University of Texas Rio Grande Valley

ScholarWorks @ UTRGV

Theses and Dissertations

12-2023

Robust and Uncertainty-Aware Image Classification using
Bayesian Vision Transformer Model

Fazlur Rahman Bin Karim
The University of Texas Rio Grande Valley, fazlurrahmanbin.karim01@utrgv.edu

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

6‘ Part of the Computer Sciences Commons, and the Electrical and Computer Engineering Commons

Recommended Citation

Rahman Bin Karim, Fazlur, "Robust and Uncertainty-Aware Image Classification using Bayesian Vision
Transformer Model" (2023). Theses and Dissertations. 1429.
https://scholarworks.utrgv.edu/etd/1429

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/266?utm_source=scholarworks.utrgv.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/1429?utm_source=scholarworks.utrgv.edu%2Fetd%2F1429&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

ROBUST AND UNCERTAINTY-AWARE IMAGE CLASSIFICATION
USING BAYESIAN VISION TRANSFORMER MODEL

A Thesis
by

FAZLUR RAHMAN BIN KARIM

Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE IN ENGINEERING

Major Subject: Electrical Engineering

The University of Texas Rio Grande Valley
December 2023

ROBUST AND UNCERTAINTY-AWARE IMAGE CLASSIFICATION
USING BAYESIAN VISION TRANSFORMER MODEL

A Thesis
by
FAZLLUR RAHMAN BIN KARIM

COMMITTEE MEMBERS

Dr. Dimah Dera and Dr. Rogelio Soto
Chair of Committee

Dr. Yong Zhou
Committee Member

Dr. Weidong Kuang
Committee Member

December 2023

Copyright 2023 Fazlur Rahman Bin Karim
All Rights Reserved

ABSTRACT

Karim, Fazlur Rahman Bin, Robust and Uncertainty-Aware Image Classification using Bayesian

Vision Transformer Model. Master of Science in Engineering (MSE), December, 2023, [123|pp.,

7 tables, 15 figures, references, 115 titles.

Transformer Neural Networks have emerged as the predominant architecture for addressing
a wide range of Natural Language Processing (NLP) applications such as machine translation,
speech recognition, sentiment analysis, text anomaly detection, etc. This noteworthy achievement
of Transformer Neural Networks in the NLP field has sparked a growing interest in integrating
and utilizing Transformer models in computer vision tasks. The Vision Transformer (ViT) model
efficiently captures long-range dependencies by employing a self-attention mechanism to transform
different image data into meaningful, significant representations. Recently, the Vision Transformer
(ViT) has exhibited incredible performance in solving image classification problems by utilizing ViT
models, thereby surpassing the capabilities of Convolutional Neural Networks (CNN). Deterministic
Vision Transformer (ViT) models are prone to noise and adversarial attacks, hence lacking the ability
to provide a reliable measure of confidence or uncertainty in their output predictions. However,
developing a robust Vision Transformer (ViT) model, which can quantify the confidence (or uncer-
tainty) level in the output predictions for vision applications with high-risk implications, such as
autonomous vehicles, medical imaging, etc., has significant importance. To ensure the dependability
of Vision Transformer (ViT) in crucial applications, using Bayesian Inference aids in generating
probabilistic predictions. In this work, we develop a robust image classification framework using
the Bayesian Vision Transformer (Bayes-ViT) and Bayesian Compact Convolutional Transformer
(Bayes-CCT) model, which provides output predictions and quantifies uncertainty associated with
output predictions. The proposed Bayesian Vision Transformer model incorporates a variational

inference framework and optimizes the variational posterior distribution over the model parameters

1l

using the evidence lower bound (ELBO) loss function. The propagation of variational moments in
Bayesian Vision Transformer’s sequential, non-linear layers is achieved using the first-order Taylor
series approximation. The output of the proposed architecture consists of a predictive distribution,
where the mean represents the output prediction, and the covariance matrix provides information
about the uncertainty associated with the prediction. Extensive experiments on benchmark datasets
demonstrate (1) the superior robustness of proposed models under noise and adversarial attacks in
comparison to the deterministic ViT models and (2) the ability for self-evaluation by utilizing the
discernible increase in prediction uncertainty when the developed model encountered high levels of
random noise and adversarial attacks, which acts as a warning sign for crucial image classification

tasks.

v

DEDICATION

I would like to dedicate this work to my parents, Md Fazlul Karim and Sanwara Karim, who
are my motivators and whose unconditional love and support have helped me to come this far and
pursue higher studies. I would also like to thank my wife, Lamia Alam, for her unwavering support
throughout this journey. I want to show my gratitude to my sisters Tanjila, Lubna, Farhana and

Tazrina for acting as constant motivators.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my thesis supervisor and former chair of
my thesis committee, Dr. Dimah Dera, for her invaluable guidance, support, and encouragement
throughout my Master’s program. Her insightful feedback and constructive criticism have been
instrumental in shaping my thesis work. I express my deep gratitude to Dr. Rogelio Soto, current
chair of my thesis committee, for all his mentoring and advice.

I extend my appreciation to my thesis committee members, Dr. Yong Zhou and Dr. Weidong
Kuang, for their time and feedback. Their invaluable feedback and advice helped to improve the
quality of the work. Additionally, I sincerely appreciate the prompt support and guidance of Dr.
Hasina Hugq, the Chair of the Department of Electrical and Computer Engineering Department.
I am grateful for the opportunities and resources provided by the department, which have been
instrumental in completing this thesis.

Finally, I would like to thank University of Texas Rio Grande Valley(UTRGV) Library
colleagues for helping me with their support in using all the available resources required for this

work.

vi

TABLE OF CONTENTS

Page

ABSTRACT iii

DEDICATTON] . .. v

... vi

.. vii

.. ix

LIST OF FIGURES].o X
CHAPTER 1. INTRODUCTION]

(1.1~ Motivation: Importance of Vision Transformer|. 1

(1.1.1 ~ Biomedical Imaging |, 2

[(1.1.2° Autonomous Driving| 3

(1.2 Background and Problem Statement| 3

[L21 Problem Statementl 4

[1.3 Research Objectives and Contributions|. 5

CHAPTER RATURE REVIEWI. . ..o 7

[2.1 Image Classification with Deep Neural Networks| 7

2.2 Vision Transformen L 11

[2.2.1 PatchEmbedding 12

[2.2.2 Positional Embedding| 0 0. 12

223 TransformerEncoded L Lo 12

2.3 Compact Convolutional Transtformer| 16

2.3.1 Convolutional Tokenized 16

[2.3.2 Positional Embedding| 0 o000 17

233 TransformerEncoded oL 17

[2.3.4 Sequence Pooling|. 17

2.4 Bayesian Inference n V11| oo oo 18

CHAPTER III. METHODOLOGY! 20

[3.1 Input image Preprocessing| 20

vii

[3.2 Image Classification using Bayesian Transformer Models| 22
[3.2.1 Bayesian Formulation| 22

B22 Varationalinferencel Lo 24

[3.3 Mathematical Basis of the Image Classification Methods| 25
[3.3.1 TImage Classification with Bayesian Vision Transformer, Bayes-Vil| 25

[3.3.2 Image Classification with Bayesian Compact Convolutional Transformer, |

| Bayes-CCT] 30
(3.4 Algorithm of proposed model|. oo 32
[3.4.1 Algorithm of proposed Bayes-Vi'1| 32

[3.4.2 Algorithm of proposed Bayes-CCT| 33
CHAPTER V. EXPERIMENTAL RESULTS AND ANALYSIS| 34
4.1 Experimental Setup.|. 35
“4.1.1 Multu Label Classification Problem. 35

.2 Dataset Selection for Model Development| 35
4.2.1 MNIST dataset. 35

36

37

38

#4.3.1 Robustness and Noise Analysis| 38

4 Results and D1 100 . .. e e e 39

42

CHAPTER V. FUTURE WORK AND CONCIL.USION] 47
47

[5.1.1 Detection of Disease in Biomedical Imagingl 47

[5.1.2 Object Detection 1n autonomous driving / Self-driving cars| 49

B2 Conclusion]« . 49
REFERENCES] . . . 51
APPEN DX Al . .. 60
(1.1 Source Code of Bayes-V1i1| 61
(1.2 Source Code of Bayes-CCT]. 87

BIOGRAPHICAIL SKETCH]

viii

LIST OF TABLES

Page
Table 4.1: Hyperparameter for ViT| 35
Table 4.2: Hyperparameter for CCT|. 35
Table|4.3: The level of Gaussian noise (standard deviation (SD)) and the strength of adver- |
| sarial attacks (€) applied for MNIST and Fashion MNIST using Bayes-ViT| 39
Table|4.4: The level of Gaussian noise (standard deviation (SD)) and the strength of adver- |
| sar1al attacks (€) applied for CIFAR-10 using Bayes-CCT|. 40
Table4.5: Classification accuracy of the proposed Bayes-ViT and Deterministic ViT models |
| using MNIST dataset for various levels of Random noise and FGSM and PGD |
[adversarfalaffacks] 41
Table4.6: Classification accuracy of the proposed Bayes-ViT and Deterministic ViT models |
| using Fashion-MNIST for various levels of Random noise and FGSM and PGD |
[adversarfalaffacks] 42

Table 4.7: Classification accuracy of the proposed Bayes-CCT and Deterministic CCT

models using CIFAR-10 for various levels of Random noise and FGSM and PGD

ix

LIST OF FIGURES

Page
Figure[2.1: Vision Transformer Architecture| 11
Figure2.2: Attention Mechanismof Vil| 13
Figure[2.3: Multi Layer Perceptron.|. 15
Figure[2.4: Compact Convolutional Transformer Architecture.|. 16
Figure[3.1: 'Tokenization and embedding of input image patches|. 21
Figure(3.2: Patch and positional embedding) 0. 22
Figure[3.3: [llustration of the proposed 1mage classification approach based on Bayes-ViT |
[archifecture] 26
Figure[3.4: Illustration of the proposed 1image classification approach based on Bayes-CCT |
[archifecture] 30
Figure4.1: Some sample images of MNIST| 36
Figure|4.2: Some sample images of Fashion-MNIST|. 37
Figure|4.3: Some sample images of CIFAR-10, 38
Figure4.4: Average predictive variance plotted against SNR under Gaussian noise, FGSM, |
| and PGD adversarial attack for Bayes-ViT for MNIST| 44
Figure4.5: Average predictive variance plotted against SNR under Gaussian noise, FGSM, |
| and PGD adversarial attack for Bayes-ViT for Fashion-MNIST| 45
Figure4.6: Average predictive variance plotted against SNR under Gaussian noise, FGSM, |
| and PGD adversarial attack for Bayes-CCT for CIFAR-10] 46
Figure[5.1: Some sample images of Colorectal Histology| 48

CHAPTER I

INTRODUCTION

1.1 Motivation: Importance of Vision Transformer

Deep learning approaches have demonstrated superior performance to state-of-the-art ma-
chine learning techniques across domains such as Natural Language Processing and Computer
Vision Applications in recent years. [27,|100]. With the advent of Artificial Intelligence and comput-
ing resources, Computer Vision technology has garnered extensive attention among researchers [[78]].
The objective of computer vision research is to provide computers with perceptual abilities akin
to those of humans, enabling them to see their surroundings and comprehend the information
obtained to learn and subsequently enhance their performance through learning [49,(84,91]]. The
Convolutional Neural Network (CNN) is a deep learning architecture extensively employed to
perform various computer vision tasks, including classification, object detection, and segmentation,
with superior performance. [36,47,76./115]. CNN uses convolutional and pooling layers to process
shift-invariant data, namely images, effectively. Nevertheless, the capacity of these models to
learn long-range dependencies among input sequences is constrained by their localized receptive
fields. [59]. For a while, CNNs have been utilized to acquire commendable performance in solving
image classification tasks. Classification is the fundamental yet most crucial domain in Computer
Vision. On the other hand, Transformer Neural Networks (TNNs) are gaining prominence in
solving numerous image classification tasks, drawing upon the achievements gained within the
realm of natural language processing (NLP). [62]. Vision Transformer (ViT) architectures solve
diverse computer vision problems while employing a self-attention mechanism. [[113]]. The Vision

Transformer (ViT) utilizes a transformer encoder architecture to process non-overlapping image

patches for image classification tasks. [[7,17,[21,45]. The widespread success of Vision Transformers
(ViTs) in addressing various image classification challenges has led to increased adoption of ViTs
in various classification tasks ranging from biomedical to e-commerce. [6,18,38,42.(71,98]. In the
subsequent sections, we will demonstrate two important applications in which the performance of

solving image classification problems is of utmost importance.
1.1.1 Biomedical Imaging

Biomedical images are crucial in pivotal decision-making procedures, encompassing disease
diagnosis, therapy strategizing, and patient surveillance. The precision of the image classification
mechanism directly influences the reliability of decisions. Typically, biological images are examined
and analyzed by physicians or radiologists. The analysis of different modes of images might provide
challenges for humans because of the significant variances observed in diseases. [[15]. The advent of
advanced imaging techniques and an unparalleled computational capacity presents a unique prospect
to analyze and solve biomedical image classification problems in manners that were unattainable
before. [1]. Medical imaging techniques have a crucial role in the detection and diagnosis of several
diseases, such as cancer, COVID-19, skin disease, tuberculosis, etc., with the implementation of
ViT models [4,9,21,95]]. While AI has simplified various aspects of our lives, it also introduces
certain drawbacks. Patient safety is directly influenced by the decisions based on biomedical image
classifications. The presence of erroneous or unreliable classification might potentially result in
the incorrect identification of medical conditions and the selection of incorrect treatment options,
endangering the well-being of patients; no matter how powerful a deep learning model is, difficult
diagnostic cases are inevitable and may lead to potentially severe consequences for patients if the
model does not refer them for further inspection. [92]. The deep learning model developed for
tumor detection may also face an adversarial attack aimed at fabricating a false tumor to exploit
medical billing procedures. [24]]. The introduction of imperceptible alterations to medical imaging
by an attacker has the potential to lead to erroneous diagnoses. Incorrect output generated by
Vision Transformer-based classifiers can have severe consequences, including endangering lives,

undermining credibility, administering incorrect treatments, and eroding customer trust. To mitigate

the impact of noise and adversarial attacks, it is recommended that medical professionals, such as

doctors and radiologists, exclusively utilize robust ViT models for different clinical applications.
1.1.2 Autonomous Driving

The autonomous vehicle (AV) is widely regarded as an essential element of future trans-
portation systems due to its potential advantages, which include the reduction of human labor and
associated expenses, improved safety and reliability, and decreased emissions and energy consump-
tion. [25]. Various architectures have been vastly utilized for autonomous driving applications since
the introduction of Vision Transformer (ViT) based models. [6}/14,90]. Object detection technology
empowers autonomous cars to effectively recognize and monitor many impediments within their
immediate environment, including but not limited to other vehicles, pedestrians, bicycles, and
stationary objects. Effective object detection using ViT models helps prevent collision, ensures safe
movements of pedestrians, and provides parking and intersection crossing assistance. The ability
to detect objects using ViT is crucial for the effective functioning of autonomous driving systems,
as it allows vehicles to observe and comprehend their surroundings and navigate precisely in the
traffic system. The intentional modification of input data through intelligent adversarial attacks
can generate situations in which the autonomous system cannot precisely classify static or moving
obstacles. This situation presents a notable safety hazard since the vehicle may fail to execute
suitable measures to prevent unavoidable situations. Consequently, strong measures, such as robust
object detection, are crucial for preventing self-driving car collisions due to wrong decision-making

of deep learning models.
1.2 Background and Problem Statement

Image classification pertains to a computer vision undertaking wherein a machine learning
model is trained to identify and classify objects or situations depicted in an image based on training.
The objective is to allocate a categorical designation or classification to an input image by analyzing
its visual contents. The efficacy of the image classification task depends on selecting a suitable

model, the size and variety of the training data, and the meticulous tuning of parameters throughout

the training procedure. [65].

Traditional machine learning (ML) algorithms, including Random Forest, K-Nearest Neigh-
bor, Decision Tree, Support Vector Machines, and Naive Bayes classifiers, have been widely
employed in addressing image identification and classification applications according to specific
needs. [S4/16L /68, 88]]. However, these conventional ML algorithms demonstrate subpar performance
while solving complex image classification tasks. [74]. In recent years, there has been a notable
demonstration of remarkable performance by Deep Neural Network (DNN) based architectures
in addressing a range of computer vision challenges, including complicated image recognition
tasks [3,/37,50]. Convolutional neural network (CNN) based models have exhibited promising
outcomes and have become the standard approach for addressing diverse image classification
tasks. [77,94,97,107]. The Attention-based Transformer Neural Network (TNN) has emerged as a
promising solution for addressing heterogeneous classification challenges, owing to its remarkable
performance in delivering state-of-the-art results in solving Natural Language Processing (NLP)
tasks [[11,[26,99]. One persistent issue is that deep neural networks need more robustness against
strong adversarial attacks and noisy settings, manifesting them as unreliable in the face of more
diverse and complex attacks. [75]. Relying only on the decisions provided by these vulnerable deep

learning models for critical applications may pose challenges.
1.2.1 Problem Statement

The existing machine learning and deep learning algorithms exhibit two significant con-
straints that impact their performance and dependability. The majority of these algorithms exhibit
limited robustness in the presence of noise. While numerous deep learning models have demon-
strated superiority in accurate predictions under known circumstances, their performance diminishes
when encountered by noises and perturbations. To be precise, they are susceptible to noise added
to the input data, and even tiny perturbations might result in erroneous outputs. Hence, these
models must be better suited for real-world critical applications where noises or corrupt data can
potentially hinder the decision-making of applied mechanisms. Furthermore, these deep learning

mechanisms need to quantify certainty, posing challenges in evaluating the dependability of their

decision-making processes. Consequently, there needs to be more certainty regarding the reliability
of the evaluations conducted by these models, particularly when employed in mission-critical
domains. The quantification of uncertainty in robust image classification can notify users about
potential noise or perturbation in the output prediction. Quantifying uncertainty is critical for
trustworthy decision-making as it outlines the model’s confidence and reliability. So, the research
community must design a model that can exhibit uncertainty in the output of decision-making
algorithms. Failure to recognize instances where models are prone to errors can lead to negative

consequences and diminish their effectiveness in vital scenarios.
1.3 Research Objectives and Contributions

In this work, we propose a novel image classification framework employing Bayesian Vision
Transformer architectures, referred to as Bayesian Transformer models such as Bayesian Vision
Transformer)Bayes-ViT) and Bayesian Compact Convolutional Transformer(Bayes-CCT). Utilizing
the Bayesian Formulation, we propose a mathematical framework for uncertainty estimation in
model output prediction. Considering ViT and CCT architecture parameters as random variables,
Gaussian distribution was initiated over the model parameters as a prior distribution. We use Varia-
tional Inference (VI) and minimize the evidence lower bound (ELBO) loss function to approximate
the posterior distribution of the model’s parameters. Using the first-order Taylor approximation,
we propagate the first two moments (mean and covariance) of the variational posterior distribution
over the model’s parameters through all layers and non-linear activation functions of Bayes-ViT
and Bayes-CCT architecture. The mean and Covariance of the predictive distribution were attained
at the network output. The covariance matrix represents the degree of uncertainty associated with
the output prediction, whereas the mean vector at the output denotes the classification output.

