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ABSTRACT

Robin, Mahmudul H., Enhancing Time Series Hashing Performance via Deep Orthogonal 

Hashing. Master of Science (MS), December, 2023, 39 pp., 2 tables, 7 figures, references, 55 titles.

Deep hashing has been widely used for efficient retrieval and classification of high-dimensional 

data like images and text. However, its application to time series data is still challenging due to the 

data’s temporal nature. To tackle this issue, a new deep hashing method has been proposed that 

generates efficient hash codes and enhances the time series hashing performance using a ResNet 

model with Orthohash (Cosine Similarity Loss). The proposed method uses one loss architecture 

while using ResNet model for efficient hashing. It uses the Character Trajectories dataset to extract 

discriminative features from the time series data. These features are then converted into binary 

codes using a quantization function to produce hash codes that can be easily stored and compared. 

The study evaluated the performance of the hash codes using t-SNE (t-Distributed Stochastic Neigh-

bor Embedding) technique. The classification performance of the time series data are evaluated 

using accuracy and F1 score. The experimental results show improved deep hashing performance 

with significantly better distinct clusters for each class within the dataset. The proposed method 

outperformed other state-of-the-art methods in terms of accuracy and efficiency.
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CHAPTER I

INTRODUCTION

1.1 Introduction

Deep hashing offers numerous advantages over conventional methods of data representa-

tion and retrieval. It excels in handling high-dimensional data with intricate structures, such as

images and time series data, by learning distinctive features that capture the inherent data structure.

Additionally, deep hashing is versatile, suitable for both supervised and unsupervised settings,

allowing flexibility in choosing the training data. Recognizing the significance and potential of

deep hashing, it finds applications in diverse domains such as healthcare, finance, and security.

For instance, in medical imaging, deep hashing proves valuable for efficiently retrieving similar

medical images to aid in diagnosis and treatment planning. Similarly, it finds utility in financial data

analysis for tasks like fraud detection and risk assessment. Furthermore, deep hashing contributes to

security applications like biometric identification and surveillance. Within the realm of real-world

large-scale image retrieval systems, image hashing stands as a vital component. Its primary function

is to represent an image’s content using a binary code, facilitating efficient storage and precise

retrieval. Recent advancements in deep hashing methods [1], [2] have outperformed traditional

hashing approaches [3, 4, 5, 6, 7]. These deep hashing methods can be categorized [8] based on

how they measure the similarity of the learned hashing codes, namely: pointwise [9, 10, 11, 12, 13],

pairwise [2], [14, 15, 16], triplet-wise [17], [18], or listwise [19]. Within these categories, pointwise

techniques exhibit a computational complexity of O(N), where N denotes the number of data points.

Conversely, the other methods possess a minimum complexity of O(N2). Consequently, when

dealing with large-scale problems, only pointwise methods remain practical [20]. Consequently,
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they have become the primary focus of recent research in this field. A deep hashing neural network

inherently encompasses multiple learning objectives. Upon receiving an input image, the network

produces a continuous code, represented as a feature vector. This continuous code is subsequently

transformed into a binary hash code through a quantization layer, often implemented as a sign

function. This binary code effectively captures the image’s content and plays a pivotal role in tasks

involving large-scale image retrieval. Thus, there are two principal objectives to address. Firstly, for

the binary codes that serve as the final model output, it is essential for intra-class hamming distances

to be small and inter-class distances to be significant. Secondly, to regularize the continuous codes,

there is a need for minimizing quantization errors. However, the quantization layer introduces a

challenge in the form of the vanishing gradient problem, which limits the learning process. Using

relaxation techniques may offer potential solutions to this issue [15] [2] [14], but due to the inherent

quantization errors they introduce, they often yield suboptimal hash codes. As a result, the most

recent advancements in deep hashing techniques [13] [14] [21] [22] [23] have a clear objective of

minimizing quantization errors in their learning process. However, these two primary objectives/loss

functions are still insufficient. Many existing systems utilize additional loss functions to ensure the

quality of the hash codes. These supplementary losses encompass code orthogonality [24] [25],

constraints on weights to maximize Hamming distance [10], and bit balance loss [9] [11] [23].

Furthermore, these losses are designed to address the vanishing gradient issue arising from the sign

function employed for converting continuous codes into binary ones [[11] [22] [26]]. Consequently,

modern hashing models often contend with a significant number (more than four) of loss functions,

which poses optimization challenges and diminishes their effectiveness. Despite several studies fo-

cusing on learning to hash from time series data [27, 21, 28, 29, 30], they have not comprehensively

addressed the preservation of similarity and temporal relationship properties [31]. Therefore, this

research aims to overcome these limitations and enhance the efficacy of deep hashing for time series

data. This study introduces a novel deep hashing model named OrthoHash, distinguished by its use

of a single loss function tailored for time series data. This eliminates the need for intricate loss

weight tuning and simplifies the optimization process. Typically, a deep hashing model necessitates

2



at least two objectives: enhancing binary code discriminativeness and minimizing quantization

errors. However, these objectives are closely interrelated and can be consolidated into a single loss

function.

Extensive experiments involving both the cross-entropy loss function and OrthoHash loss

techniques illustrate that OrthoHash surpasses the performance of the cross-entropy (CE) loss.

Particularly noteworthy are the results in character retrieval tasks from time series data in images

(Character Trajectories dataset), where this research attains significantly improved accuracy of

87.81%. This achievement enhances discrimination among distinct characters compared to the CE

loss technique.

1.2 Problem Statement

1.2.1 Fact

Deep learning, a branch of machine learning, has made remarkable strides across diverse

fields like image recognition, speech processing, machine translation, and gaming, fundamentally

transforming the capabilities of artificial intelligence systems.

In the context of image retrieval, previous approaches have introduced various methods

based on loss functions, but they fall short when it comes to generating hash codes efficiently. To be

more specific, an earlier proposal suggested a single loss function that leverages cosine similarity to

streamline hash code retrieval. Surprisingly, there is no other research available that harnesses the

cosine similarity loss function to achieve efficient deep hashing, especially when dealing with the

character trajectories dataset, which involves time series data.

