine (SVM) 

SVM classifier was first introduced by Vapnik in the 1960s on statistical learning theory 

and later improvised in the 1990s. SVM is one of the effective supervised machine learning 

methods in data classification as well as text classification that has become extremely popular 

these days due to its particularly efficient results. In terms of runtime, this is the fastest algorithm 

and has great accuracy. This classification is effective in high dimensional spaces (e.g., vibration 

features).  

Figure 6.1. Graphical representation of SVM classification with optimal and marginal 
hyperplanes 
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The main idea behind SVM is to take the data from a lower dimension to a higher 

dimensional space to separate them easily. SVM is a discriminative classifier that is properly 

engineered by separative hyperplane. It is a representation of examples as points in space that are 

mapped so that the points of different categories are separated by a gap as wide as possible. In 

addition to this, an SVM can also perform non-linear classifications. The distance is maximized 

from the hyperplane to the closest data points called margin.  

The formulation of a basic SVM has been constructed from a simple linear maximum 

margin classifier as per below (Rojas & Nandi, 2006): 

For the datasets: , …………

Where, 𝑥𝑖 is a d-dimensional input vector in 𝑅𝑑 and  𝑦𝑖 is the class label associated with

𝑥𝑖, 

For every i= 1,2…n; finding classifier having decision function f (x), such that f (x) = y 

for each dataset. 

Let us consider the labels be 𝑦𝑖 ∈  {+1, −1}  for two possible classes A and B. The

objective of the classifier is to define a boundary between the datasets with both labels (+ and -). 

The boundary is a hyperplane where all the datasets satisfy (Rojas & Nandi, 2006), 

(6.1) 

Where, 𝑤 ∈  𝑅𝑑 is a normal vector to the boundary and b is the distance from the

boundary to the origin of reference. The best boundary can be formulated with all the three 

parallel hyperplanes shown in Figure 6.1 accordingly, 

H: 

H1: 
(6.2) 
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H2: 

The normal distance between hyperplane H1 and hyperplane H2 is a margin with a 

magnitude of 2/‖𝑤‖2. The classifier with the largest margin will show the best generalization

for data points that were not in the dataset. Thus, finding the best hyperplane is changed into a 

linearly constrained optimization problem.  

To maximize the margin between hyperplanes H1 and H2, subject to the restriction, 

(6.3) 

The optimization problem is a quadratic problem in (w,b), which can be better formulated 

in terms of Lagrange multipliers,  

(6.4) 

The minimization of the term with respect to w and b, while requiring the derivatives of 

L with respect to  𝛼 to vanish. The  𝛼𝑖 in equation (6.4) are the Lagrange multipliers, and it is 

required that .  

Equation (6.4) is a convex quadratic problem with an equivalent Wolfe’s dual 

formulation that can be solved instead, with the benefit that w and b vanish. The dual comprises 

in maximizing L with respect to 𝛼 while requires its gradient with respect to w and b to vanish.  

This gives the two conditions. 

(6.5) 

After substituting equation (6.5) into equation (6.4), it gives the Lagrangian dual. 

(6.6) 
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This needs to be maximized with respect to 𝛼. After the dual problem is solved for all 𝛼𝑖, 

w and b can be obtained; thus. 

(6.7) 

When the surface separating the two classes is non-linear, the training datasets can be 

transformed to a higher dimensional space, to make the separation linear in that new space and 

applied the same process.  

Let the transformation over the dataset be ∅(. ) and let ; 

Equation (6.6) can be rewritten as. 

(6.8) 

Replace 𝑥𝑖 . 𝑥𝑗 by the kernel function 𝐾(𝑥𝑖 , 𝑥𝑗) allows the algorithm to produce an SVM 

which exists in a high dimensional space. The separation is still linear, though in a different 

space. An upper limit is required to the constraint imposed on the Lagrange multipliers to allow 

flawed separation. This limit is a penalty applied to those points which lie in between the 

surfaces H1 and H2. For the perfect separation case, the penalty is infinite, with no points inside 

the margin; the penalty C is given as finite value of: 

(6.9) 

Equations (6.8) and (6.9) form the objective function for a nonlinear problem that is used 

in the algorithms for training two-class SVMs. The SVM should be able to classify the data 

points not included in the training with a certain degree of success. With the same concept of 

binary classifiers, the multi-class case can be combined. For the n-class case, n classifiers are 
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trained putting one class at a time and grouping the rest as another label. After training, a new 

point is assigned to that class (Rojas & Nandi, 2006). 

