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ABSTRACT

Narcia-Macias, Christian I., IntelliBeeHive. Master of Science (MS), December, 2023, 51 pp.,

3 tables, 47 figures, references, 20 titles.

Utilizing computer vision and the latest technological advancements, in this study, we

developed a honey bee monitoring system that aims to enhance our understanding of Colony

Collapse Disorder, honey bee behavior, population decline, and overall hive health. The system is

positioned at the hive entrance providing real-time data, enabling beekeepers to closely monitor

the hive’s activity and health through an account-based website. Using machine learning, our

monitoring system can accurately track honey bees, monitor pollen-gathering activity, and detect

Varroa mites, all without causing any disruption to the honey bees. Moreover, we have ensured that

the development of this monitoring system utilizes cost-effective technology, making it accessible to

apiaries of various scales, including hobbyists, commercial beekeeping businesses, and researchers.

The inference models used to detect honey bees, pollen, and mites are based on the YOLOv7-tiny

architecture trained with our data. The F1-score for honey bee model recognition is 0.95 and the

precision and recall value is 0.981. For our pollen and mite object detection model F1-score is 0.95

and the precision and recall value is 0.821 for pollen and 0.996 for "mite". The overall performance

of our IntelliBeeHive system demonstrates its effectiveness in monitoring the honey bee’s activity,

achieving an accuracy of 96.28% in tracking and our pollen model achieved a F1-score of 0.8319.
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CHAPTER I

INTRODUCTION

1.1 Background

Honey bees (Apis mellifera) are small insects that play a crucial role in maintaining the

balance of ecosystems. They serve as important pollinators, contributing to the pollination of crops

worth an estimated 15 billion dollars in the United States alone[USDA, 2022]. In today’s rapidly

advancing technological world, innovative solutions can potentially aid honey bees in overcoming

challenges such as parasites and other factors that contribute to the decline of bee colonies. Honey

bees are renowned for their role as pollinators, facilitating the reproduction of flowers and fruits

through the collection of pollen, which eventually leads to the creation of delicious honey.

Vaorra mites, which are not native to the United States and were introduced from Asia,

contribute to the decline of honey bee populations [Beekeep, 2022]. Varroa mites survive by

feeding on the body fat cells of honey bees and extracting essential nutrients from their bodies

[Ramsey et al., 2019] as well as transmitting viruses that cause deadly diseases to honey bees

[Moore et al., 2014]. The presence of these ectoparasites can devastate a honey bee colony, and

even a colony with minimal signs of infestation has a high likelihood (around 90-95 percent) of

collapsing [of Minnesota, 2022]. This poses significant challenges for beekeepers who invest their

time and resources in maintaining honey bee colonies, as a single mite can jeopardize their hives.

Throughout the years of beekeeping, there have been methods developed to control over

infestation of varroa mites. Today, many beekeepers have kept traditional methods of checking

monthly such as sugar rolls, alcohol washes, or using sticky boards to monitor the bees for mites

[Underwood and López-Uribe, 2022] [DIETEMANN et al., 2013]. All of these methods have their
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pros and cons depending on preference but they are all time-consuming and require manual labor

and some approaches are destructive, meaning that the sample used for detecting the infestation

levels will not be reintroduced back to the hive [DIETEMANN et al., 2013]. Therefore, a faster

and more effective alternative is essential for monitoring infestation levels for such a time-sensitive

issue in order to allow beekeepers to give the proper treatment only when needed to help maintain

the bee hive population.

Foraging is another important indicator of the beehives’ overall health and is important

for beekeepers to monitor. Beekeepers use different methods to monitor the honey bee’s foraging

activity, one example would be using a pollen trap method that utilizes a mesh screen that has big

enough holes for the honey bee to go through but small enough to scrap off pollen from the honey

bees’ legs [Hoover and Ovinge, 2018]. This method removes the pollen from the bees’ legs for the

beekeeper to analyze the amount of pollen that is being brought into the hive from when they forage.

Removing pollen from the honey bees’ legs is not as efficient as it does not collect enough pollen in

the mesh screens, which have an efficiency of 3-43 percent in trapping the incoming pollen, making

it ineffective [Hoover and Ovinge, 2018]. This measuring method is inaccurate and removes the

nourishment from the honey bees, as they feed on pollen and nectar, which can take a toll on their

brood development [Hoover and Ovinge, 2018].

1.2 Related Works

There are numerous techniques that implement approaches to monitor honey bees’ health.

A computer vision system to monitor the infestation level of varroa destructor in a honeybee

colony paper deployed a Monitoring Unit with a computer system to record honey bees entering

their bee hives using a multi-spectral camera and red, blue, and infrared LED lights to collect

footage. They then use computer vision to detect varroa destructors and determine the infestation

level of the beehive[Bjerge et al., 2019]. The objective of this study is to propose an alternative

method for assessing the infestation level without harming honey bees, which is commonly done

in traditional sampling methods as mentioned previously [Underwood and López-Uribe, 2022]

[DIETEMANN et al., 2013].

2



A real-time imaging system for multiple honey bee tracking and activity monitoring purpose

is to monitor honey bee behavior research emphasizes monitoring the activity of honey bees in-and-

out activity of the beehive in order to assess honey bee colonies’ behavior and the hives overall health

when exposed to different concentrations of Imidacloprid pesticides[Ngo et al., 2019]. Their system

consists of 2 microcomputers, a Jetson TX2 using background subtraction for object segmentation

and honey bee tracking and a Raspberry Pi 3 for environment monitoring using sensors.

The Automated monitoring and analyses of honey bee pollen foraging behavior using a

deep learning-based imaging system study, aims to provide a better and more efficient alternative to

analyze the foraging done by honey bees [Ngo et al., 2021]. This monitoring system also consists

of the same two microcomputers but this time for object detection, they used YOLOv3’s real-time

object detection. Their method proved to be a more effective and reliable tool compared to the

conventional pollen trap method previously mentioned.