1.2.2 Problem

Using deep learning models can be quite resource-intensive, requiring a significant amount

of time and computing resources. This can be particularly challenging for small businesses and

scientific research projects with limited access to powerful computers and funding. Deep hashing

techniques have two main objectives: improving the separation between different classes in terms of

hash codes and minimizing errors in the quantization process. Achieving both of these goals usually
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involves using various loss functions in combination. However, in many instances, this approach is

not efficient and ends up consuming more computational resources.

1.2.3 Solutions

The core idea behind the OrthoHash loss-based deep hashing method is to maximize the

cosine similarity between continuous codes (that have been L2-normalized) and their corresponding

binary orthogonal targets. This optimization is achieved through the use of a unified loss function

known as cross-entropy (CE) loss. What’s unique is that this method effectively tackles both

objectives simultaneously: improving the separation of different classes in terms of Hamming

distance and reducing errors in the quantization process.

Additionally, the OrthoHash method offers several benefits due to its single loss function.

Firstly, it enhances the variance within the same class by incorporating a margin concept. Secondly,

it easily adapts to scenarios involving multi-label classification by applying Label Smoothing to

adjust the cross-entropy loss. Lastly, the method deals with code balancing through the introduction

of a batch normalization (BN) layer, eliminating the need for a separate loss term.

In this study, the OrthoHash technique has been integrated into the ResNet34 model archi-

tecture to produce efficient hash codes specifically for time series data.

1.3 Roadmap

The remainder of this manuscript is structured as follows:

• Chapter 2 studies and compares the previous works regarding the deep hashing approaches

for supervised and unsupervised methods.

• Chapter 3 discusses the different key definitions, concepts, and problems in detail.

• Chapter 4 presents the orthohash loss-based deep hashing method.

• Chapter 5 evaluates the proposed work by adopting different methods.

• Chapter 6 concludes the works done in the thesis. Some ongoing and possible future works

are also included.
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CHAPTER II

RELATED WORKS

2.1 Supervised Learning Based Deep Hashing Method

2.1.1 HashNet

A deep learning to hash framework called HashNet [15] is proposed to learn the image

representation from real life data and retrieve efficient hash codes. The major idea of this work is

comprised of two parts. The first part generates the hash codes using the sign activation function,

which ensures the conversion of the input to a binary form. In addition, the second part solves a real

dataset problem named imbalanced similarity data problem because the number of similar pairings

in a real retrieval system is substantially fewer than the number of dissimilar pairs. As a result, the

number of similar and dissimilar pairs is very imbalanced. To address this problem, a weighted

likelihood loss function is used during the training process. Specifically, the loss gives the similar

pair of images more weight than the dissimilar pairs. The proposed framework combines these two

parts as a single framework which has not been explored in other state of the art works.

2.1.2 Deep Cauchy Hashing (DCH)

A new image data retrieval approach called Deep Cauchy Hashing [16] is proposed to

retrieve similar data points and generate accurate hash codes to overcome the issue of misclassifying

the similar pair of images, particularly within a small hamming distance threshold. Two loss

functions are used in the proposed method: Cauchy cross entropy and quantization loss. Cauchy

cross entropy loss function learns the similarities between the pairwise data and outputs lower

probability for pairwise data having a hamming distance larger than two. The Loss function outputs

a better classification performance for similar pairwise images within a small hamming distance for
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efficient hash code retrieval. In the training process, the framework proposes a novel discriminative

sigmoid function that solves the issue of achieving a higher probability for dissimilar pairings,

particularly where the hamming distance between hash codes is much larger than two. This function

differs from the other generalized sigmoid functions utilized in previous hashing algorithms such as

HashNet. The second loss function is a novel Cauchy quantization loss that converts an input image

to binary data. Additionally, it checks the erroneous hash code in the output layer and goes back

and forth through the neural network to correct it.

2.1.3 Deep Supervised Discrete Hashing (DSDH)

This research paper introduces a new supervised approach [32] for generating hashing

codes in the final layer of a Convolutional Neural Network (CNN) by leveraging both the pairwise

similarity between images and their classification information. To retain this similarity information,

it employs Maximum A Posteriori (MAP) estimation and introduces a loss function designed

to minimize quantization errors. This loss function, based on the negative log likelihood, has

the objective of reducing the Hamming distance between similar points while maximizing it for

dissimilar points to the greatest extent possible. Additionally, a linear classifier is utilized to connect

the learned binary code with the preserved similarity information of the images.

The main contribution of this paper is the introduction of a unified framework that preserves

the similarity information between pairs of images and classifies them using a linear classifier,

resulting in a significant enhancement in performance. However, one limitation of this work is its

omission of the cross-entropy loss in the loss function, which could potentially further improve

performance through backpropagation.

2.1.4 Deep Incremental Hashing Network (DIHN)

This research paper introduces a novel approach called the Deep Incremental Hashing

Network (DIHN) method [33]. It aims to learn hash codes for newly added images while keeping

the existing training data intact and generating hash codes for query images using a combination

of hash functions and a CNN model. To the best of our knowledge, previous methods required
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retraining the CNN model to handle new training data, a challenge effectively addressed by the

DIHN framework. An incremental hash loss function is utilized to facilitate this process, ensuring

that the similarity information between query data and the training data is preserved. One significant

advantage of this work is its flexibility in using efficient hashing methods like ADSH and DSDH to

train the initial hash codes, as the primary focus of this framework is on learning hash codes for

new categories of input data. The simultaneous learning of hash codes for new input data and the

generation of hash codes using the trained CNN model for test data constitute the key contributions

of this paper, enhancing the effectiveness of supervised hashing techniques for large datasets.

2.1.5 Deep Polarized Network (DPN)

This research paper introduces a new concept known as polarization loss [12] to enhance the

effectiveness of learning hash codes. It achieves this by aiming to minimize the significant deviation

and maximize the minor deviation in Hamming distances when generating hash codes for pairs of

similar and dissimilar data. The proposed loss function essentially pushes the Hamming distances

within the same class towards the positive side or upper limit, while distances between different

classes are pushed towards the negative side or lower limit. Depending on a threshold margin and a

target vector, this method seeks to minimize polarization loss across the entire dataset. In essence,

this work addresses and seeks to improve the limitations associated with directly generating hash

codes from Hamming distances.