The major contributions of this thesis work are summarized as follows:

1. We propose a Bayesian Vision Transformer Neural Network to make predictions in image
classification problems and measure the degree of associated uncertainty with the prediction

output.

. Using the available data, we use variational inference to approximate the posterior distribution
of the parameters. We propagate the variational posterior distribution’s mean and covariance

through the network layers and non-linear functions.

. Through the non-linear activation functions in the Bayes-ViT architecture, we estimate the
first two moments of the variational distribution (mean and covariance) using a first-order

Taylor series approximation.

. We conduct comprehensive experiments on three benchmark datasets, i.e., MNIST [23],
Fashion-MNIST [[104]], CIFAR-10 [54]] datasets, which contain labeled images for image

classification tasks.

. By using adversarial attacks and Gaussian Noises to tamper with the test samples and
evaluating our Bayes-ViT and Bayes-CCT against the state-of-the-art Deterministic ViT and

Deterministic CCT, we thoroughly examine all three datasets in noisy situations.

. We validate our proposed model’s robustness to elevated noise levels. We show that high

noise conditions lead to a large rise in uncertainty for image classification tasks.

CHAPTER 1II

LITERATURE REVIEW

2.1 Image Classification with Deep Neural Networks

The image classification process helps us make important judgments in our daily lives.
It improves productivity, security, and ease of use in diverse and important applications. Image
classification algorithms enable visual data acquisition, facilitating its application in various domains
such as medical diagnosis, traffic analysis and control, security systems, facial recognition, and other
areas. For a long while, academics worldwide have been reporting tremendous advancements in the
field of image classification [87]]. Conventional computer vision methods were the mainstays of early
image classification. The image classification process was mostly carried out using models based
on feature extractors. Histogram of Oriented Gradients(HOG), Scale-Invariant Feature Transform
(SIFT), Content-Based Image Retrieval(CBIR), etc., were some of the primary feature extraction
techniques commonly used for image classification tasks [22,51,164]]. As these conventional
techniques primarily bank on handcrafted feature extraction methods, they possess numerous
constraints such as obstacles with scaling, managing heterogeneous and complicated data, and
adjusting to changing circumstances [56,63|]. Their poor scalability and generalization properties
have created significant challenges in solving complex image classification tasks.

Certain methodologies emerged in response to the difficulty of efficiently portraying unpro-
cessed data, particularly when dealing with intricate image datasets. The integration of conventional
computer vision methodologies with machine learning algorithms, such as Support Vector Machines
(SVM), Naive Bayes, Random Forest, etc., frequently yields image classification systems that are

characterized by improved performance [12,/13,/63]]. Gao et al. proposed an improved SIFT method

based on the Bag-of-words(BOW) algorithm to handle intricate local visual features while utilizing
the SVM classifier to perform classification [29]. Extracting more global features helps improve the
overall performance of this proposed work. Xie et al. extended the SIFT algorithm by proposing the
MAX-SIFT method, which is an invariant feature that is derived by selecting the maximum value
between a SIFT descriptor and its horizontally flipped counterpart [[105]. Results demonstrated
that the proposed method performs better in image classification tasks without any augmentation.
One critical limitation of the SVM algorithm is the higher computational complexity due to its
time-consuming optimization process [112]]. Zhang et al. proposed a hybrid architecture comprised
of K-Nearest Neighbor and SVM to triumph over the constraints inherited by SVM in solving
Multi-label Classification problems [[112]. The fundamental concept involves identifying nearby
neighbors to a given query sample and subsequently training a localized support vector machine
that maintains the distance function within the set of neighbors. Compared to KNN and SVM
approaches, this approach exhibited superior performance when applied to extensive, multi-class
datasets. Though Support Vector Machine (SVM) classifiers are well suited for binary classification
problems, they are computationally very expensive [89]]. On the contrary, Random Forest(RF)
classifiers can achieve comparable performance in image classification tasks with lesser computa-
tional cost. Sheykhmousa et al. provided evidence to support the notion that employing random
forests/ferns with a suitable node test can effectively decrease the expenses associated with training
and testing, in comparison to a multi-way SVM [10]]. Furthermore, the performance achieved by this
approach is comparable to that of the SVM. Other conventional Machine Learning algorithms, such
as Naive Bayes, Decision Tree, etc., have also been used extensively in diverse image classification
applications [108}, 110]. However, there are still areas within the field of machine learning that can
be further improved [53]].

Traditional machine learning techniques frequently struggle to capture intricate patterns.
Moreover, these traditional models also face difficulties in selecting features for training. Con-
ventional image feature extraction algorithms primarily emphasize the manual configuration of

certain picture properties [19]]. With the advent of deep learning, Integrating feature extraction

and classifiers inside a learning framework has successfully addressed the challenges associated
with traditional methods. The concept of deep learning aims to uncover numerous layers of rep-
resentation, with the expectation that higher-level characteristics contain more abstract semantic
representations of the given data. Like other domains, deep learning has established footprints in
image classification tasks using convolution-based architectures [36].

In recent years, there has been a notable surge of deep learning (DL) as a prominent
area of research. Convolutional Neural Networks (CNNs) have emerged as the dominant deep
learning models in several computer vision tasks, including classification [43}80,/82]]. Lecun et al.
introduced the first CNN model applied to recognize handwritten digits [[57]. Though the model
performed well in simple datasets, performance was sub-optimal when applied to larger datasets.
Krizhevsky et al. introduced AlexNet to perform image classification tasks on a comparatively
large dataset named ImageNet [55]. It utilized numerous convolutional layers, a couple of fully
connected hidden layers, and one fully connected output layer. Different CNN models have recently
been adopted to solve image classification problems in various domains. Sori¢ et al. solved
binary classification problems to identify pneumonia using chest x-ray images [93]]. Sharma ef al.
employed patch-based CNN architecture to capture the intrinsic relationship between a pixel and its
surrounding environment in remote sensing application [[86]]. Tarmizi et al. established a novel CNN
framework for enhancing the identification of automobiles in low-light environments and adverse
weather conditions in Autonomous Vehicle(AV) applications [96]]. Rahman et al. proposed a novel
framework for identifying unusual behavior, particularly focusing on frequent iris movements using
CNN [[79]. Xu et al. used an attention mechanism with CNN to distinguish threatening objects
in airport X-ray images [[106]. Shervin et al. developed a CNN-based framework for biometric
recognition tasks that can achieve higher recognition accuracy in detecting fingerprints [70]. Wang
et al. introduced a combined CNN-Recurrent Neural Network(RNN) framework, which is capable
of acquiring a shared image-label embedding. This enables the characterization of the semantic
label dependency and the image-label relevance [102]. Gill ef al. introduced another hybrid

architecture combining CNN, RNN, and long short-term memory(LSTM) in solving multi-label

fruit classification problems [32]. LSTM incorporated a memory cell in this framework to encode
the learning process at each categorization interval.

Convolutional Neural Networks (CNNs) have emerged as the predominant choice for various
computer vision tasks, notably image classification tasks throughout domains. Nevertheless, because
of their inherent locality, these models possess a restricted capacity to attain long-range dependencies
among diverse input sequences [40]. Conversely, Transformers have gained widespread popularity
and emerged as a crucial focal point in contemporary machine learning research following the
introduction of "Attention is All You Need" in the Natural Language Processing(NLP) sector [99].
Since its inception, there has been a notable surge in research works dedicated to transformer-
based and attention-based approaches within the research community [33,/109]. Inspired by the
achievements of Transformer models with self-attention mechanisms in NLP, Dosovitskiy et al.
introduced the Vision Transformer (ViT) architecture specifically designed for image classification
tasks [26]]. The maiden model has demonstrated superior performance in image classification
applications compared to state-of-the-art CNN architectures when trained on significantly large
datasets [[30]. ViT architectures are now broadly implemented for solving classification tasks
ranging from medical imaging to remote sensing [6,7,/21,44]. However, acquiring sizable datasets
poses a challenge in certain specialized fields [43].

Moreover, it is not always practical to train the model with large datasets due to limited
computational resources. Various hybrid architectures have been put forward in contemporary times
to address the constraints associated with pre-training. Lee et al. locality-based Self Attention
technique to overcome the inherent low inductive bias of ViT [38]]. Hassani et al. combined ViT and
CNN to prevent overfitting and surpass the performance of state-of-the-art CNNs when dealing with
small datasets [39]]. Liu et al. designed a model that motivates ViTs to grasp spatial relationships
within images, enhancing the robustness of ViT during training, particularly in scenarios where
training data is strictly limited [61]. Ran ef al. manifested an approach to replace linear-based
projections with convolutional projections in the Self-Attention block to acquire a greater number of

local spatial dependencies and eliminate ambiguity in local content during the attention process [85].

10

Layer Norm
(LN)

T
\/

-

7 : Classifier ———» Label
] Transformer Encoder
Z N

Positional Embedding (E,,.)

Layer Norm
(Ll
A

+—— (LS

' ' ' ' | ' ' ' ' ' ' | | '
1 1 i 1 i i 1 I I | | i | I
' ' i | i | ' ' ! il i ! i | |
=
| =l
',. pl p2 p3 p4 [p6 p7 pE P9 p10 pl1 p12 p13 pla pi5

Patch extraction and Flattening

ple }

Input Image

Figure 2.1: Vision Transformer Architecture.
2.2 Vision Transformer

Self-attention-based architectures, specifically the Transformer Neural Network(TNN)
model proposed by Vaswani et al., have emerged as the preferred approach in the NLP domain [99].
TNN architectures are widely used in many NLP applications such as machine translation, text
summarizing, sentiment analysis, text classification, etc. Transformers were primarily designed
to allow the input sequence to be processed in parallel, something that LSTMs and RNNs could
not accomplish [7]. Owing to the effectiveness of transformers in NLP, self-attention has been
attempted to be implemented in the computer vision domain with the least amount of modifications.
To deal with image data, an image is first divided into fixed-size, non-overlapping patches. After
patch extraction, all the image patches are flattened and fed to the Transformer encoder layer after
converting the patches into patch embedding with the help of linear projection. After that, the linear
embedding created from image patches is fed to the transformer encoder in a parallel manner as an
input sequence. Figure [2.1) depicts the architecture of the ViT model for image classification tasks.

The overall mechanism is described as follows:

11

2.2.1 Patch Embedding

At first the input image x, where x € R*W*C ig reshaped into input sequence of 2D flattened
patches x, € RV “(P2C) where (H,W) is the dimension of input image, C is the channel number,
(P, P) is the dimension of fixed size patches and N is the number of patches created for the input
sequence where N = 1;1)_v2v_ One extra learnable embedding has been added at the beginning of the

embedded patch series.
2.2.2 Positional Embedding

The spatial information on the locations of patches inside an input image is then obtained by
applying the positional embedding. They enable the model to consider the sequential relationships
between patch embedding by capturing the position or order information of the tokens in an input
sequence. There are different types of positional embedding. Learnable positional embedding was
used in most cases for ViT. This learnable positional embedding allows the model to adjust and

optimize the positional information during training.
2.2.3 Transformer Encoder

The layers that comprise the Transformer encoder structure comprise the multi-layer percep-

tron (MLP), the layer normalization, and the self-attention function.

2.2.3.1 Self-Attention. The self-attention mechanism, which determines the correlation
between the visual patches within the input sequence, is the central component of the ViT model.
The Transformer can ascertain significant correlations between the input image patches with the

help of a self-attention mechanism [2.2]

Attention(Q,K,V) = SoftMax(Q—KT)V 2.1
o Vi ’

where Query(Q), Key(K), and Value(V) represent the linear projection of the input sequence,
and dy denotes the dimension of the key vector, which is equal to the embedding dimension of the

ViT model.

12

Multi-Head Attention

|
A -

5

T Concat
SoftMax
1 f
Mask (opt.) [\]/JJX
1 i 4
Scale
f
MatMul a K v
Q K v

Figure 2.2: Attention Mechanism of ViT.

2.2.3.1.1 Scaled dot product attention. The attention score between them is determined by
taking the dot product of each query’s and key’s respective vectors. This dot product measures the
query and key vectors’ similarity. The dot products are scaled by the square root of the dimension
of the key vectors (dj) to keep them from growing too big and maintain the learning process. The
attention scores are then derived from the scaled dot products. The SoftMax function is used to
normalize the attention scores to get attention weights. Figure illustrates the operation of the
attention mechanism.

In conclusion, the Vision Transformer’s self-attention layers employ Scaled Dot-Product
Attention to identify dependencies between various patches in an input image. This lets the model

pay attention to pertinent details throughout the input image.

2.2.3.1.2 Multi Head Attention. Multi-Headed Attention (MHA) denotes the independent
repetition of the self-attention processes for several heads, h. Multi-head attention enables the model

to simultaneously focus on input from various representation sub-spaces at distinct positions.

Multihead(Q,K,V) = Concat (head, , head,, ,head;,)W° (2.2)

13

where, head; = Attention(QWiQ,KWiK,VWiV) and W;Q W;X W,V are weight matrices and

W? € R(dmo‘lel*dk),wil(c R(dmodel*dk),wiv c R(dmodel*dk)

2.2.3.2 Layer Normalization. Layer normalization (LN) is a widely employed normal-
ization approach in neural networks, specifically in Vision Transformer (ViT) architecture. In the
context of Vision Transformer (ViT), the technique of layer normalization is commonly employed
in a manner that is individually applied to every token or patch inside the input sequence. Given an

input vector x = [xy,xp,...... ,X,| the layer normalization is computed as:

LayerNorm(x) = y. (x ;,u) +p (2.3)

Where v is the learnable scale parameter, 3 is the learnable shift parameter, u is the mean of input
vector x, and o is the input vector x standard deviation.

The mean, u, and the standard deviation ¢ are computed separately for each point (patches)
along the feature dimension of the input sequence. Layer Normalization is a technique that stabilizes
the training process by standardizing the values at each point, hence reducing sensitivity to the
input’s scale. This aspect has significance for the general stability and convergence of the model

throughout the training process.

2.2.3.3 Multi-Layer Perceptron. The Multi-Layer Perceptron (MLP) within a Vision
Transformer (ViT) is crucial in capturing localized patterns, creating non-linearities, and augmenting
the model’s capacity to acquire intricate representations from the input patches. It collaborates
with the attention mechanism to offer a holistic comprehension of the input image’s global and
local features. MLP applies a feature-wise transformation to the input data, translating it to a
higher-dimensional space. This transformation enables the representation of non-linear interactions
effectively. The learnable parameters of the MLP, encompassing weights for linear transformations
and activation functions, undergo updates during the training process, enabling the model to adjust
and accommodate some particular data traits.

The MLP layer comprises two fully connected layers and the Gaussian error Linear Unit

14

AI!FI HEEN 7,

Linear Layer

Linear Layer

Linear Layer Linear Layer

(0]
(1]
L
c

|
Z, AN

HEEN 7,
Figure 2.3: Multi Layer Perceptron.
(GeLU) activation function. Figure[2.3]demonstrates the MLP layer consists of two linear layers

and the GeLU activation function.

2.2.3.3 Final Embedding Layer. The MLP’s output helps create each patch’s final embed-
dings, fed into the classification head for the final predictions.

The overall mechanism is outlined as follows:

24C)x *
20 = Ketass: Xp ' E3Xp E, . X,V E]| + Epos; E € REOD B e RINFDD (2.4)
o =MSA(LN(z-1))+z-1: [=1l....L (2.5)
2 =MLP(LN(z/))+z; I=1...L (2.6)
y=LN(z") 2.7)

15

; ! Output

Input Image

Linear Layer
Layer Norm
_/ (LN)
Sequence
Pooling

N
Transformer with Sequence Pooling

Convolution Tokenization

4N
NP

)
Positional
Embedding (E,..)

Figure 2.4: Compact Convolutional Transformer Architecture.

2.3 Compact Convolutional Transformer
2.3.1 Convolutional Tokenizer

With Compact Convolutional Transformer (CCT) architecture et al. aimed to propose a
mechanism for small-scale learning. This study presented novel findings indicating that when
combined with transformers, appropriately sized convolutional tokenization can effectively mitigate
overfitting and achieve superior performance when applied to small datasets. It diminishes the
reliance on high computing resources for higher performance from transformer-based architectures.
Instead of employing a non-overlapping patch-based tokenization approach, this model utilized
a convolutional tokenizer, demonstrating superior performance in encoding associations across
patches compared to the original ViT.

CCT employs a convolutional approach to tokenization, resulting in the creation of more
comprehensive tokens while also retaining important local information. The convolutional tokenizer
performs better in encoding interdependencies among patches when compared to the original
ViT. The convolution-based tokenizer comprises convolution layers, max pooling, activation func-

tion(ReLLU), and batch normalization layers. Convolutional Kernel size, kernel stride, pooling size,

16

and pooling stride are adjusted based on dataset image size. Figure [2.4|shows the CCT architecture.

