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ABSTRACT

Owusu, Moses K., Identification of Heart Disorders with Symbolic Aggregate Approximation.

Master of Science (MS), July, 2023, 85 pp., 12 tables, 29 figures, references, 47 titles.

Motif identification in Electrocardiogram (ECG) time series is challenging due to the nature

of the data as well as the computational complexity of the algorithms used to identify such patterns.

This project utilizes the Symbolic Aggregate Approximation (SAX) on 1000 fragments of ECG

signals from 45 patients (42% females aged between 23 and 89 years and 58% males aged 32

to 89 years) using data obtained from the MIT-BIH Arrhythmia database to recognize cardiac

health disorders (Pławiak 2018a). Data include a Normal Sinus Rhythm, and ECG readings for

11 heart disorders, making 12 in total. The aim is to use SAX to identify heart disorders using

the ECG signals, by first analyzing QRS-complexes, splitting the time series into smaller equally

sized segments using the Piecewise Aggregate Approximation (PAA) approach. SAX is then used

to discretize the normalized PAA series to a string of arbitrary length alphabets. Using a sliding

window algorithm, we create a list of word bags that are the result of SAX on our data set – this

gives the words as well as frequency counts. This will be done to the sample data set for each heart

disorder and at the end, we are able to determine which exact patterns contributes the most (motifs)

and the least to our class of words by comparing weights, thereby facilitating the identification of

possible heart disorders. Long Short Term Memory (LSTM) neural network approach was also

used to classify the ECG signals and results were in line with that obtained for SAX.
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CHAPTER I

INTRODUCTION

1.1 Patterns Recognition In Time Series Data

Anomaly detection has gained much traction owing mainly to its vast applications with the

aim of first representing the data in a way that reduces its dimension but keeps key information (Ren

et al. 2018). Time series motifs are repeated segments across a time series (see Figure 1.1). Discords

or anomalous patterns are seen as the outliers observed in time series data (He, Xu, and Deng

2003). One distinguishing factor of motifs is their similarity which cast doubts on their occurrence

being random (Mueen 2014). Motifs carry important information about the underlying dynamics

and conditions of the system from which the time series was recorded just as Deoxyribonucleic

acid (DNA) carries genetic information. These repeated patterns appear with different frequencies,

lengths, lags, disparities across an entire series ((Mueen 2014) , (Huang et al. 2015)).

Segmentation plays a key role in the symbolization process without which pattern recog-

nizing algorithms cannot be implemented. It is done by either quantization (breakpoints are in

amplitude domain) or temporal segmentation (breakpoints are based on temporal domain). The latter

requires similar breaks be first clustered before they are symbolized (Sant’Anna and Wickström

2011). Literature on time series anomaly detection have mostly focused on implementing algorithms

that are; highly representative of the original data, capture the slightest underlying characteristics as

well as have reasonable computational cost. The nature of these anomalies being recognized and

the random way they occur in time series data makes it difficult for one single method to satisfy

optimally, all three objectives highlighted above.

1



1.2 Literature Review

Representation of time series to avoid misrepresentation or loss of valuable data has been

the focus of many time series studies (Lin, Keogh, Wei, et al. 2007). Moreover, having found a way

to represent these data, the need arises to develop very efficient methods to analyze and understand

important characteristics. Interestingly, many studies have had to either tackle one problem at the

expense of another or risk a balanced trade-off that makes the results of their analysis doubtful. A

very representative approach is highly likely to result in huge computational cost and would require

more space to save vital information as the algorithm runs.

A subsequence that is maximally different from all remaining subsequences of a time series

data qualify as discords. (Huang et al. 2015) used J-distance discord (JDD) which imitates the

basics of k-nearest neighbor (KNN) to tackle the challenge of repeated anomalous patterns in which

these repetitions are not too distinguishable to be classified as separate discords. JDD measures

similarity between an identified subsequence and the jth subsequence it is most similar to just like

the numerosity reduction SAX uses. (Woodbridge et al. 2015) also applied the brute force version of

SAX as well as Heuristically Ordered Time series (HOT SAX) to 240 Hz waveform data obtained

from 9,723 patients. Results support the time complexity and information loss that is observed in

choosing optimal parameters for the SAX algorithm with the brute force having an execution time

O(n2).

(Kha and Anh 2015) used a Cluster-based Discord approach (CBD) suggested by (He,

Xu, and Deng 2003) and observed that the anomalies identified in the data by both HOTSAX

and their method were perfectly matched. However, they claim their approach is more efficient

than SAX despite using fixed parameters and not observing results from varying these values.

SAX representation of time series has been applied to numerous data mining situations such as:

partitional clustering, query by content, motif discovery, anomalous behaviour detection, decision

tree classification, hierarchical clustering, nearest neighbor classification and its visualizations

(Lin, Keogh, Wei, et al. 2007). SAX visualizations is unique as the method takes advantage of the

reliability of text to capture varying sections of time series to make tree-like figures using position

2



Figure 1.1: Steam flow time series with an overlay of the identified motifs
Source: (Mueen 2014)

of a symbol. This means that, for instance, all character strings starting with a particular alphabet

can be observed and checked for repetitions or outlying numbers that signify anomalous behaviour

(Krishnamoorthy 2018b).

Real-value representation based anomaly detection is convenient in numeric operation with

the Piecewise Aggregate Approximation (PAA) as a typical example. Generally, the aim of motif

discovery algorithms is to identify recurring patterns that can then be used to distinguish between

observations efficiently (Mohammad and Nishida 2009). The challenge of these algorithms is the

non-existence of prior knowledge about the precise positions of these patterns thereby increasing

computational cost if an exhaustive search approach that loops through the entire sequence of

observations to find pre-determined patterns is implemented. More so, using a small motif length

size leads to identifying too many existing patterns that may not necessarily signal anomaly while

a longer length can lead to non-identification of significant motifs that may or may not carry any

important information.

Extraction of patterns from time series is applicable in disease diagnosis and detection,

traffic flow analysis as well as stock price prediction (Ohsaki, Abe, and Yamaguchi 2007). (Sun

et al. 2014) proposed trend distance (TDIST), a distance measure to tackle the problem of having

different trend segments assigned to the same symbol because they have the same average. Their

results showed better distance measures than that of SAX highlighting the inability to capture the

3



trend in a segment with few character representations.

1.3 Problem Statement

Time series symbolic representations are not new and have been in use for some time. Two

major flaws have been identified: (1) dimensionality challenge and (2) distance measures used in

these former methods have less in common with the actual distances that is existent in the data (Lin,

Keogh, Wei, et al. 2007). It is challenging to find patterns (motif) in Electrocardiography (ECG)

data unlike it is for others generated from physiological experiments due to the periodic nature of

its observations (Mueen and Keogh 2010). Identification of motifs is difficult and many researchers

have resorted to different methods. In this study, we utilize the SAX algorithm to identify motifs

across patient ECG time series data. SAX helps us identify irregular patterns relating to the QRS

complexes for each of the heart disorder due to the varying fluctuations observed in the ECG signal

for each disorder class owing to the contraction, expansion and relaxation of heart muscles to

generate this data. Hence, comparison of this patterns can be made to distinguish them from a

normal human heart beat.

1.4 Research Questions

The following research questions were asked to serve as a guide to the research:

1. How can ECG signals be used to distinguish between heart disorders?

2. Can SAX detect abnormal ECG and identify their position?

3. Which ECG analysis approach performs better, LSTM or SAX?

1.5 Research Objectives

The aim of this study is to classify heart disorders by using different measures to distinguish

patterns identified for 12 heart disorder classes. Graphical plots showing weighted patterns will be

used to depict discrepancies between each class and the Normal Sinus Rhythm (NSR). Numerical

measures of the Euclidean distance, Term Frequency Inverse Document Frequency (TFIDF), and

cosine similarity will be compared to the results of other algorithms such as Long Short Term

4



Memory (LSTM). Classification will be done using LSTM and the results will be compared with

that of SAX using various model diagnostic measures to check how well the algorithm works and

to clarify doubts about the data being overly fitted to a particular method. The objectives for this

study are as follows:

• Classify heart disorders using different data mining techniques, that is; LSTM and SAX

ECG signals will be discretized (assigned to symbols). Irregular patterns will be identified for

ECG signals of each class. Patterns will be compared and their differences used to distinguish

between the varying heart conditions from which they were recorded.

• Use SAX to identify discords in ECG data

SAX will be used to identify pattern(s) in the time series that are unique and maximally

different (highest modified Euclidean distance) from the other pattern(s) observed.

• Compare results for LSTM and SAX to see which performs better.

The performance measures (accuracy) obtained from the implementation of LSTM and SAX

on the ECG signals will be compared to see which approach performs better as well as

understand the rational behind the performance.

1.6 Research Design

This work will be in four chapters: the first, an introduction with details of the history behind

the methods chosen, observations present in literature, the problem identified and what this research

seeks to achieve. The second chapter will define the methods to be implemented, with emphasis

on the basic ideas and formulation dynamics of these methods and how parameters are estimated.

Chapter three will present the results obtained from the LSTM to make classification while the

fourth chapter will highlight the SAX algorithm implementation results. Results will be discussed

in the fifth chapter in relation to what is existent in literature and appropriate recommendations for

future research will be provided.
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CHAPTER II

METHODOLOGY

2.1 Symbolic Time Series Analysis (STA)

Time series consist of a collection of data points collected sequentially over a period of time.

The main aim of time series analysis is to model how the observations are generated over time as

well as make predictions ((Chatfield and Xing 2019),(Cryer 1986)). The possibility of breaking

down time series data into varying components in its makeup such as trend and noise makes it

an interesting type of data to be studied (Hamilton 2020). Analysis of time series helps with the

detection of regularities in records of a variable to capture characteristics needed to be exploited for

predicting future outcomes (Kirchgässner, Wolters, and Hassler 2012). Due to the way observations

are collected over time, fluctuations in the phenomenon under study with respect to time are also

captured (Fuller 2009).

Electrocardiogram (ECG) signal is analogous to the electrical activity of the heart that is

used to record signals from the heart to: examine heartbeat rhythm, measure heart rate, diagnose

abnormalities of the heart etc. ((Berkaya et al. 2018), (Bonow et al. 2011)). ECG can be used to

express cardiac attributes distinctive from person to person (Israel et al. 2005). These signals are

not fixed because they are as a result of relaxation and contraction of heart muscles which vary

depending on whether an individual is at rest or engaging in a physical activity. ECG can be divided

based on the re-polarization and depolarization of heart muscles as shown in Figure (2.1) (Biel et al.

2001).

Output data of several experiments in various fields have been subjected to Symbolic Time

Series (STA) methods to observe patterns (Daw, Finney, and Tracy 2003). Despite being able to
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Figure 2.1: ECG complex elements
Source: (Biel et al. 2001)

identify these changes in the data with the use of traditional approaches such as Fourier Transforms,

discretization methods increase computational efficiency, decreases sensitivity to noise and improves

analysis of complex processes. Many traditional quantization methods used to analyze time series

data such as Symbolic Aggregate Approximation (SAX) differ from others due to the way the

splitting is done that is, the amplitude approach (Sant’Anna and Wickström 2011).

Moreover, defining two of the main parameters in the SAX algorithm that is; alphabet size and

window size brings about a trade-off between computational complexity and information loss

((Sant’Anna and Wickström 2011), (Mörchen and Ultsch 2005)). It is imperative to obtain parame-

ters that minimize the challenge posed by this trade-off. Preprocessing steps such as; PAA, string

assignment and filtering to remove the periodicity by eliminating repetitive representative segments

anywhere it occurs can also be applied. In doing so, subsequent analysis is expected not to reveal

repetitions, as such, any identified set of similar motifs spark interest and would be further observed

(Mueen 2014).

Piecewise Aggregate Approximation (PAA) will be applied to the ECG fragments to divide

them into smaller segments (divide a series of length say m into smaller equally sized segments of

size n) that still capture any underlying characteristics relevant to the observations (Kulahcioglu,

Ozdemir, and Kumova 2008). SAX will then be used to discretize the series, that is, convert the

equally spaced numeric series into a string of symbols (alphabets) (see Figure 2.7). Wavelet filtering

is applied to our ECG data to remove irrelevant features and noise that does not represent underlying

patterns. Extracted features from the wavelet analysis will then be used as the input data for LSTM

7



implementation that is explained in the next section.

2.2 Long Short-Term Memory

Long Short Term Memory (LSTM) models are special deep learning approaches which are

characterized with an ’internal memory’ and have been successfully used for speech recognition,

sentiment analysis and Natural Language Processing (NLP) ((Y. Yu et al. 2019), (Smagulova and

James 2019)). Traditional Neural Networks (NN) are characterized by two main components in

their architecture: an input, which is processed through a defined architecture to produce an output.

In scenarios where prediction based on immediate or a sequence of preceding elements is the target,

there is the need for our NN to have some form of memory of what has just immediately occured

(Smagulova and James 2019). LSTM serves this purpose as it forms the needed memory required

as an input for the next stage of the NN implementation thereby helping with predicting future

outcomes based on knowledge of previous stages.

These NN architectures are characterized by a middle layer where output from the first step

is fed as input to a middle (hidden) layer (Staudemeyer and Morris 2019). The hidden layer(s)

is,are the most important feature since it serves as the memory (input) upon which the output layer

depends (see Figure 2.2). Several studies have implemented variants of LSTM including but not

limited to; unidirectional, BiLSTM (two LSTM) cells, stacked LSTM and many others whose

structures are mostly dictated by the requirements/specifications of the problem at hand. (Greff

et al. 2016) in their study however note that LSTM variants do not improve the standard structure

significantly while highlighting the output activation function as the most important aspect of its

architecture.

Despite LSTM being a very good predictive model, it is unable to help us find the exact

position of motifs in our data and so, SAX (presented in the next section) is used for this purpose.

Gradient based algorithms are used to update weights in Recurrent Neural Networks (RNN) usually

result in the vanishing gradient problem. LSTM has been observed to overcome this challenge

posed efficiently (Smagulova and James 2019). In Recurrent Neural Networks (RNN), outputs

from nodes affect later inputs since the connection between nodes is cyclic. In other words, this
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NN architecture saves some information of previous inputs as activations (short-term memories)

which is used subsequently to update the state of both present and subsequent inputs ((Chen and

Soo 1996), (Elman 1991)). This interesting attribute of RNNs have been successfully used to tackle

some problems ((Karpathy, Johnson, and Fei-Fei 2015), (Li et al. 2018)). In scenarios with long

order of inputs, short-term memory becomes inadequate and RNNs are unable to learn from these

sequential entries.

(Hochreiter and Schmidhuber 1997) came up with the LSTM approach which is a modifi-

cation of RNNs with a significant longer short-term memory to tackle the challenge RNNs faced

in analyzing long-term dependencies. Interestingly too, this new architecture faced the drawback

of being unable to eliminate unessential states of preceeding inputs. This hindrance in simple

terms meant the algorithm will continue to increase out of bounds until it finally crashes. (Gers,

Schmidhuber, and Cummins 2000) came up with the "forget gate" (see Figure (2.3) that helps to

eliminate unwanted redundancies.