In thus study, the following SVM algorithms under all SVMs classifier are evaluated to 

classify the damage cases: (i) Linear SVM (ii) Quadratic SVM (iii) Cubic SVM (iv) Fine 

Gaussian SVM (v) Medium Gaussian SVM (vi) Coarse Gaussian SVM 

6.1.2. K-Nearest Neighbor (KNN) 

KNN is a machine learning technique that can be applied to solve classification and 

regression problems. It works by finding the K data points in a training dataset that are most like 

a new data point, using a distance metric to calculate the distance between data points. Then, for 

classification, it assigns the new data point the label of the most frequent class among its K 

nearest neighbors, while for regression, it predicts the average value of the target variable 

(Rahman et al., 2023) and (Cover & Hart, 1967). KNN is an instance-based and non-parametric 

learning method that performs well with small datasets, although computational demands may 

increase as the dataset size grows. 

KNN is a non-parametric method that does not make any assumptions about the 

underlying distribution of the data. This makes it a useful tool for working with data that does 

not follow a known distribution or when the decision boundary between classes is highly 

irregular. As the acceleration datasets for the railroad bridge under study are extremely non-

linear, KNN is found to be one of the suitable classifiers for the detection and classification of 

damage. 
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“Closeness” is defined in terms of a distance metric, such as Euclidean distance (Han et 

al., 2012). The Euclidean distance between two points or tuples, say, 

and  is, 

(6.10) 

Typically, the values of each attribute should be normalized before using the above 

equation (Han et al., 2012). 

In this study, the following KNN algorithms under all KNNs classifier are evaluated to 

classify the damage cases: (i) Fine KNN (ii) Medium KNN (iii) Coarse KNN (iv) Cosine KNN 

(v) Cubic KNN (vi) Weighted KNN

6.2. Damage Classification 

In this study, broadly three types of damage are classified including (i) damage in the 

railroad bridge only (damage to stringer-to-girder joints) and (ii) damage in the rail only, and (iii) 

combinations of damage to both the bridge and rail. For further classification, they are labeled in 

three categories as below to see how the difference between these damage cases can be identified 

through ML classifiers.  

The MATLAB application "Classification Learner" was used to classify the type and 

extent of damage on the railroad bridge under the moving load of Amtrak Acela train described 

in chapter IV. The railroad bridge under study (Devon railroad bridge) was subjected to different 

speeds of the train ranging from 15 m/s to 70 m/s, and the induced acceleration signals recorded 

by sensors attached to various joints without considering noise. Two machine learning 
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classifiers, namely SVM and KNN were employed to classify damage labels (MATLAB 

R2022a). The aim was to determine which machine learning algorithm (i.e., SVM and KNN) 

would yield the highest classification accuracy for the dataset and how much. A total of 1296 

data points consisted for this data analysis and a five-fold cross-validation (k=5) technique was 

used to train the classifiers. Here, the dataset is divided into 5 equal-sized subsets, and the model 

is trained and evaluated 5 times, each time using a different subset for validation. Cross-

validation helps to prevent overfitting, which occurs when a model performs well on the training 

data but poorly on new data. By evaluating the model on multiple validation sets, cross-

validation provides a more accurate estimate of how the model will perform on new data. All the 

datasets (100%) are used to train the classification learner so the new datasets need to be 

arranged and fed for testing by the classifier. 

6.2.1. Damage in the Bridge Deck without Rail Defect 

In this case, the damage to the stringer-to-girder (StG) has been considered in different 

labels such as high damage, low damage, and no damage (healthy case) but the rail in the bridge 

has no damage (not broken). The results and accuracy of classification from two different 

classifiers are discussed below. 