Given the input image, x € RF*W*C

Xo = MaxPool(ReLU (Conv2d(x))) (2.8)

The operation is performed using a total of d filters, which is equivalent to the embedding
dimension of the Vision Transformer Encoder. In addition, the Conv2d and MaxPooling operations
brought inductive bias as these operations were overlapping in nature. This helped in increasing the

overall performance of classification accuracy.
2.3.2 Positional Embedding

As a convolution-based tokenizer induces inductive bias in the CCT model, positional

embedding is optional for providing spatial information of image patches.
2.3.3 Transformer Encoder

All the layers inside the transformer encoder (Multi et al.) followed the architecture of ViT.
2.3.4 Sequence Pooling

Sequence Pooling (SeqPool) is an attention-based approach that performs pooling over
the output sequence of patches. The objective is to ensure the output sequence retains relevant
information from various input image areas. By retaining this information, an improvement in
overall performance was observed without the need for additional parameters. This mechanism also

diminished overall computational expenses. The operation is given as follows:

xp = flxg) € Rb*md (2.9)

Where L is the Transformer encoder layer, x; is the output of the encoder, b is the input
batch size, n is the corresponding input sequence, and d is the embedding dimension. xz is given

input to the dense layer. The output of the dense layer becomes:

17

glxy) € R (2.10)

After applying the SoftMax activation function, the output becomes:

X, = SoftmMax(g(xy)T € RP*1*d (2.11)

Equation (2.11)) shows the process that calculates the weight of importance for every token

in the input in the following way:

7= xL,xL = SoftMax(g(xL)T xxp, € Rb*1xd (2.12)

Output z € R?*? is produced after flattening the equation (2.12).
Final prediction is made by passing z through the final classifier consisting of a fully connected

layer and SoftMax activation for solving multilabel classification problems.
2.4 Bayesian Inference in ViT

An initial method for integrating Bayesian inference into neural networks was Hamiltonian
Monte Carlo (HMC), a Markov chain Monte Carlo (MCMC) technique used to generate samples
from the posterior distribution. However, this method encountered significant computational
complexities as it uses the whole dataset for posterior distribution estimation [73]. A variant of
The MCMC technique, known as Stochastic Gradient MCMC, was introduced to extend sampling
methods to accommodate significantly large datasets and Deep Neural Networks (DNNs) by utilizing
subsets of the dataset. This approach demonstrates more scalability as it utilizes subsets of the whole
data [20L|103]. Another approach to integrating Bayesian Inference with Deep Neural Networks has
involved utilizing the Laplace approximation method. This mechanism assumes that the posterior
distribution can be approximated as a Gaussian distribution [66]v. Ritter et al. utilized a second-
order optimization technique for neural networks in order to create a Kronecker factored Laplace

approximation to the posterior distribution of the weights in a trained network [81]. The utilization

18

of the maximum a posteriori (MAP) estimate was employed to calculate the mean of the posterior
distribution. Based on the data that was observed, a point estimate was developed to represent
the parameter values that are considered most probable. However, this method is intractable in
terms of computational cost. Expectation Propagation (EP) and assumed density filtering (ADF)
are two posterior approximation techniques that employ local computations on an iterative basis
to approximate posterior distribution factors for individual data points. [31,/41,/60]. In solving
regression problems, Hernandez-Lobato and Adams presented the probabilistic back-propagation
(PBP) method to enhance the Gaussian posterior approximation [41]. In subsequent work, Ghosh et
al. developed PBP further in solving multi-label classification problems with the proposed work [31].
The ADF approximation, as proposed by Hernandez-Lobato and Adams, effectively eliminated the
need for ordering by conducting several ADF iterations on the dataset. However, full execution of
EP was found to be impractical for deep neural networks (DNNs) due to the massive computing and
storage demands associated with it. [60].In contemporary times, scholars are directing their attention
towards assessing uncertainty in vision transformers by utilizing Bayesian inference [72,,83,|114].

Variational inference (VI) is a well-established method for approximating posterior distri-
bution. In recent years, researchers have successfully used VI to deep neural networks (DNNs)
with effective scaling [8},35]]. In an extended work, Shridhar et al. expanded upon the concept of
Bayesian formulation in CNN architecture (Bayes-CNN) by introducing a fully factorized Gaussian
distribution on top of convolutional kernels [28]]. However, all the VI-based methods emphasize
estimating uncertainty at the model output by following a frequentist approach. Propagation of
variational distribution moments, defining over ViT network parameters, does not occur from one

layer to subsequent layers.

19

CHAPTER III

METHODOLOGY

3.1 Input image Preprocessing

Image data preprocessing is an essential and critical phase in preparing data for image
categorization using deep neural networks. It encompasses a sequence of procedures aimed at
improving the quality of the input images, enabling efficient model training, and enhancing the
overall performance of the deep neural network. By implementing these preprocessing processes,
the input image data is processed to optimize its suitability for input into a deep neural network.
This, in turn, enhances the learning process and results in a strong classification performance robust
to errors. The resolution of an image is determined by the total number of pixels it possesses.
Images with higher resolution have more pixels, which typically results in a more comprehensive
representation of visual data. Resolution is commonly denoted by its width and height, such as
28 x 28 pixels for images in the MNIST dataset. At first, fixed-size, non-overlapping patches are
created from the input image.

We treat the input patches as sequential data, similar to how sentences are formed in natural
language processing tasks. The interaction between patches and the entire input image can be
compared to the construction of sentences in natural language processing tasks. This enables the
utilization of Transformer-based models, originally employed for NLP tasks. The same approach
with little modification can be employed in computer vision to examine image patches and extract
significant information from them. Natural language sentences consist of words organized in a
specific sequence and possess semantic connections. Similarly, patches derived from the input

image typically exhibit a certain degree of correlation with the patches situated near them.

20

- - - - - n | _ r - : 1 - 5 | | |
\
I‘ pl p2 p3 pd p5 pé p7 p8 p9 p10 pl1 pi2 p13 pld p1s

16
)

|

Input Image

Figure 3.1: Tokenization and embedding of input image patches.

When working with image data, resizing images to a constant resolution guarantees uni-
formity in input dimensions. It is crucial to follow this step, especially when dealing with deep
learning models that necessitate fixed input sizes. We omitted this section as the datasets utilized
have consistent image dimensions across the whole dataset. We had to perform a normalization
operation to re-scale pixel values to a standardized interval, commonly ranging from O to 1. This
is accomplished by dividing the values of each pixel by the highest possible pixel value, such as
255 for photos with 8 bits per pixel. Normalization facilitates accelerated convergence during the
training process. After that, we implemented data augmentation techniques to artificially enhance
the training dataset’s variety. Typical enhancements such as random rotations, flips, shifts, changes
in brightness, and zooming were executed. Data augmentation played a crucial role in enhancing

the generalization of the Bayesian transformer models.
3.1.1 Patch based Tokenization

Image tokenization is the process of dividing images into tokens in order to utilize the
self-attention processes of transformers. These tokens generated from the input image are fixed
size and non-overlapping. Each image patch is considered a separate input token to the transformer
encoder. Figure [3.1]shows the image patch extraction and tokenization step. After creating 2D
image patches from the input image, these patches are flattened into a 1D vector. Each token
represents a specific part of the input image. After completing the flattening operation, linear
projection transforms the flatted 1D vectors into lower dimensional representation while preserving

important information and relationships along the vectors. It is done by multiplying each element of

21

Bayes-Vision Transformer
v 7o

Positional Embedding (E,..., |~ C_%

@ ~

{ Linear Embedding(E)
] :]] ' : : : H '__i i L i P
) L L I Al T | T
p1 p2 p3 pa ps p6 p7 p8 po p10 p11 pi2 P13 pld P15 pl6

Figure 3.2: Patch and positional embedding.

the flattened sequence by weight matrix W. The training process involves acquiring knowledge for
the embedding matrix through the use of back-propagation. [[111]]. Linear projection helps reduce
parameters, subsequently making the model less computationally expensive. The aim lines capture
the most important input image features for the classification task. Before linear projection, one
extra cls token is added to the input sequence. This learnable token is being used to make the final
classification.

After linear projection, positional embedding is added to the input sequence to provide
inductive bias for the ViT network. Tokenization helps transformer-based architecture process the
input sequence in a parallel manner, unlike convolution-based architectures. This input sequence is
provided as an input to the transformer encoder layer.

As illustrated in[3.2] positional embeddings are added to patch embeddings before providing

the input sequence to the transformer encoder layer.
3.2 Image Classification using Bayesian Transformer Models

We are examining a vision transformer comprising a total of L. Encoder layers. The encoder

layer comprises self-attention, layer normalization, and an MLP layer.
3.2.1 Bayesian Formulation

Bayesian neural networks are a type of neural network that can be employed to quantify the

level of uncertainty in predictions. In Bayesian neural networks, the network weights are regarded

22

as random variables that follow a prior probability distribution. Before data observation, the prior
distribution reflects our first assumptions about the weights. Upon analyzing the data, we form our
judgments regarding the weights specified by the posterior distribution. The posterior distribution is
directly proportional to the product of the prior distribution and the likelihood distribution of the
data multiplied by the weights.

In the suggested Bayesian transformer models, namely Bayes-ViT and Bayes-CCT, the
Bayesian estimate is conducted by considering the model’s parameters # as random variables that
follow a Gaussian prior distribution p(%#). All these factors are considered independent inside
and across the network levels. The independent assumption enables the extraction of independent
features across different network levels. It facilitates the establishment of a manageable optimization
problem, as computing the joint distribution of all layers is computationally demanding.

The true posterior distribution p(#|2), which represents the complete knowledge about
the network parameters after seeing the training dataset, & can be calculated using Bayes’ algorithm
in Equation (3.1)).

p(2)p(7)

D= oo iar G

On the right-hand side, we observe the probability distribution of the data given the weights(likelihood)
p(2|%), multiplied by the prior p(#), and divided by the marginal probability distribution of
the data. Nevertheless, the denominator of the equation necessitates the integration of all possible
values for the parameters in the model. The model parameters in deep neural networks (DNNs)
typically have many dimensions, and the presence of non-linearities further complicates the process
of integrating them. Consequently, due to the excessively costly computation required to calculate
this integral, employing the Bayesian technique for directly estimating the posterior distribution is
no longer feasible. Therefore, it is not possible to accurately estimate the true distribution using
Bayesian methods. Approximation Bayesian inference techniques, such as variational inference
and Markov Chain Monte Carlo (MCMC), have been created to tackle the intricacy of Deep Neural

Networks (DNNs) and facilitate Bayesian inference.

23

3.2.2 Variational inference

Variational inference (VI) is a method used to approximate Bayesian inference. It involves
estimating the posterior distribution of the latent variables in a latent variable model when the
true posterior is not directly available. It is a machine-learning technique that uses optimization
approaches to estimate intricate probability distributions. As a result of this attribute, Variational
Inference (V1) exhibits faster convergence compared to conventional methods such as Markov
Chain Monte Carlo (MCMC) sampling. Variational inference (VI) attempts to estimate the posterior
distribution by employing a distribution that is considered to be well-behaved. This suggests that
integrals are computed in such a way that the level of accuracy increases as the precision of the
approximation improves.

Variational Inference (V1) entails considering a parameterized variational posterior distribu-
tion g4 (%) and subsequently estimating the actual posterior p(#'|Z).The optimization process
involves decreasing the Kullback-Leibler (KL) divergence between the variational posterior distri-

bution ¢4 (%) and the genuine unknown posterior distribution p(%#'|2) [101].

qo (V')

@) G2

KL [a0(9)llp(#12)] = [a9(#)10g

The evidence lower bound (ELBO) loss function £(¢; Z) is minimized on the right-hand
side of Equation [3.2] while training Bayesian transformer models using the gradient descent update

method to optimize the variational parameters ¢.

L(9:2) = —Eq,cp) {logp(2#)} + KL [qo (X)| p(#)] - (3.3)

The ELBO loss function in Equation consists of two components: the predicted log-
likelihood of the training data given the model parameters and a regularization factor defined as
the KL-divergence between the proposed variational distribution g4 (%) and the prior distribution

p(#'). Through the process of marginalizing the model parameters, we calculate the predictive

24

distribution.

PR 2) = [pEIX) pr|2) av (34

The Bayesian transformer architecture utilizes the mean and covariance matrix of the
variational distribution, g4 (%) to convey information. This information is then used to obtain the
mean and covariance matrix of the predictive distribution, p(§7|f(,) at the output of the model.

The average value of the predictive distribution signifies the image classification, while
the covariance matrix depicts the level of uncertainty associated with the predicted output. The
objective of the proposed models is to acquire uncertainty information regarding the output decision
to enhance the reliability and dependability of the image classification task. This is achieved by
employing Bayesian transformer models to ensure a secure implementation of sequence machine

learning models in critical applications.
3.3 Mathematical Basis of the Image Classification Methods

This section presents the mathematical foundation of the proposed transformer models,
namely Bayes-ViT and Bayes-CCT. The basic layout of a Bayes-ViT network is depicted in Fig.
[3.3] We provide a mathematical derivation for quantifying uncertainty in Transformer models for
the Self-attention layer. The same derivation can be applied to all layers of Bayes-ViT. A similar
approach can be applied to Bayes-CCT. The key difference between these approaches is the initial
tokenization method. The transformer encoder layer used in both architectures is identical in nature

and mechanism.
3.3.1 Image Classification with Bayesian Vision Transformer, Bayes-ViT

The proposed Bayes-ViT model takes a sequence of non-overlapping image patches as
input and linearly projects these patches into vectors, i.e., X1,Xp, -+ ,X, € R”, where p is the size
of each patch. The positional embedding is then applied to provide spatial information about the
location of image patches within an input image. The embedding output is fed to the encoder

structure of the Bayes-ViT model. The encoder structure consists of several layers, including the self-

25

Classifier m

By Ey ,a" 7'y

#}-‘1 U_:h FJ’{}'H K f_ Layar
LT A
Hyn s Linear Unit
|
Layer Layer

[Transformer Encoder Layer] Normalization

2
Oyiye " Oyy

Pos Embedding ‘\\ K}‘

l| Multi Head

“‘ Attention
[cus] . . Y
token [‘LlnearlEmbedldmg(E) J al « v

mEem

Extracting non overlapping patches from input I 7
0

image and flattening

Figure 3.3: Illustration of the proposed image classification approach based on Bayes-ViT architec-
ture.

attention function, the multi-layer perceptron (MLP), and the layer normalization. The self-attention
mechanism is the core of the Bayes-ViT model because it ascertains the correlation between the
image patches within the input sequence. Given a set of n query vectors qi,qo, - - - ,qn, € R%, n key
vectors ki, ko, --- K, € R4, and n value vectors v; , V2, -+, v, € R”, the attention mechanism maps

the query vector, q;, the key vector, Kk ;, and the value vector, v; and computes a set of output vectors

71,22, ,Z, € R, such that
ki q; exp(a;)
J ~ pla;
ajj=———,and a; = @(a;) = —————, 3.5
12 \/Ek 1 (P(l) ?:1 eXp(aij) ()
n
zZ, = ﬁi@Vj, for i,j=1,---,n. (3.6)
j=1

where q; = wia) x;, Kj = wk) Xj, and v; = w) X, and W@, Wk and WO are the weight
matrices. The query, key, and value vectors represent the linear projection of the input sequence, d

denotes the dimension of the key vector, ¢ is the softmax function, and © is the Hadamard product.

26

The MLP consists of two fully connected layers and a Gaussian error linear unit (GeLU) activation
function.

We propagate the moments of the variational distributions, q(W), i.e., the mean and covari-
ance matrix, through all layers of the Bayes-ViT model. In our proposed model, all the learnable
parameters are random variables. In the self-attention function, we have inner products between
two random vectors, Hadamard products between random vectors, and non-linear functions applied
to random vectors. We will formulate the moment propagation for the self-attention function, and
the mathematical relations can then be generalized to all layers.

Let, ngq) be the A" row vector of the weight matrix W@ where h = 1,2,--- ,H and H is
number of hidden nodes. The variational distribution is wflq) ~ AN p.wl(q> ,):.w;q)). We assume the

))
weight vectors and the input vector Xx; are independent. Each row of the matrix w@ multiplies the
vector X; in the matrix-vector multiplication (; = W(@x;. Thus, the inner product between each
(a)

pair of independent random vectors, K and x; can be written as ¢; = (W,)T x;. The mean and
h

covariance of q; can be derived as the following,

My, =M Vpy, where MW =[] | (37
1
tr (ZW(Q)EX,') +”’T(q) zX,‘ ”'W(Q) +#)€sz ”’X,'? hl = h2
qu - hy Whl hy 1
T T
”Wl(:) ZXi #WE:;)' hy # hy

Similarly, the mean and covariance matrix of the key vector k;, the value vector v; can be

derived as follows:

27

By, = M(k)[.txi, where M%) = [[,thv(k)] (3.8)

hy

tr(Z, w0 Zx,) +l'l"];(k) i 0 +#§,->3w;§1 Ky, hi=h
2

Zk. — h hy
“T(k) ZX,’ I“l'T(k)' hy 7& hy
Wiy Wiy
l‘l'Vi = M(V)“Xia where M(V) = [”’T(v)] (39)

tr (wa) Iy) + I»lVTvm Zy, “w,i;) + #,{izwgl By, hi=hy

B oy Ex M hy # hy

hy hy

The first-order Taylor approximation estimates the mean and covariance matrix after the
non-linear activation functions in the model, including the softmax function. Thus, the mean and

covariance of a; in Equation [3.5]are derived as follows.
Ky ~ (p“‘ai)v Ly~ J<PzaiJTa (3.10)

where J, denotes the Jacobian matrix of &; with respect to a; evaluated at 1, . The results presented
in Equation [3.10] hold for any non-linear activation function, including hyperbolic tangent (Tanh),
sigmoid, or rectified linear unit (ReLU). The mean and covariance matrix of the element-wise

multiplication in Equation @ i.e., Z; = 4; ©® v, are derived as follows,

Kz =B, OWy (3.11)
zi,‘ = zﬁ,‘ ®2Vj +D(I"‘Vj)z§iD(uVj) +D(“ﬁi)2VjD(”ﬁi)7

where D(ﬂv,-) represents the diagonal matrix whose entries are given by the column vector Ky,

28

Consider d-dimensional input vectors x; € R of a layer. Then, the output of a layer normal-

N

izing transform per ' data sample, yl.L , (assuming independent data samples), is given by,

1
(x;—) —

where, i, 62 are the sample mean and sample variance , ¥, B are hyper-parameters for
p p yper-p

YN =yori+B.xi= (3.12)

scaling and shifting the input and € is a constant to ensure numerical stability.
Since i, 62, ¥, B and € are deterministic quantities, then the propagation of the first two

moments through the LN is derived as,

LN Y
A ———— = 3.13
By = Jorg OBy~ H)+B (3.13)
Y Y
EIN = D(—) E D(———) (3.14)

Vo?+e Vol+e
where D(x) is a diagonal matrix, whose diagonal entries are the entries of the column vector

x, and © is a Hadamard product.

Similarly, for the MLP layer, propagation of mean and covariance will be:

(MLP) (MLP)

“MLP, - M IJ’X," Where M

= [#VTV(MLP)] (3.15)

hy

tr (XWELMLP) 2‘:x,-) + #VTV(MLP))N #ngMLP) + #,ZXWELMLP) My, hy = hy
EMLPl — 1 hy 2 1

y'T(MLP) Ly, y'z;(MLP)‘ hy # hy

h 1 h2

By propagating the variational moments through all layers, we obtain the moments of
the predictive distribution, p(y|X, Z). The mean of p(y|X, Z), i.e., 1, represents the network’s
prediction, while the covariance matrix, Xy, reflects the uncertainty associated with the output

classification.

29

i

Input Image

Label(p)
Uncertainty(F)
..
"‘\.__‘\\
'

Sequence
Pooling

Layer Norm
(LM)

Embedding (¥ poc?

Figure 3.4: Illustration of the proposed image classification approach based on Bayes-CCT architec-
ture.

3.3.2 Image Classification with Bayesian Compact Convolutional Transformer, Bayes-CCT

In this transformer-based model, convolution along with Rectified Linear Unit(ReLLU) and
Max-pooling were applied instead of patch-based tokenization. So, the density propagation through
the transformer encoder follows the Bayes-ViT model. Figure [3.4]illustrates the block diagram of
Bayes-CCT.