2.2.1 LSTM architecture

The standard LSTM structure (Figure 2.2) does not have a forget gate. It simply consists of

an output and input gate. The input gate processes and decides what should be added to the cell at

any time while the output gate determines the output to be produced based on the state of the cell.

The process is repeated for each time the cell states are modified. it = σ (Wihht−1 +Wixxt +bi)

Figure 2.2: Standard LSTM Architecture
Source: (Y. Yu et al. 2019)
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c̃t = tanh(Wc̃hht−1 +Wc̃xxt +bτ̃)

ct = ct−1 + it ∗ c̃t

ot = σ (Wohht−1 +Woxxt +bo)

ht = ot ∗ tanh(ct)

Figure 2.3: LSTM Architecture with Forget Gate Function
Source: (Y. Yu et al. 2019)

where:

xt are the inputs

ht recurrent information at time t

bi is the bias

ct is cell state

Wi, Wc̃ and W0 are the weights

∗ an operator for the multiplication of vectors

The equations above are the mathematical expressions of the pictorial connections as seen

in the standard LSTM structure. The equations below are slight modifications that capture the

introduction of the "forget gate".

ft = σ
(
Wf hht−1 +Wf xxt +b f

)
it = σ (Wihht−1 +Wixxt +bi)

c̃t = tanh(Wτhht−1 +W xt +bτ̃)

ct = ft ∗ ct−1 + it ∗ c̃t
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ot = σ (Wohht−1 +Woxxt +bo)

ht = ot ∗ tanh(ct)

2.3 Symbolic Aggregate Approximation

SAX was proposed by Eamonn Keogh and Jessica Lin in 2002 (Lin, Keogh, Lonardi, et al.

2003). It makes use of the PAA divided series to transform it into a string of characters, maintaining

the low computational complexity the reduced series offers. A series of arbitrary length, n is reduced

to a string of arbitrary length w such that w < n and the alphabets (symbols) used should be > 2

(Krishnamoorthy 2018b). The main advantages of SAX as outlined by (Sant’Anna and Wickström

2011) in comparison to other symbolization techniques is that SAX yields the lower bound of of

the true distance measure used to evaluate two time series. Also, SAX is an efficient algorithm

that reduces the size of a series under consideration through PAA implementation before the actual

discretization is done.

2.3.1 Piecewise Aggregate Approximation

Piecewise Aggregate Approximation (PAA) is an algorithm used to reduce the dimension of

a time series by first dividing the entire series into m equally sized portions which are as a result

of averaging the observations that fall within each segment ((Keogh et al. 2001), (Krishnamoorthy

2018a)). The two main components of PAA are z-normalization and dimensionality reduction.

Z-normalization: Before the algorithm computes means of the sub-intervals, the entire series has to

be first z-normalized. That is, the observations are normalized to have a mean zero (0) and standard

deviation of one (1). According to (Senin and Malinchik 2013), significantly different time series

can be modified to look similar when the observations are z-normalized (Senin and Malinchik 2013).

Hence, it is easier to compare two time series that have been z-normalized (see Figure 2.4).

x
′
i =

xi −µ

σ
, i ∈ N (2.1)
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where: xi is the ith observation

µ is the mean of the series

σ is the standard deviation of the series

x
′
i is the normalized output of observation xi

Figure 2.4: Two raw time series (left) and their similar looking z-normalization plot (right)
Source: (Senin and Malinchik 2013)

Dimensionality Reduction: Suppose we have a time series X = X1,X2, . . . ,Xn of length (n)

that is to be divided into a series X̄ = x̄1, x̄2, . . . , x̄M where M ≤ n. An equation to describe the

reduced series can be represented by:

x̄i =
M
n
.

(n/M).i

∑
j= n

M (i−1)+1
x j (2.2)

(Senin and Malinchik 2013)

where:

M = length of divided series

n = length of original series

j = 1, 1+ n
M , 1 + 2 n

M . . . , n

i = 1,2, . . . , M

x̄i = mean of observations in each equi-sized segment

x j = observation j in each of the i equi-sized regions

For example, for n= 30; and M = 10, there will be M(10) segments that contain 3 observations each

j = 1,4(1+3),7(1+2∗3), . . . ,30; i = 1,2, . . . ,10. The x̄i would be as follows:
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x̄1 =
1
3

3

∑
j=1

x j, x̄2 =
1
3

6

∑
j=4

x j , . . . , ¯x10 =
1
3

30

∑
j=28

x j,

Figure 2.5: 8-points time series and its PAA transform into 3 points
Source: (Senin, Lin, Wang, Oates, Gandhi, Arnold P. Boedihardjo, et al. 2018)

In Figure 2.5 above, a PAA transform of 8 points (blue) into 3 (red lines) is shown. It can

be seen that the observations are first split into 3 equal intervals and the mean of values in each

sub-interval is computed and used to represent that interval. Special cases of this division resulting

from Equation 2.2 also exist when M = n the split series is an exact replication of the original, and

M = 1 the split series is the average of the original ((Krishnamoorthy 2018a), (Lin, Keogh, Lonardi,

et al. 2003)). By applying PAA to time series, the computational cost can be reduced (Keogh

et al. 2001). Discretization, explained in the following section is the next step after dimensionality

reduction.

2.3.2 Look-up tables

In Figure (2.6), the breakpoints that define which observations from the PAA would be

assigned to alphabets a,b and c are obtained from Table (2.1 ) below. The breakpoints are such that

α = α1, . . . ,αβ−1 and for αi to αi+1, the area under the curve is 1
β

. For instance, for a word string

abcde, a would be assigned to all observations from the PAA that fall between α1 and α2 with area
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1
5 = 0.2, where β = 5 (see Figure 2.6 below).

Table 2.1: Breakpoints Lookup Table

β

αi 3 4 5 6 7 8 9 10
α1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28
α2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84
α3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52
α4 0.84 0.43 0.18 0 -0.14 -0.25
α5 0.97 0.57 0.32 0.14 0
α6 1.07 0.67 0.43 0.25
α7 1.15 0.76 0.52
α8 1.22 0.84
α9 1.28

Source: (Lin, Keogh, Wei, et al. 2007)

2.3.3 Discretization

The normalized series have a Gaussian distribution, and so splitting with equiprobability

becomes easy. If a string of length say m is chosen, the area under the normal curve is split into m

equal parts, each serving as breakpoints that define the boundaries of each character in our chosen

string (Krishnamoorthy 2018b).

Discretization maps the first character in the chosen m-length string to all PAA coefficients

that fall below the first breakpoint, the next character is assigned to all coeficients that fall in the

region greater than the first breakpoint but less than the second breakpoint until the entire equally

split Gaussian curve is assigned a character from our chosen m-length letter string.

A word is a sequence of symbols that is generated by a SAX algorithm. For example,

aacbd, could be a 5-letter SAX output for a series. Each word is a sub-sequence M with length

n such that if β j is the j-th element of the word, the PAA output is mapped to a word Ĉ using

Ĉ = β j if αi−1 ≤ C̄ j < αi ((Senin, Lin, Wang, Oates, Gandhi, Arnold P. Boedihardjo, et al. 2018),

(Krishnamoorthy 2018b)).

where; Ĉ is any alphabet/symbol in our list of symbols

C̄ is the mean of observations in that range (PAA approximation)
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Figure 2.6: Normalized series assigned characters
Source: (Senin, Lin, Wang, Oates, Gandhi, Arnold P. Boedihardjo, et al. 2018)

Figure 2.7: Discretization of 3600-points series to 5 alphabets
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2.3.4 Distance Measures

A major part of motif identifying algorithms is distance measures. Dynamic Time Warping

(DTW), correlation coefficient and Euclidean distance are examples in use (Mueen 2014). Given

two time series C and Q of the length n, their Euclidean distance is defined as follows:

D(Q,C)≡

√
n

∑
i=1

(qi − ci)2 (2.3)

for qi,ci, in Q and C respectively (Lin, Keogh, Wei, et al. 2007).

When the series is transformed using PAA (see 2.3.1), the Euclidean distance of the new series Qi

and Ci is as follows:

D(Q̄,C̄)≡
√

n
w

√
w

∑
i=1

(q̄i − c̄i)2 (2.4)

Equation (2.4) above gives a lower bound approximation of the original series. After

symbolization, we can define a function MINDIST that computes the minimum distance between

the string (word) output of two time series.

MINDIST (Q̂,Ĉ)≡
√

n
w

√
w

∑
i=1

(dist(q̂i, ĉi))
2 (2.5)

The main difference between Equation (2.4) and (2.5) is the dist() function that uses a

lookup table (Table (2.2)). For an word of size four (4), the distance two alphabets can be checked

by tracing across the row and column in which the two characters are found. For instance, dist(b,c)

= 0 and dist (b,d) = 0.67. Table (2.2) only needs to be calculated once for any given alphabet size

a. The output is stored and subsequent iterations just lookup distances without having to compute

them again, making the algorithm faster than other methods.
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Table 2.2: Lookup Table for String of Length 4

a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

Source: (Lin, Keogh, Wei, et al. 2007)

cellr,c =


0, if|r− c| ≤ 1

βmax(r,c)-1 −βmin(r,c), otherwise
(2.6)

where r & c represent the row and column respectively

2.3.5 Discretization - Sliding Window

For a time series T = t1, . . . , tm, a subsequence C is a sample tp, . . . , tp+n+1 of points with

length n ≪ m with p a random position such that 1 ≤ p ≤ m−n+1. Subsequences are pulled out

using a sliding window. All possible subsequences of length n (defined by user) of an m length

times series T can be obtained by sliding an n-size window across the series (Senin and Malinchik

2013). This process yields an output of SAX words with each, corresponding to the leftmost sliding

window point. For example, the sequence Y1 where each word is a subsequence obtained from the

main series using a sliding window and then discretization with SAX is performed. Subscripts

denote the start position of the subsequence:

Y1 = eeg1eeg2efg3eff4egh5eeg6eeg7eeg8efg9 . . .

2.3.6 Numerosity Reduction

For the sequence Y1 in Section 2.3.5, we could see the output of the sliding window for

neighbouring subsequences look similar which results in a huge number of consecutive identical

SAX words. Subsequently, this leads to the identification of trivial matches that affects the perfor-
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mance of SAX algorithm. To avoid this, a numerosity strategy is put in place to mitigate the effects

of identified similar neighbouring patterns. Numerostiy reduction takes note of and records only

the first appearance of a SAX word if there occurs consecutive similar subsequences (Senin and

Malinchik 2013). It ensures the output string contains only one of such similar patterns but still

maintains records of position and takes that into account when reporting different subsequent words

in the same series. When numerostiy reduction is applied to the sequence Y1 in the previous section,

it yields:

Y2 = eeg1efg3eff4egh5eeg6efg9 . . .

By reducing space requirements, numerosity reduction speeds up the algorithm implementation as

well as makes it possible to find motifs/anomalies with variable length.

2.3.7 Term Frequency - Inverse Document Frequency (TFIDF) Statistics

After the SAX algorithm has implemented the processes outlined in section 2.3.5 and 2.3.6,

a bag of words representing the time series from the sliding window is produced. Bags are produced

for each series in the training set after which these bags are combined into a single set called term

frequency matrix where term refers to - one SAX word (Senin, Lin, Wang, Oates, Gandhi, Arnold P.

Boedihardjo, et al. 2018). Each column of this matrix represents a class from the training while

the rows is the set of all SAX output words identified in all the groups (classes). An element ai j in

this matrix corresponds to the observed frequency of a term in a group and because some words

observed in one class of a time series may not be identified in other classes, this matrix of wordbag

sets is mostly sparse (Senin, Lin, Wang, Oates, Gandhi, Arnold P. Boedihardjo, et al. 2018).

SAX-VSM then uses the output matrix to compute t f ∗ id f weights as outlined in equation

2.9 below. Each frequency is transformed into a weight. the weight for each term t is computed

as the product of inverse term frequency (idf) and term frequency (tf). The log of the first term is

taken to scale it.
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tft,d =


log(1+ ft,d), if ft,d > 0

0, otherwise
(2.7)

t is the term

d is the set of bags (word bags)

ft,d is the frequency associated with a term in a bag.

idf is calculated as follows:

idft,D = log
|D|

|d ∈ D : t ∈ d|
= log

N
dft

(2.8)

where; N is the set of bags cardinality

D : total number of classes

dft : number of bags in which term t occurs.

Finally, the t f ∗ id f for t in the bag d of D set of bags is given as:

t f ∗ id f (t,d,D) = t ft,d × id ft,D = log(1+ ft,d)× log
N

d ft
(2.9)

∀ instances where ft,d > 0 and dft > 0, or zero otherwise.

After SAX-Vector Space Model (VSM) computes weights, creating a term weight matrix from the

term frequency matrix, classification of the classes is computed using cosine similarity (see 2.10).

2.3.8 Cosine Similarity

For vectors a and b, cosine similarity is computed based on the definition of inner product

and is given as follows:

similarity(a,b) = cos(θ) =
a ·b

∥a∥∥b∥
=

∑
n
i=1 aibi√

∑
n
i=1 a2

i

√
∑

n
i=1 b2

i

(2.10)
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Similarity values vary from 1 to -1 (exactly the same and opposite respectively). A value of

0 indicates orthogonality and since we use TFIDF weights (see Section (2.3)), the cosine similarity

between word bags generated from our input series will range from 0 to 1 (Senin, Lin, Wang, Oates,

Gandhi, Arnold P. Boedihardjo, et al. 2018).

2.4 Filtering

In order to implement the LSTM, the data is first filtered to remove noise and observations

that are not contributing much to the characteristic pattern of a disorder. Three methods were

applied: low-pass, median and wavelet filtering. ECG fragments were first normalized between -1

and 1 before filtering.

2.4.1 Median Filtering

Median filtering uses a defined kernel size (odd scalar that defines the size of the median

filter window) (Tyan 2006). The default kernel size is three (3) and so for a series X of length n, it

is calculated as follows:

yn = median(xn−k, . . . ,xn, . . .xn+k) (2.11)

median(x−k ≦ · · ·≦ x0 ≦ · · ·≦ xk) = x0 for k odd, else, median = x0+x1
2

The algorithm picks observations of size k at a time from the ECG signals, obtains the median for

each selection and creates a new data set of medians.