The IntelliBeeHive project aims to develop a cost-effective monitoring system using Machine

Learning to track honey bees in order to monitor their activity, foraging activity, and varroa mites

detection without disturbing the honey bees. This monitoring system is placed at the entrance

of the beehive and allows beekeepers to keep track of the beehive’s overall activity through an

account-based website. For our object detection software, we will be using YOLOv7. YOLOv7 is an

object detection model introduced in July 2022 that surpasses all previously known object detection

models in speed and accuracy [Wang et al., 2022]. YOLOv7 achieved the highest accuracy at 56.8

percent AP at 30FPS or higher depending on the GPU [Wang et al., 2022].
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CHAPTER II

MATERIALS AND METHODS

In this section, we discuss the implementation of our monitoring system. Our monitoring

system is composed of two main parts the hardware and the software.

2.1 Hardware

Our monitoring system is implemented on an NVIDIA Jetson Nano Developer Kit. We chose

the NVIDIA Jetson Nano taking several factors into consideration including its affordability ($99

USD at the time of implementation before the global chip shortage) and performance in computer

vision applications compared to other Jetson modules available [NVIDIA, b][NVIDIA, 2021] and

the Raspberry Pi. Although the Raspberry Pi is more affordable, it does not have the capability to

provide live tracking data.

The initial design was divided into segments, allowing us to 3D print each section individ-

ually. This modular approach facilitated the printing process and provided flexibility to replace

specific components if necessary. The container was computer-aid designed (CAD) using Blender,

then 3D printed using PLA Filament with three main sections: the Top Box, the Camera Room, and

the Mesh Frame. The Top Box has a 3D-printed camera tray to secure a Raspberry Pi Camera, air

vents to help cool down the Jetson Nano, and we had to make sure to make it rainproof to protect our

electronics, such as the PoE Adapter and the Jetson Nano. The camera room is just an empty box

with a window made out of sanded acrylic to reduce glare and allow sunlight to improve inferring

accuracy. Our camera distance from the honeybee passage for our PLA container was set at 155mm

high with a viewing area of 150mm by 80mm giving us the view shown in Figure 2.2.
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Figure 2.1: 3D printed monitoring container

To ensure the effectiveness of our inference algorithm, we devised a method to prevent

honey bees from approaching the camera and restricting their movement to prevent overlapping.

Our approach involves creating a mesh using a fishing line, as illustrated in Figure 2.2. The use

of a fishing line offers several advantages over alternatives such as acrylic. It provides a clearer

view of the honey bees without the issue of glare that would occur had we used glass or acrylic.

Additionally, using other clear solids would not be viable in the long run, as they would accumulate

wax residue and trash over time compromising our tracking algorithm.

The reason we had to change our 3D printing approach was due to heat and pressure. Over

time, we noticed warping with our container in 2 significant locations. One location is where we

secured our container to the hive using a bungee cord, the container started to bend inward which

in the long run will affect our footage. The second location is the mesh frame, due to the tension

caused by the fishing line and the hot temperature in Texas reaching 100 ◦F (37.7 ◦C) during the

summer, the mesh frame started to warp inwards loosening the fishing line shown in Figure 2.2 and

in return, honey bees can break into the camera room compromising our tracking.

5



Figure 2.2: Camera view of fishing line mesh frame warping

Therefore, we changed our design to laser-cut our container out of wood. While the overall

appearance of the container is similar, adjustments in the approach of our CAD design process

were made to accommodate the laser-cutting process. To laser cut, our 3D model needs to be

separated into 2D sections to convert our model into an SVG file format. Using wood gave us a

stronger foundation and cut our time to make a container significantly. Previously, the creation of a

container took between 4 to 5 days to 3D print, whereas the adoption of laser cutting reduced the

time to manufacture to approximately 4 hours followed by an additional day for assembly. The

figures below provide a detailed breakdown of the containers’ computer-aided design model before

converting to SVG.

6



Figure 2.3: Wooden container CAD assembled overview

Figure 2.4: Wooden container CAD view of the Top Box
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Figure 2.5: Wooden container CAD view from the front

Figure 2.6: Wooden container CAD view from the back
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Figure 2.7: Wooden container CAD view from the side

Figure 2.8: Fully assembled monitoring container
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Figure 2.9: Mesh section CAD design overview

Figure 2.10: A view of the Mesh Frame CAD design

Figure 2.11: Stand CAD design for the Mesh Frame

10



Figure 2.12: Support segment for Mesh Frame CAD design overview

Figure 2.13: Fully assembled Mesh Frame

Our viewing area for the wooden container was also reduced to allow our camera to get

closer to the honey bees improving our pollen and mite detection accuracy. Our new viewing area is

reduced to 110 mm by 65 mm and our camera height is lowered to 120mm giving us a significantly

better view of the honey bees as shown in Figure 2.14.
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Figure 2.14: Wooden container camera view with new camera height

Our container incorporates two cable exits. The upper cable exit is specifically designated

for our Power over Ethernet (PoE) cable, which both powers the Jetson Nano and provides Internet

connectivity. The lower cable exit is dedicated to the BME680 sensor, which runs from the top

section through the camera room and out into the honey bee hive. In order to achieve a water-tight

seal and protect our electronics we use the cable lids we designed shown in Figure 2.15.

For monitoring the honey bee hive’s humidity and temperature, we employ a BME680

sensor. Considering this sensor is not specifically intended for outdoor environments, we designed

and developed a case with air vents to ensure we don’t compromise our readings as shown in Figure

2.16. To 3D print the container we used PLA filament due to its non-toxic nature. To connect our

sensor to the Jetson Nano we soldered flexible silicone 30 gauge copper wires to the sensor and ran

them through our container to the Jetson Nano’s 40-pin expansion header. We placed the sensor

halfway inside the bee hive through the entrance of the bee hive.
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Figure 2.15: Side View of the container with cable lids attached

Figure 2.16: BME680 Sensor Case

13



Figure 2.17: BME680 Sensor

To capture footage of the honey bee’s in the enclosure, we used the Raspberry Pi Camera

V2.1 connected to the Jetson Nano via Raspberry Pi ribbon cable. To hold the camera in place we

laser cut a frame from wood and secured it in place in the Top Box as shown in Figure 2.18.