Convolutional Layer: The convolution operation between a set of kernels and the input
image is formulated as a matrix-vector multiplication. We first form sub-tensors X;.j—r, —1,j:j=r,—1

r1 Xrp XK)

from the input tensor ¥, having the same size as the kernels W (<) ¢ R(. These sub-tensors

are subsequently vectorized and arranged as the rows of a matrix X. Thus, convolving y with the

k" kernel W k) is equivalent to multiplication of X with vec(W (<)),
Zlke) = x «Wke) = X x vec(W(kC)) (3.16)

where * denotes the convolution operation. We have defined variational distribution over kernels,Z(kC)),
where me) = vec(M*)) and L)) = Ullke) @ U2ke) @ UG, It follows that the output of the

convolution is derived by,

30

2%~ N(p g = Xm*) 2) = XE®IXT) G.17)

In the first convolution layer, we assume that the input tensor J is deterministic for simplicity.
Non-Linear Activation Function: We approximate the mean and covariance after a non-linear
activation function y using the first-order Taylor series approximation [38]). Let glke) = 74 [z(kf)],

then the mean and covariance of g(kc) are derived as follows:

o) = W (Hy0)) (3.18)

k) 2 Ztee) O (VW Kyt) VY (i) ") (3.19)

where V is the gradient with respect to z(k) and @ is the Hadamard product. The state-of-
the-art activation functions in DNN:Ss, i.e., the Rectified Linear Unit (ReLLU), and its variations can
be approximately considered piece-wise linear. Thus, the first-order approximation may provide
satisfactory results when propagating the first two moments of the variational distribution through
these activation functions.

Max-Pooling Layer: For the max-pooling, 11,k = pool (ly(k)) and X ue) = co — pool (E)),
where pool represents the max-pooling operation on the mean and co-pool represents down-sampling
the covariance, i.e., keeping only the rows and columns of X glke) that correspond to the pooled mean
elements.

The encoder block of Bayes-CCT is similar to Bayes-ViT, and it will follow the same
derivation for layer normalization, multi-head attention and MLP layer.

By propagating the variational moments through all layers, we obtain the moments of
the predictive distribution, p(y|X, 7). The mean of p(y|X, %), i.e., i, represents the network’s
prediction, while the covariance matrix, Xy, reflects the uncertainty associated with the output

classification.

31

3.4 Algorithm of proposed model

3.4.1 Algorithm of proposed Bayes-ViT

Algorithm 1 Proposed Image Classification with Bayes-ViT

Require: Total number of training epoch Max — epoch, initial learning rate 1, batch size and

weight decay 8

1: Initializing the variational parameters ¢ = {u,Y }, where y is the mean and Y is the covariance

matrix of the Bayes-CCT random parameters.

2: for epoch < Max — epoch do

3: fort < batchsize do
4: Observe the input image samples N.
5: Apply patch-based tokenization to obtain the sequence of image patches.
6: Add Positional Embedding(optional) to each patch entering Transformer Encoder.
7: The training dataset is D = {X () y(n) }nle, where y(") represents true image labels.
8: Propagate u and) through the Bayes-ViT architecture, including different layers and
non-linear activation functions.
9: Calculate loss £ (¢;D) = —E,, o){logp(D|Q)} + BKL|[gy (Q)[|p(Q)].
10: Calculate the gradient of the loss A.Z(¢; D).
11: Use ADAM optimizer with decaying learning rate 7.
12: Optimize the ELBO objective function and update the Bayes-CCT variational parameters
using the gradient descent update rule:
¢ < ¢ —nAL(¢:D)
13: end for
14: end for

32

3.4.2 Algorithm of proposed Bayes-CCT

Algorithm 2 Proposed Image Classification with Bayes-CCT

Require: Total number of training epoch Max — epoch, initial learning rate 1, batch size and

10:

11:

12:

13:

14:

weight decay 8

. Initializing the variational parameters ¢ = {,Y }, where p is the mean and Y is the covariance

matrix of the Bayes-CCT random parameters.
for epoch < Max — epoch do
for + < batchsize do
Observe the input image samples N.
Apply convolutional tokenization to obtain the sequence of image patches.
Add Positional Embedding(optional) to each convolutional patch entering Transformer
Encoder.
The training dataset is D = {X () y(n) },,ZIN, where y(") represents true image labels.
Propagate u and) through the Bayes-CCT architecture, including different layers and
non-linear activation functions.
Calculate loss £ (¢:D) = —E,, o) {logp(D|Q)} + BKL[qy (Q)[|p(Q)].
Calculate the gradient of the loss A.Z(¢;D).
Use ADAM optimizer with decaying learning rate 1.
Optimize the ELBO objective function and update the Bayes-CCT variational parameters

using the gradient descent update rule:
¢ < ¢ —NAZ(9:D)
end for

end for

33

CHAPTER IV

EXPERIMENTAL RESULTS AND ANALYSIS

This section compares Bayes-ViT and Bayes-CCT architectures with their deterministic
counterparts while solving multi-label classification problems. The Bayes-ViT model comprises
three key parts: (1) patch-based tokenization and embedding along with positional encoding, (2)
transformer encoder layer, and (3) the final classifier at the output. The encoder layer contains
(GeLU) and softmax activation function, whereas the final classification head consists of softmax
activation. On the other hand, the Bayes-CCT model contains four important sections: (1) The
convolution-based tokenization along with positional encoding; (2) the transformer encoder layer;
(3) Sequence Pooling; and (4) Final Classifier at the output. The encoder layer contains (GeLU)
and softmax activation function, whereas sequence pooling and final classifier contain softmax
activation. Both Bayes-ViT and Bayes-CCT models were trained using the Adam optimizer [52]]
along with a decaying learning rate and polynomial schedule [2]]. The Bayes-ViT, Bayes-CCT,
Deterministic ViT, and Deterministic CCT are both trained and fine-tuned for three distinct image
classification datasets(Bayes-ViT trained and fine-tuned on two datasets whereas, Bayes-CCT
trained and fine-tuned on one dataset). Table and Table [4.2] present hyperparameters utilized
in the optimized models for each dataset. We utilized the same input size, sequence length, no. of
layers, head number, and embedding dimension to demonstrate fair comparison. For deterministic
CCT and Bayes-CCT, convolutional kernel size, pooling size, kernel, and pooling stride are kept
the same. In order to optimize the performance of each model, the remaining hyperparameters,
including batch size, epoch number, initial learning rate, final learning rates, and KL weighting

factor, are provided for both deterministic and Bayesian models.

34

Table 4.1: Hyperparameter for ViT

Dataset Input | Patch | No. of Hidden | Batch | Epoch | Initial | Final KL Weight
Size | Size | Encoder Layer | Units Size | No. LR LR Factor
Deterministic ViT MNIST 28 4 5 64 20 300 0.001 | 0.00001 | 0.00001
Fashion-MNIST | 28 8 7 64 50 500 0.001 | 0.00001 | 0.001
Bavesian VIT MNIST 28 4 5 64 20 300 0.001 | 0.00001 | 0.00001
e Fashion-MNIST | 28 8 7 64 50 500 0.001 | 0.00001 | 0.001
Table 4.2: Hyperparameter for CCT
Dataset Input | Kernel | No. of Kernel | Hidden | Pooling | Pooling | No. of Batch | Epoch | Initial | Final | KL Weight
Size | Size Conv layers | No. Units Size Stride | Encoder Layer | Size | No. LR LR Factor
Deterministic CCT | CIFAR-10 | 32 5 5 128 128 2 2 3 30 350 0.001 | 1E-04 | 0.001
Bayesian CCT CIFAR-10 | 32 5 5 128 128 2 2 3 30 350 0.001 | 1E-04 | 0.001

4.1 Experimental Setup.

Three distinct experiments or prediction tasks are conducted to solve the image classification

task to assess the performance of the proposed Bayesian Transformer models.

4.1.1 Multi Label Classification Problem.

The strategy involves solving multi-label classification problems based on image data pro-

vided during testing. It is noteworthy to emphasize that in all of the datasets utilized for experiments,

each image belongs to one particular class. Therefore, the training procedures were conducted

independently for images within a specific dataset, utilizing the supervised learning technique. Each

dataset is divided into training and validation sets containing images to corresponding class labels

by default. The learning and assessment of the model are adjusted to the attributes and trends

associated with the objects within the training data as a result of this division.

4.2 Dataset Selection for Model Development

Three publicly available multi-label image classification datasets, namely MNIST [23]],

Fashion-MNIST [104], and CIFAR-10 [54]], consisting of labeled and unlabeled images for training

and testing purpose, were utilized in our experimental analysis analysis.

4.2.1 MNIST dataset.

The Modified National Institute of Standards and Technology (MNIST) database is a

substantial collection of handwritten digits frequently employed to train several image processing

35

0000006008000 000
2 W T A S B A O T B A A A
Ar2taz2Rpiz222d
3333333337213 3333
H¥MY Q¥ IY S 44
SsS5s5 s CSSsss8Ss5SsS
6668066600066 ¢C6 06
772%1277172177727
FP83353835785¢8¢
299279%7998949979
Figure 4.1: Some sample images of MNIST [23]].

algorithms. This dataset is integrated into TensorFlow and can be accessed easily. The training
dataset comprises 60,000 images, while the validation dataset contains 10,000 images. Each image
in both datasets corresponds to a single handwritten digit, resulting in 10 classes. Figure [4.1]
demonstrates some sample images of MNIST. Each class has 7,000 images, with roughly 6,000
images allocated for training and 1,000 for testing. The numerical characters have undergone a
standardization process in size and have been positioned at the center of a predetermined image
size. The images were aligned in the center of a 28x28 image by determining the center of mass
of the pixels. Subsequently, the image was shifted to position this point precisely at the center
of the 28x28 field. The objective of utilizing this dataset is to categorize a provided image of a
handwritten numeral into one of ten categories, which correspond to integer values ranging from
0 to 9, inclusively. The machine learning community widely uses this dataset for testing image

classification models.
4.2.2 Fashion-MNIST dataset

The Fashion-MNIST dataset comprises a training set including 60,000 samples and a test
set containing 10,000 examples. Each image in both sets corresponds to a single digit, resulting in
10 classes. Each instance is a gray-scale image with dimensions of 28x28 and is assigned a label
from 10 classes. Figure d.2]demonstrates some sample images of Fashion-MNIST. Each image has
dimensions of 28 pixels in height and 28 pixels in width, resulting in a total of 784 pixels. Every

pixel is assigned a pixel value, which represents the brightness level of that pixel. Higher pixel

36

Label Description Examples

0 T-Shirt/Top
1 Trouser

2 Pullover

3 Dress

4 Coat

5 Sandals

6 Shirt

Sneaker

8 Bag ;_'.-- "“.ﬂ n ‘ﬂ.u I!. .
' 5 B gy VLD gl Wy Dﬁw-
9 Ankleboots T8 ”JJJJJJJJJJ.‘JJJJJ-‘
dlalB s AL A ARRE a2 a2

Figure 4.2: Some sample images of Fashion-MNIST [104]].

values correspond to deeper shades. The pixel value is a discrete numerical value ranging from 0 to

255. This dataset is integrated into TensorFlow and can be accessed easily.
4.2.3 CIFAR-10 dataset

Lastly, The CIFAR-10(Canadian Institute for Advanced Research) is another popular bench-
mark dataset comprising 60,000 color images, each measuring 32x32 pixels. These images are
categorized into ten distinct classes, each including 6,000 images. The dataset consists of 50,000
training images and 10,000 test images. The dataset is extensively utilized within machine learning
research for solving computer vision problems. The classes exhibit perfect mutual exclusivity. The
set of ten distinct categories encompasses various objects: airplanes, vehicles, birds, cats, deer,
dogs, frogs, horses, ships, and trucks. Each class consists of a total of 6,000 photos. Figure 4.3
demonstrates some sample images of Fashion-MNIST. Like MNIST and Fashion-MNIST, this
dataset is integrated into TensorFlow and is easily accessed. The images comprising CIFAR-10
depict commonplace objects, enhancing the dataset’s applicability to practical scenarios. In contrast
to certain datasets (e.g., MNIST and Fashion-MNIST), which offer gray-scale images, CIFAR-10

comprises three channels.

37

airplane %-% V..='E..
automobile EHE“H‘
s Rl WERS ¥ SN
= EEGHNEEEs P
aeer 55 Y I 8 00 T P
S T Tl o [GIPN
rog [R N 2 O O S
orse [R 5 9 1o B R S T
e e e T -
wk o R e U 1 o] R R

Figure 4.3: Some sample images of CIFAR-10 .

4.3 Performance Evaluation
4.3.1 Robustness and Noise Analysis

The robustness of the proposed Bayesian Transformer models is assessed through a com-
parative analysis of their performance with that of the deterministic models across a range of
noise scenarios. Initial training for each model is conducted using noise-free image examples.
Then, numerous adversarial attacks and Gaussian noise of varying magnitudes are introduced
during testing as part of the preprocessing phases. The standard deviation (SD) serves as a noise
intensity metric for Gaussian noise. We modify the standard deviation value and utilize varying
noise levels (low, medium, and high) to introduce randomness into the test data adequately. The
adversarial examples are generated by implementing two distinct methodologies: the projected
gradient descent (PGD) and the fast gradient sign method (FGSM). [34}67]]. The noise utilized
in the FGSM adversarial attack is generated through the multiplication of the test samples by ¢,
i.e., €sign [VXS((]);X, y)} , and Vx is the gradient of the loss function (ELBO loss in the Bayesian
Transformer models) represents the gradient with respect to the input image [34]. In order to
generate FGSM attacks against the deterministic ViT and CCT, the gradient of the cross-entropy

loss function of the deterministic network has been computed with respect to the input image. For

38

Table 4.3: The level of Gaussian noise (standard deviation (SD)) and the strength of adversarial
attacks (€) applied for MNIST and Fashion MNIST using Bayes-ViT

Bayesian Vision transformer models || Noise Type || Noise Level || MNIST || F-MNIST
Low 0.05 0.05
Gaussian Medium 0.1 0.1
High 0.2 0.2
Low 0.001 0.001
Bayesian FGSM Medium 0.005 0.005
ViT High 0.05 0.05
Low 0.001 0.001
PGD Medium 0.005 0.005
High 0.05 0.05

FGSM to generate the perturbation, the sign of the gradient of the loss with regard to the input is
directly taken after the gradient has been computed as a one-step operation. In contrast, PGD is an
attack based on iterative optimization that utilizes numerous iterations of FGSM. With a small step
size, o, PGD 1is an iterative assault in which FGSM is applied repeatedly.

The number of iterations is 20, and the step size, @, is configured to 1 for our simulation.
The clipping operation ensures that the adversarial cases (€-neighborhood) closely resemble the
original data. The selection of the three levels of adversarial attacks (Low, Medium, and High)
for both FGSM and PGD is accomplished by modifying the € value. The Table also provides the
€ values corresponding to each level of adversarial attack, in addition to the SD used to generate
distinct levels of Gaussian noise. Along with the SD used to produce different levels of Gaussian
noise, the € values for each level of adversarial attack are given in Table 4.3]and Table d.4] The SD

and € values may exhibit variability across numerous datasets due to noise.
4.4 Results and Discussion

The performance of proposed Bayesian transformer models in comparison to their deter-

ministic counterparts across various noise levels, as measured by the MNIST, Fashion-MNIST, and

39

Table 4.4: The level of Gaussian noise (standard deviation (SD)) and the strength of adversarial
attacks (€) applied for CIFAR-10 using Bayes-CCT

Bayesian Vision transformer model || Noise Type || Noise Level || CIFAR-10
Low 0.05
Gaussian Medium 0.1
High 0.2
Low 0.001
Bayesian FGSM Medium 0.01
CCT High 0.1
Low 0.001
PGD Medium 0.01
High 0.1

CIFAR-10 datasets, is presented in the following tables. As shown in Table {.5] the accuracy of the
proposed Bayes-ViT and Bayes-CCT models for the MNIST dataset remains significantly higher
than that of corresponding deterministic models in different noise settings. The Bayesian Trans-
former models demonstrate robustness in accurately identifying the appropriate class in prediction
tasks even when the input images from the test set are subjected to various forms of distortion, such
as random noise and adversarial perturbations.

The accuracy of the proposed Bayes-ViT is equivalent to that of the deterministic transformer-
based models when evaluated on noise-free test data of the MNIST dataset. Nevertheless, the
precision of deterministic models significantly diminishes when noise levels progressively escalate,
particularly in the presence of strong adversarial attacks. Gaussian noise at a moderate level does not
have any discernible effect on either model. However, a high level of Gaussian noise significantly
reduces the accuracy of the deterministic model. The Bayes-ViT model, as proposed, exhibits
robust accuracy even when confronted with significant noise levels. The highest accuracy for the
two models is emphasized for the highest noise level. As an illustration, the Bayes-ViT model

achieves accuracy rates of 87.01% and 88.59% when subjected to the most severe FGSM and PGD

40

Table 4.5: Classification accuracy of the proposed Bayes-ViT and Deterministic ViT models using
MNIST dataset for various levels of Random noise and FGSM and PGD adversarial attacks.

Noise Type | Noise level | Bayes-ViT | Deterministic ViT

No Noise 90.08 88.1
Low 90.01 85.57
Gaussian | Medium 89.53 84.57
High 86.50 78.22

Low 89.43 85.7

Medium 89.43 84.88

FGSM
High 87.01 56.52
Low 89.59 86.07
Medium 89.53 85.12
PGD

High 88.59 80.92

adversarial noise levels, respectively. In contrast, the deterministic ViT model achieves accuracy
rates of 56.52% and 80.92% under the same conditions on the MNIST dataset. The reaction to
FGSM and PGD attacks exhibits comparable patterns, wherein the deterministic models experience
a more pronounced degradation in accuracy over time.

Table 4.6 showcases the test accuracy of the Fashion-MNIST dataset across various noise
levels. When the test data is devoid of noise, both the suggested Bayesian and deterministic
transformer models exhibit comparable levels of accuracy. However, the classification accuracy
of deterministic models diminishes when subjected to Gaussian noise or an adversarial attack
containing substantial noise. The accuracy of the deterministic model experiences a significant
decrease when subjected to adversarial noise generated by FGSM and PGD techniques. Compared
to the deterministic model, the proposed model demonstrates higher accuracy rates of 51.5% and
68.00% when subjected to the most intense levels of FGSM and PGD adversarial noise, respectively,
on the Fashion-MNIST dataset. In contrast, the deterministic model achieves accuracy rates of
28.9% and 45.9% under the same conditions. As a result, their performance is less susceptible to

being impacted by high-noise environments.

41

Table 4.6: Classification accuracy of the proposed Bayes-ViT and Deterministic ViT models using
Fashion-MNIST for various levels of Random noise and FGSM and PGD adversarial attacks.