2.4.2 Low-pass Filtering

Low-pass filtering involves setting up thresholds (low and high). Signals are then passed

through with only those below its cutoff allowed through while the signals outside the cutofff

boundaries are weakened (Roger D. 2020). The steps involved are as follows:

1. define boundaries (lowcut and highcut)

2. define a threshold greater than the highest frequency observed
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3. divide both lowcut and highcut by the frequency threshold

4. use the "butter" function to generate filter coefficients

5. filter the given signal using the pre-defined parameters in step 3

2.4.3 Wavelet Filtering

The wavelet transform is defined as follows:

ψs,τ =
1√
|s|

ψ

(
t − τ

s

)
(2.12)

(Poungponsri and X.-H. Yu 2013)

It allows for signals to be represented in both frequency and time. The parameters are; dilation

(scale) factor (s), the shift (translation) factor (τ), a basic wavelet ψ(t) also reffered to as the mother

wavelet and time (t). A signal x(t) has a wavelet transform given by:

T (s,τ) =
∫

∞

−∞

x(t)ψ∗
(

t − τ

s

)
dt (2.13)

In simple terms, a wavelet transform can be seen as the "cross-correlation" of a signal with wavelets

of different "widths". The output of these filtering methods and how the best was chosen using the

least Mean Squared Error (MSE) value is explained in Chapter (III).
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CHAPTER III

DATA DESCRIPTION AND LSTM RESULTS

3.1 Data Description

Data used in this study was obtained from the Massachusetts Institute of Technology Beth

Israel Hospital (MIT-BIH) arrhythmia database and consists of 1000, 10-second (3600 non overlap-

ping samples) ECG fragments of 45 patients recorded at a frequency of 360 Hz and 200[adu/mV]

gain. The data includes observations for 17 different classes; 15 heart disorders, a Normal Sinus

Rhythm (NSR) and pacemaker rhythm (see Table 3.1) each of which had at least 10 fragments

collected from lead one (MLII) (Pławiak 2018b).

3.1.1 Disorder Description

To ensure each disorder type was adequately represented in both the training and sample,

classes with less than 3 patients were excluded and so, the final data used for the analysis did not

include pre-excitation, Idioventricular rhythm, Ventricular flutter, second-degree heart block and

the pacemaker rhythm. Data division was also done to ensure no patient in the training set was

included in the test set. A 70-30 split using number of patients in each disorder class was first done.

Observations were assigned to the training or test set using patient IDs to select fragments that

belonged to each particular patient. In total, there were 876 observations (610 training and 266 test).

Patient IDs as used in the original data were considered in the split to ensure no observations from

the same patient appeared in both the training and test.
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Table 3.1: Description of disorders and samples

No. Class Number of Fragments Number of Patients

1 Normal Sinus Rhythm 283 23
2 Atrial Premature Beat 66 9
3 Atrial Flutter 20 3
4 Atrial Fibrillation 135 6
5 Supra-ventricular Tachyarrhythmia 13 4
6 Pre-excitation (WPW) 21 1
7 Premature Ventricular Contraction 133 14
8 Ventricular Bigeminy 55 7
9 Ventricular Trigeminy 13 4
10 Ventricular Tachycardia 10 3
11 Idioventricular Rhythm 10 1
12 Ventricular Flutter 10 1
13 Fusion of Ventricular 11 3

and normal beat
14 Left Bundle Branch Block Beat 103 3
15 Right Bundle Branch 62 3

Block Beat
16 Second-degree heart block 10 1
17 pacemaker rhythm 45 2

Total 1000 45

3.1.2 Disorder Plots

The figure below (see Figure 3.1) is the plots for 3 of the disorders used in this study (that is;

Normal Sinus Rhythm, APB and IVR). The QRS complexes peaks vary slightly from one disorder

to the other as can be seen from the plot. For the normal case, the peaks can be seen around the

mid-point of the distance between the highest and lowest point. For the second disorder, this same

pattern can be observed but the QRS peaks are more widely spaced and range around the middle

than that observed in the normal case. In the first disorder group however, the QRS complexes are

closer to the endpoints of the plot and are more tightly squeezed together than the other two classes.
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Figure 3.1: Plots for NSR, APB and IVR

3.2 LSTM Summary

In this section, LSTM is applied to the ECG signals to make classification for two classes at

a time. The normal case (NSR) and each other disorder class. Three filtering methods were applied

to remove noise: low-pass filtering, median filtering and wavelet filtering. The steps below outline

how the LSTM was implemented.

• Data extraction: Load data

• Exploratory Data Analysis

• Pre-processing: split data into features and labels, normalize the data, filter using different

algorithms and choose the best using the least observed Mean Squared Error (MSE).

• Training and test set split

• Feature extraction: extract relevant features from the data to train our model

• Train the model and set necessary parameter
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• Model testing: calculate model predictions

• Evaluation of Model: assess model based on diagnostic measures (accuracy, AUC and their

plots)

Table (3.2) below gives the MSE values obtained for the three filtering methods applied to

the ECG data. It can be seen that the wavelet filtering gives the least MSE for all disorders. Further

investigation to check this by making plots of the output data from each filtering method reveals

the wavelet output almost always overlaps that of the original data (see Figure (3.3 and 3.6). The

remaining plots for the filtered data for all disorder classes in the Appendix is also similar.

Table 3.2: Mean Squared Error For Different Filters

Filtering method
Class Median Low-pass Wavelet

APB 0.0648 0.1531 0.0003
AFL 0.0698 0.1552 0.0004
AFIB 0.0527 0.1217 0.0003
SVTA 0.0694 0.1562 0.0004
PVC 0.0539 0.1229 0.0003
Bigenimy 0.0539 0.1230 0.0003
Trigenimy 0.0686 0.1550 0.0004
VT 0.0700 0.1555 0.0004
Fusion 0.0696 0.1628 0.0004
LBBBB 0.0588 0.1319 0.0003
RBBBB 0.0650 0.1099 0.0003

3.2.1 NSR and APB results

In Table (3.3), the best AUC value observed is 0.67 (±0.07) which corresponds with an

accuracy of 63.7795 (±1.64). This value is consistent with the SAX results that gave a classification

error of 0.3543 (0.6457 accuracy) as can be seen in Table (4.5). In the confusion matrix below, the

difference between the actual positive predicted negative (FN) and actual positive predicted positive

(TP) is not too large. However, the TN is much different from the FP.

Figure (3.2 and 3.3) are plots of a sample of 3 fragments (3 from the NSR and 3 from

the APB class) and the filtered data plot obtained for the 3 filtering methods. It can be seen from
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Table 3.3: LSTM AUC and Accuracy values

Class AUC Average AUC Accuracy Average Accuracy

APB 0.67 63.78
0.56 0.62 (±0.07) 61.42 60. 04 (±1.64)
0.68 63.25

AFL 0.53 86.32
0.85 0.72 (±0.17) 74.74 74.39 (±12.11)
0.78 62.11

AFIB 0.65 79.46
0.63 0.64 (±0.03) 72.32 74.49 (±4.40)
0.59 71.43

SVTA 0.86 73.86
0.78 0.74 (±0.11) 59.09 79.55 (±17.10)
0.65 93.18

PVC 0.74 67.44
0.72 0.72 (±0.03) 67.44 68.60 (±2.24)
0.77 71.32

Bigenimy 0.61 40.01
0.51 0.52 (±0.09) 65.91 58.56 (±14.77)
0.68 39.77

Trigenimy 0.49 94.19
0.38 0.45 (±0.06) 72.09 86.43 (±12.44)
0.49 93.02

VT 0.70 39.76
0.73 0.72 (±0.02) 45.78 44.18 (±3.87)
0.73 46.99

FUSION 0.79 58.33
0.78 0.80(±0.02) 57.14 60.32 (±4.51)
0.82 65.48

LBBBB 0.73 73.32
0.80 0.74(±0.05) 70.10 73.58 (±3.62)
0.70 77.32

RBBBB 0.61 43.29
0.59 0.59(±0.02) 40.21 43.30 (±3.09)
0.57 46.39

Figure (3.3) that the wavelet filtering with the least MSE as reported in Table (3.2) overlaps with the

original ECG data as indicated on the plot (purple color). The error plots for the validation error

does not look too convincing as it increases across the epochs.

26



Figure 3.2: A Plot 3 Normal Fragments and 3 disorders (NSR and APB)

Figure 3.3: Filtered data output for the 3 methods(NSR and APB)

3.2.2 NSR and AFL results

From table (3.3), the best AUC is 0.85 (±0.17) with an accuracy of 74.7368 (±12.11).

Figures (3.5 and 3.6) are the plots for a sample of 3 fragments as well as the plots for the original

data and the output for the three filtering methods. As was observed in Figure (3.3) above, the data

points after wavelet transform overlap with the original observations.

The performance of the LSTM on the NSR and AFL classes is also consistent with that ob-

tained from the SAX. SAX reported an accuracy of 86.32 while LSTM gave 74.7368. Manipulating

cut-off values for the predicted labels resulted in a closer value as seen in Table (3.3) however, the

AUC reported for this was 0.53 which casts some doubts on our classification. Interestingly too, the

validation error plot did not depict a decrease across epochs.
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Figure 3.4: Confusion matrix and error plot for NSR and APB

Figure 3.5: A Plot 3 Normal Fragments and 3 disorders(NSR and AFL)

3.2.3 NSR and AFIB results

The highest accuracy recorded for this run is 79.46 (±4.40) with an AUC of 0.65 (±0.031).

The SAX table gives an error of 0.2679 as compared to 0.2054 from the LSTM which gives a hint

of just a little variation in values but similar conclusions.

The filtering output for the ECG signals in Figure (3.9) is similar to that observed in the

previous classes. The median filter in this case yielded values close to the original signals but did

not perform as well as the wavelet transform. Hence, we can observe some gaps in the plot between

the original signal and median filtered data as well as direct overlaps. The FP value as shown in

the confusion matrix (see Figure (3.10)). On the other hand, the TP is vastly different from the

FN. Unlike the plots for APB and AFL, Figure (3.9) shows a similar pattern observed for AFIb.

Median filtering shows a good overall fit to the original signals but exhibit some gaps and has a
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Figure 3.6: Filtered data output for the 3 methods (NSR and AFL)

Figure 3.7: Confusion matrix and error plot for NSR and AFL

bigger MSE than wavelet filtering which was also applied to the data before the LSTM for this class

was implemented.

3.2.4 NSR and SVTA results

Overall, the highest AUC and accuracy were observed for the SVTA class. The highest AUC

observed was 0.86 (±0.11) while the highest accuracy was 93.1818 (±17.10). There was however,

a vast difference in accuracy scores between SAX and LSTM but from table (3.3), an observed

accuracy of 73.86 matches that observed for SAX in table (4.5).

Both the TP and TN as compared to the FP and FN in the confusion matrix (Figure 3.11)

show significant differences that attest to the good performance of our model. The validation and

training error also show a descent across the epochs as preferred.
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Figure 3.8: A Plot 3 Normal Fragments and 3 disorders (NSR and AFIB)

Figure 3.9: Filtered data output for the 3 methods (NSR and AFIB)

Figure 3.10: Confusion matrix and error plot for NSR and AFIB
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Figure 3.11: Confusion matrix and error plot for NSR and AFL

3.2.5 NSR and PVC results

For the PVC class, the best AUC was 0.77 (±0.03), observed with an accuracy of 71.32

(±2.24). The AUCs observed for different cutoffs were more consistent than other classes. The

confusion matrix (Figure C.1) shows a very good prediction for the negative classes while the FN

and TP do not show vast differences and could be claimed to be balanced. The error plot looks

convincing too as a continuous decrease across the epochs is seen.

3.2.6 NSR and BIGENIMY results

The best AUC observed for Bigenimy was 0.68 (±0.09) with an accuracy of 39.77 (±14.77)).

These values are low compared to the previous classes but this could be attributed to the number of

fragments present in this class. Disorder classes that had fewer observation in the training and test

had lesser metric scores. The confusion matrix does not show a very good prediction (Figure C.2)

even though the validation error plot shows a continuous decrease.

3.2.7 NSR and TRIGENIMY results

Figure (C.4) shows the confusion matrix for this class. A significant TP rate is identified but

our model fails to predict any TN. This is also evident in Table (3.3) where we can observe high

accuracies (±12.43) and low AUC (±0.06) values.
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3.2.8 NSR and VT results

AUC values for this class were >0.70 (±0.017) but accuracies recorded were < 50%. This

class had just nine(9) fragments in the training and test as compared to 257 for the normal ECG

signal (see Table 4.4). This makes results doubtful due to the huge discrepancy in sample sizes

for the two classes being compared. The error plot Figure C.3 shows a downward trend but the

confusion matrix shows a very poor prediction.

3.2.9 NSR and FUSION results

FUSION had one of the least observations (11 fragments) but the metric scores were

relatively good. Highest AUC was 0.82 (±0.02) with the highest accuracy as 65.48 (±4.51).

HOT-SAX gave an accuracy of 97.62 which supports the results with a bigger margin.

3.2.10 NSR and LBBBB results

LBBBB had the 3rd highest number of ECG signals in the dataset (103) and so good metric

scores were achieved Highest AUC for this class is 0.80 (±0.05) with the accuracy ranging from

>70 (±3.62).

3.2.11 NSR and RBBBB results

Despite having 62 fragments, classification for RBBBB was not as convincing as other

classes that had fewer ECG signals.
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CHAPTER IV

SAX AND MOTIF IDENTIFICATION

This chapter highlights the results of the SAX implementation. It includes, parameter esti-

mation, weighted pattern plots, motif identification for brute force and HOT-SAX and comparisons

between methods.

4.1 Optimal SAX Parameters

Table 4.1 below gives a summary of the optimal parameter outcomes for the window size,

PAA divisions and alphabet size for a given number of iterations and boundary specifications with

different cross validations. After several executions with different thresholds, the persisting values

of the parameters observed (optimal parameter values) were obtained and subsequently used in the

SAX implementation. These are: window size = 62, PAA divisions = 31 and alphabet size (number

of alphabets) = 6. These runs were done for a selection of fragments as well as the full dataset and

for each execution, similar results were obtained.

Table 4.1: Optimal SAX parameters

Nfolds Lower & Upper Boundaries Iterations Optimal w,p,a Error

15 c(10,2,2) - c(120,60,12) 10 (28,50,7) 0.5000
15 c(3,2,2) - c(120,60,15) 10 (62,31,8) 0.5000
15 c(3,2,5) - c(120,60,10) 10 (62,31,6) 0.4167
15 c(3,2,5) - c(120,60,10) 20 (62,31,6) 0.4167
10 c(3,2,5) - c(120,60,10) 20 (62,31,6) 0.4167
10 c(3,2,2) - c(120,60,10) 10 (62,31,6) 0.4167
10 c(3,2,2) - c(120,60,12) 10 (62,31,6) 0.8872

SAX is an amplitude-based quantization method as shown in Figure (2.6 & 2.7 ). As

such, too many alphabets/characters reduces efficiency of the algorithm leading to too many
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representations that create redundancies and make ideal pattern discovery problematic.