Various characteristics present in the dataset were extracted through different features 

associated with three different types of damage labels: Healthy Rail Healthy Bridge (HRHB), 

Healthy Rail Low Damaged Bridge (HRLDB) and Healthy Rail High Damaged Bridge 

(HRHDB). 
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 Figure 6. 2 Scatter plot of Energy vs different features (Healthy Rail) 

Figure 6.2 shows the scatter plots of DIE (energy) versus other features represented by 

DIi, where i is Peak, Kurtosis, RMS, Phase, mean and skewness. In these figures, the blue circle 
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represents the healthy case where (DIE,DIi)=(0,0), the yellow circles represent HRLDB case, and 

the red circles represent HRHDB case. It is seen that the damage indices corresponding to 

features: kurtosis, peak, and RMS have a better representation of damage to the StG compared to 

those corresponding to phase, mean, and skewness. 

Figure 6.3 displays the confusion matrices for both SVM and KNN algorithms for 

healthy rail case, which illustrate the evaluation metrics used to assess these machine learning 

classifiers. Similarly, Table 6.1 summarizes the accuracy validation, precision, sensitivity, and 

F1-value for each classifier. Among all the algorithms included, the SVM algorithm with a Fine 

Gaussian kernel achieved the highest accuracy of 95.1% in identifying various types of damage 

cases from the dataset. The Medium Gaussian SVM utilizes a Gaussian kernel which results in a 

more precise decision boundary, leading to better classification performance. It also 

outperformed the other classifier in terms of precision, sensitivity, and F1 value. A higher 

sensitivity score from SVM indicates that it can correctly identify actual positive cases. The 

confusion matrix for SVM indicates that approximately 410 data points were predicted with true 

positive and negative ratings.  

Fine Gaussian SVM Fine KNN 

Figure 6. 3 Confusion matrix for SVM and KNN algorithms 
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Table 6. 1 Evaluation metrics for ML classifiers used in the data-analytic study. 

ML Classifier Accuracy 
Validation 

Precision Recall F1 Value 
TP

(TP + FP)

TP

(TP + FN)
2 ×

Precision × Recall

Precision + Recall
SVM- (Fine 
Gaussian SVM) 95.1% 95.14% 95.14% 95.14% 

K-Nearest
Neighbors
(Fine KNN)

93.3% 93.3% 93.32% 93.31% 

The following shows the details of calculation of Precision, Recall and F1-values for confusion 

matrix (SVM): 

• TP: For column 1, the number of HRHB damage case classified correctly =144, for

column 2, the number of HRHDB damage case classified correctly = 126 and for

column 3, the number of HRLDB damage case classified correctly = 140.

• FP: For column 1, HRLDB falsely classified as HRHB = 1, for column 2, HRLDB

falsely classified as HRHDB= 3 and for column 3, HRHDB falsely classified as HRLDB

= 18

• FN: For row 1, number of cases classified as Not HRHB = 0, for row 2, number of cases

classified as Not HRHDB = 18 and for row 3, number of cases classified as Not HRLDB

= 1+3

Therefore, for Overall Precision we can conclude that: Precision for column 1 = 144 /

(144+0) = 100%, Precision for column 2 = 133 / (133+10) = 93.0%, Precision for column 3 = 

134 / (134+11) = 92.41%, and Overall precision = Average of precision of all columns = 

95.14%. 
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Similarly, for Overall Recall, we can calculate Recall for row 1 = 144 / (144+0) = 100%, 

Recall for row 2 = 133 / (133+11) = 92.36%, Recall for row 3 = 134 / (134+10) = 93.05%, and 

Overall Recall = Average of Recall of all rows = 95.14%, Then F1-value = 95.14% 

6.2.2. Damage in the Bridge Deck with Rail Defect 

Similarly, the damage to the stringer-to-girder (StG) has been considered in different labels 

such as high damage, low damage, and no damage (healthy case) and at the same time the rail 

section in the bridge also has damage (broken rail) with reduced E as mentioned in chapter V. The 

results and accuracy of the classifiers are shown below. 