2.1.6 Central Similarity Quantization

This research paper introduces a novel concept known as the ’hash center’ [13] to effectively

generate and differentiate hash codes for various pairs of data. To achieve this, the Central Similarity

Quantization (CSQ) method is employed to optimize these hash centers. Additionally, a CNN

is trained using data features and these hash centers to generate precise hash codes within the

Hamming space while disregarding local similarities. This approach brings hash codes from similar

data pairs closer together and spreads hash codes from dissimilar data pairs apart. Unlike previous

methods like HashNet, which relied on weighted pairwise similarity and focused solely on local
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similarity, the CSQ approach concentrates on global data pair similarity and dissimilarity through

hash centers within the Hamming space. This distinctive feature allows it to distinguish between

similar and dissimilar data pairs effectively, making it a significant contribution to this framework.

2.2 Unsupervised Learning Based Deep Hashing Method

2.2.1 DeepBit

A new deep neural network called DeepBit [34] has been developed to output the binary

descriptor for a set of images using a data augmentation approach and minimizing the information

loss and evenly distributing the number of zero’s and one’s for each bit of the binary code for

each image. This approach uses three major loss functions where the quantization loss function

minimizes the information loss through the deduction from binarization of each images to initial

output of neural network. Like the first loss function, the second loss function optimize the neural

network parameter by taking the even number of ones and zeros from each bit position of the

binary code for each image. The last loss function uses an augmentation approach by rotating

the training data and updates the parameters of the network by minimizing the distance between

binary descriptiors of the reference images and the rotated images (from -R to R). As this is an

unsupervised deep learning approach, so this augmentation technique helps the DeepBit network to

check the similarity between all the images. As a result, the DeepBit approach can optimize the

network to help it find the correct binary descriptor for images.

2.2.2 Unsupervised GAN Hashing Network

An innovative deep unsupervised hashing framework, known as HashGAN [35], has been

introduced to convert input images into binary hash codes without requiring any labeled data. This

framework comprises three essential components: the Generator, Discriminator, and Encoder. In this

setup, the objective of the Generative Adversarial Network (GAN) is to provide random variables

(noise) to the binary code of real image data and generate output that closely resembles the real

images. Three loss functions are employed to minimize errors in generating the correct hash codes

within the network. The process begins with the embedding of the real image dataset, to which

8



random variables (noise) are added. This augmented data is used by the Generator to produce fake

images. The hash loss function plays a crucial role in ensuring that the binary values are close to

0 and 1 while evenly distributing the number of zeros and ones. Furthermore, it minimizes the

Hamming distance between the original images and the fake images. This approach enables the

HashGAN framework to obtain the actual hash codes for the input dataset, thereby addressing issues

related to complexity and overfitting. In summary, this framework employs a novel augmentation

approach using noise to enhance the original data and reduce hash code dissimilarities between the

augmented and original data, ultimately achieving accurate hash codes in an unsupervised manner.

2.2.3 Contrastive Information Bottleneck Hashing (CIBHash)

CIBHash [36] is an innovative unsupervised hashing technique that differs from conventional

approaches that rely on reconstruction. Instead, it adopts a unique combination of joint contrastive

learning and the Information Bottleneck framework to craft an effective hash code. The key idea is

to maximize the mutual information between the representation and output labels. By modifying the

objective function, the method retains crucial discriminative semantic information while filtering

out less important background details. To facilitate end-to-end training, the model incorporates

a probabilistic Bernoulli representation layer. The connection between this probabilistic hashing

model and mutual information ensures that the hash codes closely resemble the output labels within

the Information Bottleneck framework. What sets this work apart from existing unsupervised deep

hashing methods like DeepBit and HashGAN is its utilization of an efficient hashing model within

the Information Bottleneck framework. This approach removes redundant information about the

original sample and achieves superior performance.

Unsupervised hashing methods learn hash functions that encode data to binary codes by

training from unlabeled data [16, 37, 38, 39]. On the other hand, supervised hashing makes use

of semantic labels of data points or relevance feedback from click-through data in online search

engines to collect similarity information.

Unsupervised deep hashing methods, such as DeepBit and HashGAN, use data augmentation

to minimize hashcode differences between augmented and original data. In contrast, supervised
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deep hashing methods do not require data augmentation because they use labeled data to generate

hash codes for similar and dissimilar data pairs.

Supervised deep hashing methods utilize various techniques like different activation func-

tions (such as Sigmoid Function for DCH), straightforward simple classifiers (like Linear Classifier

for DSDH), or loss functions (such as Polarized Loss for DPN) to create hash codes for similar and

dissimilar data pairs in a supervised manner. In contrast, unsupervised deep hashing methods use

different augmentation approaches on the original data to minimize the differences in hash codes

between augmented and original data, thereby achieving accurate hash codes in an unsupervised

manner.

Supervised deep hashing techniques utilize pairwise image similarity and classification

information to create hash codes, which can lead to better accuracy and performance. In contrast,

unsupervised deep hashing approaches can generate accurate hash codes without relying on labeled

data and without needing to retrain the entire model when new data is added. Supervised methods

can handle imbalanced similarity data and can improve classification performance for similar images

within a small hamming distance, a task that unsupervised methods may not be able to accomplish.

However, unsupervised methods may have limitations in terms of accuracy and performance

compared to supervised approaches. The main disadvantage of supervised deep hashing is that it

requires a significant amount of labeled data, which can be challenging and expensive to obtain.

In contrast, unsupervised deep hashing methods do not require labeled data and can be applied to

large-scale datasets that lack labels, providing a significant advantage in terms of scalability.

Overall, supervised deep hashing methods are ideal for situations where it is necessary to

generate distinct hash codes, but this approach requires labeled data. On the other hand, unsupervised

deep hashing methods are preferable in cases where labeled data is not accessible, but it is not

essential to generate distinctive hash codes.
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CHAPTER III

DEFINITION AND PROBLEM SETTING

This chapter will provide a brief summary of the prerequisite materials, tools, and methods

used in this research. They are fundamental to the rest of the thesis and must be understood prior to

moving forward.