4.2 Discord Discovery algorithms

4.2.1 Brute Force

Brute force algorithms do not approach problems in the would be preferred precise, efficient

and deliberately planned method. Brute force, relies on the application of force, sequentially

going through the entire length to find all possible matches, compute errors and replace better

outcomes with the best one until the end of the sequence. For brute force discord discovery, using

specified parameters, each likely sub-sequence is identified by the algorithm through the entire time

series. Distances are computed as outlined in Chapter II and the output is presented in Table (C.1)

(Woodbridge et al. 2015). The brute force is an alternative to HOT-SAX although the latter has been

identified to perform better. Brute force uses the distance measure to compute distances between

closest non-matching discords in the entire length of the series for all identified matches.

Table 4.2: Brute Force and HOT-SAX Discovered Discords

Brute Force HOT-SAX
Class No of discords nn_distance Position nn_distance Position

APB 1 197.91 686 152.23 2618
AFL 1 110.21 1045 90.87 401
AFIB 1 120.43 1187 161.31 2293
SVTA 1 226.39 3399 226.39 3399
PVC 1 991.60 3361 1336.18 1941
BIGENIMY 1 536.49 2414 604.85 1882
TRIGENIMY 1 285.38 3535 168.39 2547
VT 1 579.46 2700 579.46 2700
FUSION 1 677.33 3325 677.33 3325
LBBBB 1 153.00 475 1079.87 2428
RBBBB 1 169.55 3415 152.26 0

4.2.2 HOT-SAX

Table C.1 and Table C.2 summarized in Table 4.2 gives the best discords identified across

the series for each class as well as its position and distance. The nn_distance gives a measure

of the distance between an identified discord and the next similar pattern. It is calculated using
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Equation (2.9) in Chapter 2. The position in the table, is the location in our time series where

the discord is identified. Comparing Table (C.2) and (C.1), we can see that out of the 11 classes,

SVTA, VT and FUSION have the same nn_distance for both algorithms while AFIB, PVC and

LBBBB (nn_distance < HOT-SAX) are the exceptions to what exists in literature that SAX gives

the minimum distance lower bound among discord discovery algorithms.

Interestingly, classes with the same nn_distance for both brute force and HOT-SAX also had the

same position at which these discords were located whereas the other classes all had different

positions and nn_distances. According to (Senin, Lin, Wang, Oates, Gandhi, Arnold P Boedihardjo,

et al. 2014), the HOT-SAX approach is faster to execute than the brute force. Figure (4.1), depicts

a plot of each class observations (blue) and an indication of the discord (red). It is evident from

the plots that the red portions are somewhat different from the other peaks on the same plot.

Interestingly, these anomalies occur somewhat around the middle of the plot with none appearing

close to the end. Only one plot from the VT class has an identified discord close to the start.

4.2.3 HOT-SAX Multi-discord

Table (4.3) summarizes the three of the most important discords identified for all classes

together with their position, the distances and the distance_calls. It can be seen that these discords

occur at different positions and the distances to the nearest non-self match also show differences

between them.

(Table 4.4) summarizes the segment distribution across the disorders as well as the average

number of distinct fragments used in each class. It can be seen from the table that the NSR has

the highest number of ECG data fragments followed by AFIB with 105 and then LBBBB with 88.

Number of distinct fragments in each class is not proportional to the size of observations. There

are several different measurements for the same fragment giving our training and test set multiple

observations for the same class.
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Table 4.3: HOT-SAX Multi-Discord Discovery

Class No of discords Position nn_distance

APB 3 187.5020 2954
155.5056 1484
143.3946 412

AFIB 3 161.3103 2293
68.6659 12
62.2254 208

AFL 3 442.5890 230
425.7628 2889
408.3173 3068

SVTA 3 264.6658 2018
227.5390 1883
181.6398 2971

PVC 3 449.6321 1946
103.3586 3350
102.3572 1758

BIGENIMY 3 133.3192 572
128.2459 3045
119.6411 2596

TRIGENIMY 3 148.3408 1453
114.9522 213
114.9522 2685

VT 3 158.3888 39
151.8058 2420
148.1857 209

FUSION 3 704.2088 1899
522.2193 1524
443.1365 3461

LBBBB 3 1079.8694 2428
525.5568 2536
177.0678 2975

RBBBB 3 1605.0210 3183
1316.3570 3247
123.9960 3309

4.2.4 HOT-SAX Misclassification Errors

Table (4.5) summarizes the classification errors for the SAX algorithm taking the NSR and

each of the other eleven classes at a time. Computing the proportion of the number of observations

in each class (excluding NSR) in relation to total observations (NSR + observations for particular
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Table 4.4: Classes and Segments

Class Total number Number of Number of distinct fragments Average
of fragments patients Train Test

NSR 201 23 16 7 12.56
APB 20 9 6 3 3.33
AFL 7 3 2 1 3.50
AFIB 105 6 4 2 26.25
SVTA 7 4 3 1 2.33
PVC 86 14 10 4 7.81
BIGENIMY 49 7 5 2 9.80
TRIGENIMY 9 4 3 1 3.00
VT 8 3 2 1 4.00
FUSION 9 3 2 1 4.50
LBBBB 88 3 2 1 44.00
RBBBB 47 3 2 1 23.50

Total 636 58

Table 4.5: Classification Errors Between NSR and Other Classes

Class Fragments Misclassified observations HOT-SAX Misclassification Weighted Error
in class Error

NSR 82
APB 45 45 0.3543 0.0079
AFL 13 13 0.1368 0.0105
AFIB 30 30 0.2679 0.0089
SVTA 5 34 0.3864 0.0773
PVC 47 51 0.3953 0.0084
BIGENIMY 6 13 0.1477 0.0246
TRIGENIMY 4 4 0.0465 0.0116
VT 1 1 0.0120 0.0120
FUSION 2 2 0.0238 0.0119
LBBBB 15 15 0.1546 0.0103
RBBBB 15 15 0.1546 0.0103

class) shows that SAX does a very good job classifying our data as the errors are consistent with the

proportions using number of observations present. Despite runs of the LSTM (III) giving slightly

different error values with different specified cutoff values for the predicted, it can be observed that

there is at least one accuracy consistent with the SAX output.
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4.2.5 Discord Plots

Figure 4.1: HOT-SAX Discord Plot For Disorders

Figure (4.1) displays the most important (in red) identified with the execution of the HOT-

SAX algorithm summarized in Table (C.2). It is obvious that the shape/peaks look slightly different

from the remaining QRS complexes across the entire plot further confirming the results of the

identification made by SAX and the location it provided.
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4.2.6 Multi-discord Plots

Figure (4.2) is a plot for 3 of the best discords identified for all classes as summarized in

Table (4.3). It includes the best discord as first identified in Table (C.2) and two subsequent best

discords shown in red, black and green respectively. SVTA has all 3 discords almost overlapping as

well as FUSION and RBBBB. NSR has the highest distance between the observed discords while

PVC, TRIGENIMY and VT have only two discords overlapping.

Figure 4.2: Multi-discord plot for disorders
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4.3 Weighted Pattern Plots

Figures (4.3, 4.4, 4.5) give the weighted pattern plots of each disorder class against the

NSR (that is;APB, AFL, AFIB, SVTA, PVC, Bigenimy, Trigenimy, VT, Fusion, LBBBB and

RBBBB). The color discrepancies depict the differences between each disorder and the normal

ECG readings. These differences are color coded (negative, neutral and high) to show how high

or low the differences are. For each word in the wordbag, neutral means the weight of that word

for both the disorder under consideration and the NSR are equal which may imply no disturbing

patterns in those positions. High means that the weight for a word in the disorder wordbag is more

than that observed for the same word in the normal case. In the implementation of SAX, a bag of

words with corresponding counts for each word is generated. These bag of words for each class are

combined to form the tfidf weights as described in Equation (2.9). The tfidf output contains the

most relevant words and their weights across each disorder.

Figure 4.3: Weighted-pattern plots for VT, Trigenimy, SVTA and RBBBB
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For the plots above and below, a negative (orange-red) indication on the plot would mean a

negative value between the weights observed for that particular disorder and the normal case. In

the same way, neutral would mean balanced weights while high (violet) would mean a particular

word occurred more in the disorder than in the NSR. It is interesting to note that all plots have

representations of neutral weights (green) which is an indication of equal weights observed in the

tfidf statistics. This is not very surprising as all the ECG fragments for the various disorders all

follow the same underlying pattern of peaks and falls (QRS complexes) and not the normal trends

observed in many time series data.

Figure 4.4: Weighted-pattern plots for PVC, LBBBB, Fusion and Bigeminy

Comparing the first plot in Figure (4.3) VT and the fourth plot in Figure (4.4) (Bigenimy),

we can see these weighted pattern plots show more neutral than the rest. Even without checking

numerical measures, these plots are very similar to that observed in the first plot in Figure (3.1).
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Figure 4.5: Weighted-pattern plots for APB, AFL, AFIB and overall
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CHAPTER V

DISCUSSION AND FUTURE RESEARCH

5.1 Discussion

This project aimed at identifying heart disorders by implementing the SAX algorithm to

discretize the numeric data and then apply the SAX-VSM approach to identify motifs and observe

abnormalities in the ECG data. The study also implemented the LSTM neural network to classify

the ECG signals after pre-processing to eliminate unwanted noisy features. The results of the SAX

classification errors shows relatively better performance with low errors as presented in Table (4.5).

Further analysis was done to identify the most important discords for each class as sum-

marised in Table (C.2) and pictorially shown in Figure(4.1). The distance measure and position of

the best discords identified by HOT-SAX depict huge discrepancies between each of the disorder

classes and normal ECG readings. This highlights differences in the ECG signals and suggests the

presence of varying heart conditions as we initially sought to find out.

Analyzing further, we identified the three most important discords as summarized in Table

(4.3) for each class. These discords are shown in Figure (4.2) as the red, green and black highlights.

As was identified for single discords in Figure (4.1), the positioning of these irregular patterns

suggest the presence of vital differences between the ECG signals. Similar location of best discords

(Table 3.1), equal distance measures (Table C.2) and tightly overlapping raw ECG signal plot

(Figure 3.1, and 3.8) would mean all signals collected are the same and conform to same heart

condition but this was not the case observed.

Classes with significantly large number of ECG fragments in the dataset showed better

metric scores (see Table 3.3) that were consistent with the results obtained from SAX (Table 4.5).
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For classes that had fewer ECG signals in the training set, AUC and accuracy values were low

and confusion matrices showed poor prediction that favors higher FP and FN values. Some of

the validation and training error plots for the disorders based on the LSTM showed either a slight

decrease or none at all. This could be attributed to the LSTM being unable to identify the exact

location of discords, check for repetitions using distances before computing errors as SAX does.

LSTM focused more on the numerical values of the ECG signals and not the position of anomalies

present.

5.2 Study Limitation

One challenge with the implementation of SAX is the choice of optimal parameters. That

is; window size, number of PAA divisions and appropriate number of alphabets to represent the

equi-probable regions. A smaller PAA value means the string representations would not capture the

real fluctuations (spikes and dips) in the original data set. Similarly, more divisions may lead to too

many alphabet representations that results in many repeated sequences which may not necessarily

represent the underlying behaviour that should be observed in the data. Furthermore, symbols

are assigned to the mean of observations in each defined segment which could result in varying

segments with equal averages being assigned the same symbols even though they may represent a

different variation in the series. Hence, trends and underlying characteristics may not be captured

((Sun et al. 2014), (Ren et al. 2018)).

To tackle this, different validation values for different iterations were used to estimate errors

for the SAX implementation to our ECG data by setting thresholds (minimum and maximum) for

all three parameters (see Table 4.1). After several runs, the window size, alphabet size and number

of PAA divisions that gave the minimum error was obtained.

5.3 Recommendation for Future Research

This study uses SAX, a quantization technique that does the characterization based on

the amplitude domain it is recommended that future studies make use of temporal segmentation

methods such as persist that make PAA divisions based on time domain, group similar observations
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before discretizing to make comparison of results (see Figure 1 in (Sant’Anna and Wickström

2011)). It is also recommended that a more representative dataset be used as our data had more ECG

fragments for the normal heart beats as compared to the remaining disorders. For future research,

the researcher plans to simulate ECG signals that can be analysed and results compared with the

signals obtained from the MIT-BIH database. ECG signals and their behaviour would be better

understood by a cardiologist. As such, it is recommended that results be presented to a medical

expert to evaluate our algorithm output with that of medical validation techniques being used.
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APPENDIX A

SAX CODE

Code was obtained and modified from (Senin, Lin, Wang, Oates, Gandhi, Arnold P. Boedi-

hardjo, et al. 2018). Available at https://github.com/jMotif/jmotif-R

se twd ( "C : / Use r s / 1 8 1 3 3 / OneDrive − The U n i v e r s i t y o f Texas −Rio

Grande V a l l e y ( 2 ) / F a l l 2022 / Moses " )

# i n s t a l l _ g i t h u b ( ’ j M o t i f / j m o t i f −R ’ )

# i n s t a l l . p a c k a g e s ( " r e a d x l " )

# i n s t a l l . p a c k a g e s ( ’ readMat ’ )

l i b r a r y ( d e v t o o l s )

l i b r a r y ( j m o t i f )

l i b r a r y ( r e a d x l )

l i b r a r y (R . ma t l a b )

l i b r a r y ( p l y r )

l i b r a r y ( cvToo l s )

l i b r a r y ( n l o p t r )

# PICK one o b s e r v a t i o n t o s e e how t h e PAA works

C0 <− r e a d _ e x c e l ( "C0 . x l s x " )

x1<− t s ( C0 ) #make f i l e t ime s e r i e s

x1z <−znorm ( x1 ) # z− n o m r a l i z e t h e d a t a p o i n t s

p l o t ( x1 , t y p e =" l " , c o l =" b l u e " , main=" C o n t r o l group " , x l a b = "

o b s e r v a t i o n " , y l a b = " f r e q u e n c y " ) # v i s u a l p l o t
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# d e f i n e p a r a m e t e r s f o r PAA

a = 5 # a l p h a b e t s i z e

p = 30 ## paa s i z e

b = l i n s p a c e ( 1 , p , p ) ## number o f paa d i v i s i o n s

seq = l i n s p a c e ( 0 , 3 6 0 0 , 3 0 ) ## s e q u e n c e o f b r e a k p o i n t s . my d a t a

has 3600 p o i n t s

p l o t ( x1z , t y p e =" l " , c o l =" b l u e " , main=" 3600− p o i n t s t ime s e r i e s and

i t PAA t r a n s f o r m i n t o 30 p o i n t s " )

a b l i n e ( v=c ( 0 , l i n s p a c e ( 0 , 3 6 0 0 , p ) ) , l t y =3 , lwd =2 , c o l =" gray70 " ) #

draw v e r t i c a l l i n e s t o s p l i t t h e s e r i e s i n t o e q u a l s i z e s

y_paa30 = paa ( x1z , p ) ### does t h e p i e c e w i s e a g g r e g a t e

a p p r o x i m a t i o n

## t o show segmen t s and t h e i r m i d p o i n t s

f o r ( i i n b ) {

f o r ( j i n seq ) {

segmen t s ( seq [ i ] , y_paa30 [ i ] , seq [ i +1 ] , y_paa30 [ i ] , lwd =1 , c o l =" r e d "