The characteristics in the dataset were extracted through different features associated 

with following different types of damage labels: Damaged Rail Healthy Bridge (DRHB), 

Damaged Rail Low Damaged Bridge (DRLDB) and Damaged Rail High Damaged Bridge 

(DRHDB). 

Figure 6. 4 Scatter plot of Energy vs different features (Damaged Rail) 
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 Figure 6. 4, contd.  

Figure 6.4 shows the scatter plots of DIE (energy) versus other features represented by 

DIi, where i is Peak, Kurtosis, RMS, Phase, mean and skewness. In these figures, the blue circle 

represents the healthy case where (DIE,DIi)=(0,0), the yellow circles represent DRLDB case, and 

the red circles represent DRHDB case. It is seen that the damage indices corresponding to 

features: kurtosis, peak, and RMS have a better representation of damage to the StG compared to 

those corresponding to phase, mean, and skewness. 

Figure 6.5 displays the confusion matrices for both SVM and KNN algorithms for 

damaged rail cases, which illustrate the evaluation metrics used to assess these machine learning 
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classifiers. Similarly, Table 6.2 summarizes the accuracy validation, precision, sensitivity, and 

F1 value for each classifier. Among the algorithms, the SVM algorithm with a Linear SVM 

achieved the highest accuracy of 98.1% in identifying various types of damage cases from the 

dataset. The Cubic SVM results in a more precise decision boundary, leading to better 

classification performance. It also outperformed the other classifier in terms of precision, 

sensitivity, and F1 value. A higher sensitivity score from SVM indicates that it can correctly 

identify actual positive cases. The confusion matrix for SVM indicates that approximately 415 

data points were predicted with true positive and negative ratings. 

Linear SVM Fine KNN 

Figure 6. 5 Confusion matrix for SVM and KNN algorithms (Rail defect) 

Table 6. 2 Evaluation metrics for ML classifiers used in the data-analytic study. 

ML Classifier Accuracy 
Validation 

Precision Recall F1 Value 
TP

(TP + FP)

TP

(TP + FN)
2 ×

Precision × Recall

Precision + Recall
SVM- (Cubic 
SVM) 98.1% 98.13% 98.25% 98.19% 

K-Nearest
Neighbors
(Fine KNN)

96.3% 92.36% 96.35% 94.31% 
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6.2.3. Combination of damages in Bridge and Rail 

In this section, it is intended to identify and classify the rail defect from the healthy rail and 

damaged rail vibration signals. The machine learning classifiers can detect the defect in the rail 

and damage in the StG through the acceleration signal. 

The characteristics in the dataset were extracted through different features associated 

with following different types of damage labels: Healthy Rail Healthy Bridge (HRHB), 

Damaged Rail Healthy Bridge (DRHB) and Healthy Rail High Damaged Bridge (HRHDB). 

Figure 6. 6 Scatter plot of Energy vs different features (Damaged vs Undamaged Rail & Bridge) 
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Figure 6. 6, contd.  

Figure 6.6 shows the scatter plots of DIE (energy) versus other features represented by 

DIi, where i is Peak, Kurtosis, RMS, Phase, mean and skewness. In these figures, the red circle 

represents the healthy rail and healthy bridge case where (DIE,DIi)=(0,0), the blue circles 

represent DRHB case, and the yellow circles represent HRHDB case. It is seen that the damage 

indices corresponding to features: kurtosis, peak, and RMS have a better representation of 

damage to the StG compared to those corresponding to phase, mean, and skewness. 