Noise Type | Noise level | Bayes-ViT | Deterministic ViT

No Noise 82.44 79.9
Low 81.60 79.2

Gaussian | Medium 75.40 72.4
High 52.20 47.7

Low 81.10 79.23

Medium 77.97 76.05

FGSM

High 51.50 28.9

Low 82.00 79.01

Medium 80.30 77.2

PGD

High 68.00 45.9

The test accuracy for the Bayes-CCT architecture in addressing the image classification
problem using the CIFAR-10 dataset is depicted in Table 4.7] In the absence of noise, it is
evident that the accuracy of the proposed model is approximately similar to that of its deterministic
counterpart. The accuracy values produced by the deterministic CCT model are 38.93%, 46.55%,
and 31.65% for the high levels of Gaussian, FGSM, and PGD attacks, respectively, as presented in
Table [4.4]On the contrary, the Bayes-CCT model generates 49.03%, 49.83%, and 66.34% accuracy,
respectively. Similarly, in comparison to a deterministic model, the Bayes-CCT exhibits a higher

level of accuracy even when subjected to heavy adversarial attacks.
4.5 Uncertainty Analysis for Self-Awareness

This section examines the uncertainty of the Bayesian transformer models in the presence
of noise in various contexts, including Gaussian noise, FGSM, and PGD adversarial attacks. The
quantification of the noise level is accomplished by utilizing the signal-to-noise ratio (SNR) at each
respective noise level. The expected variance of the Bayesian Transformer models is calculated in

relation to the signal-to-noise ratio (SNR), resulting in a variance-vs-SNR curve. This analysis is

42

Table 4.7: Classification accuracy of the proposed Bayes-CCT and Deterministic CCT models using
CIFAR-10 for various levels of Random noise and FGSM and PGD adversarial attacks.

Noise Type | Noise level | Bayes-CCT | Deterministic CCT

No Noise 85.92 88.80
Low 77.82 77.19

Gaussian | Medium 67.10 61.40
High 49.03 38.93

Low 84.69 83.08

Medium 78.91 78.61

FGSM

High 49.83 46.55

Low 86.53 86.19

Medium 85.22 76.39

PGD

High 66.34 31.65

conducted for each of the three datasets, encompassing different prediction tasks. The anticipated
variance is utilized as a metric to quantify the level of uncertainty in the models, particularly in the
presence of noise.

The results of this study demonstrate a consistent pattern across all classes and prediction
tasks, indicating a notable rise in predictive variance as the signal-to-noise ratio (SNR) decreases. It
is important to note that the x-axis in the graphs should be read from right to left.

For all classes and all prediction tasks, the findings indicate an increase in predictive variance
(the x-axis is read from right to left) with decreasing SNR values. Hence, it can be observed that
the proposed Bayes-ViT and Bayes-CCT models exhibit a rise in uncertainty with an increase in
noise level (or a corresponding decrease in signal-to-noise ratio), leading to a degradation in model
accuracy. This behavior is referred to as “self-assessment" as it involves the model evaluating its
own performance and identifying its failure mode in response to a considerable increase in noise
level.

In contrast to the Fast Gradient Sign Method (FGSM), the Projected Gradient Descent (PGD)

approach iteratively generates noise. The quick increase in model uncertainty caused by FGSM

43

Variance vs. Signal to Noise Ratio for MNIST

_x10‘3
6 —&— Gaussian
—8— FGSM
5_
g —s— PGD
Ny
[(v]
=
5 37
o
S,
o
1_
0_
0 10 20 30 40 50 60

SNR (dB)

Figure 4.4: Average predictive variance plotted against SNR under Gaussian noise, FGSM, and
PGD adversarial attack for Bayes-ViT for MNIST. The statistical increase in the variance can be
observed in respective points. A significant increase in the variance can serve as a “red flag” and
initiate the process of manual review of the input.

and PGD adversarial noise is substantially greater than that of Gaussian noise. This observation is
made by examining the uncertainty of the proposed Bayesian transformer models across all classes
under noisy conditions. This assertion is grounded in the observation that adversarial attacks are
intentionally crafted to impact models’ performance detrimentally.

The variance-versus-SNR curve for the MNIST dataset is depicted in Figure The
Bayes-ViT model demonstrates a significant rise in model uncertainty with higher noise levels. The
escalation of uncertainty is shown to transpire faster in adversarial attacks than in the presence of
Gaussian noise. The progressive escalation of uncertainty directly impacts the learning mechanism
of the Bayes-ViT model, enhancing its robustness and overall performance. Uncertainty is crucial
in maintaining the integrity of significant data attributes while reducing vulnerable and redundant
aspects that attacks may significantly impact.

Figure 4.5 presents the noise analysis conducted on the Bayes-ViT model using the Fashion-

MNIST dataset. We investigate the impact of various types of noise on the level of uncertainty

44

Variance vs. Sighal to Noise Ratio for Fashion-MNIST

x1073
54 —8— Gaussian
. —8— FGSM
S —s— PGD
©
5 3
=
-
3 21
]
3
o)
1_
0_
0 10 20 30 40 50 60

SNR (dB)

Figure 4.5: Average predictive variance plotted against SNR under Gaussian noise, FGSM, and
PGD adversarial attack for Bayes-ViT for Fashion-MNIST. The statistical increase in the variance
can be observed in respective points. A significant increase in the variance can serve as a “red flag”
and initiate the process of manual review of the input.

exhibited by the model in the context of a prediction job. The Bayes-ViT model uncertainty has a
similar pattern to that observed in the MNIST dataset. The pace at which uncertainty increases is
higher in the context of adversarial attacks compared to the presence of Gaussian noise. Escalation
of variance has been observed to occur consistently when both Gaussian noise and adversarial
attacks are present.

The noise analysis of the Bayes-CCT model using the CIFAR-10 dataset is illustrated in
Figure [d.6] Similarly, our study aims to examine the effects of different forms of noise on the degree
of uncertainty displayed by the model within the framework of a prediction task. Unlike Bayes-ViT,
the Bayes-CCT model depicts the increase of uncertainty(variance) with a higher Gaussian Noise,
FGSM, and PGD adversarial attack. Higher variance values have been witnessed for both Gaussian
noise and adversarial attacks for the Bayes-CCT model, unlike Bayes-ViT.

Consequently, using Bayesian Transformer models presents a promising approach to address

the challenge of picture prediction, irrespective of the presence of many forms of noise or the

45

Variance vs. Signal to Noise Ratio for CIFAR-10

x1071
1.01 :
—&8— Gausslian
0.8 —— FGSM
§ —— PGD
,g 0.6
(18]
=
5
3041
=3
o)
0.2-
0.0
0 10 20 30 40 50 60

SNR (dB)

Figure 4.6: Average predictive variance plotted against SNR under Gaussian noise, FGSM, and
PGD adversarial attack for Bayes-CCT for CIFAR-10. The statistical increase in the variance can
be observed in respective points. A significant increase in the variance can serve as a “red flag” and
initiate the process of manual review of the input.

susceptibility to malicious attacks. The Bayesian transformer models can differentiate between
input images that are noisy or assaulted, as evidenced by the discernible rise in uncertainty observed

in the projected variance as the level of noise or severity of the attack escalates.

46

CHAPTER V

FUTURE WORK AND CONCLUSION

5.1 Future Work

The integration of robustness and Bayesian approaches within the framework of Vision
Transformer (ViT) entails the development of a model that not only exhibits high performance on
the given task but also incorporates the consideration of uncertainty and variability inherent in the
data. Two critical fields of computer vision where these Bayes-ViT and Bayes-CCT models can be

applied.
5.1.1 Detection of Disease in Biomedical Imaging

The efficient detection of diseases by biomedical imaging plays a crucial role in the early
diagnosis and successful treatment of various medical problems. The utilization of Vision Trans-
former (ViT) based models has exhibited promising results. In addition to making predictions,
Bayes-ViT and Bayes-CCT architectures can provide estimations of uncertainty in conjunction with
these predictions. In the usual practice, medical professionals such as physicians or radiologists
are responsible for examining and analyzing biomedical images. The emergence of sophisticated
imaging methods, combined with an unprecedented degree of processing power, offers a distinctive
opportunity to analyze and address biomedical image classification challenges in previously un-
achievable ways. The decisions made regarding biomedical image classifications directly impact
patient safety. If these classifications contain errors or are unreliable, there is a risk of misidentifying
medical conditions and selecting incorrect treatment options. This poses a potential threat to the
well-being of patients. Understanding the level of uncertainty associated with a diagnosis in medical

imaging is of utmost importance. This may lead to enhanced decision-making abilities among

47

tumor (0)

s

e

complex ()

e
lympho (3)

mucosa (5)

lympho (3)
Figure 5.1: Some sample images of Colorectal Histology .

radiologists, particularly in scenarios characterized by unpredictable or ambiguous patterns seen by
the model.

Bayesian Transformer models exhibit enhanced robustness towards variations in noise,
imaging circumstances, and other forms of variability due to their inherent ability to manage and
simulate uncertainty effectively. One particular application field where our developed Bayesian
Transformer models can be effectively utilized is the categorization of textures of colorectal cancer
using the "colorectal histology dataset" [46]. The dataset comprises 5000 image data, with an
equal distribution of 625 images for each class(in total- 8 classes). Figure [5.1] demonstrates
some image samples of the dataset. All of the input images have dimensions of 150x150 pixels
and three channels. Eight classes include: 0) tumor epithelium, 1) simple stroma, 2) complex
stroma (comprising single cancer cells and single immune cells), 3) immune cell conglomerates,
4) debris and mucus, 5) mucosal glands, 6) adipose tissue, and 7) background. With advanced
pre-processing and regularization techniques, Bayes-CCT architecture can be effectively utilized for
detecting cancer. The robustness and self-evaluation properties of Bayesian transformer models will
help detect cancer during both favorable and unfavorable conditions and plan proactive treatment

procedures.

48

5.1.2 Object Detection in autonomous driving / Self-driving cars

Autonomous driving systems often operate inside complex and dynamic environments.
The system can assess its confidence level in the identified things or aspects of a scene by using
the Bayesian Transformer designs, which can produce uncertainty estimation for its predictions.
The utilization of knowledge becomes crucial in the process of decision-making, especially in
situations when the environment is subject to high levels of noise or adversarial attacks. Robustness
is a crucial element in the development of autonomous driving systems since it necessitates the
constant functioning of the system across diverse environmental contexts, including factors such as
fluctuating lighting conditions, variable weather patterns, and diverse road surfaces. Robustness and
Self-Awareness properties in Bayes-Vit and Bayes-CCT have the potential to enhance the operational
capabilities of autonomous vehicles by effectively handling uncertainties and unanticipated events.
Over the course of time, Bayesian transformer models can facilitate continuous learning and
adaptation. In autonomous driving, this characteristic confers a notable benefit as the system can
acquire knowledge from novel data and encounters, augmenting its capabilities over time and
adapting to alterations in the surrounding environment.

Moreover, the Bayes-ViT architecture can be integrated with U-net architecture to create a
framework for robust semantic segmentation tasks. The Bayes-ViT architecture can capture both
global context and uncertainty information. On the other hand, the U-Net-like structure is designed
to preserve spatial information and effectively handle local details. One particular application can
be brain tumor segmentation using the BraTS dataset [[69]. The BraTS dataset has consistently
prioritized assessing cutting-edge techniques for segmenting brain tumors in multi-modal magnetic
resonance imaging (MRI) scans. However, robust image segmentation would require advanced

pre-processing and data augmentation techniques to perform the segmentation task efficiently.
5.2 Conclusion

In this work, we have developed a new image classification technique using the Bayes-Vit

and Bayes-CCT architecture. The Bayesian inference enables estimating the variational distribution

49

specified over the model’s parameters. The prediction result is obtained from the mean of the
predictive distribution in the output of the Bayesian transformer models. On the other hand, the
uncertainty in the predicted label is captured by the covariance matrix. The Bayesian transformer
models under consideration are trained and tested on three datasets, each consisting of 60,000
image data. Experimental results demonstrate the superiority of the proposed Bayesian models’
robustness compared to deterministic counterparts during Gaussian noise and strong adversarial at-
tacks. Proposed transformer models exhibit a substantial augmentation in the predictive uncertainty,
also known as predictive variance, when subjected to elevated amounts of noise or more potent
adversarial attacks. The model can utilize this behavior to evaluate its performance and notify the
user of any degradation in performance caused by noise or attacks. This self-assessment method
is particularly valuable when precise and reliable predictions are essential, especially in mission-
critical domain applications. These models can promptly identify any decline in performance caused
by excessive noise or hostile attacks by consistently monitoring the associated uncertainty with the
label prediction task. This feature allows them to notify users of potential dangers or compromised
data. Bayesian transformer models are suitable for applications with common disruptive factors
(prevalent noise or adversarial attacks). Consequently, these models can earn the user’s trust and

confidence by making well-informed output predictions regardless of noise and other factors.

50

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

REFERENCES

Chapter eight - deep learning in biomedical image analysis, in Biomedical Information
Technology (Second Edition), D. D. Feng, ed., Biomedical Engineering, Academic Press,
second edition ed., 2020, pp. 239-263.

M. ABADI, , ET AL., TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

S. A. AHMED, S. DEY, AND K. K. SARMA, Image texture classification using artificial
neural network (ann), in 2011 2nd National Conference on Emerging Trends and Applications
in Computer Science, IEEE, 2011, pp. 1-4.

M. ALORAINI, A. KHAN, S. ALADHADH, S. HABIB, M. F. ALSHAREKH, AND M. ISLAM,

Combining the transformer and convolution for effective brain tumor classification using mri
images, Applied Sciences, 13 (2023), p. 3680.

G. AMATO AND F. FALCHI, knn based image classification relying on local feature similarity,

in Proceedings of the Third International Conference on Similarity Search and Applications,
2010, pp. 101-108.

A. ANDO, S. GIDARIS, A. BURSUC, G. Puy, A. BOULCH, AND R. MARLET, Rangevit:
Towards vision transformers for 3d semantic segmentation in autonomous driving, in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023,
pp. 5240-5250.

Y. BAZI, L. BASHMAL, M. M. A. RAHHAL, R. A. DAYIL, AND N. A. AJLAN, Vision
transformers for remote sensing image classification, Remote Sensing, 13 (2021), p. 516.

C. BLUNDELL, J. CORNEBISE, K. KAVUKCUOGLU, AND D. WIERSTRA, Weight uncer-

tainty in neural network, in International conference on machine learning, PMLR, 2015,
pp. 1613-1622.

N. BORAH, P. S. P. VARMA, A. DATTA, A. KUMAR, U. BARUAH, AND P. GHOSAL,

Performance analysis of breast cancer classification from mammogram images using vision
transformer, in 2022 IEEE Calcutta Conference (CALCON), IEEE, 2022, pp. 238-243.

A. BOSCH, A. ZISSERMAN, AND X. MUNOZ, Image classification using random forests
and ferns, in 2007 IEEE 11th International Conference on Computer Vision, 2007, pp. 1-8.

A. M. BRASOVEANU AND R. ANDONIE, Visualizing transformers for nlp: a brief survey, in
2020 24th International Conference Information Visualisation (IV), IEEE, 2020, pp. 270-279.

51

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. BREIMAN, Random forests, Machine learning, 45 (2001), pp. 5-32.

C. J. BURGES, A tutorial on support vector machines for pattern recognition, Data mining
and knowledge discovery, 2 (1998), pp. 121-167.

N. CARION, F. MASSA, G. SYNNAEVE, N. USUNIER, A. KIRILLOV, AND S. ZAGORUYKO,

End-to-end object detection with transformers, in European conference on computer vision,
Springer, 2020, pp. 213-229.

S. CHAKRABORTY AND K. MALI, An overview of biomedical image analysis from the deep
learning perspective, Research Anthology on Improving Medical Imaging Techniques for
Analysis and Intervention, (2023), pp. 43-59.

M. A. CHANDRA AND S. BEDI, Survey on svm and their application in image classification,
International Journal of Information Technology, 13 (2021), pp. 1-11.

C.-F. R. CHEN, Q. FAN, AND R. PANDA, Crossvit: Cross-attention multi-scale vision trans-
former for image classification, in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 357-366.

L. CHEN, H. CHOU, Y. XIA, AND H. MIYAKE, Multimodal item categorization fully

based on transformer, in Proceedings of The 4th Workshop on e-Commerce and NLP, 2021,
pp. 111-115.

L. CHEN, S. L1, Q. BAIL, J. YANG, S. JIANG, AND Y. MIAO, Review of image classification
algorithms based on convolutional neural networks, Remote Sensing, 13 (2021), p. 4712.

T. CHEN, E. FOX, AND C. GUESTRIN, Stochastic gradient hamiltonian monte carlo, in
International conference on machine learning, PMLR, 2014, pp. 1683-1691.

Y. DAL, Y. GAO, AND F. L1U, Transmed: Transformers advance multi-modal medical image
classification, Diagnostics, 11 (2021), p. 1384.

N. DALAL AND B. TRIGGS, Histograms of oriented gradients for human detection, in 2005

IEEE computer society conference on computer vision and pattern recognition (CVPR’05),
vol. 1, Ieee, 2005, pp. 886-893.

L. DENG, The mnist database of handwritten digit images for machine learning research
[best of the web], IEEE signal processing magazine, 29 (2012), pp. 141-142.

D. DERA, N. C. BOUAYNAYA, G. RASOOL, R. SHTERENBERG, AND H. M. FATHALLAH-

SHAYKH, Premium-cnn: Propagating uncertainty towards robust convolutional neural
networks, IEEE Transactions on Signal Processing, 69 (2021), pp. 4669-4684.

J. DONG, S. CHEN, S. ZONG, T. CHEN, AND S. LABI, Image transformer for explainable

autonomous driving system, in 2021 IEEE International Intelligent Transportation Systems
Conference (ITSC), 2021, pp. 2732-2737.

52

[26] A. DOSOVITSKIY, L. BEYER, A. KOLESNIKOV, D. WEISSENBORN, X. ZHAI, T. UN-
TERTHINER, M. DEHGHANI, M. MINDERER, G. HEIGOLD, S. GELLY, ET AL., An im-

age is worth 16x16 words: Transformers for image recognition at scale, arXiv preprint
arXiv:2010.11929, (2020).

[27] S. A. FAHAD AND A. E. YAHYA, Inflectional review of deep learning on natural language
processing, in 2018 International Conference on Smart Computing and Electronic Enterprise
(ICSCEE), 2018, pp. 1-4.

[28] Y. GAL AND Z. GHAHRAMANI, Bayesian convolutional neural networks with bernoulli
approximate variational inference, arXiv preprint arXiv:1506.02158, (2015).

[29] H. GAo, L. Dou, W. CHEN, AND J. SUN, Image classification with bag-of-words model
based on improved sift algorithm, in 2013 9th Asian Control Conference (ASCC), 2013,

pp. 1-6.

[30] B. GHEFLATI AND H. RIVAZ, Vision transformers for classification of breast ultrasound
images, in 2022 44th Annual International Conference of the IEEE Engineering in Medicine
& Biology Society (EMBC), IEEE, 2022, pp. 480-483.

[31] S. GHOSH, F. DELLE FAVE, AND J. YEDIDIA, Assumed density filtering methods for
learning bayesian neural networks, in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 30, 2016.

[32] H. S. GILL AND B. S. KHEHRA, An integrated approach using cnn-rnn-Istm for classification
of fruit images, Materials Today: Proceedings, 51 (2022), pp. 591-595. CMAE’21.