)

p o i n t s ( x = seq [ i ] + 1 2 0 / 2 , y=y_paa30 [ i ] , c o l =" r e d " , pch =23 , lwd

=5)

}

}

### showing t h e a l p h a b e t c u t s on t h e p l o t

y1<−x1 #y1 a s s i g n e d t o o r i g i n a l t ime s e r i e s

l i n e s ( x1z , y1 , t y p e =" l " , lwd =5 , c o l =" magenta " )

a b l i n e ( h = a l p h a b e t _ t o _ c u t s ( 5 ) [ 2 : 5 ] , l t y =2 , lwd =2 , c o l =" magenta " )

t e x t ( 0 . 4 , − 1 , " a " , cex =2 , c o l =" magenta " )

t e x t ( 0 . 4 , − 0 . 5 , " b " , cex =2 , c o l =" magenta " )
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t e x t ( 0 . 4 , 0 , " c " , cex =2 , c o l =" magenta " )

t e x t ( 0 . 4 , 0 . 5 , " d " , cex =2 , c o l =" magenta " )

t e x t ( 0 . 4 , 1 , " e " , cex =2 , c o l =" magenta " )

CO_sts <− s e r i e s _ t o _ s t r i n g ( y_paa30 , 5 ) # s e r i e s t o 5 l e t t e r

s t r i n g

CO_stc <− s e r i e s _ t o _ c h a r s ( y_paa30 , 5 )

# i f any o f t h e PAA d i v i s i o n s does n o t f a l l i n t h e r a n g e of a

g i v e n a l p h a b e t ,

# t h e s e r i e s t o s t r i n g and s e r i e s t o c h a r a c t e r won ’ t c o n t a i n i t

t r a i n D a t a <− r e a d . csv ( "TRAIN . csv " , h e a d e r = FALSE)

head ( t r a i n D a t a , 1 0 )

t r a i n D a t a [ 1 : 5 , 1 : 5 ]

m y t r a i n d a t a <− as . m a t r i x ( t r a i n D a t a [ , − c ( 1 , 2 ) ] ) ## I m p o r t a n t : P l e a s e

c o n v e r t t h e s e t r a i n i n g d a t a t o a m a t r i x .

# In my f i r s t two columns I had saved ClassName (NSR, APB, AFL , IVR )

and C l a s s L a b e l s (NSR==1 ,APB==2 ,AFL==3 ,IVR==4) o f t r a i n i n g d a t a

.

dim ( m y t r a i n d a t a ) # 610 by 3600

t e s t D a t a <− r e a d . csv ( "TEST . csv " , h e a d e r = FALSE)

head ( t e s t D a t a , 1 0 )

t e s t D a t a [ 1 : 5 , 1 : 5 ]

m y t e s t d a t a <− as . m a t r i x ( t e s t D a t a [ , − c ( 1 , 2 ) ] ) # I m p o r t a n t : P l e a s e

c o n v e r t t h e s e t r a i n i n g d a t a t o a m a t r i x .
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## In my f i r s t two columns I had saved ClassName (NSR, APB, AFL , IVR )

and C l a s s L a b e l s (NSR==1 ,APB==2 ,AFL==3 ,IVR==4) o f t e s t d a t a .

dim ( m y t e s t d a t a ) # 266 by 3600

m y _ l i s t <− l i s t ( t r a i n D a t a [ , 2 ] , m y t r a i n d a t a , t e s t D a t a [ , 2 ] , m y t e s t d a t a

)

names ( m y _ l i s t ) <− c ( " l a b e l s _ t r a i n M " , " d a t a _ t r a i n M " , " l a b e l s _ t e s t M "

, " d a t a _ t e s t M " )

s t r ( m y _ l i s t )

a t t r i b u t e s ( m y _ l i s t )

# s e t t h e d i s c r e t i z a t i o n p a r a m e t e r s

w <−62 #60 # t h e s l i d i n g window s i z e

p <− 31 #6 # t h e PAA s i z e

a <− 6 #6 # t h e SAX a l p h a b e t s i z e

# c o n v e r t t h e t r a i n c l a s s e s t o wordbags ( t h e d a t a s e t has t h r e e

l a b e l s : 1 , 2 , 3 )

n s r <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [ m y _ l i s t [ [ "

l a b e l s _ t r a i n M " ] ] == 1 , ] , w, p , a , " e x a c t " , 0 . 0 1 ) # 8024 by 2

apb <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [ m y _ l i s t [ [ "

l a b e l s _ t r a i n M " ] ] == 2 , ] , w, p , a , " e x a c t " , 0 . 0 1 ) # 4822 by 2

a f l <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [ m y _ l i s t [ [ "

l a b e l s _ t r a i n M " ] ] == 3 , ] , w, p , a , " e x a c t " , 0 . 0 1 )

a f i b <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [ m y _ l i s t [ [ "

l a b e l s _ t r a i n M " ] ] == 4 , ] , w, p , a , " e x a c t " , 0 . 0 1 )

s v t a <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [ m y _ l i s t [ [ "

54



l a b e l s _ t r a i n M " ] ] == 5 , ] , w, p , a , " e x a c t " , 0 . 0 1 )

pvc <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [ m y _ l i s t [ [ "

l a b e l s _ t r a i n M " ] ] == 6 , ] , w, p , a , " e x a c t " , 0 . 0 1 )

b igen imy <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [

m y _ l i s t [ [ " l a b e l s _ t r a i n M " ] ] == 7 , ] , w, p , a , " e x a c t " , 0 . 0 1 )

t r i g e n i m y <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [

m y _ l i s t [ [ " l a b e l s _ t r a i n M " ] ] == 8 , ] , w, p , a , " e x a c t " , 0 . 0 1 )

v t <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [ m y _ l i s t [ [ "

l a b e l s _ t r a i n M " ] ] == 9 , ] , w, p , a , " e x a c t " , 0 . 0 1 )

f u s i o n <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [ m y _ l i s t

[ [ " l a b e l s _ t r a i n M " ] ] == 1 0 , ] , w, p , a , " e x a c t " , 0 . 0 1 )

lbbbb <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [ m y _ l i s t [ [

" l a b e l s _ t r a i n M " ] ] == 1 1 , ] , w, p , a , " e x a c t " , 0 . 0 1 )

rbbbb <− m a n y s e r i e s _ t o _ w o r d b a g ( m y _ l i s t [ [ " d a t a _ t r a i n M " ] ] [ m y _ l i s t [ [

" l a b e l s _ t r a i n M " ] ] == 1 2 , ] , w, p , a , " e x a c t " , 0 . 0 1 )

head ( n s r )

# compute t f * i d f w e i g h t s f o r t h r e e bags

t f i d f _ M = b a g s _ t o _ t f i d f ( l i s t ( " n s r " = ns r , " apb " = apb , " a f l " =

a f l , " a f i b " = a f i b , " s v t a " = s v t a , " pvc " = pvc ,

" b igen imy " = bigenimy , " t r i g e n i m y "

= t r i g e n i m y , " v t " = vt ,

" f u s i o n " = f u s i o n , " lbbbb " = lbbbb ,

" rbbbb " = rbbbb ) )

t a i l ( t f i d f _ M ) # t h i s y i e l d s a d a t a f rame of f i v e v a r i a b l e s : t h e

words which a r e " i m p o r t a n t " i n TF*IDF t e r m s

# ( i . e . n o t p r e s e n t e d a t l e a s t i n one o f t h e bags ) and t h e i r c l a s s
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− c o r r e s p o n d i n g w e i g h t s :

dim ( t f i d f _ M )

l i b r a r y ( d p l y r )

head ( a r r a n g e ( t f i d f_M , desc ( n s r ) ) ) # a r r a n g e w e i g h t s by d i s o r d e r

head ( a r r a n g e ( t f i d f_M , desc ( apb ) ) )

#SAX−VSM c l a s s i f i c a t i o n

# c l a s s i f y t h e t e s t d a t a

l a b e l s _ p r e d i c t e d _ M = r e p ( −1 , l e n g t h ( m y _ l i s t [ [ " l a b e l s _ t e s t M " ] ] ) )

l a b e l s _ t e s t _ M = m y _ l i s t [ [ " l a b e l s _ t e s t M " ] ]

d a t a _ t e s t _ M = m y _ l i s t [ [ " d a t a _ t e s t M " ] ]

f o r ( i i n c ( 1 : l e n g t h ( d a t a _ t e s t _ M [ , 1 ] ) ) ) {

s e r i e s _ M = d a t a _ t e s t _ M [ i , ]

bag_M = s e r i e s _ t o _ w o r d b a g ( se r ies_M , w, p , a , " e x a c t " , 0 . 0 1 )

cos ines_M = c o s i n e _ s i m ( l i s t ( " bag "=bag_M , " t f i d f " = t f i d f _ M ) )

l a b e l s _ p r e d i c t e d _ M [ i ] = which ( c o s i n e s _ M $ c o s i n e s == max (

c o s i n e s _ M $ c o s i n e s ) )

}

l a b e l s _ p r e d i c t e d _ M

# compute t h e c l a s s i f i c a t i o n e r r o r

er ror_M = l e n g t h ( which ( ( l a b e l s _ t e s t _ M != l a b e l s _ p r e d i c t e d _ M ) ) ) /

l e n g t h ( l a b e l s _ t e s t _ M )

error_M

# f i n d o u t which t ime s e r i e s were m i s c l a s s i f i e d
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which ( ( l a b e l s _ t e s t _ M != l a b e l s _ p r e d i c t e d _ M ) )

###RUN THE CODE CHUNK BELOW TO OBTAIN THE OPTIMAL PARAMETERS FOR

W, P & A

###SAX PARAMETER OPTIMIZATION FOR MY DATA###

x = c ( 3 , 3 0 , 5 ) # c (w, p , a )

cver ror_M <− f u n c t i o n ( x ) {

# t h e v e c t o r x suppose t o c o n t a i n r e a t i o n a l v a l u e s f o r t h e

# d i s c r e t i z a t i o n p a r a m e t e r s

w = round ( x [ 1 ] , d i g i t s = 0 )

p = round ( x [ 2 ] , d i g i t s = 0 )

a = round ( x [ 3 ] , d i g i t s = 0 )

# d e f i n e t h e d a t a f o r CV

t r a i n _ d a t a M <− m y _ l i s t $ d a t a _ t r a i n M

t r a i n _ l a b e l s M <− m y _ l i s t $ l a b e l s _ t r a i n M # l a b e l s _ t r a i n M

n f o l d s = 10

# few l o c a l v a r s t o s i m p l i f y t h e p r o c e s s

m<− l e n g t h ( t r a i n _ l a b e l s M )

c <− l e n g t h ( u n i qu e ( t r a i n _ l a b e l s M ) )

f o l d s <− c v F o l d s (m, K = n f o l d s , t y p e = " random " )

# s a v i n g t h e e r r o r f o r each f o l d s i n t h i s a r r a y

e r ro r s_M <− l i s t ( )

# c r o s s − v a l i a d t i o n b u s i n e s s
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f o r ( i i n c ( 1 : n f o l d s ) ) {

# d e f i n e d a t a s e t s

s e t _ t e s t M <− which ( f o l d s $ w h i c h == i )

s e t _ t r a i n M <− s e t d i f f ( 1 :m, s e t _ t e s t M )

# compute t h e TF−IDF v e c t o r s

bags_M <− a l p l y ( un i qu e ( t r a i n _ l a b e l s M ) , 1 , f u n c t i o n ( x ) {x } )

f o r ( j i n 1 : c ) {

ll_M <− which ( t r a i n _ l a b e l s M [ s e t _ t r a i n M ] == un iqu e (

t r a i n _ l a b e l s M ) [ j ] )

bags_M [ [ u n i qu e ( t r a i n _ l a b e l s M ) [ j ] ] ] <−

m a n y s e r i e s _ t o _ w o r d b a g ( ( t r a i n _ d a t a M [ s e t _ t r a i n M , ] ) [ ll_M

, ] , w, p , a , " e x a c t " , 0 . 0 1 )

}

t f i d f _ M = b a g s _ t o _ t f i d f ( bags_M )

# compute t h e e r o r

l a b e l s _ p r e d i c t e d _ M <− r e p ( −1 , l e n g t h ( s e t _ t e s t M ) )

l a b e l s _ t e s t _ M <− t r a i n _ l a b e l s M [ s e t _ t e s t M ]

d a t a _ t e s t M <− t r a i n _ d a t a M [ s e t _ t e s t M , ]

f o r ( j i n c ( 1 : l e n g t h ( l a b e l s _ p r e d i c t e d _ M ) ) ) {

bag_M=NA

i f ( l e n g t h ( l a b e l s _ p r e d i c t e d _ M ) >1) {

bag_M = s e r i e s _ t o _ w o r d b a g ( d a t a _ t e s t M [ j , ] , w, p , a , " e x a c t

" , 0 . 0 1 )

} e l s e {

58



bag_M = s e r i e s _ t o _ w o r d b a g ( d a t a _ t e s t M , w, p , a , " e x a c t " ,

0 . 0 1 )

}

cos ines_M = c o s i n e _ s i m ( l i s t ( " bag " = bag_M , " t f i d f " =

t f i d f _ M ) )

i f ( ! any ( i s . na ( c o s i n e s _ M $ c o s i n e s ) ) ) {

l a b e l s _ p r e d i c t e d _ M [ j ] = which ( c o s i n e s _ M $ c o s i n e s == max (

c o s i n e s _ M $ c o s i n e s ) )

}

}

# t h e a c t u a l e r r o r v a l u e

er ror_M = l e n g t h ( which ( ( l a b e l s _ t e s t _ M != l a b e l s _ p r e d i c t e d _ M ) )

) / l e n g t h ( l a b e l s _ t e s t _ M )

er ro r s_M [ i ] <− error_M

}

# o u t p u t t h e mean c r o s s − v a l i d a t i o n e r r o r a s t h e r e s u l t

err_M = mean ( l a p l y ( er rors_M , f u n c t i o n ( x ) {x } ) )

p r i n t ( p a s t e (w, p , a , " −> " , err_M ) )

err_M

}

# PERFORM THE PARAMETER OPTIMIZATION BY SPECIFYING THRESHOLD

#S <− d i r e c t L ( cverror_M , c ( 1 0 , 2 , 2 ) , c ( 6 8 , 6 0 , 1 2 ) ,

# n l . i n f o = TRUE, c o n t r o l = l i s t ( x t o l _ r e l = 1e −8 , maxeval = 10) )

S <− d i r e c t L ( cverror_M , c ( 3 , 2 , 2 ) , c ( 6 8 , 6 0 , 1 0 ) ,
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n l . i n f o = TRUE, c o n t r o l = l i s t ( x t o l _ r e l = 1e −8 ,

maxeval = 10) )