3.1 Deep Hashing

Hashing is a widely used technique for approximate nearest neighbor searches, especially

in large-scale image retrieval [40]. It involves using a specific mathematical function to transform

data of any length into a condensed alphanumeric representation of a fixed size, typically a shorter

string [41]. Deep Hashing is a method within computer vision that aims to perform fast and efficient

approximate nearest neighbor searches in high-dimensional data. Its goal is to convert complex,

high-dimensional data into compact binary codes that are easy to compare and store. This is

achieved by combining traditional hashing techniques with deep neural networks, which learn a

hash function capable of preserving the similarity between data points. By representing input data

as binary codes, it becomes possible to quickly and efficiently search for similar items within large

datasets. Deep Hashing has found successful applications in various domains, including image

retrieval, content-based image retrieval, and face recognition, often outperforming conventional

methods. The primary objective of image hashing is to represent an image’s content using a binary

code, enabling efficient storage and accurate retrieval [8]. Recent advancements in deep hashing

methods [1] [42] have demonstrated significant improvements over traditional hashing approaches

[3, 4, 5, 6, 7]. Furthermore, deep hashing methods can be categorized based on how they measure

the similarity of the learned hashing codes: pointwise [9, 10, 11, 12, 13], pairwise [2, 14, 15, 16],
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triplet-wise [17] [18], or listwise [19]. Recent developments in deep learning for hashing [15] [43]

have shown that deep neural networks can enable end-to-end representation learning and create

nonlinear hash functions [16].

3.1.1 Hashing Methods

Conventional hashing methods come in various categories [8]. Data-independent techniques

like Locality-sensitive Hashing (LsH) [44] and its kernelized version (KLsH) [4] have laid the

foundation for hashing principles. They emphasize the importance of code balance, uncorrelated

bits, and similarity preservation. In contrast, data-dependent methods [6] strive to create hash

codes that are more compact and tailored to specific datasets [45]. Recently, deep learning-based

hashing methods [1] [14] have gained prominence in hashing research due to the superior learning

capabilities of deep neural networks (DNNs). These methods introduce various learning objectives

for training hash codes using a dataset. These objectives encompass: 1) Task-specific learning,

further divided into pointwise, pairwise [2, 14, 15, 16], triplet-wise [17, 18], or listwise [19], as

well as unsupervised approaches [10] [26]; 2) Quantization error minimization, where the goal is

to minimize the p-norm (typically with p = 2) between continuous codes and hash codes; 3) Code

balancing [11] [26]. For a more comprehensive overview, readers can refer to surveys on learning to

hash [46]. Learning-based hashing methods can be categorized into three main groups: unsupervised

methods, which exclusively use unlabeled data for learning hash functions, and semi-supervised

and supervised methods [1].

3.1.2 Supervised Deep Hashing

Supervised hashing, which leverages similarity and dissimilarity data between pairs of

entities, has gained significant attention lately [1]. In Supervised Deep Hashing, a deep neural

network is trained to learn a hash function, guided by class labels or ground truth information.

During training, the network is fine-tuned to minimize the gap between the binary code produced by

the hash function and the actual ground truth labels. This ensures that the hash function maintains

the semantic similarities among data points within the same category while effectively distinguishing
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between those from different categories. In recent years, various supervised deep hashing methods

have been introduced [1, 9, 10, 12, 13, 14, 15, 16, 17, 32, 33, 47], each offering its own set of

advantages and limitations.

3.1.3 Unsupervised Deep Hashing

Unsupervised Deep Hashing is a method used to create concise binary representations of

high-dimensional data without relying on labeled information. It employs a deep neural network to

learn a hash function that captures the inherent relationships and similarities within the data. The

network fine-tunes the hash function by minimizing a loss function that measures the similarity

between the binary representation and the original data. This approach is widely applied in tasks

like image retrieval, image classification, and face recognition due to its efficiency in conducting

quick and effective similarity searches.

Compared to traditional unsupervised hashing methods, Unsupervised Deep Hashing

takes a step further by employing advanced techniques such as Autoencoder-based, Variational

Autoencoder-based, and Generative Adversarial Network-based Deep Hashing. These methods

leverage deep neural networks to learn more complex and non-linear hash functions, enabling them

to capture intricate relationships and patterns in the data. This results in more accurate binary codes

that better preserve the inherent structure and similarities among data points.

Unsupervised Deep Hashing finds extensive use in tasks like image retrieval, image classifi-

cation, and face recognition. The compact binary codes generated by the hash function serve as

efficient feature representations for large-scale data, facilitating swift and effective similarity-based

searches and retrievals. Over the years, various unsupervised deep hashing methods have been

introduced [34, 35, 36], each offering its own set of advantages and limitations.

3.2 Hamming Distance

The Hamming distance is a metric to gauge the dissimilarity between two binary sequences

of the same length. It accomplishes this by counting the positions where corresponding elements in

the sequences differ. In the realm of computer vision and image retrieval, the Hamming distance
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finds frequent use in assessing the similarity of binary codes generated by deep hashing techniques.

It provides a straightforward and effective means of quantifying the distinction between two binary

codes. A smaller Hamming distance between two binary codes signifies a higher degree of similarity,

while a larger Hamming distance indicates greater dissimilarity. In the context of image retrieval,

the Hamming distance associated with a hash code can be indicative of the likeness between images.

When the Hamming distance is smaller between two hash codes, it suggests that the images are

more similar. Conversely, a larger Hamming distance implies a lower degree of similarity between

the images [48].

3.2.1 Deep Hashing Analysis by Hamming Distance

For a given input image pair, denoted as xi and x j, a deep hashing model represented as H

generates hash codes, namely, hi and h j. These continuous hash codes are then converted into binary

codes, labeled as bi and b j, and these binary codes belong to the set {−1,1}K , which is achieved by

applying a sign operation
(
bi = sign(hi) ,b j = sign

(
h j
))

, respectively. In simpler terms, this sign

operation essentially assigns either -1 or 1 to each element in the continuous hash codes, making

them binary.