Figure 2.18: Raspberry Pi Camera V2.1 in monitoring system
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To provide internet access and power to our Jetson Nano, we utilize a Power over Ethernet

(PoE) switch. A PoE switch provides both power and internet access all through a Cat6 cable

running from the PoE switch placed indoors to our PoE adapter inside our container. The PoE

Adapter splits the ethernet and power into two channels in order to connect our Jetson Nano. We

chose this approach instead of others, such as solar panels, battery packs, or wifi, because it allows

us to reduce cable clutter while providing a long-lasting solution with a reliable source of internet

and power to our Jetson Nano. Figure 2.19 is an image of the Top Box fully assembled with our

Jetson Nano, BME680 sensor cables, Raspberry Pi camera, and PoE adapter all connected.

Figure 2.19: Image of container Top Box section fully assembled

Lastly, we add a wooden plywood sheet to the bottom of the container. This addition

provides a landing place for the honey bees, gives our object detection a neutral background, and

helps stand our container. The wooden plywood can be seen in Figure 2.8.

2.2 Software

2.2.1 Secure Shell Protocol

In order to enable remote updates for our Jetson Nano device, we implemented Secure Shell

Protocol (SSH) tunneling. To ensure accessibility from different networks, we utilized a virtual
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machine hosted on the Google Cloud platform. This configuration enables us to establish an SSH

tunnel from our local computer to the Google Cloud VM, and perform reverse SSH from the Jetson

Nano to the Google Cloud.

2.2.2 Honey bee Detection

In this study, YOLOv7 Tiny object detection model was used to identify honey bees in order

to track their activity. YOLOv7 proved to be the fastest and most accurate real-time object detection

model during the implementation of our study[Wang et al., 2022]. Due to our computational

limitations using a Jetson Nano, we implemented YOLOv7 Tiny version of YOLOv7 to achieve a

higher frame rate[Wang et al., 2022].

To train our model, approximately 50 5-minute videos at 10 frames per second at 1280 x

720 every 10 minutes over the span of 4 days (to account for different lighting) were obtained from

our own honey bee hive using the containers we developed. Images every 3 seconds (30 frames)

were then extracted from the videos to allow the honey bees to move and give us variety in our

training data.

The process of annotating honey bee images for our YOLOv7-Tiny model involved the use

of the LabelImg[Tzutalin, 2021] tool. For our labeling, we purposely annotated only honey bees

whose majority of their body is shown in order to improve our detection algorithm due to partial

honey bee detection being irrelevant to our tracking and also avoiding flickering if honey bees are

on the edge of the frame. Annotations were saved in the YOLO format with the only class being

“Honey bee”, resulting in a total of 1235 annotated images. Approximately 9,700 honey bees were

annotated in total. The detection model is trained with an NVIDIA GeForce RTX 3070 GPU. The

training image is resized to 416 x 416 pixels input for our YOLOv7-Tiny model with a batch size of

8 for 100 epochs.

Our goal is to have a live status update from every hive with a 5-minute delay. In order to

achieve such a goal we must optimize our model as much as possible. Given our resource constraints

to make our approach cost-effective, our YOLOv7-Tiny model takes approximately 56 ms for every

frame for inferring on the Jetson Nano. Since we have a 5-minute video at 10 frames per second
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totaling 3000 frames, this means that it would take about 2 minutes 48 seconds for inferring only.

To achieve faster inferring, we convert our model into a TensorRT engine[NVIDIA, c]. Before

converting our model to TensorRT our model has to be converted into ONNX[ONNX, ] by exporting

our model with the script provided by YOLOv7 repository[Wong, 2021].

Open Neural Network Exchange (ONNX) is an open standard format that serves as a

common representation for machine learning models. It offers a standardized set of operators

and a shared file format, allowing AI developers to utilize models seamlessly across various

frameworks, tools, runtimes, and compilers. The key benefit of ONNX is its ability to promote

interoperability between different frameworks, enabling easier integration and facilitating access to

hardware optimizations. By adopting ONNX, developers can leverage the advantages of different

frameworks and streamline the deployment of machine learning models[ONNX, ]. Once our

model is in ONNX format, the Tensorrt engine is then created using TensorRT-For-YOLO-Series

repository[Linaom1214, 2021] on the Jetson Nano. With our TensorRT engine, inferring time was

cut by almost half, taking approximately 27 ms per frame. Our total inference time is cut down to

about 1 minute and 21 seconds per video.

For our pollen and mite detection, we train a second YOLOv7-Tiny using 2 classes, “Pollen”

and “Mite”. To collect pollen training data, we filtered through the videos collected with our

container searching for honey bees with pollen. We then extracted the honey bee images for training

data from the videos using our YOLOv7-Tiny honey bee detection model. Once we had a collection

of approximately 1,000 honey bee images with pollen, we used the Labelimg [Tzutalin, 2021] tool

for annotation. For mite training data, due to the limited time and availability of varroa mites, we

used mite placeholders to train our mite detection. We acknowledge that our approach may not

perfectly replicate realistic scenarios. However, to simulate the presence of varroa mites on the

honey bees, we utilized opaque red beads with a diameter of 1.5 mm as temporary placeholders.

While these beads may not accurately mimic the characteristics of actual varroa mites, they served

as a substitute to analyze the capabilities of our monitoring system. To collect training data we

glued beads onto dead honey bees and extracted data, approximately 700 images of honey bees with
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"mites". The detection model was also with trained an NVIDIA GeForce RTX 3070 GPU with the

same training parameters except for our input size. For this model, our training images were resized

to 64 x 64 pixels. Once our YOLOv7-Tiny model was trained, we converted our model into ONNX

and then into a Tensorrt engine as we did with our previous model.