[33] A. GILLIOZ, J. CASAS, E. MUGELLINI, AND O. ABOU KHALED, Overview of the
transformer-based models for nlp tasks, in 2020 15th Conference on Computer Science
and Information Systems (FedCSIS), IEEE, 2020, pp. 179-183.

[34] 1. J. GOODFELLOW, J. SHLENS, AND C. SZEGEDY, Explaining and harnessing adversarial
examples, in Proceedings of 3rd International Conference on Learning Representations,

(ICLR), 2015.

[35] A. GRAVES, Practical variational inference for neural networks, Advances in neural infor-
mation processing systems, 24 (2011).

[36] T. Guo, J. DONG, H. L1, AND Y. GAO, Simple convolutional neural network on image
classification, in 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA),
2017, pp. 721-724.

[37] ——, Simple convolutional neural network on image classification, in 2017 IEEE 2nd
International Conference on Big Data Analysis (ICBDA), IEEE, 2017, pp. 721-724.

[38] K. HAN, Y. WANG, H. CHEN, X. CHEN, J. Guo, Z. L1U, Y. TANG, A. X1A0, C. XU,
Y. XU, Z. YANG, Y. ZHANG, AND D. TAO, A survey on vision transformer, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 45 (2023), pp. 87-110.

53

[39] A. HASSANI, S. WALTON, N. SHAH, A. ABUDUWEILI, J. L1, AND H. SHI, Escaping the
big data paradigm with compact transformers, arXiv preprint arXiv:2104.05704, (2021).

[40] A. HATAMIZADEH, Y. TANG, V. NATH, D. YANG, A. MYRONENKO, B. LANDMAN, H. R.
ROTH, AND D. XU, Unetr: Transformers for 3d medical image segmentation, in Proceedings
of the IEEE/CVF winter conference on applications of computer vision, 2022, pp. 574-584.

[41] J. M. HERNANDEZ-LOBATO AND R. ADAMS, Probabilistic backpropagation for scalable

learning of bayesian neural networks, in International conference on machine learning,
PMLR, 2015, pp. 1861-1869.

[42] N. HUTTEN, R. MEYES, AND T. MEISEN, Vision transformer in industrial visual inspection,
Applied Sciences, 12 (2022), p. 11981.

[43] N. JMOUR, S. ZAYEN, AND A. ABDELKRIM, Convolutional neural networks for image

classification, in 2018 international conference on advanced systems and electric technologies
(IC_ASET), IEEE, 2018, pp. 397-402.

[44] Z. KANG, J. XUE, C. S. LAI, Y. WANG, H. YUAN, AND F. XU, Vision transformer-based
photovoltaic prediction model, Energies, 16 (2023), p. 4737.

[45] M. KASELIMI, A. VOULODIMOS, I. DASKALOPOULOS, N. DOULAMIS, AND
A. DOULAMIS, A vision transformer model for convolution-free multilabel classification of
satellite imagery in deforestation monitoring, IEEE Transactions on Neural Networks and
Learning Systems, (2022).

[46] J. N. KATHER, C.-A. WEIS, F. BIANCONI, S. M. MELCHERS, L. R. SCHAD, T. GAISER,
A. MARX, AND F. G. Z"OLLNER, Multi-class texture analysis in colorectal cancer histology,
Scientific reports, 6 (2016), p. 27988.

[47] B. KAYALIBAY, G. JENSEN, AND P. VAN DER SMAGT, Cnn-based segmentation of medical
imaging data, arXiv preprint arXiv:1701.03056, (2017).

[48] A. KE, W. ELLSWORTH, O. BANERJEE, A. Y. NG, AND P. RAJPURKAR, Chextransfer:
performance and parameter efficiency of imagenet models for chest x-ray interpretation, in
Proceedings of the conference on health, inference, and learning, 2021, pp. 116-124.

[49] A.I. KHAN AND S. AL-HABSI, Machine learning in computer vision, Procedia Computer
Science, 167 (2020), pp. 1444—-1451. International Conference on Computational Intelligence
and Data Science.

[50] S. KHAN, H. RAHMANI, S. A. A. SHAH, M. BENNAMOUN, G. MEDIONI, AND S. DICK-

INSON, A guide to convolutional neural networks for computer vision, vol. 8, Springer,
2018.

[51] S. M. H. KHAN, A. HUSSAIN, AND I. F. T. ALSHAIKHLI, Comparative study on content-

based image retrieval (cbir), in 2012 International Conference on Advanced Computer
Science Applications and Technologies (ACSAT), IEEE, 2012, pp. 61-66.

54

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

D. P. KINGMA AND J. BA, Adam: A method for stochastic optimization, in Proceedings of
3th International Conference on Learning Representations, (ICLR), 2015.

J. D. KOTHARI, A case study of image classification based on deep learning using tensorflow,

Jubin Dipakkumar Kothari (2018). A Case Study of Image Classification Based on Deep

Learning Using Tensorflow. International Journal of Innovative Research in Computer and
Communication Engineering, 6 (2018), pp. 3888-3892.

A. KRIZHEVSKY AND G. HINTON, Convolutional deep belief networks on cifar-10, Unpub-
lished manuscript, 40 (2010), pp. 1-9.

A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification with deep
convolutional neural networks, Advances in neural information processing systems, 25
(2012).

S. LAZEBNIK, C. SCHMID, AND J. PONCE, Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories, in 2006 IEEE computer society conference
on computer vision and pattern recognition (CVPR’06), vol. 2, IEEE, 2006, pp. 2169-2178.

Y. LECUN, L. BoTTOU, Y. BENGIO, AND P. HAFFNER, Gradient-based learning applied
to document recognition, Proceedings of the IEEE, 86 (1998), pp. 2278-2324.

S. H. LEE, S. LEE, AND B. C. SONG, Vision transformer for small-size datasets, arXiv
preprint arXiv:2112.13492, (2021).

X. LI, Z. YANG, Q. WANG, Y. SUN, AND A. L1u, Vision transformer for cell tumor image
classification, in 2023 3rd International Conference on Frontiers of Electronics, Information
and Computation Technologies (ICFEICT), 2023, pp. 176-180.

Y. L1, J. M. HERNANDEZ-LOBATO, AND R. E. TURNER, Stochastic expectation propaga-
tion, Advances in neural information processing systems, 28 (2015).

Y. L1u, E. SANGINETO, W. BI, N. SEBE, B. LEPRI, AND M. NADAI, Efficient training of
visual transformers with small datasets, Advances in Neural Information Processing Systems,

34 (2021), pp. 23818-23830.

Z. Liu, Y. LIN, Y. CAO, H. HU, Y. WEI, Z. ZHANG, S. LIN, AND B. GUO, Swin
transformer: Hierarchical vision transformer using shifted windows, in 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), 2021, pp. 9992—-10002.

D. G. LOWE, Object recognition from local scale-invariant features, in Proceedings of the
seventh IEEE international conference on computer vision, vol. 2, Ieee, 1999, pp. 1150-1157.

—, Distinctive image features from scale-invariant keypoints, International journal of
computer vision, 60 (2004), pp. 91-110.

D. Lu AND Q. WENG, A survey of image classification methods and techniques for improving
classification performance, International Journal of Remote Sensing, 28 (2007), pp. 823-870.

55

[66] D.J. MACKAY, A practical bayesian framework for backpropagation networks, Neural
computation, 4 (1992), pp. 448—472.

[67] A. MADRY, A. MAKELOV, L. SCHMIDT, D. TSIPRAS, AND A. VLADU, Towards deep
learning models resistant to adversarial attacks, arXiv preprint arXiv:1706.06083, (2017).

[68] S. MCCANN AND D. G. LOWE, Local naive bayes nearest neighbor for image classification,
in 2012 IEEE Conference on Computer Vision and Pattern Recognition, IEEE, 2012, pp. 3650—
3656.

[69] B. H. MENZE, A. JAKAB, S. BAUER, J. KALPATHY-CRAMER, K. FARAHANI, J. KIRBY,
Y. BURREN, N. PORZ, J. SLOTBOOM, R. WIEST, ET AL., The multimodal brain tumor

image segmentation benchmark (brats), IEEE transactions on medical imaging, 34 (2014),
pp. 1993-2024.

[70] S. MINAEE, E. AZIMI, AND A. ABDOLRASHIDI, Fingernet: Pushing the limits of fingerprint
recognition using convolutional neural network, arXiv preprint arXiv:1907.12956, (2019).

[71] J. N. MoGAN, C. P. LEE, K. M. LIM, AND K. S. MUTHU, Gait-vit: Gait recognition with
vision transformer, Sensors, 22 (2022), p. 7362.

[72] S. MULLER, N. HOLLMANN, S. P. ARANGO, J. GRABOCKA, AND F. HUTTER, Transform-
ers can do bayesian inference, arXiv preprint arXiv:2112.10510, (2021).

[73] R. M. NEAL, Bayesian learning for neural networks, vol. 118, Springer Science & Business
Media, 2012.

[74] N. O’MAHONY, S. CAMPBELL, A. CARVALHO, S. HARAPANAHALLI, G. V. HERNANDEZ,
L. KRPALKOVA, D. RIORDAN, AND J. WALSH, Deep learning vs. traditional computer vi-
sion, in Advances in Computer Vision: Proceedings of the 2019 Computer Vision Conference
(CVCO), Volume 1 1, Springer, 2020, pp. 128-144.

[75] N. PAPERNOT, P. MCDANIEL, S. JHA, M. FREDRIKSON, Z. B. CELIK, AND A. SWAMI,
The limitations of deep learning in adversarial settings, in 2016 IEEE European symposium
on security and privacy (EuroS&P), IEEE, 2016, pp. 372-387.

[76] R. PATEL AND S. PATEL, A comprehensive study of applying convolutional neural network
Jfor computer vision, International Journal of Advanced Science and Technology, 6 (2020),
pp- 2161-2174.

[771 J. QIN, W. PAN, X. XIANG, Y. TAN, AND G. HOU, A biological image classification
method based on improved cnn, Ecological Informatics, 58 (2020), p. 101093.

[78] J. Q1u, J. L1u, AND Y. SHEN, Computer vision technology based on deep learning, in
2021 IEEE 2nd International Conference on Information Technology, Big Data and Artificial
Intelligence (ICIBA), vol. 2, 2021, pp. 1126-1130.

[79] M. M. U. RAHMAN, M. H. ROBIN, AND A. M. TAIEF, A new framework for video-based
frequent iris movement analysis towards anomaly observer detection, International Journal
of Image, Graphics and Signal Processing (IJIGSP), 13 (2021), pp. 13-27.

56

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

W. RAWAT AND Z. WANG, Deep convolutional neural networks for image classification: A
comprehensive review, Neural computation, 29 (2017), pp. 2352-2449.

H. RITTER, A. BOTEV, AND D. BARBER, A scalable laplace approximation for neural net-
works, in 6th International Conference on Learning Representations, ICLR 2018-Conference
Track Proceedings, vol. 6, International Conference on Representation Learning, 2018.

M. H. ROBIN, M. M. U. RAHMAN, A. M. TAIEF, AND Q. N. EITY, Improvement of face
and eye detection performance by using multi-task cascaded convolutional networks, in 2020
IEEE Region 10 Symposium (TENSYMP), IEEE, 2020, pp. 977-980.

K. A. SANKARARAMAN, S. WANG, AND H. FANG, Bayesformer: Transformer with
uncertainty estimation, arXiv preprint arXiv:2206.00826, (2022).

N. SEBE, Machine learning in computer vision, vol. 29, Springer Science & Business Media,
2005.

R. SHAO AND X.-J. BI, Transformers meet small datasets, IEEE Access, 10 (2022),
pp- 118454—-118464.

A. SHARMA, X. L1U, X. YANG, AND D. SHI, A patch-based convolutional neural network
for remote sensing image classification, Neural Networks, 95 (2017), pp. 19-28.

N. SHARMA, V. JAIN, AND A. MISHRA, An analysis of convolutional neural networks for
image classification, Procedia Computer Science, 132 (2018), pp. 377-384. International
Conference on Computational Intelligence and Data Science.

B. SHEPHERD, An appraisal of a decision tree approach to image classification., in IJCAI,
Citeseer, 1983, pp. 473-475.

M. SHEYKHMOUSA, M. MAHDIANPARI, H. GHANBARI, F. MOHAMMADIMANESH,
P. GHAMISI, AND S. HOMAYOUNI, Support vector machine versus random forest for
remote sensing image classification: A meta-analysis and systematic review, IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing, 13 (2020), pp. 6308—
6325.

A. SINGH, Training strategies for vision transformers for object detection, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,
June 2023, pp. 110-118.

R. K. SINHA, R. PANDEY, AND R. PATTNAIK, Deep learning for computer vision tasks: A
review, 2018.

B. SONG, S. SUNNY, S. LI, K. GURUSHANTH, P. MENDONCA, N. MUKHIA, S. PATRICK,
S. GURUDATH, S. RAGHAVAN, I. TSUSENNARO, S. T. LEIVON, T. KOLUR, V. SHETTY,
V. R. BUSHAN, R. RAMESH, T. PETERSON, V. PILLAI, P. WILDER-SMITH, A. SIGAMANI,
A. SURESH, MONI ABRAHAM KURIAKOSE, P. BIRUR, AND R. LIANG, Bayesian deep
learning for reliable oral cancer image classification, Biomed. Opt. Express, 12 (2021),
pp. 6422-6430.

57

[93] M. SORIC, D. PONGRAC, AND 1. INZA, Using convolutional neural network for chest x-ray
image classification, in 2020 43rd International Convention on Information, Communication
and Electronic Technology (MIPRO), 2020, pp. 1771-1776.

[94] F. SULTANA, A. SUFIAN, AND P. DUTTA, Advancements in image classification using
convolutional neural network, in 2018 Fourth International Conference on Research in
Computational Intelligence and Communication Networks (ICRCICN), IEEE, 2018, pp. 122—
129.

[95] L. TANzI, A. AUDISIO, G. CIRRINCIONE, A. APRATO, AND E. VEZZETTI, Vision trans-
former for femur fracture classification, Injury, 53 (2022), pp. 2625-2634.

[96] 1. A. TARMIZI AND A. A. Aziz, Vehicle detection using convolutional neural network for

autonomous vehicles, in 2018 International Conference on Intelligent and Advanced System
(ICIAS), 2018, pp. 1-5.

[97] M. TRIPATHI, Analysis of convolutional neural network based image classification tech-
niques, Journal of Innovative Image Processing (JIIP), 3 (2021), pp. 100-117.

[98] S. TUMMALA, S. KADRY, S. A. C. BUKHARI, AND H. T. RAUF, Classification of brain

tumor from magnetic resonance imaging using vision transformers ensembling, Current
Oncology, 29 (2022), pp. 7498-7511.

[99] A. VASWANI, N. SHAZEER, N. PARMAR, J. USZKOREIT, L. JONES, A. N. GOMEZ,
L. KAISER, AND 1. POLOSUKHIN, Attention is all you need, Advances in neural information
processing systems, 30 (2017).

[100] A. VouLOoDIMOS, N. DOULAMIS, G. BEBIS, AND T. STATHAKI, Recent developments in

deep learning for engineering applications, Computational intelligence and neuroscience,
2018 (2018).

[101] B. WANG, J. Lu, Z. YAN, H. Luo, T. L1, Y. ZHENG, AND G. ZHANG, Deep uncertainty
quantification: A machine learning approach for weather forecasting, in Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
2019, pp. 2087-2095.

[102] J. WANG, Y. YANG, J. MAO, Z. HUANG, C. HUANG, AND W. XU, Cnn-rnn: A unified
Jramework for multi-label image classification, in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2016.

[103] M. WELLING AND Y. W. TEH, Bayesian learning via stochastic gradient langevin dynamics,

in Proceedings of the 28th international conference on machine learning (ICML-11), 2011,
pp- 681-688.

[104] H. X1A0, K. RASUL, AND R. VOLLGRAF, Fashion-mnist: a novel image dataset for
benchmarking machine learning algorithms, arXiv preprint arXiv:1708.07747, (2017).

[105] L. X1E, Q. T1AN, J. WANG, AND B. ZHANG, Image classification with max-sift descriptors,
in International conference on acoustics, speech and signal processing, 2015.

58

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

M. XU, H. ZHANG, AND J. YANG, Prohibited item detection in airport x-ray security images
via attention mechanism based cnn, in Pattern Recognition and Computer Vision: First
Chinese Conference, PRCV 2018, Guangzhou, China, November 23-26, 2018, Proceedings,
Part II 1, Springer, 2018, pp. 429-439.

S. S. YADAV AND S. M. JADHAV, Deep convolutional neural network based medical image
classification for disease diagnosis, Journal of Big data, 6 (2019), pp. 1-18.

C.-C. YANG, S. O. PRASHER, P. ENRIGHT, C. MADRAMOOTOO, M. BURGESS, P. K.
GOEL, AND 1. CALLUM, Application of decision tree technology for image classification
using remote sensing data, Agricultural Systems, 76 (2003), pp. 1101-1117.

L. YUAN, Y. CHEN, T. WANG, W. YU, Y. SHI, Z.-H. JIANG, F. E. TAY, J. FENG, AND
S. YAN, Tokens-to-token vit: Training vision transformers from scratch on imagenet, in

Proceedings of the IEEE/CVF international conference on computer vision, 2021, pp. 558—
567.

H. T. ZAwW, N. MANEERAT, AND K. Y. WIN, Brain tumor detection based on naive bayes

classification, in 2019 5th International Conference on engineering, applied sciences and
technology (ICEAST), IEEE, 2019, pp. 1-4.

A. ZHANG, Z. C. LIPTON, M. LI, AND A. J. SMOLA, Dive into deep learning, arXiv
preprint arXiv:2106.11342, (2021).

H. ZHANG, A. BERG, M. MAIRE, AND J. MALIK, Svm-knn: Discriminative nearest
neighbor classification for visual category recognition, in 2006 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, 2006, pp. 2126—
2136.

H. ZHAoO, J. JIA, AND V. KOLTUN, Exploring self-attention for image recognition, in

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 10076-10085.

H. ZHAO, Q. WANG, Z. J1A, Y. CHEN, AND J. ZHANG, Bayesian based facial expression
recognition transformer model in uncertainty, in 2021 International Conference on Digital
Society and Intelligent Systems (DSInS), IEEE, 2021, pp. 157-161.

W. ZHIQIANG AND L. JUN, A review of object detection based on convolutional neural
network, in 2017 36th Chinese control conference (CCC), IEEE, 2017, pp. 11104-11109.