To facilitate retrieval, a Hamming distance, denoted as DH, is computed using these binary

codes [20] as:

DH
(
bi, b j

)
= XOR

(
bi, b j

)
,

where XOR is a bit-wise count operation. It outputs in the range [0, K]. From a mathematical point

of view, XOR can be interpreted as [20]:

XOR
(
bi, b j

)
=

1
2
(
K −bT

i ·b j
)

=
1
2
(
K −∥bi∥2 ∥b∥2 δ

(
bi, b j

))
=

K
2
(
1−δ

(
bi, b j

))
,
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where ∥bi∥2 =
∥∥b j

∥∥
2 =

√
K, and δ (·) denotes cosine similarity. This also can be denoted as [20]:

δ
(
bi, b j

)
= cosθi j

=
bT

i ·b j

∥ bi∥2

∥∥ b j
∥∥

2
,

where the angle between bi and b j is θi j. It is important to highlight that 1−δ
(
bi, b j

)
represents a

cosine distance measurement between bi and b j. This measurement can be approximated using hi

and h j, as explained in reference [20]:

1−δ
(
bi, b j

)
≃ 1−δ

(
hi, h j

)
Where the term 1−δ

(
hi,h j

)
represents the cosine distance between hi and h j. Consequently, when

we minimize this cosine distance between hash codes during deep hashing training, it leads to a

reduction in the Hamming distance between their binary codes.

3.3 Loss Function

A loss function, also known as a cost function, is a mathematical formula used in machine

learning to measure how far the predicted values of a model are from the actual values. It essentially

quantifies the errors or discrepancies in a model’s predictions compared to the true data. In machine

learning, the goal is to minimize this loss function to improve a model’s accuracy and overall

performance.

In the context of Deep Hashing, the loss function serves as a way to measure the difference

between the binary codes generated by the hash function and the original high-dimensional data. The

optimization process involves minimizing this loss function to create binary codes that effectively

capture the underlying structure and similarities within the data. The choice of the loss function is

crucial as it significantly impacts the quality of the learned hash function and the overall performance

of the Deep Hashing model. Different loss functions are designed to capture various aspects of

data, such as similarity, dissimilarity, reconstruction, or adherence to specific constraints. Therefore,
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selecting the right loss function is a critical step in the development and implementation of Deep

Hashing models.

Over the past few years, there has been a variety of loss functions introduced for Deep

Hashing [5, 8, 15, 16, 33, 34, 47], each having its unique strengths and weaknesses. Among these,

some commonly used loss functions encompass quantization loss, reconstruction loss, triplet loss,

contrastive loss, and generative adversarial loss.

3.4 Machine Learning

Artificial intelligence (AI) has become an integral part of our daily lives, offering assistance

in numerous tasks like gaming, email management, social media engagement, navigation, music,

movie, and product suggestions, virtual reality experiences, self-driving cars, and even in medical

applications. Within the realm of AI, machine learning plays a pivotal role, drawing from mathemat-

ical principles, computer science, probability theory, and statistics. Its primary objective revolves

around developing computational algorithms capable of discerning complex patterns from input

data, paired with their corresponding labels, to subsequently classify and predict new data samples

within established categories. Identifying the challenges and future research prospects in machine

learning-oriented hardware and software IP security serves as an example of a machine learning

application [49]. Machine learning algorithms typically fall into three broad categories: supervised

learning, unsupervised learning, and reinforcement learning.

3.4.1 Machine Learning Categories

Supervised Learning is a branch of artificial intelligence and machine learning that relies

on labeled datasets to train algorithms for accurate data classification or prediction. It’s commonly

used for large-scale real-world problems, like sorting spam emails into a separate folder. During

training, the model adjusts its parameters as it’s exposed to input data until it fits the data correctly.

Cross-validation is often used to ensure accurate training for data classification or prediction.

Supervised learning is valuable for tackling various large-scale real-world problems, including tasks

like filtering spam emails into a dedicated folder [50]. In this study, supervised learning was applied
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to train and assess the performance of deep hashing using the PAMAP2 time series dataset.

Unsupervised Learning, sometimes referred to as unsupervised machine learning, involves

analyzing and clustering unlabeled datasets using machine learning algorithms. These algorithms

can uncover hidden patterns or data groupings without human intervention. Unsupervised learning

is particularly useful for exploratory data analysis, cross-selling strategies, customer segmentation,

and tasks like image recognition, as it excels at identifying similarities and differences within data

[50].

Reinforcement Learning is a subfield of machine learning influenced by behaviorist psy-

chology in humans and animals. In reinforcement learning, agents learn to make decisions to

maximize cumulative rewards within a given environment. Different types of evaluative feedback

can facilitate this learning process [51]. Reinforcement learning is capable of training fully au-

tonomous agents that interact with their environments, learning optimal behaviors through trial and

error [52]."

3.5 Deep Learning

Deep Learning, a subset of machine learning, takes inspiration from the structure and

function of the human brain, employing artificial neural networks. It directly learns to perform

classification tasks involving images, text, or sound. Deep learning has demonstrated remarkable

accuracy, sometimes surpassing human capabilities, setting it apart from other machine learning

methods. It finds particular utility in computer vision research, where it can tackle various challenges

beyond image retrieval to enhance performance. Deep learning models are trained using extensive

labeled datasets, allowing them to automatically learn relevant features from the data, eliminating

the need for manual feature extraction.