2.2.3 Tracking Algorithm

Our tracking algorithm is based on honey bees currently visible. Once the honey bee goes

out of sight, it will be counted as a new honey bee if reintroduced. The honey bee’s position is

based on the midpoint derived from the detection box extracted from our YOLOv7 tiny model. To

track the honey bees we store the current position of each be and compare the previous frame with

the current frame to determine if the honey bee moved and in which direction.

Our primary objective is to give as close of a live feed as possible with minimal delay. To

achieve this, our monitoring system captures a 5-minute video of the honey bees’ activity and

processes the video afterward with our tracking system. While the initial video is being processed,

the system concurrently records the subsequent 5-minute video. By adopting this approach, we

ensure a near real-time observation of the honey bees’ behavior without any significant interruptions.

To record our 5-minute video we use GStreamer recording at 1280 by 720p at 10 frames

per second and save our video in 640 by 420p. Downscaling the images is essential to speed up

our system’s throughput, particularly due to the processing limitations of the Jetson Nano. By

downsizing the image, we can significantly enhance the extraction and processing time, resulting

in a more efficient workflow. For instance, our processing time for images with a resolution of

1280 by 720p typically takes around 7 minutes and 20 seconds. However, by downscaling, we can

reduce this processing time to approximately 3 minutes, excluding the time required for pollen and

mite inference. Deepstream can be used to speed up our throughput problem but at the time of

implementation, Deepstream isn’t available for Jetpack 4.6 which is the last available Jetpack for

Jetson Nanos [NVIDIA, a].

Our tracking algorithm uses the output of every frame processed through the honey bee

inference TensorRT engine. The output given by our model is based on the upper left and lower
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right corners of a rectangle of each honey bee inference from the current frame. To determine the

midpoint of each honey bee on the video feed we use the following equation:

X = (((maxX −minX)/2)+minX)

Y = (((maxY −minY )/2)+minY )

Where maxX and minY are our coordinates of the lower right vertex of the rectangle and

minX and maxY are our upper left vertex.

To track each honey bee, on initial detection of each honey bee we create a new profile.

Each honey bee profile includes Id, last seen location, status, and bee size. To determine whether a

honey bee has been detected previously or not when tracking, we use the location of all honey bees

detected on frame n-1 and compare them to the output of the current frame n. To consider a honey

bee the same bee, we give the new midpoint a tolerance of 50px offset in any direction from the

previous location favoring proximity to other honey bees that might be close enough to fall within

that range. Any honey bee that does not fall under any currently existing profile is then treated as a

new honey bee. Honey bees that don’t have a new midpoint in the current frame are then dropped

from the list of active honey bees.

A honey bee can have any of the 4 statuses, “Arriving”, “Leaving”, “New”, and “Deck”

depending on their movement. Initially, upon the first detection of the honey bee, they are assigned

the status of “New”, meaning that it’s the first time it sees the honey bee or that the honey bee hasn’t

crossed any triggers. To track honey bee movement, we have two triggers that change the status

of the honey bee. The resolution of the video is set at 640x420 pixels meaning the height y of the

video is from 0-420 pixels. We then divided the height into three even sections of 140px wide,

setting our “Arriving” trigger at 140px, and our “Leaving” trigger at 280px. If the midpoint of the

honey bee at n-1 is > 140 and n < = 140, the status of the honey bee changes to “Arriving” meaning

that the honey bee is headed to the inside of the beehive, but if the midpoint changes from n-1 is <=

140 and n > 140 the status changes to “Deck” meaning they are in the middle of the container.
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The "Leaving" trigger is determined based on its crossing at the Y-coordinate value of

280. This trigger will result in the honey bee status being changed to either "Leaving" or "Deck,"

depending on whether the midpoint is less than 280 at frame n-1 and greater than or equal to 280 at

frame n, or if the midpoint is greater than 280 at frame n-1 and less than or equal to 280 at frame n,

respectively. Figure 2.20 is a diagram demonstrating how the status of the tracking algorithm works.

Figure 2.20: Triggers diagram status breakdown for honey bee tracking

The honey bee size is extracted once per honey bee profile. The honey bee size is based

on the longest side of the rectangle output given by our model. Our camera covers a work area of

110mm by 65mm. To get the size of the honey bee we the following formulas:

1.(maxX −minX)/( f ramesizeX/containerSizeX)

2.(maxY −minY )/( f ramesizeY/containerSizeY )

Where formula 1 is used if the longer side of the rectangle is along the X-axis or formula 2

for the Y-axis. We divide the frame size by the container size for the respective axis to get the ratio

and determine the size of each bee. The objective of determining the size of each honey bee is to
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investigate the ratio between a drone and a worker honey bee. However, due to variations in the

inference rectangle’s size, which can change depending on whether a honey bee is fully visible or

not fully present due to it being on the edge of the frame, we only extract the honey bee size when it

crosses a "Leaving" or "Arriving" trigger. This approach ensures that we capture the complete size

of the honey bee. It is important to note that this method may not be optimal since the size is solely

determined by the longest side of the inference rectangle. Consequently, if the honey bee is at an

angle when its size is captured, the accuracy and reliability of our data may be affected.

The purpose of considering the honey bee size is to determine if using the size alone is

enough to show the difference between worker and drone bees. The graph below shows the size

output of our model from a 5-minute video and then manually annotated drone and worker honey

bees.

Figure 2.21: Honey bee drone versus worker bees size analysis

The images below are outputs extracted from two profiles of two different types of honey

bees inferred from a 5-minute video.
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Figure 2.22: Worker honey bee image
extracted from a video frame

Figure 2.23: Drone honey bee image
extracted from a video frame

To identify the presence of pollen or mites on a honey bee, we follow a specific procedure.