59

APPENDIX A

60

APPENDIX A

1.1 Source Code of Bayes-ViT

—x— coding: utf-8 —x—

import tensorflow as tf

from tensorflow import keras

import os

from tensorflow.keras.layers import (Dense, Dropout, LayerNormalization,)
os.environ ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"

For multiple devices (GPUs: 4, 5, 6, 7)

os.environ["CUDA_VISIBLE_DEVICES"] = "1,4,5,6,7"

import imageio

import matplotlib

import shutil

matplotlib.use(Agg’)

import matplotlib.pyplot as plt
import numpy as np

import math

import time, sys

import pickle

import timeit

import xlsxwriter

from scipy.interpolate import make_interp_spline, BSpline

from tensorflow.keras.layers.experimental.preprocessing import Rescaling
from tensorflow.keras import layers

import tensorflow_addons as tfa

from keras.optimizers import SGD

import keras.backend as K

import pandas as pd

import wandb

from keras.preprocessing.image import ImageDataGenerator
os.environ ["WANDB_APLKEY"] = "3dfl171be2d23f8aaf89ddc494bb7116af7alec9b"

import numpy as np

!pip install tensorflow_addons
import tensorflow as tf

from tensorflow import keras
import math

from tensorflow.keras import layers

61

import tensorflow_addons as tfa
from keras.optimizers import Adam
import keras.backend as K

import pandas as pd

plt.ioff ()
mnist = tf.keras.datasets.mnist
update_progress () : Displays or updates a console progress bar

Accepts a float between O and 1. Any int will be converted to a float.
A value under O represents a “halt’.
A value at 1 or bigger represents 100%
def update_progress(progress):
barLength = 10 # Modify this to change the length of the progress bar
status = ""
if isinstance (progress, int):
progress = float(progress)
if not isinstance (progress, float):
progress = 0
status = "error: progress var must be float\r\n"
if progress < 0:
progress = 0
status = "Halt...\r\n"
if progress >= 1:
progress = 1
status = "Done...\r\n"
block = int(round(barLength = progress))
text = "\rPercent: [{0}] {1}% {2}".format("#" % block + "-" % (barLength - block),
sys.stdout. write (text)

sys.stdout. flush ()

Auxilary Functions

def x_Sigma_w_x_T(x, W_Sigma):
batch_sz = x.shape[0]

xx_t = tf.reduce_sum (tf.multiply(x, x), axis=-1,

progress

keepdims=True) # [50, 17, 64] —> [50, 17, 1] or [50, 64] - > [50, 1]

xx_t_e = tf.expand_dims(xx_t,axis=2)

return tf . multiply (xx_t, W_Sigma) # [50,17,64] or [50, 64] or [50, 10]

def w_t_Sigma_i_w(w_mu, in_Sigma): # [64, 64] , [50, 17, 64] or [64, 10], [50, 64]
Sigma_1 = tf.matmul(in_Sigma, tf.multiply (w_mu, w_mu)) # [50, 17, 64] or [50, 10]

return Sigma_l

def tr_Sigma_w_Sigma_in(in_Sigma, W_Sigma):
Sigma = tf.reduce_sum(in_Sigma, axis=-1, keepdims=True) # [50,17, 1]

return tf.multiply (Sigma, W_Sigma) # [50,17, 64]

def sigma_regularizer(x):

62

100,

status)

input_size = 1.0
f_s = tf.math.softplus(x) # tf.math.log(l. + tf.math.exp(x))

return input_size = tf.reduce_mean(-1. — tf.math.log(f_s) + f_s)

Bayesian Fully Connected Layers

class LinearFirst(keras.layers.Layer):

y = w.x + b"""

def __init__(self, units):
super (LinearFirst, self).__init__()

self .units = units

def build(self, input_shape):
tau = 0.001 # 1. /input_shape[-1]
ini_sigma = -6.5
self .w_mu = self.add_weight(name="w_mu’,
shape=(input_shape[—-1], self.units),
initializer=tf.random_normal_initializer (mean=0.0, stddev=0.05, seed=None),
regularizer=tf.keras.regularizers.12(tau),
trainable=True)
self.w_sigma = self.add_weight(name="w_sigma’,
shape=(self.units ,),
initializer=tf.constant_initializer (ini_sigma),
initializer=tf.random_uniform_initializer (minval= —12., maxval=-2.2, seed=None),
regularizer=sigma_regularizer ,

trainable=True)

de

—-

call (self, inputs): # [50,17,64]

Mean

print(self.w_mu.shape)

mu_out = tf.matmul(inputs, self.w_mu) # + self.b_mu [50, 17, 64] # Mean of the output
Varinace

W_Sigma = tf.math.log(

1. + tf .math.exp(self.w_sigma)) # [64] # Construct W_Sigma from w_sigmas
Sigma_out = x_Sigma_w_x_T (inputs ,
W_Sigma) # [50, 17, 64] + tf .math.log (1. + tf.math.exp(self.b_sigma)) #tf.linalg.diag(self.b_sigma)
Sigma_out = tf.where(tf.math.is_nan(Sigma_out), tf.zeros_like(Sigma_out), Sigma_out)
Sigma_out = tf.where(tf.math.is_inf(Sigma_out), tf.zeros_like(Sigma_out), Sigma_out)

Sigma_out = tf.abs(Sigma_out)

return mu_out, Sigma_out

class LinearNotFirst(keras.layers.Layer):

y = w.x +b""

def __init__(self, units):
super (LinearNotFirst, self). __init__()

self .units = units

def build(self, input_shape):
ini_sigma = -6.5
min_sigma = -4.5

tau = 0.001 # 1. /input_shape[-1]

63

self.add_weight(name="w_mu’ ,

64]

self .w_mu =

[64

initializer=tf.random_normal_initializer (mean=0.0,

regularizer=tf.keras

shape=(input_shape[-1],
or or [64,

10] or [10, 10]

.regularizers .12 (tau),

self.units),

tau/self . units), #tf keras.regularizers.12(0.5%0.001),

trainable=True,)
self .w_sigma = self.add_weight(name="w_sigma’,

shape=(self.units

DS

initializer=tf.constant_initializer (ini_sigma),

tf .random_uniform_initializer (minval= min_sigma,

regularizer=sigma_regularizer ,

trainable=True,)

def call(self, mu_in, Sigma_in): # [50,17,64], [50,17,64] or [50, 64] or [50,
mu_out = tf.matmul(mu_in, self.w_mu) # + self.b_mu [50, 17, 64]
W_Sigma = tf.math.log (1. + tf.math.exp(self.w_sigma)) # [64]
Sigma_1 = w_t_Sigma_i_w(self.w_mu, Sigma_in) # [50,17,64]
Sigma_2 = x_Sigma_w_x_T(mu_in, W_Sigma) # [50, 17, 64]
Sigma_3 = tr_Sigma_w_Sigma_in(Sigma_in, W_Sigma) # [50, 17, 64]
Sigma_out = Sigma_l + Sigma_2 + Sigma_3

Sigma_out = tf.where(tf.math.is_nan(Sigma_out),

Sigma_out = tf.where(tf.math.is_inf(Sigma_out),
Sigma_out = tf.abs(Sigma_out)

return mu_out, Sigma_out # mu_out=[50,17,64],

Bayesian Activation Functions

class VDP_GeLU(keras.layers.Layer):

def __init__(self):
super (VDP_GeLU, self).__init__ ()

def call(self, mu_in, Sigma_in): # mu_in = [50,17,64],
mu_out = tf.nn.gelu(mu_in) # [50,17,64]

with tf.GradientTape () as g:

g.watch(mu_in)

out = tf.nn.gelu(mu_in)
gradi = g.gradient(out, mu_in) # [50,17,64]
Sigma_out = activation_Sigma(gradi, Sigma_in)
return mu_out, Sigma_out # [50,2,17,64], [50,2,

def activation_Sigma(gradi, Sigma_in):
gradl = tf.multiply (gradi, gradi) # [50,17,64] or [50,
return tf.multiply (Sigma_in, gradl) # [50,17,64] or [50,

class VDP_ReLU(keras.layers.Layer):
W ReLU """
def __init__(self):

super (VDP_ReLU, self).__init__()

Sigma_out =

tf.zeros_like (Sigma_out),

tf.zeros_like (Sigma_out),

[50,17,64]

Sigma_in= [50,17,64]

17,64 ,64]

10]
10]

64

10]

Sigma_out)

Sigma_out)

stddev=0.05,

maxval=ini_sigma ,

#
#

seed=None) ,

tf.constant_initializer (ini_sigma)

+ tf.linalg.diag(tf.math.log(l. + tf.math.exp(self.b_sigma)))

[50.2,17.64,64]
[50,2,17.64,64]

seed=None)

#[50,

17,

64]

def

Sigma_in):

call(self, mu_in,
mu_out = tf.nn.relu(mu_in)
with tf.GradientTape () as g:

g.watch(mu_in)

out tf .nn.re

gradi g.gradient

Sigma_out activat

return mu_out,

Bayesian Dropout

class

def

__init__(self, dro

super (VDP_Dropout ,
d

self .drop_prop

call(self, mu_in,

shape=[batch_size ,

scale_sigma

if Training:

lu (mu_in)
(out, mu_in)

ion_Sigma(gradi,

Sigma_out

VDP_Dropout(keras . layers.Layer):

p_prop):
self). __init__ ()

rop_prop

Sigma_in ,

seq length ,

Sigma_in)

Training=True):
embedding_dim]
1.0 / (1 - self.drop_prop)

17,64] or [50, 10]

[50.17.64]

non_zero_sigma_mask ,

mu_out = tf.nn.dropout(mu_in, rate=self.drop_prop) # [50,
print(’shape in dropout’,mu_out.shape)
non_zero = tf.not_equal(mu_out, tf.zeros_like(mu_out)) #
non_zero_sigma_mask = tf.boolean_mask(Sigma_in, non_zero)
idx_sigma = tf.dtypes.cast(tf.where(non_zero), tf.int32)
Sigma_out = (scale_sigma =% 2) = tf.scatter_nd (idx_sigma,
print(’sigma shape in dropout’,Sigma_out.shape)

else:
mu_out = mu_in
Sigma_out = Sigma_in

return mu_out, Sigma_out # [50,17,64], [50,17,64]

Bayesian Multi Layer Perceptron
class VDP_MLP(tf.keras.layers.Layer):
def __init__(self, hidden_features, out_features, dropout_rate=0.1):

super (VDP_MLP, self).__init__()

self.densel = LinearNotFirst(hidden_features)

self.densel = LinearNotFirst(mlp_dim)

self.dense2 = LinearNotFirst(out_features)

self.dense2 = LinearNotFirst(embed_dim)

self.dropoutl = VDP_Dropout(dropout_rate)

self.gelu_1 = VDP_GeLU()

def call(self, mu_in, sigma_in):
mu_out, sigma_out = self.densel (mu_in, sigma_in)

print(’shape of
mu_out, sigma_out
print(’shape of
mu_out, sigma_out
print(’shape of
mu_out, sigma_out
print(’shape of

mu_out, sigma_out

x(MLP layer)
x through GeLU
x after

dropout

after 2nd dense

self.gelu_1I (mu_

self.dropoutl (mu_out,

self.dense2 (mu_,

self .dropoutl (mu_out,

’,mu_out.shape)

out, sigma_out)

’,mu_out.shape)

sigma_out)

;7 ,mu_out.shape)

out, sigma_out)
:’,mu_out.shape)

sigma_out)

65

tf .shape (non_zero))

print(’shape of mu_out after MLP layer ', mu_out.shape)

return mu_out, sigma_out

Deterministic Layernorm

class LayerNorm(tf.keras.layers.Layer):

def __init__(self, eps=le-6, =xkwargs):

self .eps = eps

super (LayerNorm, self).__init__ (xxkwargs)

def build(self, input_shape):

self .gamma = self.add_weight(name="gamma’, shape=input_shape[-1:],

initializer=tf.keras.initializers .Ones(),

self .beta = self.add_weight(name="beta’, shape=input_shape[-1:],

initializer=tf.keras.initializers.Zeros(),

super (LayerNorm, self).build (input_shape)

def call(self, x):

mean = K.mean(x, axis=-1, keepdims=True)

std = K.std(x, axis=-1, keepdims=True)

print("mean of LN" ,fmean.shape)

print("std of LN",std.shape)

return self.gamma % (x — mean) / (std + self.eps) + self.beta
def compute_output_shape(self, input_shape):

return

input_shape

Bayesian Layernorm

class

def __init__(self, eps=le—-6, sxkwargs):
self.eps = eps
super (Bayesian_LayerNorm, self).__init__ (xxkwargs)
def build(self, input_shape):
self .gamma = self.add_weight(name="gamma’, shape=input_shape[-1:],
initializer=tf.keras.initializers .Ones(),
self .beta = self.add_weight(name="beta’, shape=input_shape[-1:],
initializer=tf.keras.initializers.Zeros(),
super (Bayesian_LayerNorm, self).build (input_shape)
def call(self, mu_x,

Bayesian_LayerNorm (layers.Layer):

trainable=True)

trainable=True)

trainable=True)

trainable=True)

sigma_x): # (batch_size, sequence_length, embedding_dim), (batch_size, sequence_length,

mean =

K.mean(mu_x, axis=-1, keepdims=True) # [50,17,1]

std = K.std(mu_x, axis=-1, keepdims=True) # [50,17,1]

print(’std = , std.shape)

print(’gamma = ’,self.gamma)

out_mu

= self.gamma % (mu_x — mean) / (std + self.eps) + self.beta

a = (self.gamma / (std + self.eps)) =% 2 # [50,17,64]

out_sigma = tf.math. multiply(a, sigma_x) # [50,17,64]

return

out_mu, out_sigma

def compute_output_shape(self, input_shape):

66

embedding_dim)[50,17,

641.[50,17,64]

return input_shape

Bayesian Multi Head Attention

class Bayesian_MultiHeadSelfAttention_First(tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads):
super (Bayesian_MultiHeadSelfAttention_First, self).__init__()
self.embed_dim = embed_dim
self .num_heads = num_heads
if embed_dim % num_heads != 0:
raise ValueError (

f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}"

self . projection_dim = embed_dim // num_heads
self .query_dense = LinearFirst(embed_dim)
self .key_dense = LinearFirst(embed_dim)
self.value_dense = LinearFirst(embed_dim)

self.combine_heads = LinearNotFirst(embed_dim)

def attention (self, mu_query, sigma_query, mu_key, sigma_key, mu_value, sigma_value, input_dimension):

mu_score = tf.matmul(mu_query, mu_key, transpose_b=True) # [50, 2, 17, 32] x [50, 2, 32, 17] = [50, 2, 17,
print(’mu_score’,mu_score.shape)

a = tf.reduce_sum(tf.math. multiply (mu_query =% 2, sigma_key), axis=-1, keepdims=True) # [50, 2, 17, 1]

print(’a’, a.shape)

b = tf.transpose (tf.reduce_sum(tf.math. multiply (mu_key =# 2, sigma_query), axis=-1, keepdims=True),
perm=[0, 1, 3, 2]) # [50, 2, 1, 17]

a_b=a+b # [50, 2, 17, 17]

cl = tf.reduce_sum(tf.math. multiply (sigma_query, sigma_key), axis=-1, keepdims=True) # [50, 2, 17, 1]
print(’cl’,cl.shape)

c2 = tf.transpose(cl, perm=[0, 1, 3, 2]) # [50, 2, 1, 17]

c=cl +¢2 # [50, 2, 17, 17]

print(’cl+c2’,c.shape)

sigma_score = a_b + ¢ # [50, 2, 17, 17]

print(’sigma score’,sigma_score.shape)

dim_key = tf.cast(tf.shape(mu_key)[-1], tf.float32)

mu_scaled_score = mu_score / tf.math.sqrt(dim_key) # [50, 2, 17, 17]

print(’mu scaled score’,mu_scaled_score.shape)

sigma_scaled_score = sigma_score * dim_key # [50, 2, 17, 17]

mu_weights = tf.nn.softmax (mu_scaled_score, axis=-1) # [50, 2, 17, 17]

Sigma for softmax function

ppl = tf.expand_dims(mu_weights, axis=-1) # [50, 2, 17, 17,1]

pp2 = tf.expand_dims(mu_weights, axis=3) # [50, 2, 17,1, 17]

ppT = tf .matmul(ppl, pp2) # # [50, 2, 17, 17,17]

p_diag = tf.linalg.diag(mu_weights) # [50, 2, 17, 17,17]

grad = (p_diag — ppT) == 2 # # [50, 2, 17, 17,17]

Sigma_weights = tf.squeeze (tf.matmul(grad, tf.expand_dims(sigma_scaled_score, axis=-1))) # [50, 2, 17, 17]
Sigma_weights = tf.where(tf.math.is_nan(Sigma_weights), tf.zeros_like(Sigma_weights), Sigma_weights)
Sigma_weights = tf.where(tf.math.is_inf(Sigma_weights), tf.zeros_like(Sigma_weights), Sigma_weights)

Sigma_weights = tf.linalg.set_diag(Sigma_out, tf.abs(tf.linalg.diag_part(Sigma_out)))

mu_output = tf.matmul(mu_weights, mu_value) # [50,2,17,17] X [50,2,17,32]= [50,2,17,32]

67

#*

print (’mu output’,mu_output.shape)
d = tf.matmul (mu_weights #% 2, sigma_value) # [50,2,17,32]
e = tf.matmul(Sigma_weights, mu_value == 2) # [50,2,17,32]
f = tf.matmul(Sigma_weights, sigma_value) # [50, 2, 17, 17]x[50,2,17,32]= [50,2,17,32]
output_sigma =d + e + f
return mu_output, output_sigma # , mu_weights, Sigma_weights
def separate_heads(self, mu_x, sigma_x, batch_size): # [50, 17,64], [50, 17, 64]
mu_x = tf.reshape(mu_x, (batch_size, -1, self.num_heads, self.projection_dim)) # [50, 17, 2 ,32]
print(’mu_x’,mu_x.shape)
sigma_x = tf.reshape(sigma_x, (batch_size, -1, self.num_heads, self.projection_dim)) # [50, 17, 2 32]
mu_x = tf.transpose(mu_x, perm=[0, 2, 1, 3]) # [50, 2, 17, 32]
sigma_x = tf.transpose(sigma_x, perm=[0, 2, 1, 3]) # [50, 2, 17, 32]
return mu_x, sigma_x # [50,2,17,32],[50,2,17,32]

def call(self, inputs):
batch_size = tf.shape(inputs)[0]
mu_query, sigma_query = self.query_dense(inputs) # [50, 17,64] , [50, 17,64]
mu_key, sigma_key = self.key_dense(inputs) # [50, 17,64] , [50, 17,64]

mu_value, sigma_value = self.value_dense(inputs) # [50, 17,64], [50, 17.,64]

mu_query, sigma_query = self.separate_heads(mu_query, sigma_query, batch_size)
mu_key, sigma_key = self.separate_heads(mu_key, sigma_key, batch_size)
mu_value, sigma_value = self.separate_heads (mu_value, sigma_value, batch_size)

print(’query2 in MHA after passing through separate heads=’',mu_query.shape)

mu_attention , sigma_attention = self.attention(mu_query, sigma_query, mu_key, sigma_key, mu_value, sigma_value,
tf .shape(inputs)[1])

mu_attention = tf.transpose(mu_attention, perm=[0, 2, 1, 3]) # [50,17,2,32]

print(’mu attention ', mu_attention.shape)

sigma_attention = tf.transpose(sigma_attention, perm=[0, 2, 1, 3])

print(’sigma attention ’,sigma_attention.shape)

mu_concat_attention = tf.reshape(mu_attention, (batch_size, -1, self.embed_dim))
print("shape after concat_attention:",mu_concat_attention.shape) #[50,17,64]
sigma_concat_attention = tf.reshape(sigma_attention, (batch_size, -1, self.embed_dim))

print("shape after concat_attention sigma:",sigma_concat_attention.shape) #[50,17,64]

mu_output, sigma_output = self.combine_heads(mu_concat_attention, sigma_concat_attention)
print(’shape after combine head mu’, mu_output.shape)

print(’shape after combine head sigma’, sigma_output.shape)

sigma_output = self.combine_heads(sigma_concat_attention)

return mu_output, sigma_output

class Bayesian_MultiHeadSelfAttention_Intermediate (tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads):

super (Bayesian_MultiHeadSelfAttention_Intermediate , self).__init__()

self .embed_dim = embed_dim

self .num_heads = num_heads

if embed_dim % num_heads !'= 0:
raise ValueError(

f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}"