In Fig. 3.1, you can observe an illustration of a deep neural network, featuring interconnected

nodes, an input layer, an output layer, and multiple hidden layers. Deep learning encompasses

various neural network architectures, each tailored to specific problem types or datasets. For

instance, recurrent neural networks (RNNs) excel in natural language processing and speech

recognition, while convolutional neural networks (CNNs) are predominantly used in computer
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Figure 3.1: Deep Neural Network

vision and classification tasks.
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CHAPTER IV

MODEL IMPLEMENTATION

Deep learning models have emerged as powerful tools in the field of artificial intelligence,

driving notable advancements across various domains. These models excel at discerning intricate

patterns and representations within vast datasets, enabling them to tackle complex tasks with

exceptional precision. A key attribute of deep learning is its versatility, allowing it to be applied

effectively to a wide range of objects and data types. In this context, deep learning models have

found successful applications in various object categories, encompassing images, videos, audio, text,

and sensor data. Researchers and practitioners have achieved significant breakthroughs in fields

such as computer vision, natural language processing, audio analysis, and sensor data analytics by

harnessing the capabilities of these models. Let’s delve into each of these five object categories in

more detail:

1. Images: Deep learning models have brought about a transformation in the field of computer

vision, greatly enhancing their ability to analyze images effectively. Convolutional Neural

Networks (CNNs) play a pivotal role in image classification, where they learn to categorize

images into predefined classes. Object detection models make use of CNNs to not only

identify but also classify multiple objects within an image. Image segmentation models go a

step further by assigning labels to individual pixels, providing a highly detailed understand-

ing of the image’s content. Furthermore, deep learning models can even generate lifelike

images using techniques such as Generative Adversarial Networks (GANs) or variational

autoencoders. Images have also proven to be valuable in the domain of data privacy. Utilizing

the Advanced Encryption Standard (AES) technique, an image steganography method with

three layers of security efficiently enhances both data security and data secrecy [53].
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2. Videos: Deep learning models are utilized in the realm of video analysis, facilitating tasks

like recognizing actions, adding captions to videos, and creating video summaries. Action

recognition models make use of recurrent or 3D convolutional neural networks to identify

particular activities or gestures depicted in videos. For example, an iris identification and

monitoring system that emphasizes the use of MTCNN, CHT, and morphological approaches

achieves significant accuracy in detecting irises from video data [54].

3. Audios: Significant progress has been made in speech and audio analysis using deep learning

models. Speech recognition models, such as recurrent neural networks (RNNs) or Transform-

ers, transcribe spoken language into written text. Speaker identification models differentiate

between speakers based on voice characteristics, while music classification models can clas-

sify songs into genres or identify musical instruments. Audio generation models like WaveNet

or SampleRNN can produce realistic-sounding speech or music.

4. Texts: Deep learning models have had a significant impact on various natural language

processing (NLP) tasks. Models such as RNNs, Transformers, and their variations are

extensively used for tasks like classifying text, analyzing sentiments, identifying named

entities, translating languages, generating text, and answering questions. These models can

capture complex relationships between words, phrases, and sentences, enabling them to

comprehend the meaning and structure of textual data. Pretrained language models like GPT

or BERT have achieved top-notch performance in various NLP tasks.

5. Sensor data: The adoption of deep learning models for sensor data analysis is on the rise.

These models are applied to process data collected from diverse sources such as IoT devices

and environmental monitoring systems. For instance, deep learning models can be employed

to detect anomalies in sensor data, which helps identify unusual patterns or outliers that

deviate from the expected behavior. Regarding vision-based tracking, the TRM technique was

used to address limitations associated with sensor-based response identification, particularly

in activity recognition [55]. Activity recognition models can use sensor data like accelerome-
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ter readings to identify specific activities or movements. Furthermore, deep learning models

are utilized to process sensor data from weather stations for predicting weather conditions

and environmental phenomena.

4.1 Dataset

First, a substantial dataset known as the Character Trajectories Dataset was sourced from

the UCI Machine Learning Repository. This dataset was created using a WACOM tablet, and

each data point includes three dimensions: x-coordinate, y-coordinate, and pen tip force. The data

was sampled at a rate of 200Hz and then normalized using the consts.datanorm technique. Only

characters with a single ’PEN-DOWN’ segment were included in the dataset. In total, there are

2858 samples of characters distributed across 20 different classes.

4.1.1 Training data:

There are total 1422 training data samples with dimension 1422 (Sample size) x 182 (Time

Step) x 3 (Features).

4.1.2 Test data:

There are total 1436 test data samples with dimension 1436 (Sample size) x 182 (Time Step)

x 3 (Features).

4.1.3 Features:

Features of each character can be stated as Coordinate datapoints (x, y) at each time step

and pen tip force.

4.1.4 Multiclass:

There are total 20 class labels. Only characters with a single ’PEN-DOWN’ segment were

considered.
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4.1.5 Data Preprocessing:

This work used character trajectories dataset that contains 1422 train data samples and 1336

test data samples. Then the train dataset is splitted in two parts (80% Training dataset & 20%

Validation dataset).

1. Training dataset with size (1137, 182, 3)

2. Validation dataset with size (285, 182, 3)

The training data are exclusively employed to train the model. During each training cycle

(epoch), the model learns from the training data by repeatedly processing it. The validation data,

on the other hand, serves to assess how well the model is learning. While the model undergoes

training with the training data, its performance is evaluated using the validation data at the end of

each epoch. If the model exhibits improved performance during this validation phase, checkpoints

are saved. The primary purpose of the validation set is to prevent the model from overfitting. Test

sets, distinct from both training and validation datasets, are reserved for assessing the model’s final

performance.

4.2 ResNet34 Basics

Deep Convolutional Neural Networks (CNNs) have brought about significant advancements

across various domains by harnessing their multi-layered structure to process intricate patterns

in data, mimicking the functioning of the human brain. ResNet34, a prominent example of a

deep CNN, is the focus of this section, where we delve into its fundamental aspects, including its

architecture, training process, performance, and applications.

ResNet34 falls under the ResNet family of models and was designed to overcome the

challenges associated with training extremely deep neural networks. It achieves this by introducing

skip connections, also known as residual connections.

The main problem with training very deep neural networks was the vanishing gradient issue,

where gradients became extremely small as they propagated back through the network. This made
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it challenging for earlier layers to learn meaningful representations, often resulting in performance

saturation or degradation with increased depth.

In this section, we will explore key aspects of ResNet34, including its architecture, the use

of bottleneck blocks, global average pooling, training techniques like transfer learning, and its

remarkable performance.

4.2.1 Architecture:

ResNet34 comprises 34 layers, encompassing convolutional layers, batch normalization lay-

ers, ReLU activation functions, and fully connected layers. It commences with a 7x7 convolutional

layer featuring 64 filters and a stride of 2, followed by a max-pooling layer with a 3x3 kernel and a

stride of 2. The core of the network is formed by 16 residual blocks, each containing two or more

convolutional layers alongside batch normalization and ReLU activation.