#### use o p t i m a l sax p a r a m e t e r s f o r c l a s s i f i c a t i o n

w = round ( S$par [ 1 ] , d i g i t s = 0 )

p = round ( S$par [ 2 ] , d i g i t s = 0 )

a = round ( S$par [ 3 ] , d i g i t s = 0 )

para <−c (w, p , a ) # l i s t o f o p t i m a l p a r a m e t e r s

p a r a

# compute t h e TF−IDF v e c t o r s

bags_M <− a l p l y ( u n i qu e ( t r a i n _ l a b e l s M ) , 1 , f u n c t i o n ( x ) {x } )

f o r ( j i n 1 : l e n g t h ( un iq ue ( t r a i n _ l a b e l s M ) ) ) {

ll_M <− which ( t r a i n _ l a b e l s M == un i qu e ( t r a i n _ l a b e l s M ) [ j ] )

bags_M [ [ u n i qu e ( t r a i n _ l a b e l s M ) [ j ] ] ] <−

m a n y s e r i e s _ t o _ w o r d b a g ( t r a i n _ d a t a M [ ll_M , ] , w, p , a , " e x a c t " ,

0 . 0 1 )

}

t f i d f _ M = b a g s _ t o _ t f i d f ( bags_M )

# c l a s s i f y t h e t e s t d a t a

l a b e l s _ p r e d i c t e d _ M = r e p ( −1 , l e n g t h ( m y _ l i s t [ [ " l a b e l s _ t e s t M " ] ] ) )

l a b e l s _ t e s t _ M = m y _ l i s t [ [ " l a b e l s _ t e s t M " ] ]

d a t a _ t e s t _ M = m y _ l i s t [ [ " d a t a _ t e s t M " ] ]

f o r ( i i n c ( 1 : l e n g t h ( d a t a _ t e s t _ M [ , 1 ] ) ) ) {

# p r i n t ( p a s t e ( i ) )

s e r i e s _ M = d a t a _ t e s t _ M [ i , ]

bag_M = s e r i e s _ t o _ w o r d b a g ( se r ies_M , w, p , a , " e x a c t " , 0 . 0 1 )
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cos ines_M = c o s i n e _ s i m ( l i s t ( " bag "=bag_M , " t f i d f " = t f i d f _ M ) )

i f ( ! any ( i s . na ( c o s i n e s _ M $ c o s i n e s ) ) ) {

l a b e l s _ p r e d i c t e d _ M [ i ] = which ( c o s i n e s _ M $ c o s i n e s == max (

c o s i n e s _ M $ c o s i n e s ) )

}

}

# compute t h e c l a s s i f i c a t i o n e r r o r

er ror_M = l e n g t h ( which ( ( l a b e l s _ t e s t _ M != l a b e l s _ p r e d i c t e d _ M ) ) ) /

l e n g t h ( l a b e l s _ t e s t _ M )

error_M

# f i n d o u t which t ime s e r i e s were m i s c l a s s i f i e d

which ( ( l a b e l s _ t e s t _ M != l a b e l s _ p r e d i c t e d _ M ) )

p a r ( mfrow=c ( 3 , 1 ) )

p l o t ( m y _ l i s t [ [ " d a t a _ t e s t M " ] ] [ 2 8 , ] , t y p e =" l " )

p l o t ( m y _ l i s t [ [ " d a t a _ t e s t M " ] ] [ 1 1 8 , ] , t y p e =" l " )

p l o t ( m y _ l i s t [ [ " d a t a _ t e s t M " ] ] [ 2 5 3 , ] , t y p e =" l " )

###CODE FOR DISCORD DISCOVERY

# ############### HOT−SAX FOR DISCORD DISCOVERY ################

? f i n d _ d i s c o r d s _ b r u t e _ f o r c e

# a rgumen t s ( t s , w_size , d i s co rds_num ) d i sco rds_num i s t h e number

o f d i s c o r d s t o r e p o r t

# i n s t a l l . p a c k a g e s ( " l i n e p r o f " )

# l i b r a r y ( " p r o f v i s " )

f i n d _ d i s c o r d s _ b r u t e _ f o r c e ( m y t r a i n d a t a [ 8 7 , ] , 6 2 , 2 ) #87 i s a row i n
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my d a t a c o r r e s p o n d i n g t o one o b s e r v a t i o n

? f i n d _ d i s c o r d s _ h o t s a x

# a rgumen t s ( t s , w_size , p a a _ s i z e , a _ s i z e , n _ t h r e s h o l d ,

d i s co rds_num )

f i n d _ d i s c o r d s _ h o t s a x ( m y t r a i n d a t a [ 2 , ] , 62 , 31 , 6 , 0 . 0 1 , 1 )

### FINDING MULTIPLE DISCORDS ####

d i s c o r d s = f i n d _ d i s c o r d s _ h o t s a x ( m y t r a i n d a t a [ 2 8 9 , ] , 62 , 31 , 6 ,

0 . 0 1 , 3 ) #

d i s c o r d s

## SELECTING THE BEST DISCORD AND PLOT ##### t h e one wi th l a r g e s t

n n _ d i s t a n c e

d i s c o r d s = f i n d _ d i s c o r d s _ h o t s a x ( m y t r a i n d a t a [ 2 8 9 , ] , 62 , 31 , 6 ,

0 . 0 1 , 3 )

p l o t ( m y t r a i n d a t a [ 2 8 9 , ] , t y p e = " l " , c o l = " c o r n f l o w e r b l u e " , main

= "ECG NSR " )

l i n e s ( x=c ( d i s c o r d s [ 1 , 2 ] : ( d i s c o r d s [ 1 , 2 ] + 1 0 0 ) ) ,

y= m y t r a i n d a t a [ 2 8 9 , ] [ d i s c o r d s [ 1 , 2 ] : ( d i s c o r d s [ 1 , 2 ] + 1 0 0 ) ] , c o l

=" r e d " )

d i s c o r d s = f i n d _ d i s c o r d s _ h o t s a x ( m y t r a i n d a t a [ 2 8 9 , ] , 62 , 31 , 6 ,

0 . 0 1 , 3 )

p l o t ( m y t r a i n d a t a [ 2 8 9 , ] , t y p e = " l " , c o l = " c o r n f l o w e r b l u e " , main

= "ECG NSR" )

l i n e s ( x=c ( d i s c o r d s [ 2 , 2 ] : ( d i s c o r d s [ 2 , 2 ] + 1 0 0 ) ) ,

y= m y t r a i n d a t a [ 2 8 9 , ] [ d i s c o r d s [ 2 , 2 ] : ( d i s c o r d s [ 2 , 2 ] + 1 0 0 ) ] , c o l
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=" r e d " )

d i s c o r d s = f i n d _ d i s c o r d s _ h o t s a x ( m y t r a i n d a t a [ 2 8 9 , ] , 62 , 31 , 6 ,

0 . 0 1 , 3 )

p l o t ( m y t r a i n d a t a [ 2 8 9 , ] , t y p e = " l " , c o l = " c o r n f l o w e r b l u e " , main

= "ECG NSR " )

l i n e s ( x=c ( d i s c o r d s [ 3 , 2 ] : ( d i s c o r d s [ 3 , 2 ] + 5 0 ) ) ,

y= m y t r a i n d a t a [ 2 8 9 , ] [ d i s c o r d s [ 3 , 2 ] : ( d i s c o r d s [ 3 , 2 ] + 1 0 0 ) ] , c o l

=" r e d " )

# ###################### m u t l i d i s c o r d wi th p l o t #####

d i s c o r d s = f i n d _ d i s c o r d s _ h o t s a x ( m y t r a i n d a t a [ 5 4 4 , ] , 62 , 31 , 6 ,

0 . 0 1 , 3 )

p l o t ( m y t r a i n d a t a [ 5 4 4 , ] , t y p e = " l " , c o l = " c o r n f l o w e r b l u e " , main

= "ECG RBBBB − PATIENT 1 " )

l i n e s ( x=c ( d i s c o r d s [ 1 , 2 ] : ( d i s c o r d s [ 1 , 2 ] + 1 0 0 ) ) ,

y= m y t r a i n d a t a [ 5 4 4 , ] [ d i s c o r d s [ 1 , 2 ] : ( d i s c o r d s [ 1 , 2 ] + 1 0 0 ) ] ,

c o l =" r e d " )

l i n e s ( x=c ( d i s c o r d s [ 2 , 2 ] : ( d i s c o r d s [ 2 , 2 ] + 1 0 0 ) ) ,

y= m y t r a i n d a t a [ 5 4 4 , ] [ d i s c o r d s [ 2 , 2 ] : ( d i s c o r d s [ 2 , 2 ] + 1 0 0 ) ] ,

c o l =" b l a c k " )

l i n e s ( x=c ( d i s c o r d s [ 3 , 2 ] : ( d i s c o r d s [ 3 , 2 ] + 1 0 0 ) ) ,

y= m y t r a i n d a t a [ 5 4 4 , ] [ d i s c o r d s [ 3 , 2 ] : ( d i s c o r d s [ 3 , 2 ] + 1 0 0 ) ] ,

c o l =" l awngreen " )

d i s c o r d s = f i n d _ d i s c o r d s _ h o t s a x ( m y t r a i n d a t a [ 5 8 3 , ] , 62 , 31 , 6 ,

0 . 0 1 , 3 )

p l o t ( m y t r a i n d a t a [ 5 8 3 , ] , t y p e = " l " , c o l = " c o r n f l o w e r b l u e " , main

= "ECG RBBBB − PATIENT 2 " )

l i n e s ( x=c ( d i s c o r d s [ 1 , 2 ] : ( d i s c o r d s [ 1 , 2 ] + 1 0 0 ) ) ,
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y= m y t r a i n d a t a [ 5 8 3 , ] [ d i s c o r d s [ 1 , 2 ] : ( d i s c o r d s [ 1 , 2 ] + 1 0 0 ) ] ,

c o l =" r e d " )

l i n e s ( x=c ( d i s c o r d s [ 2 , 2 ] : ( d i s c o r d s [ 2 , 2 ] + 1 0 0 ) ) ,

y= m y t r a i n d a t a [ 5 8 3 , ] [ d i s c o r d s [ 2 , 2 ] : ( d i s c o r d s [ 2 , 2 ] + 1 0 0 ) ] ,

c o l =" b l a c k " )

l i n e s ( x=c ( d i s c o r d s [ 3 , 2 ] : ( d i s c o r d s [ 3 , 2 ] + 1 0 0 ) ) ,

y= m y t r a i n d a t a [ 5 8 3 , ] [ d i s c o r d s [ 3 , 2 ] : ( d i s c o r d s [ 3 , 2 ] + 1 0 0 ) ] ,

c o l =" l awngreen " )

d i s c o r d s = f i n d _ d i s c o r d s _ h o t s a x ( m y t r a i n d a t a [ 6 0 1 , ] , 62 , 31 , 6 ,

0 . 0 1 , 3 )

p l o t ( m y t r a i n d a t a [ 6 0 1 , ] , t y p e = " l " , c o l = " c o r n f l o w e r b l u e " , main

= "ECG VT − PATIENT 3 " )

l i n e s ( x=c ( d i s c o r d s [ 1 , 2 ] : ( d i s c o r d s [ 1 , 2 ] + 1 0 0 ) ) ,

y= m y t r a i n d a t a [ 6 0 1 , ] [ d i s c o r d s [ 1 , 2 ] : ( d i s c o r d s [ 1 , 2 ] + 1 0 0 ) ] ,

c o l =" r e d " )

l i n e s ( x=c ( d i s c o r d s [ 2 , 2 ] : ( d i s c o r d s [ 2 , 2 ] + 1 0 0 ) ) ,

y= m y t r a i n d a t a [ 6 0 1 , ] [ d i s c o r d s [ 2 , 2 ] : ( d i s c o r d s [ 2 , 2 ] + 1 0 0 ) ] ,

c o l =" b l a c k " )

l i n e s ( x=c ( d i s c o r d s [ 3 , 2 ] : ( d i s c o r d s [ 3 , 2 ] + 1 0 0 ) ) ,

y= m y t r a i n d a t a [ 6 0 1 , ] [ d i s c o r d s [ 3 , 2 ] : ( d i s c o r d s [ 3 , 2 ] + 1 0 0 ) ] ,

c o l =" l awngreen " )
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APPENDIX B

LSTM CODE

Code was obtained from (Syed Huma 2023) available at

https://www.analyticsvidhya.com/blog/2023/02/anomaly-detection-in-ecg-signals-identifying-abnormal-

heart-patterns-using-deep-learning/

# I mp or t a l l t h e l i b r a r i e s

i m p o r t pandas as pd

i m p o r t numpy as np

i m p o r t random

from s k l e a r n . p r e p r o c e s s i n g i m p o r t MinMaxScaler

from s k l e a r n . p r e p r o c e s s i n g i m p o r t S t a n d a r d S c a l e r

i m p o r t p l o t l y . g r a p h _ o b j s a s go

i m p o r t p l o t l y . e x p r e s s a s px

from s c i p y . s i g n a l i m p o r t m e d f i l t , b u t t e r , f i l t f i l t

i m p o r t pywt

from s k l e a r n . m o d e l _ s e l e c t i o n i m p o r t t r a i n _ t e s t _ s p l i t

i m p o r t s c i p y . s i g n a l

from k e r a s . models i m p o r t S e q u e n t i a l

from k e r a s . l a y e r s i m p o r t LSTM, Dense , Reshape

from s k l e a r n . m e t r i c s i m p o r t c o n f u s i o n _ m a t r i x , a c c u r a c y _ s c o r e ,

c l a s s i f i c a t i o n _ r e p o r t

from s k l e a r n . m e t r i c s i m p o r t r o c _ a u c _ s c o r e

from I P y t h o n i m p o r t g e t _ i p y t h o n
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# l o a d t h e d a t a s e t

d f _ t r a i n = pd . r e a d _ c s v ( ’ / c o n t e n t / d r i v e / MyDrive / UTRGV_thesis_data /

m y t r a i n . csv ’ , h e a d e r = None )

d f _ t e s t = pd . r e a d _ c s v ( ’ / c o n t e n t / d r i v e / MyDrive / UTRGV_thesis_data /

m y t e s t . c sv ’ , h e a d e r = None )

d f _ t r a i n [ 0 ] . un iq ue ( ) # d i s p l a y t h e un iq ue f e a t u r e s

### s p e c i f y j u s t two c l a s s e s o f d i s o r d e r

d f _ t r a i n = d f _ t r a i n [ ( d f _ t r a i n . l o c [ : , 0 ] ==1) | ( d f _ t r a i n . l o c

[ : , 0 ] = = 4 ) ]