For each honey bee profile, we save an image of the honey bee into a designated folder when it

passes any of the triggers. This ensures that we capture a complete view of the honey bee for

analysis. Once the honey bee TensorRT engine model has completed processing the video, we load

the pollen and mite TensorRT engine model and process all the images extracted by the honey bee

TensorRT engine.
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CHAPTER III

WEBSITE

3.1 Purpose

The IntelliBeeHive has a web application designed to store and present data gathered from

honey bee hive monitoring systems, catering to apiarists or beekeepers. The monitoring system

collects hive data, which is then transmitted to the IntelliBeeHive web server via an API. The web

server, a remote computer accessible through the internet, receives and stores the data in its database.

An API serves as the interface that enables communication between programs on separate machines.

Once the hive data is stored, it is presented to the user in an organized and user-friendly manner

through their web browser whether it be on a personal computer or mobile device. This chapter

will discuss the functionality of the IntelliBeeHive web application, breaking it down into two main

components: the frontend and the backend. The frontend is what the user experiences and interacts

with on their personal device, while the backend is what happens on the web server, such as data

collection and storage.

3.2 Frontend

The IntelliBeeHive is designed for apiarists meaning the website is user-friendly and acces-

sible by almost all devices with web access including smartphones and computers.
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Figure 3.1: Shows IntelliBeeHive’s landing page welcoming new and current users

3.2.1 Layout

IntelliBeeHive’s front-end consists of 8 separate web pages. These pages are accessed

sequentially and have specific restrictions depending on the type of user accessing them. There are

3 user types: all users, registered users, and admin users.

All users refer to anyone who has access to the IntelliBeeHive website and doesn’t require

any credentials. All users have access to the landing, log-in, and sign-up pages and to the hive demo

page. The hive demo page displays a single hive’s live video recording, data, and statistics.

Once a user signs up and has verified their credentials they become registered users. Reg-

istered users have access to the hive feed page, which showcases all hives currently utilizing a

monitoring system. The hive feed page provides live and past data in graph and table formats.

Registered users can navigate to the comment page to leave feedback or questions regarding the

web application. They can also access the settings page to update their credentials or delete their

account.
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Registered users can only become admin users if they are granted the privilege by the

webmaster. Admin users have special privileges, including the ability to create, edit, and delete

hives. They can also view comments submitted by registered users and delete registered user

accounts. However, admin users cannot add a monitoring system or link one to an existing hive, as

this privilege is exclusive to the webmaster.

3.2.2 Adding Users

New users can be added as registered users by signing up through the sign-up page. To

complete the sign-up process, users are required to provide their first and last name, email address,

and an 8-character alphanumeric password.

The sign-up page will automatically show the user a prompt box where they can input the

verification code. A user has 24 minutes to input the code before it expires, if the code expires the

user will need to start over the sign-up process. Once the user inputs the verification code within

the specified time limit, their credentials are stored in the web server and they are recognized as a

registered user. The web page then redirects the user to the hive feed page.

In case a registered user forgets their password, the web application offers a "Forgot

Password" function where the user can re-verify their identity with a verification code and reset

their password and regain access to their account.

3.2.3 Adding Hives

Only admin users have the privilege to add, edit, and delete hives. To add a new hive an

admin needs to navigate to the admin page and provide the following:

1. Hive name: A unique name to identify the hive.

2. City: The city where the hive is located.

3. State: The state where the hive is located.

4. Coordinates: The geographical coordinates (latitude and longitude) of the hive’s location.

5. Picture: An image of the hive.
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Once the admin has submitted this information, a success message will be shown displayed

indicating that the has been added to the list of hives in the hive feed page. However, initially,

the hive will be empty, and the live data displayed will be shown as "–", indicating that no data is

available and its graphs and tables will be empty. This is because there is currently no monitoring

system linked to the newly added hive. Only the webmaster has the privilege of linking the

monitoring system to the hive. Once the monitoring system is linked, the hive data will start to

populate, and the live data, graphs, and tables will reflect the actual data collected from the hive.

3.2.4 Hive Feed

Upon logging in, registered users will be directed to the hive feed page. This page showcases

live and past data of each hive collected by their monitoring system. The data collected by the

monitoring system is shown in Table 3.1. On the hive feed page, the live or most recent data is

displayed in the yellow block beneath the hive’s image, location, and video feed, as depicted in

Figure 3.2. Each individual measurement is shown alongside its unit of measurement and above its

title, providing a clear visualization of the data.
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Figure 3.2: Honey bee hive feed users see upon logging into the website

The measurements are updated every 5 minutes using IntelliBeeHive’s API mentioned in

Section 3.1, this API facilitates communication between the web server and the user’s personal

device. However, it is important to note that the live video feed is available only for demo purposes

and not for regular users. Regular users do not have access to a live video feed. The focus of

IntelliBeeHive is to provide comprehensive data for analyzing the health of beehives, and the video

feed is not considered a requirement for this analysis.
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Table 3.1: Measurements collected from each hive to monitor their daily activity

Measurement Unit of Measurement

Temperature Fahrenheit (F)

Humidity Relative Humidity (%)

CPU Temperature Celsius (C)

GPU Temperature Celsius (C)

Bees on Deck Single Unit

Bees Leaving Single Unit

Bees Arriving Single Unit

Bees Average Size Millimeters (mm)

Pollen Count Single Unit

Mite Count Single Unit

3.2.5 Graphs and Tables

Below the yellow block containing the hive’s live measurements are a series of graphs and

tables containing the past data for each measurement in Table 3.1. There are a total of 10 blocks,

one for each measurement, and users can alternate between viewing the data in graph or table format

as shown in Figure 3.3 using the 2 buttons at the top left corner of each block.