4.2.2 Bottleneck Blocks:

ResNet34 employs the bottleneck architecture within each residual block. This design

incorporates three convolutional layers with smaller kernel sizes, reducing computational demands.

Specifically, the bottleneck block includes a 1x1 convolutional layer (to decrease the number of

channels), followed by a 3x3 convolutional layer, and another 1x1 convolutional layer (to restore

the original number of channels). This design optimizes computational efficiency while preserving

the network’s representational capacity.

4.2.3 Global Average Pooling:

Following the convolutional layers, ResNet34 employs global average pooling, which

transforms the spatial dimensions of the feature map into a 1x1xN tensor, where N represents the

number of channels (filters). This reduction in spatial dimensions helps prevent overfitting.

4.2.4 Training and Transfer Learning:

ResNet34 can be pre-trained on extensive image datasets like ImageNet and subsequently

fine-tuned for specific image recognition tasks. This transfer learning process enables the model to
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leverage its acquired feature representations and adapt to new datasets with fewer data samples and

computational resources.

4.2.5 Performance:

ResNet34 has demonstrated impressive performance across various image recognition tasks,

including image classification, object detection, and image segmentation. Its depth and the inclusion

of skip connections enable it to capture intricate image features, leading to enhanced accuracy

compared to shallower models.

Due to its remarkable performance and ease of training, ResNet34 has become a preferred

choice for various computer vision tasks and serves as a foundational component for more complex

architectures.

ResNet34 is essentially a plain-34 layer convolutional neural network enhanced with skip

connections. It comes pre-trained on the ImageNet Database, offering several advantages, such as

achieving higher accuracy with limited data and reducing training time. Deep neural networks tend

to outperform shallow ones, provided challenges like degradation are effectively addressed, which

ResNet34 accomplishes through skip connections. These advantages make ResNet34 an attractive

choice for classification tasks, as evident in our proposed work [55].

4.3 Proposed Architecture

In this work, we propose a novel deep hashing model for time series data using ResNet34.

Here, every layer of a ResNet is composed of several blocks.

When ResNets are made deeper, they usually do so by increasing the number of operations

within a block, which includes things like convolution, batch normalization, and ReLU activation.

However, the total number of layers stays the same.

This study introduces a deep hashing model that simplifies the training process by using just

one loss function, eliminating the need for adjusting loss weights, which can be quite challenging.

As mentioned earlier, training a deep hashing model typically involves two main objectives: making

the binary codes distinct and minimizing the quantization error. So, how can we achieve both with
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just one loss? The solution lies in the close relationship between these two objectives, which can

be combined into a single one. To be more precise, we found that we can meet both goals by

maximizing the cosine similarity between the continuous codes and their corresponding binary

orthogonal targets. This can be expressed as a cross-entropy (CE) loss.

In Our model, OrthoHash technique has been incorporated which uses only one loss function

that maximizes the cosine similarity between the L2-normalized continuous codes and the binary

orthogonal targets. This single loss simultaneously enhances the distinguishability of hash codes

between different classes and minimizes the quantization error.

To clarify, by maximizing the cosine similarity between the continuous codes and their

corresponding binary orthogonal codes, we ensure that the hash codes are both distinctive and

minimize quantization errors. Additionally, this learning objective allows us to achieve code balance

easily by incorporating a Batch Normalization (BN) layer. It also makes multi-label classification

straightforward, including the use of label smoothing. The BN layer contributes to faster training,

improved model accuracy, and the ability to utilize higher learning rates.

Figure 4.1: Proposed methodology workflow

Fig. 4.1 explains the proposed methodology workflow. We first obtain continuous codes 

from our backbone network. It is then passed through a batch normalization (BN) layer to obtain 

zero-mean continuous codes. Next, we compute orthohash loss meaning the cosine similarity 

between the continuous codes and their binary orthogonal targets. After continuous updates of the 

loss functions, the model outputs two elements,

1. Data class label (Batch size x number of classes) and
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2. Data embedding (Batch size x embedding dimension)

Feeding test data into the trained model outputs two elements.

1. Data class label as the first element that is used to output hash code classification accuracy

2. Data Embedding as the second element to observe the clustering performance

4.4 Orthohash Law

The proposed work used orthohash loss for hash code discriminativeness and quantization

error minimization. It reformulated deep hashing in the lens of cosine similarity.

Usually, when converting continuous codes represented by v into binary codes denoted as b,

there is a loss of information, referred to as quantization error. This quantization error is a common

consideration in many existing hashing methods, and it is typically addressed within their learning

objectives. The loss function used in Orthohash is as follows [8]:

minL+λQ, (4.1)

In the equation provided, L represents the supervised learning objective, such as Cross Entropy,

and Q denotes the quantization error between v and b. Here, λ is used to control the weight of

quantization loss. Here, the quantization error is related to the angle θvb between v and b. It can be

evaluated as follows [8]:

Q = ∥v−b∥2 = 2K −2K cosθvb = 2K (1− cosθvb) . (4.2)

Given that 2K remains constant, we can therefore deduce that optimizing the cosine similarity

between v and b will result in a reduced quantization error, thereby yielding a more accurate

approximation in the hash codes.
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CHAPTER V

EXPERIMENT AND RESULT EVALUATION

In this chapter, we will delve into the examination of the dataset and assess the efficiency and

outcomes of different techniques and experiments. We have conducted a comprehensive evaluation

of our method’s predictive performance, comparing it to several well-established and state-of-the-

art alternatives. The effectiveness of the various proposed approaches is evaluated based on the

following criteria:

5.1 Evaluation Metrics

Assessing the effectiveness of a Deep Neural Network (DNN) requires the utilization of

diverse metrics, which vary depending on the particular task at hand. In the case of classification

tasks, typical evaluation metrics encompass:

1. Accuracy: It is a popular metric for evaluating the performance of the classification models.

It measures the proportion of correctly classified instances out of all the instances that were

classified by the model.

Accuracy = Number of correct predictions
Total number of predictions

2. Precision, Recall, and F1-score: Metrics that assess the trade-off between precision (ability to

correctly identify positive samples) and recall (ability to capture all positive samples).