Figure 6.7 displays the confusion matrices for both SVM and KNN algorithms for 

combination of damaged and undamaged rail and bridge cases, which illustrate the evaluation 

metrics used to assess these machine learning classifiers. Similarly, Table 6.3 summarizes the 

accuracy validation, precision, sensitivity, and F1 values for each classifier. Among the 

algorithms, the SVM algorithm with a Fine Gaussian SVM achieved the highest accuracy of 

87.5% in identifying rail damage from the dataset. The Fine Gaussian SVM results in a more 

precise decision boundary, leading to better classification performance. It also outperformed the 

other classifier in terms of precision, sensitivity, and F1 value. A higher sensitivity score from 

SVM indicates that it can correctly identify actual positive cases. The confusion matrix for SVM 
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indicates that approximately 390 data points were predicted with true positive and negative 

ratings. 

Fine Gaussian SVM Cubic KNN 

Figure 6. 7 Confusion matrix for SVM and KNN algorithms (Damaged vs Undamaged Rail) 

Table 6. 3 Evaluation metrics for ML classifiers used in the data-analytic study. 

ML Classifier Accuracy 
Validation 

Precision Recall F1 Value 
TP

(TP + FP)

TP

(TP + FN)
2 ×

Precision × Recall

Precision + Recall
SVM- (Fine 
Gaussian SVM) 87.5% 86.34% 86.95% 86.64% 

K-Nearest
Neighbors
(Cubic KNN)

85.0% 84.95% 85.67% 85.31% 
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CHAPTER VII 

CONCLUSIONS 

An open deck steel truss railroad bridge was modeled in 3D finite element software SAP 

2000 to identify and predict damage in the rail and bridge structure. Dynamic analysis was 

performed to generate acceleration responses from the sensors installed at different location of 

the bridge. Three different damage cases were investigated considering change in rotational 

stiffness of the Stringer-to-Girder (StG) joint at the mid panel of the bridge. Different time 

domain features (from Statistical features) and time-frequency domain features (from Hilbert-

Huang Transform) in terms of damage indices (DI) were obtained from the acceleration response 

of healthy and damaged rail and bridge cases. The datasets (DIs) were extracted at corresponding 

damage labels of Healthy Rail with Healthy Bridge (HRHB), Healthy Rail with Damaged Bridge 

(HRDB) and Damaged Rail with Damaged Bridge (DRDB). Two different Machine Learning 

classifiers, Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) were used for 

classification of the datasets. After analyzing the results of the machine learning classifiers 

utilized in this research for all three cases, it can be inferred that,  

- The SVM algorithm is significantly more effective at classifying and detecting the undamaged

and damaged rail and bridge components based on the dataset from dynamic analysis of FE 

model. 
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- The accuracy of the classification of the damaged and undamaged bridge either with rail defect

or no defect in rail is more than 95%. Similarly, the accuracy of the identification of rail defect in 

the bridge was more than 85%. 
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APPENDIX 

MATLAB CODE FOR ANALYTICAL SOLUTION OF EQUATION (3.10) FOR MAXIMUM 
MIDPOINT DISPLACEMENT 

%%% ### Analytical method to solve displacement equation in simply supported bridge 

subjected to a moving load 

clc 

clear 

L=34; % length of simple beam in m 

n=500;% number of nodes 

x=L/2;  % Point of beam where deflection is analysed 

v=68.1; % velocity of the train in m/s 

P=-347000; % Weight of the force, N 

m=11400; % [kg/m] Linear density 

EI=9.92e10; % Modulus of Rigidity[Nm2] 

dt = 0.005; 

t=0:dt:L/v; % Range of t for the response 

nt=length(t) ; 

u=zeros(1,nt) ; % Displacement vector 

for i=1:n 

 wi=(i*pi/L)^2*sqrt(EI/m);     
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Si=i*pi*v/(wi*L); 

        ohmi=Si*wi; 

        A=2*P*L^3/(EI*pi^4) ; 

        B=1/(i^4)*sin(i*pi*x/L) ; 

        C=sin(ohmi*t)-Si*sin(wi*t) ; 

        D=(1-Si^2); 

        ui=A*B*C/D ;  

        u=u+ui; 

end 

umax=max(abs(u))*1000; 

figure(1) 

hold on ; 

plot (t,u*1000) 

xlabel('time (sec)') ; 

ylabel('displacement (mm)') ; 
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