The past data presented in these graphs and tables encompasses all the data collected from

the current year, starting from January. Since hive data is uploaded every 5 minutes to the web

server, a single hive can accumulate 105,120 data points for each measurement in one year. To

alleviate the strain on the web server caused by loading such a large amount of data for each hive,
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a technique called "lazy loading" is employed. Lazy loading involves retrieving data collected

every hour instead of every 5 minutes, significantly reducing the data size from 105,120 units per

measurement to 8,760 units per measurement. This approach makes the data more manageable.

Once the data is retrieved it is rendered into a graph format using Dygraphs, an open-source

JavaScript charting library, and into tables using custom HTML and open-source Bootstrap CSS

library. Open-source software refers to software that grants users the freedom to use, modify, and

distribute the code without restrictions. How the data is retrieved will be discussed in Section 3.3.

Figure 3.3: Shows 6 of 10 graphs created using Dygraphs.JS and Bootstrap libraries

3.3 Backend

IntelliBeeHive is hosted on a Linux virtual machine located at the University of Texas Rio

Grande Valley (UTRGV). The virtual machine serves as the web server or cloud computer for
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IntelliBeeHive, providing a secure and flexible environment. The web server is responsible for

hosting the web application, as well as collecting, storing, and sending beehive data.

IntelliBeeHive is written in PHP, an open-source scripting language tailored for web applica-

tions, and was developed using a Laravel framework. A web framework provides an application with

many useful libraries specific for web development and provides a standard structure that most web

applications use. The Laravel framework is a powerful open-source framework offering numerous

libraries and components for APIs and database handling and follows a standard structure that is

commonly used in web applications. This section will cover IntelliBeeHive’s backend workflow,

database structure, and how data is collected and sent by the API.

3.3.1 SQL Database

The IntelliBeeHive website stores all of its data in an SQL or relational database managed

by MySQL, an open-source SQL management system. SQL stands for Structured Query Language

and is used to create, store, update, and retrieve data from structured tables. In an SQL table, each

row represents a data entry and each column identifies a specific field of the entry. IntelliBee-

Hive’s database is made up of 6 main tables: Users, Comments, Activity, Hives, DB_Info, and

Network_Info. Figure 3.4 illustrates the logical structure of the tables. The Users, Comments, and

Activity tables contain all the data pertaining to the users. The Users table contains information such

as the user’s name, credentials, and a primary key that uniquely identifies each user. The Comments

and Activity tables store user comments and web activity respectively. These tables can be linked to

a specific user through their primary key, as shown in Figure 3.4. The Hives, DB_Info, and Network

tables store data pertaining to the beehives. The Hives table stores a hive’s name, location, picture,

and primary key, and the Network_Info table stores the hive’s monitoring system’s identification

key. Whenever a new monitoring system is assigned or added to a hive by the webmaster, a new

Hive Activity table is created with a unique title, serving as a key. Each Hive Activity table stores

the measurements listed in Table 3.1 for a specific hive. Thus, there is a separate Hive Activity table

for each hive in the system. The DB_Info table stores a hive’s primary key, system identification

key, and table key to link each hive to their Hive Data table and monitoring system.
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Figure 3.4: IntelliBeeHive’s SQL database schema.

3.3.2 Backend Workflow

IntelliBeeHive’s back-end workflow is similar to its front-end workflow covered in Section

3.2.1, however in this section we will discuss the underlying processes.

When a user visits the Landing Page, they have several options: they can view the Hive Feed

Demo page, create a new account through the Sign Up page, or log into their existing account. If

a user opens the Hive Demo page, the hive data is fetched from the SQL database using the API.

Since hive activity data will be continuously sent to the user’s browser from the web server every 5

minutes, the API is used to facilitate this process. On the other hand, when a user creates an account

through the Sign Up page, their input information is submitted to the web server without the use of

the API. The API is primarily reserved for scenarios where data needs to be frequently sent from

or received by the web server. If the submitted information is correct, the user is assigned a token,

which serves as a verification of their access and privileges. Subsequently, they are redirected to the

Hive Feed page. If the information is incorrect the user is sent back to the Sign Up page.

Similarly, when a user logs into the application their credentials will be queried and verified

against the stored information in the SQL database. If the credentials exist and match then the
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application will determine if the user should have admin privileges. If the user is an admin, they will

be assigned a special token that identifies them as an admin and redirects them to the Admin Page,

else they’ll be assigned a regular token and redirected to the Hive Feed page. The Hive Feed page

similar to the Hive Feed Demo page uses the API to fetch all hive past and current activity data.

3.3.3 Adding Users, Activities, Comments and Hives

Once a user is logged in they can add comments, update their credentials, or manage their

hives. Regular users can add comments and update or delete their credentials, meanwhile admin

users can do the same plus add, update, and delete hives.

We can consider each user, comment, activity, and hive as a class with its own set of

attributes mentioned in Section 3.3.1. An instance of a class can be considered an object. For

example, when an action is performed, an instance of the corresponding class is created, which

can be seen as an object. To represent the relationship and interaction between these classes, we

can use a UML (Unified Modeling Language) diagram. Figure 3.5 shows a UML diagram of our

user, comment, activity, and hive classes. Each box in the UML diagram represents an object and is

made up of 3 sections, going from top to bottom: class name, list of attributes, and list of privileges.

Attributes input by the user are marked as public (+) and must be valid, else an object is not created

and the user is sent a fail message. A regular and admin user are objects inherited from the user class

since they both have the same attributes but differ in privileges. An admin user is an aggregation of

a regular user since it has the privileges of a regular user in addition to its own. A regular user can

create multiple comment and activity objects that will be associated with the user who created them

by their primary key. However, unlike comments and activity objects, when a hive object is created

there is no key associating the hive to who created it. The only association the hive object has with

the admin user is that only admin users can create hives. When any object is created they are stored

in the SQL database. Hive, comment, and activity objects will continue to exist without the user

who created them, thus why they are only associated with the user.
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Figure 3.5: IntelliBeeHive’s UML diagram

3.3.4 REST API

IntelliBeeHive’s API follows a REST (Representational State Transfer) architecture, which

adheres to several design principles. These principles include having a uniform interface, separating

the client and server, being stateless, and employing a layered system architecture. A uniform

interface means every request made to the API should work the same. The client and server refer to

two separate computers, one making the request and the other fulfilling the request. In our case, the

computer making the request is either the monitoring system or the web browser, and the computer

fulfilling the request is the web server. The requests must be stateless, meaning each request should

have the necessary information for the webserver to fulfill without the need for a second request.