3. Area Under the Receiver Operating Characteristic (ROC-AUC): A measure of the classifier’s

ability to distinguish between classes by plotting the True Positive Rate against the False

Positive Rate.
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4. Mean Squared Error (MSE): The average of the squared differences between predicted and

actual values.

5. Mean Absolute Error (MAE): The average of the absolute differences between predicted and

actual values.

These are just a few examples of the evaluation metrics available, and the choice of metric

depends on the specific problem and application requirements.

5.2 Experiments Setup

The Character Trajectories dataset is used to train deep learning. The training dataset is

divided into two parts: 80% training and 20% validation. The Fig. 5.1 summaries the data selection

and splitting process.

Figure 5.1: Data selection & splitting

Initially, training dataset has a dimension of (1422, 182, 3) where, total number of samples

= 1422, time steps = 182, and number of features = 3 (x, y coordinates for each time step, and pen

tip pressure)

After splitting, the dimension of the training data becomes (1137, 182, 3) and the dimension

of the validation data becomes (285, 182, 3).
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5.3 Model Performance

5.3.1 Cross Entropy Loss Function Performance

Adam optimizer with a 0.001 learning rate is used to train the proposed ResNet model.

The Cross Entropy loss function was employed, and accuracy was measured during training. The

training was conducted three times with 100, 200, and 300 epochs, respectively.

Based on the model training observations, it can be concluded that both the training and

validation losses decreased, while the training and validation accuracies increased over the epochs.

However, overfitting started after about 13 epochs, as indicated by the rising validation loss and

falling validation accuracy. This suggests that the model is not generalizing well and is fitting the

training data too closely. At this point, a checkpoint of the model was saved.

Subsequently, the model’s performance was tested using the test data and the Accuracy

metric. The best training model achieved a classification accuracy of approximately 91.02% on the

test data, which is significantly higher than the existing works. The details of the achieved F1 scores

by using cross entropy loss are presented in Table 5.1.

Table 5.1: F1 score for different averaging methods

Macro Micro Weighted
0.90% 0.91% 0.91%

The classification performance of the model was visualized using the t-distributed stochastic

neighbor embedding (t-SNE) technique. The results were presented in the form of clustering for 20

classes using t-SNE on the test data embedding. Fig. 5.2 illustrates that the trained model forms

distinct, dense clusters for the 20 classes, which are significantly different from each other.

To evaluate the model’s performance after applying the sign function, the output of the

test data was processed by the trained model, and the sign function was applied to the resulting

embedding. Fig. 5.3 depicts the model’s performance for the 20 classes using t-SNE on the test

data embedding with the sign function applied.

It was observed that after applying the sign function to the test data embedding, the data
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Figure 5.2: t-SNE visualization for test data embedding

Figure 5.3: t-SNE visualization for test data embedding with sign function applied

points were transformed into hash codes, which resulted in a loss of some information and a

weakening of the cluster structure. Consequently, the t-SNE plots showed less distinct clusters for

each class. Therefore, the use of the cross-entropy loss function does not yield better hash code

outputs for all the classes in this work.

5.3.2 Cosine Similarity Loss Function Performance

After training the proposed ResNet model using the Cross Entropy Loss function, the Cosine

similarity loss function was used with the Adam optimizer and a learning rate of 0.001 to further

train the model. The Cosine similarity loss function was employed, and accuracy was measured
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during training. The training was conducted three times with 100, 200, 300, 500, 1000 and 2000

epochs, respectively.

Based on the model training observations, it can be concluded that both the training and

validation losses decreased gradually, while the training and validation accuracies increased slowly

over the epochs. At this point, a checkpoint of the model was saved.

Subsequently, the model’s performance was tested using the test data and the Accuracy

metric. The best training model achieved a classification accuracy of approximately 87.81% on the

test data. The details of the achieved F1 scores by using cosine similarity loss function are presented

in Table 5.2.

Table 5.2: F1 score for different averaging methods

Macro Micro Weighted
0.87% 0.88% 0.88%

The classification performance of the model was visualized using the t-distributed stochastic

neighbor embedding (t-SNE) technique. The results were presented in the form of clustering for 20

classes using t-SNE on the test data embedding. Fig. 5.4 illustrates that the trained model forms

distinct, dense clusters for the 20 classes, which are significantly different from each other.

Figure 5.4: t-SNE visualization for test data embedding

To evaluate the model’s performance after applying the sign function, the output of the
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Figure 5.5: t-SNE visualization for test data embedding with sign function applied

test data was processed by the trained model, and the sign function was applied to the resulting

embedding. Fig. 5.5 depicts the model’s performance for the 20 classes using t-SNE on the test

data embedding with the sign function applied.

It was observed that after applying the sign function to the test data embedding, the data

points were transformed into hash codes, which resulted in a loss of some information and a

weakening of the cluster structure. Consequently, the t-SNE plots showed less distinct clusters for

each class and many clusters are overlapping with each other.

However, after comparing Fig. 5.3 and Fig. 5.5, we can conclude that the use of the cosine

similarity loss function yields significantly better hash code outputs for all the classes in this work.

Therefore, overall cosine similarity loss function generates better hash code outputs in this work.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

We propose a novel approach to enhance deep hashing training for time series data by

introducing a single classification objective, which is called the orthohash loss. This approach

focuses on maximizing the cosine similarity between continuous codes and binary orthogonal

targets. We have reformulated the deep hashing problem for the character trajectories dataset to

emphasize cosine similarity. By applying L2-normalization to continuous codes, we demonstrate

that end-to-end training can be achieved without the need for complex constraints. We have also

used batch normalization to effectively balance the codes. We tested our method on a character

trajectories dataset, achieving an impressive 87.81% accuracy in character identification with just

one loss objective. The proposed framework achieves significantly better hash code performance, as

evidenced by the t-SNE visualization.

In our future work, we plan to explore ways to improve feature representations for better

retrieval performance using hash codes through unsupervised learning. We also aim to enhance

hash code performance and incorporate Mean Average Precision (MAP) as a performance metric.

Additionally, we intend to conduct detailed analyses of the loss function and the training model to

gain deeper insights and make potential refinements.
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