# d f _ t r a i n = d f _ t r a i n [ d f _ t r a i n . l o c [ : , 0 ] . i s i n ( [ 1 , 2 ] ) ]

d f _ t e s t = d f _ t e s t [ ( d f _ t e s t . l o c [ : , 0 ] ==1) | ( d f _ t e s t . l o c [ : , 0 ] = = 4 ) ]

d f _ t r a i n [ 0 ] . v a l u e _ c o u n t s ( ) ## d i s p l a y t h e # of examples f o r each

l a b e l

d f _ t r a i n . d t y p e s # d i s p l a y t h e d a t a t y p e s f o r each column

d f _ t r a i n . i s n a ( ) . sum ( ) # check f o r m i s s i n g v a l u e s i n each column

d f _ t r a i n . i s n a ( ) . sum ( ) . sum ( ) # check m i s s i n g v a l u e s f o r e n t i r e

d a t a s e t

# p l o t g r a p h s o f normal and abnormal ECG t o v i s u a l i s e t h e t r e n d s

abnormal = d f _ t r a i n [ d f _ t r a i n . l o c [ : , 0 ] = = 9 ] [ : 3 ]

normal = d f _ t r a i n [ d f _ t r a i n . l o c [ : , 0 ] = = 1 ] [ : 3 ]

# C r e a t e t h e f i g u r e

f i g = go . F i g u r e ( )

# c r e a t e a l i s t t o d i s p l a y on ly a s i n g l e l e g e n d

l e g = [ F a l s e ] * abnormal . shape [ 0 ]

l e g [ 0 ] = True
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# P l o t t r a i n i n g and v a l i d a t i o n e r r o r

f o r i i n r a n g e ( abnormal . shape [ 0 ] ) :

f i g . a d d _ t r a c e ( go . S c a t t e r ( x=np . a r a n g e ( abnormal . shape [ 1 ] ) , y=

abnormal . i l o c [ i , : ] , name= ’ Abnormal ECG (RBBBB) ’ , mode= ’ l i n e s ’ ,

m a r k e r _ c o l o r = ’ rgba ( 2 5 5 , 0 , 0 , 0 . 9 ) ’ , showlegend = l e g [ i ] ) )

f o r j i n r a n g e ( normal . shape [ 0 ] ) :

f i g . a d d _ t r a c e ( go . S c a t t e r ( x=np . a r a n g e ( normal . shape [ 1 ] ) , y=

normal . i l o c [ j , : ] , name= ’ Normal ECG ’ , mode= ’ l i n e s ’ ,

m a r k e r _ c o l o r = ’ rgba ( 0 , 255 , 0 , 1 ) ’ , showlegend = l e g [ j ] ) )

f i g . u p d a t e _ l a y o u t ( x a x i s _ t i t l e =" t ime " , y a x i s _ t i t l e =" S i g n a l " , t i t l e

= { ’ t e x t ’ : ’ D i f f e r e n c e between d i f f e r e n t ECG ’ , ’ xanchor ’ : ’

c e n t e r ’ , ’ yanchor ’ : ’ t o p ’ , ’ x ’ : 0 . 5 } , ba rg ap = 0 , )

f i g . u p d a t e _ t r a c e s ( o p a c i t y = 0 . 5 )

f i g . show ( )

# d a t a p r e p r o c e s s i n g

# l a b e l s and f e a t u r e s s p l i t

e c g _ d a t a _ t r a i n = d f _ t r a i n . i l o c [ : , 1 : ] # from c o l 1 t o l a s t column

e c g _ d a t a _ t e s t = d f _ t e s t . i l o c [ : , 1 : ]

l a b e l s _ t r a i n = d f _ t r a i n . i l o c [ : , 0 ] #1 s t column on ly

l a b e l s _ t e s t = d f _ t e s t . i l o c [ : , 0 ]

### change l a b e l s t o z e r o s

l a b e l s _ t r a i n [ l a b e l s _ t r a i n ==4] = 0 ## change t h e v a l u e b e f o r ] t o

p a r t i c u l a r d i s o r d e r

l a b e l s _ t e s t [ l a b e l s _ t e s t ==4] = 0

# n o r m a l i z e t h e d a t a s e t b t n −1 and 1
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s c a l e r = MinMaxScaler ( f e a t u r e _ r a n g e = ( −1 ,1 ) )

e c g _ d a t a _ t r a i n = s c a l e r . f i t _ t r a n s f o r m ( e c g _ d a t a _ t r a i n )

e c g _ d a t a _ t e s t = s c a l e r . f i t _ t r a n s f o r m ( e c g _ d a t a _ t e s t )

# f i l t e r t h e d a t a

# f i l t e r i n g t h e raw s i g n a l s

# Median f i l t e r i n g f o r t r a i n d a t a

e c g _ m e d f i l t = m e d f i l t ( e c g _ d a t a _ t r a i n , k e r n e l _ s i z e =3)

# Low− p a s s f i l t e r i n g

lo wc u t = 0 . 0 5

h i g h c u t = 2 0 . 0

n y q u i s t = 0 . 5 * 360 .0

low = l ow cu t / n y q u i s t

h igh = h i g h c u t / n y q u i s t

b , a = b u t t e r ( 4 , [ low , h igh ] , b t y p e = ’ band ’ )

ecg_ lowpass = f i l t f i l t ( b , a , e c g _ d a t a _ t r a i n )

# Wavele t f i l t e r i n g

c o e f f s = pywt . wavedec ( e c g _ d a t a _ t r a i n , ’ db4 ’ , l e v e l =1)

t h r e s h o l d = np . s t d ( c o e f f s [ − 1 ] ) * np . s q r t (2* np . l o g ( l e n (

e c g _ d a t a _ t r a i n ) ) )

c o e f f s [ 1 : ] = ( pywt . t h r e s h o l d ( i , v a l u e = t h r e s h o l d , mode= ’ s o f t ’ ) f o r

i i n c o e f f s [ 1 : ] )

e c g _ w a v e l e t = pywt . waverec ( c o e f f s , ’ db4 ’ )

# Median f i l t e r i n g f o r t e s t d a t a

e c g _ m e d f i l t _ = m e d f i l t ( e c g _ d a t a _ t e s t , k e r n e l _ s i z e =3)

# Low− p a s s f i l t e r i n g
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l o wc u t = 0 . 0 5

h i g h c u t = 2 0 . 0

n y q u i s t = 0 . 5 * 360 .0

low = l ow cu t / n y q u i s t

h igh = h i g h c u t / n y q u i s t

b , a = b u t t e r ( 4 , [ low , h igh ] , b t y p e = ’ band ’ )

ecg_ lowpass_ = f i l t f i l t ( b , a , e c g _ d a t a _ t e s t )

# Wavele t f i l t e r i n g

c o e f f s _ = pywt . wavedec ( e c g _ d a t a _ t e s t , ’ db4 ’ , l e v e l =1)

t h r e s h o l d _ = np . s t d ( c o e f f s _ [ − 1 ] ) * np . s q r t (2* np . l o g ( l e n (

e c g _ d a t a _ t e s t ) ) )

c o e f f s _ [ 1 : ] = ( pywt . t h r e s h o l d ( i , v a l u e = t h r e s h o l d , mode= ’ s o f t ’ )

f o r i i n c o e f f s _ [ 1 : ] )

e c g _ w a v e l e t _ = pywt . waverec ( c o e f f s _ , ’ db4 ’ )

# P l o t o r i g i n a l ECG s i g n a l

f i g = go . F i g u r e ( )

f i g . a d d _ t r a c e ( go . S c a t t e r ( x=np . a r a n g e ( e c g _ d a t a _ t r a i n . shape [ 0 ] ) , y=

e c g _ d a t a _ t r a i n [ 3 0 ] , mode= ’ l i n e s ’ , name= ’ O r i g i n a l ECG s i g n a l ’ ) )

# P l o t f i l t e r e d ECG s i g n a l s

f i g . a d d _ t r a c e ( go . S c a t t e r ( x=np . a r a n g e ( e c g _ m e d f i l t . shape [ 0 ] ) , y=

e c g _ m e d f i l t [ 3 0 ] , mode= ’ l i n e s ’ , name= ’ Median f i l t e r e d ECG

s i g n a l ’ ) )

f i g . a d d _ t r a c e ( go . S c a t t e r ( x=np . a r a n g e ( ecg_ lowpass . shape [ 0 ] ) , y=

ecg_ lowpass [ 3 0 ] , mode= ’ l i n e s ’ , name= ’Low− p a s s f i l t e r e d ECG

s i g n a l ’ ) )

f i g . a d d _ t r a c e ( go . S c a t t e r ( x=np . a r a n g e ( e c g _ w a v e l e t . shape [ 0 ] ) , y=
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e c g _ w a v e l e t [ 3 0 ] , mode= ’ l i n e s ’ , name= ’ Wavele t f i l t e r e d ECG

s i g n a l ’ ) )

f i g . show ( )

# c h o o s i n g t h e b e s t f i l t e r i n g t e c h n i q u e

# pad t h e s i g n a l w i th z e r o e s

d e f p a d _ d a t a ( o r i g i n a l _ d a t a , f i l t e r e d _ d a t a ) :

# C a l c u l a t e t h e d i f f e r e n c e i n l e n g t h between t h e o r i g i n a l d a t a

and f i l t e r e d d a t a

d i f f = o r i g i n a l _ d a t a . shape [ 1 ] − f i l t e r e d _ d a t a . shape [ 1 ]

# pad t h e s h o r t e r a r r a y wi th z e r o e s

i f d i f f > 0 :

# C r e a t e an a r r a y o f z e r o s wi th t h e same shape as t h e

o r i g i n a l d a t a

padd ing = np . z e r o s ( ( f i l t e r e d _ d a t a . shape [ 0 ] , o r i g i n a l _ d a t a .

shape [ 1 ] ) )

# C o n c a t e n a t e t h e f i l t e r e d d a t a wi th t h e padd ing

p a d d e d _ d a t a = np . c o n c a t e n a t e ( ( f i l t e r e d _ d a t a , padd ing ) )

e l i f d i f f < 0 :

p a d d e d _ d a t a = f i l t e r e d _ d a t a [ : , : − abs ( d i f f ) ]

e l i f d i f f == 0 :

p a d d e d _ d a t a = f i l t e r e d _ d a t a

r e t u r n p a d d e d _ d a t a

d e f mse ( o r i g i n a l _ d a t a , f i l t e r e d _ d a t a ) :

f i l t e r _ d a t a = p a d _ d a t a ( o r i g i n a l _ d a t a , f i l t e r e d _ d a t a )

r e t u r n np . mean ( ( o r i g i n a l _ d a t a − f i l t e r _ d a t a ) ** 2)

# C a l c u l a t e MSE
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mse_value_m = mse ( e c g _ d a t a _ t r a i n , e c g _ m e d f i l t )

m s e _ v a l u e _ l = mse ( e c g _ d a t a _ t r a i n , ecg_ lowpass )

mse_value_w = mse ( e c g _ d a t a _ t r a i n , e c g _ w a v e l e t )

p r i n t ( "MSE v a l u e o f Median F i l t e r i n g : " , mse_value_m )

p r i n t ( "MSE v a l u e o f Low− p a s s F i l t e r i n g : " , m s e _ v a l u e _ l )

p r i n t ( "MSE v a l u e o f Wavele t F i l t e r i n g : " , mse_value_w )

# S tep 5 : S p l i t t i n g Data i n t o T r a i n & T e s t S e t

#The d a t a s e t i s d i v i d e d i n t o 80% f o r t r a i n i n g and 20% f o r t e s t i n g

and v a l i d a t i o n p u r p o s e s .

# S p l i t t i n g t h e d a t a i n t o t r a i n and t e s t s e t s

# X _ t r a i n , X_ te s t , y _ t r a i n , y _ t e s t = t r a i n _ t e s t _ s p l i t ( e cg_wave l e t ,

l a b e l s , t e s t _ s i z e = 0 . 2 , r a n d o m _ s t a t e =42)

## d a t a s p l i t t i n g 610 x 3600

#488 x 19

X _ t r a i n = e c g _ w a v e l e t

X _ t e s t = e c g _ w a v e l e t _

y _ t r a i n = l a b e l s _ t r a i n

y _ t e s t = l a b e l s _ t e s t

# f e a t u r e e x t r a c t i o n f o r t r a i n i n g

# I n i t i a l i z i n g an empty l i s t t o s t o r e t h e f e a t u r e s

f e a t u r e s = [ ]

# E x t r a c t i n g f e a t u r e s f o r each sample

f o r i i n r a n g e ( X _ t r a i n . shape [ 0 ] ) :

# F i n d i n g t h e R− peaks
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r _ p e a k s = s c i p y . s i g n a l . f i n d _ p e a k s ( X _ t r a i n [ i ] ) [ 0 ]

# I n i t i a l i z e l i s t s t o ho ld R−peak and T−peak a m p l i t u d e s

r _ a m p l i t u d e s = [ ]

t _ a m p l i t u d e s = [ ]

# I t e r a t e t h r o u g h R−peak l o c a t i o n s t o f i n d c o r r e s p o n d i n g T−

peak a m p l i t u d e s

f o r r _p ea k i n r _ p e a k s :

# Find t h e i n d e x of t h e T−peak ( minimum v a l u e ) i n t h e

i n t e r v a l from R−peak t o R−peak + 200 samples

t _ p e a k = np . argmin ( X _ t r a i n [ i ] [ r _p e ak : r _p e ak +200] ) +

r _p ea k

#Append t h e R−peak a m p l i t u d e and T−peak a m p l i t u d e t o t h e

l i s t s

r _ a m p l i t u d e s . append ( X _ t r a i n [ i ] [ r _ pe ak ] )

t _ a m p l i t u d e s . append ( X _ t r a i n [ i ] [ t _ p e a k ] )

# e x t r a c t i n g s i n g u l a r v a l u e m e t r i c s from t h e r _ a m p l i t u d e s

s td_r_amp = np . s t d ( r _ a m p l i t u d e s )

mean_r_amp = np . mean ( r _ a m p l i t u d e s )

median_r_amp = np . median ( r _ a m p l i t u d e s )

sum_r_amp = np . sum ( r _ a m p l i t u d e s )

# e x t r a c t i n g s i n g u l a r v a l u e m e t r i c s from t h e t _ a m p l i t u d e s

s td_ t_amp = np . s t d ( t _ a m p l i t u d e s )

mean_t_amp = np . mean ( t _ a m p l i t u d e s )

median_t_amp = np . median ( t _ a m p l i t u d e s )

sum_t_amp = np . sum ( t _ a m p l i t u d e s )

# Find t h e t ime between c o n s e c u t i v e R− peaks

r r _ i n t e r v a l s = np . d i f f ( r _ p e a k s )
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# C a l c u l a t e t h e t ime d u r a t i o n o f t h e d a t a c o l l e c t i o n

t i m e _ d u r a t i o n = ( l e n ( X _ t r a i n [ i ] ) − 1 ) / 1000 # assuming d a t a

i s i n ms

# C a l c u l a t e t h e s a m p l i n g r a t e

s a m p l i n g _ r a t e = l e n ( X _ t r a i n [ i ] ) / t i m e _ d u r a t i o n