The life cycle of a request follows a layered system architecture. The client layer handles sending

requests and receiving responses from the API that includes a status code that indicates whether the
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request succeeded or failed. The authentication layer verifies if the client is authorized to access the

API, for authorization the client must provide an alpha-numeric authentication key. The endpoint

layer verifies if the client’s input data is valid and formats the request’s output data in JSON, a

lightweight data-interchange format. The data access layer is responsible for handling the client’s

input data by checking for and removing any malicious code, preparing the necessary database

query to retrieve or store data, and determining the success of the query execution. The database

layer executes the query and returns the output to the data access layer, this layer occurs in MySQL

which is covered in Section 3.3.1.
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CHAPTER IV

RESULTS

4.1 YOLOV7 Training

The graphs shown below are the results of our YOLOv7-Tiny model’s training. The F1-score

for honey bee model recognition is 0.95 and the precision and recall value is 0.981 as shown in

Figure 4.1 and 4.2.

Figure 4.1: F1 curve for honey bee object detection model
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Figure 4.2: Precision and Recall curve for honey bee object detection model

For our pollen and mite object detection model F1-score is 0.95 and the precision and recall

value is 0.821 for pollen and 0.996 for mite as shown in Figure 4.3 and 4.4.

Figure 4.3: F1 curve for pollen and mite object detection model
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Figure 4.4: Precision and Recall curve for pollen and mite object detection model

The images shown below are extracted frames from video output after it’s processed by the

honey bee YOLOv7 tiny model and our tracking algorithm. The circle around each detection is the

freedom where the honey bee can move and still be considered the same honey bee. The blue dot

represents the honey bees’ previous mid-point and the red dot represents the current mid-point.
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Figure 4.5: Honey bee Video Frame Tracking Example 1

Figure 4.6: Honey bee Video Frame Tracking Example 2
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Figure 4.7: Honey bee Video Frame Tracking Example 3

Figure 4.8: Honey bee Video Frame Tracking Example 4

The figures below are example outputs of our pollen and mites detection model using our

TensorRT engine on each honey bee.
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Figure 4.9: Honey bee Example 1 with Pollen

Figure 4.10: Honey bee Example 2 with Pollen

Figure 4.11: Honey bee Example 3 with Pollen

Figure 4.12: Honey bee Example 4 with Pollen

Figure 4.13: Honey bee Example 5 with Pollen

Figure 4.14: Honey bee Example 6 with Pollen

Due to our "mite" detection model being trained with placeholder data, we will not go

in-depth into our model’s accuracy in detecting mites.
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Figure 4.15: Honey bee Example with Mite

4.2 Ground Truth Data vs Tracking Algorithm

To evaluate the accuracy of our algorithm, we conducted an experiment using five 1-minute

long videos. Each video was manually labeled tracking each honey bee’s identification, final status,

initial frame detected, and last frame seen. We processed the videos through our algorithm to obtain

the algorithm’s output. The results for the five videos are presented in Table 4.1.

Table 4.1: Tracking Algorithm performance comparison between our manual (M) and algorithm
(A) output

Arriving Leaving Deck Total Pollen

Video M A M A M A M A M A

1 17 17 19 19 0 0 36 36 2 1

2 36 39 32 29 3 4 71 72 1 1

3 44 42 34 33 1 4 79 79 0 0

4 33 35 22 22 0 5 55 62 0 0

5 40 40 34 42 1 7 75 79 2 1

We determine the accuracy of our algorithm by extracting the error rate using the number of

"Arriving" and "Leaving" counts of honey bee’s status given by the algorithm (CAlgorithm) compared

to the manual count (CManuel) using the Equation 4.1 below.

Error Rate =

∣∣CAlgorithm −CManuel
∣∣

CManuel
(4.1)
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Once we have the Error Rate of our Algorithm we can then extract the accuracy by using

Equation 4.2.

Accuracy = 1−ErrorRate (4.2)

We calculate the average accuracy for each video and then calculate the overall accuracy

across all 5 videos to determine the accuracy of our tracking algorithm and honey bee object

detection model.

Error Rate1 = Arriving
17−17

17
= 1.000 Leaving

19−19
19

= 1

Accuracy1 = 1−Error Rate1 = 1− 1.0000+1.0000
2

= 1.0000

Error Rate2 = Arriving
39−36

36
= 0.9166 Leaving

29−32
32

= 0.9062

Accuracy2 = 1−Error Rate2 = 1− 0.9166+0.9062
2

= 0.9114

Error Rate3 = Arriving
42−44

44
= 0.9545 Leaving

33−34
34

= 0.9705

Accuracy3 = 1−Error Rate3 = 1− 0.9545+0.9705
2

= 0.9625

Error Rate4 = Arriving
35−33

33
= 0.9393 Leaving

22−22
22

= 1.0000

Accuracy4 = 1−Error Rate4 = 1− 0.9393+1.0000
2

= 0.9696
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Error Rate5 = Arriving
40−40

40
= 1.0000 Leaving

32−34
34

= 0.941

Accuracy5 = 1−Error Rate5 = 1− 1+0.9411
2

= 0.9705

Average Accuracy =
Accuracy1 +Accuracy2 +Accuracy3 +Accuracy4 +Accuracy5

5

=
1.0000+0.9114+0.9625+0.9696+0.9705

5

≈ 0.9628 (or 96.28%)

We exclude honey bees with a "New" status from our analysis due to the potential unrelia-

bility of their count. This is because honey bees can stay near the entrance and exit of the container,

which can create complications for the model in accurately determining whether an object is indeed

a honey bee or not.

The "Deck" difference happens due to our approach in our algorithm. The issue arises when

the algorithm relies on identifying the nearest honey bee in each frame to track their movement.

However, if a honey bee happens to move significantly faster than usual, this approach can lead to

problems. Specifically, when the algorithm considers the closest midpoint in the next frame as the

same bee, it may result in losing track of the current honey bee and mistakenly pairing other honey

bees with the wrong counterparts. This can lead to unpaired honey bees being marked as new and

potentially disrupting the tracking process. Increasing the frame rate can significantly improve this

problem.

To measure the accuracy of our pollen and mite detection, because the five 1-minute videos

do not give us enough honey bees with pollen as shown in Table 4.1, we manually annotated honey

bee profile images only for five different 5-minute videos shown in Table 4.2. The pollen model

results include the counts of false positives and false negatives, as well as the total number of

honey bees detected for each video. Due to our limitation on mite data, we aren’t able to accurately

represent the accuracy of our mite detection class.
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Table 4.2: Performance of our pollen model where M is the Manually counted total of honey bees
with pollen and A is the Algorithm’s total count of honey bees with pollen.

Pollen

Video M A False Pos. False Neg. Total Bees

1 23 22 3 4 325

2 21 14 1 8 296

3 10 6 1 4 267

4 7 7 0 0 209

5 15 15 2 2 253

To determine the accuracy of our pollen detection model we use the Precision 4.3 and Recall

4.4 formulas to then extract our F1 scores 4.5.

Precision =
True Positive

True Positive+False Positive
(4.3)

Recall =
True Positive

True Positive+True Negatives
(4.4)

F1 Score =
2∗ (Precision∗Recall)

(Precision∗Recall)
(4.5)

Precision1 =
19

19+3
= 0.8636

Recall1 =
19

19+4
= 0.8261

F1 Score1 =
2∗ (0.8636∗0.8261)
(0.8636+0.8261)

= 0.8444

44



Precision2 =
13

13+1
= 0.9286

Recall2 =
13

13+8
= 0.6190

F1 Score2 =
2∗ (0.9286∗0.6190)
(0.9286+0.6190)

= 0.7428

Precision3 =
6

6+1
= 0.8571

Recall3 =
6

6+4
= 0.6000

F1 Score3 =
2∗ (0.8571∗0.6000)
(0.8571+0.6000)

= 0.7059

Precision4 =
7

7+0
= 1.0000

Recall4 =
7

7+0
= 1.0000

F1 Score4 =
2∗ (1.0000∗1.000)
(1.0000+1.0000)

= 1.0000

Precision5 =
13

13+2
= 0.8667

Recall5 =
13

13+2
= 0.8667

F1 Score5 =
2∗ (0.8667∗0.8667)
(0.8667+0.8667)

= 0.8667
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Average Precision =
Precision1 +Precision2 +Precision3 +Precision4 +Precision5

5

=
0.8636+0.9286+0.8571+1.0000+0.8667

5

= 0.9032

Average Recall =
Recall1 +Recall2 +Recall3 +Recall4 +Recall5

5

=
0.8261+0.6190+0.6000+1.0000+0.8667

5

= 0.7823

Average F1 Score =
F1 Score1 +F1 Score2 +F1 Score3 +F1 Score4 +F1 Score5

5

=
0.8444+0.7428+0.7059+1.0000+0.8667

5

= 0.8319

4.3 Website Data Visualization

Our monitoring system uses Cron, a time-based job scheduler, to schedule a script for

recording and processing videos every 5 minutes and 30 seconds. The additional 30 seconds are to

give Gstreamer (our recording application) time to free the camera to start the following process.

However, the scheduled hours for running the monitoring system are limited to sunrise (7am) and
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sunset (8pm). This constraint is imposed because the camera system utilizes, Raspberry Pi V2.1,

which lacks night vision capabilities. Therefore, the system is scheduled to operate only during

daylight hours when sufficient visibility is available.

The graphs below show 4 out of the 10 graphs available on the IntelliBeeHive webpage to

show different periods and demonstrate the changes in activity, humidity, CPU temperature, and

hive temperature throughout the days/weeks/months.

Figure 4.16: Website graph data for honey bees
leaving the hive

Figure 4.17: Website graph data for beehive 
humidity

Figure 4.18: Website graph data for CPU 
Temperature

Figure 4.19: Website graph data for beehive 
temperature
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CHAPTER V

DISCUSSION

In this study, the IntelliBeeHive monitoring system has been successfully designed and

implemented using cost-effective technology to ensure accessibility for apiaries of different scales,

including hobbyists, commercial businesses, and researchers. Using this monitoring system, users

can effectively and efficiently monitor the well-being and behavioral patterns of honey bee hives

by analyzing the honey bees’ activity with our YOLOv7-tiny models and tracking algorithm. The

performance of our IntelliBeeHive system has demonstrated its effectiveness in monitoring the

honey bee’s activity, achieving an accuracy of 96.28% in tracking and our pollen model achieved an

F1 score of 0.8319.

Future work can be done to further improve and expand our monitoring system. One

significant implementation that should be added is the inclusion of real mite data to make our

monitoring system fully functional. Additionally, a potential improvement could be upgrading our

camera to support night vision. While night vision is not currently necessary since honey bees are

inactive at night, a night vision-capable camera would enable our monitoring system to run 24/7.

Another major step for the future would be to collaborate with beekeepers and deploy our

monitoring system in beehives from various locations around the world. This testing will help

evaluate the system’s overall performance in diverse and unpredictable environments, such as

dealing with challenges like extreme heat when deployed in Texas. Using the feedback from other

beekeepers we can fine-tune our design to make our monitoring system more robust and reliable.
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