# C a l c u l a t e h e a r t r a t e

d u r a t i o n = l e n ( X _ t r a i n [ i ] ) / s a m p l i n g _ r a t e

h e a r t _ r a t e = ( l e n ( r _ p e a k s ) / d u r a t i o n ) * 60

# QRS d u r a t i o n

q r s _ d u r a t i o n = [ ]

f o r j i n r a n g e ( l e n ( r _ p e a k s ) ) :

q r s _ d u r a t i o n . append ( r _ p e a k s [ j ] − r _ p e a k s [ j − 1 ] )

# e x t r a c t i n g s i n g u l a r v a l u e m e t r i c s from t h e q r s _ d u r a t i o n s

s t d _ q r s = np . s t d ( q r s _ d u r a t i o n )

mean_qrs = np . mean ( q r s _ d u r a t i o n )

med ian_qr s = np . median ( q r s _ d u r a t i o n )

sum_qrs = np . sum ( q r s _ d u r a t i o n )

# E x t r a c t i n g t h e s i n g u l a r v a l u e m e t r i c s from t h e RR− i n t e r v a l

s t d _ r r = np . s t d ( r r _ i n t e r v a l s )

mean_rr = np . mean ( r r _ i n t e r v a l s )

m e d i a n _ r r = np . median ( r r _ i n t e r v a l s )

sum_rr = np . sum ( r r _ i n t e r v a l s )

# E x t r a c t i n g t h e o v e r a l l s t a n d a r d d e v i a t i o n

s t d = np . s t d ( X _ t r a i n [ i ] )

# E x t r a c t i n g t h e o v e r a l l mean

mean = np . mean ( X _ t r a i n [ i ] )

# Appending t h e f e a t u r e s t o t h e l i s t
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f e a t u r e s . append ( [ mean , s t d , s t d _ q r s , mean_qrs , median_qrs ,

sum_qrs , s td_r_amp , mean_r_amp , median_r_amp , sum_r_amp ,

s td_ t_amp , mean_t_amp , median_t_amp , sum_t_amp , sum_rr , s t d _ r r

, mean_rr , med ian_r r , h e a r t _ r a t e ] )

# C o n v e r t i n g t h e l i s t t o a numpy a r r a y

f e a t u r e s = np . a r r a y ( f e a t u r e s )

# f e a t u r e e x t r a c t i o n f o r t e s t s e t vb

# I n i t i a l i z i n g an empty l i s t t o s t o r e t h e f e a t u r e s

X _ t e s t _ f e = [ ]

# E x t r a c t i n g f e a t u r e s f o r each sample

f o r i i n r a n g e ( X _ t e s t . shape [ 0 ] ) :

# F i n d i n g t h e R− peaks

r _ p e a k s = s c i p y . s i g n a l . f i n d _ p e a k s ( X _ t e s t [ i ] ) [ 0 ]

# I n i t i a l i z e l i s t s t o ho ld R−peak and T−peak a m p l i t u d e s

r _ a m p l i t u d e s = [ ]

t _ a m p l i t u d e s = [ ]

# I t e r a t e t h r o u g h R−peak l o c a t i o n s t o f i n d c o r r e s p o n d i n g T−

peak a m p l i t u d e s

f o r r _p ea k i n r _ p e a k s :

# Find t h e i n d e x of t h e T−peak ( minimum v a l u e ) i n t h e

i n t e r v a l from R−peak t o R−peak + 200 samples

t _ p e a k = np . argmin ( X _ t e s t [ i ] [ r _p e ak : r _p e ak +200] ) + r _ pe ak

# Append t h e R−peak a m p l i t u d e and T−peak a m p l i t u d e t o t h e

l i s t s

r _ a m p l i t u d e s . append ( X _ t e s t [ i ] [ r _ pe ak ] )

t _ a m p l i t u d e s . append ( X _ t e s t [ i ] [ t _ p e a k ] )
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# e x t r a c t i n g s i n g u l a r v a l u e m e t r i c s from t h e r _ a m p l i t u d e s

s td_r_amp = np . s t d ( r _ a m p l i t u d e s )

mean_r_amp = np . mean ( r _ a m p l i t u d e s )

median_r_amp = np . median ( r _ a m p l i t u d e s )

sum_r_amp = np . sum ( r _ a m p l i t u d e s )

# e x t r a c t i n g s i n g u l a r v a l u e m e t r i c s from t h e t _ a m p l i t u d e s

s td_ t_amp = np . s t d ( t _ a m p l i t u d e s )

mean_t_amp = np . mean ( t _ a m p l i t u d e s )

median_t_amp = np . median ( t _ a m p l i t u d e s )

sum_t_amp = np . sum ( t _ a m p l i t u d e s )

# Find t h e t ime between c o n s e c u t i v e R− peaks

r r _ i n t e r v a l s = np . d i f f ( r _ p e a k s )

# C a l c u l a t e t h e t ime d u r a t i o n o f t h e d a t a c o l l e c t i o n

t i m e _ d u r a t i o n = ( l e n ( X _ t e s t [ i ] ) − 1 ) / 1000 # assuming d a t a

i s i n ms

# C a l c u l a t e t h e s a m p l i n g r a t e

s a m p l i n g _ r a t e = l e n ( X _ t e s t [ i ] ) / t i m e _ d u r a t i o n

# C a l c u l a t e h e a r t r a t e

d u r a t i o n = l e n ( X _ t e s t [ i ] ) / s a m p l i n g _ r a t e

h e a r t _ r a t e = ( l e n ( r _ p e a k s ) / d u r a t i o n ) * 60

# QRS d u r a t i o n

q r s _ d u r a t i o n = [ ]

f o r j i n r a n g e ( l e n ( r _ p e a k s ) ) :

q r s _ d u r a t i o n . append ( r _ p e a k s [ j ] − r _ p e a k s [ j − 1 ] )

# e x t r a c t i n g s i n g u l a r v a l u e m e t r i c s from t h e q r s _ d u a r t i o n s

s t d _ q r s = np . s t d ( q r s _ d u r a t i o n )

mean_qrs = np . mean ( q r s _ d u r a t i o n )
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median_qr s = np . median ( q r s _ d u r a t i o n )

sum_qrs = np . sum ( q r s _ d u r a t i o n )

# E x t r a c t i n g t h e s t a n d a r d d e v i a t i o n o f t h e RR− i n t e r v a l

s t d _ r r = np . s t d ( r r _ i n t e r v a l s )

mean_rr = np . mean ( r r _ i n t e r v a l s )

m e d i a n _ r r = np . median ( r r _ i n t e r v a l s )

sum_rr = np . sum ( r r _ i n t e r v a l s )

# E x t r a c t i n g t h e s t a n d a r d d e v i a t i o n o f t h e RR− i n t e r v a l

s t d = np . s t d ( X _ t e s t [ i ] )

# E x t r a c t i n g t h e mean of t h e RR− i n t e r v a l

mean = np . mean ( X _ t e s t [ i ] )

# Appending t h e f e a t u r e s t o t h e l i s t

X _ t e s t _ f e . append ( [ mean , s t d , s t d _ q r s , mean_qrs , median_qrs ,

sum_qrs , s td_r_amp , mean_r_amp , median_r_amp , sum_r_amp ,

s td_ t_amp , mean_t_amp , median_t_amp , sum_t_amp , sum_rr , s t d _ r r

, mean_rr , med ian_r r , h e a r t _ r a t e ] )

# C o n v e r t i n g t h e l i s t t o a numpy a r r a y

X _ t e s t _ f e = np . a r r a y ( X _ t e s t _ f e )

## model b u i l d i n g and t r a i n i n g

# De f i ne t h e number o f f e a t u r e s i n t h e t r a i n d a t a f r a m e

n u m _ f e a t u r e s = f e a t u r e s . shape [ 1 ]

# Reshape t h e f e a t u r e s d a t a t o be i n t h e r i g h t shape f o r LSTM

i n p u t

f e a t u r e s = np . a s a r r a y ( f e a t u r e s ) . a s t y p e ( ’ f l o a t 3 2 ’ )

f e a t u r e s = f e a t u r e s . r e s h a p e ( f e a t u r e s . shape [ 0 ] , f e a t u r e s . shape [ 1 ] ,

1 )
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X _ t e s t _ f e = X _ t e s t _ f e . r e s h a p e ( X _ t e s t _ f e . shape [ 0 ] , X _ t e s t _ f e . shape

[ 1 ] , 1 )

# De f i ne t h e model a r c h i t e c t u r e

model = S e q u e n t i a l ( )

model . add (LSTM( 6 4 , i n p u t _ s h a p e =( f e a t u r e s . shape [ 1 ] , 1 ) ) )

model . add ( Dense ( 1 , a c t i v a t i o n = ’ s igmoid ’ ) )

# Compile t h e model

model . compi l e ( o p t i m i z e r = ’ adam ’ , l o s s = ’ b i n a r y _ c r o s s e n t r o p y ’ ,

m e t r i c s =[ ’ a c c u r a c y ’ ] )

# T r a i n t h e model

h i s t o r y = model . f i t ( f e a t u r e s , y _ t r a i n , v a l i d a t i o n _ d a t a =( X _ t e s t _ f e

, y _ t e s t ) , epochs =50 , b a t c h _ s i z e =32)

# Make p r e d i c t i o n s on t h e v a l i d a t i o n s e t

y_pred = model . p r e d i c t ( X _ t e s t _ f e )

# Conve r t t h e p r e d i c t e d v a l u e s t o b i n a r y l a b e l s

# y_pred = [1 i f p >0 .5 e l s e 0 f o r p i n y_pred ]

# y_pred = np . argmax ( y_pred , a x i s = 1 )

# X _ t e s t _ f e = np . a s a r r a y ( X _ t e s t _ f e ) . a s t y p e ( ’ f l o a t 3 2 ’ )

# Conve r t t h e p r e d i c t e d v a l u e s t o b i n a r y l a b e l s

y_pred_new = [1 i f p >0 .91 e l s e 0 f o r p i n y_pred ]

# y_pred = np . argmax ( y_pred , a x i s = 1 )

X _ t e s t _ f e = np . a s a r r a y ( X _ t e s t _ f e ) . a s t y p e ( ’ f l o a t 3 2 ’ )

## model e v a l u a t i o n

# c a l c u l a t i n g t h e m e t r i c s

# c a l c u l a t e t h e a c c u r a c y
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acc = a c c u r a c y _ s c o r e ( y _ t e s t , y_pred_new )

# c a l c u l a t e t h e AUC s c o r e

# r o c _ a u c _ s c o r e ( y _ s c o r e =np_pred , y _ t r u e = n p _ l a b e l , m u l t i _ c l a s s =" ovr

" , a v e r a g e = w e i g h t e d )

auc = round ( r o c _ a u c _ s c o r e ( y _ t e s t , y_pred_new ) , 2 )

# c l a s s i f i c a t i o n r e p o r t p r o v i d e s a l l m e t r i c s e . g . p r e c i s i o n ,

r e c a l l , e t c .

a l l _ m e t = c l a s s i f i c a t i o n _ r e p o r t ( y _ t e s t , y_pred_new )

## d i s p l a y i n g t h e m e t r i c s

# P r i n t t h e a c c u r a c y

p r i n t ( " Accuracy : " , acc *100 , "%" )

p r i n t ( " n " )

p r i n t ( "AUC: " , auc )

p r i n t ( " n " )

p r i n t ( " C l a s s i f i c a t i o n R ep or t : n " , a l l _ m e t )

p r i n t ( " n " )

### c a l c u l a t i n g and d i s p l a y i n g c o n f u s i o n m a t r i x

# C a l c u l a t e t h e c o n f u s i o n m a t r i x

conf_mat = c o n f u s i o n _ m a t r i x ( y _ t e s t , y_pred_new )

con f_ma t_d f = pd . DataFrame ( conf_mat , columns =[ ’ P r e d i c t e d N e g a t i v e

’ , ’ P r e d i c t e d P o s i t i v e ’ ] , i n d e x =[ ’ A c t u a l N e g a t i v e ’ , ’ A c t u a l

P o s i t i v e ’ ] )

f i g = px . imshow ( conf_mat_df , t e x t _ a u t o = True ,

c o l o r _ c o n t i n u o u s _ s c a l e = ’ Blues ’ )

f i g . u p d a t e _ x a x e s ( s i d e = ’ t o p ’ , t i t l e _ t e x t = ’ P r e d i c t e d ’ )
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f i g . u p d a t e _ y a x e s ( t i t l e _ t e x t = ’ A c t u a l ’ )

f i g . show ( )

## p l o t t i n g t h e t r a i n i n g and v a l i d a t i o n e r r o r

# P l o t t r a i n i n g and v a l i d a t i o n e r r o r

f i g = go . F i g u r e ( )

f i g . a d d _ t r a c e ( go . S c a t t e r ( y= h i s t o r y . h i s t o r y [ ’ l o s s ’ ] , mode= ’ l i n e s ’

, name= ’ T r a i n i n g ’ ) )

f i g . a d d _ t r a c e ( go . S c a t t e r ( y= h i s t o r y . h i s t o r y [ ’ v a l _ l o s s ’ ] , mode= ’

l i n e s ’ , name= ’ V a l i d a t i o n ’ ) )

f i g . u p d a t e _ l a y o u t ( x a x i s _ t i t l e =" Epoch " , y a x i s _ t i t l e =" E r r o r " , t i t l e

= { ’ t e x t ’ : ’ Model E r r o r ’ , ’ xanchor ’ : ’ c e n t e r ’ , ’ yanchor ’ : ’ t o p

’ , ’ x ’ : 0 . 5 } , ba rg a p =0)

f i g . show ( )
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APPENDIX C

EXTRA FIGURES

Table C.1: Brute Force Discord Discovery

Class No of discords nn_distance Position

APB 1 197.91 686
AFL 1 110.21 1045
AFIB 1 120.43 1187
SVTA 1 226.39 3399
PVC 1 991.60 3361
BIGENIMY 1 536.49 2414
TRIGENIMY 1 285.38 3535
VT 1 579.46 2700
FUSION 1 677.33 3325
LBBBB 1 153.00 475
RBBBB 1 169.55 3415

Table C.2: HOT-SAX Discord Discovery

Class No of discords nn_distance Position

APB 1 152.23 2618
AFL 1 90.87 401
AFIB 1 161.31 2293
SVTA 1 226.39 3399
PVC 1 1336.18 1941
BIGENIMY 1 604.85 1882
TRIGENIMY 1 168.39 2547
VT 1 579.46 2700
FUSION 1 677.33 3325
LBBBB 1 1079.87 2428
RBBBB 1 152.26 0
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Figure C.1: Confusion matrix and error plot for NSR and PVC

Figure C.2: Confusion matrix and error plot for NSR and BIGENIMY

Figure C.3: Confusion matrix and error plot for NSR and VT
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Figure C.4: Confusion matrix for NSR and TRIGENIMY

Figure C.5: Error plot for NSR and TRIGENIMY
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