)

self.projection_dim = embed_dim // num_heads

self.query_dense = LinearNotFirst(embed_dim)

68

self.key_dense = LinearNotFirst(embed_dim)
self.value_dense = LinearNotFirst(embed_dim)

self.combine_heads = LinearNotFirst(embed_dim)

def attention(self, mu_query, sigma_query, mu_key, sigma_key, mu_value, sigma_value):

mu_score = tf.matmul(mu_query, mu_key, transpose_b=True) # [50, 2, 17, 32] x [50, 2, 32, 17] = [50, 2, 17, 17]
print(’mu_score’,mu_score.shape)

a = tf.reduce_sum(tf.math. multiply (mu_query =% 2, sigma_key), axis=-1, keepdims=True) # [50, 2, 17, 1]

print(’a’, a.shape)

b = tf.transpose (tf.reduce_sum(tf.math. multiply (mu_key =#% 2, sigma_query), axis=-1, keepdims=True),
perm=[0, 1, 3, 2]) # [50, 2, 1, 17]

a_b=a+b # [50, 2, 17, 17]

cl = tf.reduce_sum(tf.math. multiply (sigma_query , sigma_key), axis=-1, keepdims=True) # [50, 2, 17, 1]

print(’cl’,cl.shape)

c2 = tf.transpose(cl, perm=[0, 1, 3, 2]) # [50, 2, 1, 17]

c=cl +¢c2 # [50, 2, 17, 17]

print(’cl+c2’,c.shape)

sigma_score = a_b + ¢ # [50, 2, 17, 17]

print(’sigma score’,sigma_score.shape)

dim_key = tf.cast(tf.shape(mu_key)[-1], tf.float32)

mu_scaled_score = mu_score / tf.math.sqrt(dim_key) # [50, 2, 17, 17]

print('mu scaled score’,mu_scaled_score.shape)

sigma_scaled_score = sigma_score * dim_key # [50, 2, 17, 17]

mu_weights = tf.nn.softmax (mu_scaled_score, axis=-1) # [50, 2, 17, 17]

Sigma for softmax function

ppl = tf.expand_dims(mu_weights, axis=-1) # [50, 2, 17, 17,1]

pp2 = tf.expand_dims(mu_weights, axis=3) # [50, 2, 17,1, 17]

ppT = tf.matmul(ppl, pp2) # # [50, 2, 17, 17,17]

p_diag = tf.linalg.diag(mu_weights) # [50, 2, 17, 17.17]

grad = (p_diag - ppT) == 2 # # [50, 2, 17, 17,17]

Sigma_weights = tf.squeeze (tf.matmul(grad, tf.expand_dims(sigma_scaled_score, axis=-1))) # [50, 2, 17, 17]
Sigma_weights = tf.where(tf.math.is_nan(Sigma_weights), tf.zeros_like (Sigma_weights), Sigma_weights)
Sigma_weights = tf.where(tf.math.is_inf(Sigma_weights), tf.zeros_like(Sigma_weights), Sigma_weights)

Sigma_weights = tf.linalg.set_diag(Sigma_out, tf.abs(tf.linalg.diag_part(Sigma_out)))

mu_output = tf.matmul(mu_weights, mu_value) # [50,2,17,17] X [50,2,17,32]= [50,2,17,32]
print(’mu output’,mu_output.shape)

d = tf.matmul(mu_weights =% 2, sigma_value) # [50,2,17,32]

e = tf.matmul(Sigma_weights, mu_value =*x 2) # [50,2,17,32]

f = tf .matmul(Sigma_weights, sigma_value) # [50, 2, 17, 17]x[50,2,17,32]= [50,2,17,32]
output_sigma =d + e + f

return mu_output, output_sigma # , mu_weights, Sigma_weights

def separate_heads(self , mu_x, sigma_x, batch_size): # [50, 17,64], [50, 17, 64]
mu_x = tf.reshape(mu_x, (batch_size, -1, self.num_heads, self.projection_dim)) # [50, 17, 2 ,32]
print(’mu_x’,mu_x.shape)
sigma_x = tf.reshape(sigma_x, (batch_size, -1, self.num_heads, self.projection_dim)) # [50, 17, 2 32]
mu_x = tf.transpose(mu_x, perm=[0, 2, I, 3]) # [50, 2, 17, 32]
sigma_x = tf.transpose (sigma_x, perm=[0, 2, 1, 3]) # [50, 2, 17, 32]
return mu_x, sigma_x # [50,2,17,32],[50,2,17,32]

def call(self, mu_inputs, sigma_inputs):

69

batch_size = tf.shape(mu_inputs)[0]
mu_query, sigma_query = self.query_dense(mu_inputs, sigma_inputs) # [50, 17.,64] ., [50, 17,64]
mu_key, sigma_key = self.key_dense(mu_inputs, sigma_inputs) # [50, 17.,64] , [50, 17,64]

mu_value, sigma_value = self.value_dense(mu_inputs, sigma_inputs) # [50, 17,64], [50, 17,64]

mu_query, sigma_query = self.separate_heads(mu_query, sigma_query, batch_size)
mu_key, sigma_key = self.separate_heads(mu_key, sigma_key, batch_size)
mu_value, sigma_value = self.separate_heads(mu_value, sigma_value, batch_size)

print(’query2 in MHA after passing through separate heads=’,mu_query.shape)

mu_attention , sigma_attention = self.attention(mu_query, sigma_query, mu_key, sigma_key, mu_value, sigma_value)
mu_attention = tf.transpose(mu_attention, perm=[0, 2, 1, 3]) # [50,17.,2,32]

print(’mu attention ', mu_attention.shape)

sigma_attention = tf.transpose(sigma_attention, perm=[0, 2, 1, 3])

print(’sigma attention ’,sigma_attention.shape)

mu_concat_attention = tf.reshape(mu_attention, (batch_size, -1, self.embed_dim))

print("shape after concat_attention:",mu_concat_attention.shape) #[50,17,64]

sigma_concat_attention = tf.reshape(sigma_attention, (batch_size, -1, self.embed_dim))
print("shape after concat_attention sigma:",sigma_concat_attention.shape) #[50,17,64]
mu_output, sigma_output = self.combine_heads(mu_concat_attention, sigma_concat_attention)

print(’shape after combine head mu’, mu_output.shape)
print(’shape after combine head sigma’, sigma_output.shape)
sigma_output = self.combine_heads(sigma_concat_attention)

return mu_output, sigmaioutput

Bayesian Transformer Block

class VDP_TransformerBlock_first(tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads, mlp_dim, dropout=0.1):
super (VDP_TransformerBlock_first, self).__init__ ()
self.att = Bayesian_MultiHeadSelfAttention_First(embed_dim, num_heads) # [64.,2]
self .mlp = VDP_MLP(mlp_dim # 2, mlp_dim, dropout) # [64%2,64,dropout]
self.layernorml = LayerNorm(eps=le-6)
self .layernorm2 = Bayesian_LayerNorm(eps=le—-6)

self .dropoutl = VDP_Dropout(dropout)

def call(self, inputs, training):
inputs_norm = self.layernorml (inputs) # [50,17,64]
print("output of first LN before MHA",inputs_norm.shape) #[50,17,64]
mu_output, sigma_out = self.att(inputs_norm) # [50,17,64]
print("output of MHA in TB",mu_output.shape)
mu_output, sigma_outl = self.dropoutl (mu_output, sigma_out, training=training) # [50,17,64]
print("output of MHA in TB after dropout",mu_output.shape)
mu_outl = mu_output + inputs # [50,17,64]

print(’output of of MHA before entering to MLP’,mu_outl.shape)

mu_outl_norm, sigma_outl_norm = self.layernorm2(mu_outl, sigma_outl)
mu_mlp_output, sigma_mlp_output = self.mlp(mu_outl_norm, sigma_outl_norm)
mu_mlp_output, sigma_mlp_output = self.dropoutl (mu_mlp_output, sigma_mlp_output, training=training)

print(’2nd LN and MLP output’,mu_mlp_output.shape)
mu_output = mu_mlp_output + mu_outl
with tf.GradientTape () as g:

g.watch(mu_outl)

70

out = mu_mlp_output + mu_outl
gradi = g.gradient(out, mu_outl)
sigma_output = tf.math. multiply (tf.math. multiply (gradi, gradi), sigma_outl)

return mu_output, sigmaioutput

class VDP_TransformerBlock_Intermediate (tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads, mlp_dim, dropout=0.1):
super (VDP_TransformerBlock_Intermediate , self). __init__ ()
self.att = Bayesian_MultiHeadSelfAttention_Intermediate (embed_dim, num_heads) # [64,2]
self .mlp = VDP_MLP(mlp_dim # 2, mlp_dim, dropout) # [64%2,64,dropout]
self.layernorml = Bayesian_LayerNorm(eps=le-6)
self.layernorm2 = Bayesian_LayerNorm(eps=le—6)

self.dropoutl = VDP_Dropout(dropout)

def call(self, mu_inputs, sigma_inputs, training):
mu_norm, sigma_norm = self.layernorm2 (mu_inputs, sigma_inputs) # [50,17,64]
print("output of first LN before MHA",inputs_norm.shape) #[50,17,64]
mu_output, sigma_out = self.att(mu_norm, sigma_norm) # [50,17,64]
print("output of MHA in TB",mu_output.shape)
mu_output, sigma_outl = self.dropoutl (mu_output, sigma_out, training=training) # [50,17,64]
print("output of MHA in TB after dropout",mu_output.shape)
mu_outl = mu_output + mu_inputs # [50,17,64]

print(’output of of MHA before entering to MLP’,mu_outl.shape)

mu_outl_norm, sigma_outl_norm = self.layernorm2(mu_outl, sigma_outl)
mu_mlp_output, sigma_mlp_output = self.mlp(mu_outl_norm, sigma_outl_norm)
mu_mlp_output, sigma_mlp_output = self.dropoutl (mu_mlp_output, sigma_mlp_output, training=training)

print(’2nd LN and MLP output’, mu_mlp_output.shape)
mu_output = mu_mlp_output + mu_outl
with tf.GradientTape () as g:
g.watch(mu_outl)
out = mu_mlp_output + mu_outl
gradi = g.gradient(out, mu_outl)
sigma_output = tf.math. multiply (tf.math. multiply (gradi, gradi), sigma_outl)

return mu_output, sigma_output

Bayesian Fully Connected Layer

class DDense(keras.layers.Layer):

def __init__(self, units=32):

Initialize the instance attributes
super (DDense, self).__init__ ()

self .units = units

def build(self, input_shape):

Create the state of the layer (weights)
w_init = tf.random_normal_initializer ()
self .w = tf. Variable (name="kernel ’,
initial_value=w_init(shape=(input_shape[-1], self.units), dtype=’float32),

trainable=True)

71

initialize bias

b_init = tf.zeros_initializer ()

self.b = tf.Variable (name="bias ",
initial_value=b_init(shape=(sel

trainable=True)

def call(self, inputs):

Defines the computation from inputs to outputs

return tf.matmul(inputs, self.w) + self.b

Bayesian Vision Transformer

class VDP_VIT(tf.keras.Model):

def __init__(
self ,
image_size ,
patch_size ,
num_layers ,
num_classes ,
embed_dim ,
num_heads ,
mlp_dim ,
channels=1,
dropout=0.1,

name=None

):
super (VDP_VIT, self). __init__()
num_patches = (image_size // patch_size) #x 2
self.patch_dim = channels % (patch_size #x 2)
self.patch_size = patch_size
self .embed_dim = embed_dim
self .num_layers = num_layers

self .mlp_dim = mlp_dim
self .rescale = Rescaling (1.0 / 255)
self .pos_emb = self.add_weight(
"pos_emb", shape=(1, num_patches + 1, embed_dim)

)

self.class_emb = self.add_weight("class_emb", shape=

self.patch_proj = DDense(embed_dim)

self.enc_layers = VDP_TransformerBlock_first(d_model,

self.enc_layers = [VDP_TransformerBlock(d_model,

for in range(num_layers) |

self .enc_layersl = VDP_TransformerBlock_first(embed_dim,

self .enc_layers = [

VDP_TransformerBlock_Intermediate (embed_dim, num_heads, mlp_dim,

for _ in range(num_layers)

self.mlp_head = VDP_MLP(mlp_dim, num_classes)

f.units ,),

dtype="float32 "),

(1, 1, embed_dim))

num_heads ,

72

num_heads ,

num_heads ,

mlp_dim ,

mlp_dim, dropout) # for

dropout)

mlp_dim, dropout)

dropout)

in range (num_layers)]

self.mlp_head = VDP_MLP(mlp_dim, num_classes)

def extract_patches(self, images):

batch_size = tf.shape(images)[0]

patches = tf.image.extract_patches (
images=images ,
sizes=[1, self.patch_size, self.patch_size, 1],
strides =[1, self.patch_size, self.patch_size, 1],
rates=[1, 1, I, 1],
padding="VALID")

patches = tf.reshape(patches, [batch_size, -1, self.patch_dim])

return patches

def call(self, x, training):
print(’Input dimension :’, x.shape)

batch_size = tf.shape(x)[0]

x = self.rescale(x)

print(’Input dimension after rescale :’, x.shape)

patches = self.extract_patches(x)

print(’Input dimension after extract patch :’,patches.shape)

x = self.patch_proj(patches)

print(’Input dimension after patch projection :’,x.shape)

class_emb = tf.broadcast_to(self.class_emb, [batch_size, 1, self.embed_dim])
x = tf.concat([class_emb, x], axis=Il)

print(’Input dimension after concat :’,x.shape)

x = x + self.pos_emb

print (’Input dimension after x = x + self.pos_emb :’,x.shape)

mu_out, sigma_out = self.enc_layers(x)

for layer in self.enc_layers:

x = layer(x, training)

* H* H H #

for layer in self.enc_layers:

mu_out, sigma_out = layer(x)

mu_out, sigma_out = self.enc_layersl(x)

for layer in self.enc_layers:

mu_out, sigma_out = layer(mu_out, sigma_out, training)

First (class token) is used for classification

mu, sigma = self.mlp_head(mu_out[:, 0], sigma_out[:, 0])
print (*shape of mu’, mu.shape)

print(’shape of sigma’,sigma.shape)

return mu, sigma

Loss Function(Modified)

def nll_gaussian(y_test, y_pred_mean, y_pred_sd):
mu = y_test — y_pred_mean
mu_2 = mu x% 2
y_pred_sd = y_pred_sd + le-4

s = tf.math.divide_no_nan (1., y_pred_sd)

lossl = tf.math.reduce_mean(tf.math.reduce_sum(tf.math. multiply (mu_2, s), axis=-1))
loss2 = tf.math.reduce_mean(tf.math.reduce_sum(tf.math.log(y_pred_sd), axis=-1))
loss = tf.math.reduce_mean(tf.math.add(lossl, loss2))

73

loss = tf.where(tf.math.is_nan(loss), tf.zeros_like(loss), loss)
loss = tf.where(tf.math.is_inf(loss), tf.zeros_like(loss), loss)
return loss

Main Function

def main_function(input_dim=28, num_kernels=[32],

#
#
#

def main_function(image_size=28,

kernels_size=[5],

epochs =20, 1r=0.001, Ir_end = 0.0001, kl_factor = 0.01,

Random_noise=True, gaussain_noise_std=0.5,

Training = False, continue_training = False,

patch_size=4, num_layers=7, num_classes=10,
channels=1, drop_prob=0.1, batch_size=20, epochs=300,

Targeted=False , Random_noise=True, gaussain_noise_std=0.1,

Adversarial_noise=False , HCV=0.5,

maxAdvStep=20, continue_training=False ,

PATH = ’./VDP_cnn_epoch_{}/’.format(epochs)
(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
*?’for 1 in range(10):

print(f"Label {i + 1}: {fashion_mnist_labels[y_train[i]]}")

Scale images to the [0, 1] range

X_train =

x_train.astype (" float32") / 255

x_test = x_test.astype("float32") / 255

Make sure images have shape (, 28, 1)
Xx_train = np.expand_dims(x_train, -1)
X_test = np.expand_dims(x_test, -1)

print(len(x_train))

#x_train = tf.image.resize (x_train, [64, 64]) # resizing image shape to

print(’shape after resizing image’,x_train.shape)

#x_test = tf.image.resize (x_test, [64, 64])

datagen = ImageDataGenerator(rotation_range=10, # Rotating randomly the

width_shift_range=0.2, # Moving the images
height_shift_range=0.2, # Then from top to
shear_range=0.10,
zoom_range=0.05,
zca_whitening=False ,
horizontal_flip=False ,
vertical_flip=False ,
fill_mode="nearest ’)
to fit the Generator on the data

#datagen. fit (x_train) # Very important

print(len(x_train))

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

x_train = x_train.astype(’float32)

x_test = x_test.astype(’float32)

74

Adversarial_noise=False ,

Ir=0.001,

epsilon

saved_model_epochs=50):

embed_dim=64,

epsilon=0.001, Training=False ,

saved_model_epochs=30):

64 X 64

maxpooling_size=[2],

=0,

Ir_end=0.00001,

adversary_target_cls=3, PGD_Adversarial_noise=False ,

maxpooling_stride=[2], maxpooling_pad="SAME’, class_num=10

adversary_target_cls=3, Targeted=False ,

num_heads=4, mlp_dim=64,
kl_factor=0.0001,
Testing=True ,

stepSize=1,

images up to 25

from left

bottom

Zooming randomly up to 20%

to

right

Xx_train

Xx_test

one_hot_y_train

one_hot_y_tes

tr_dataset

val_dataset

trans_model

num_train_steps

#

step

#

learning_rate_fn

optimizer

@tf. function

tf .expand_dims(x_train ,

tf .expand_dims(x_test ,

t

t

min(step ,

-1)
-1)

tf .one_hot(y_train.astype(np.float32),

tf .one_hot(y_test.astype(np.float32),
f.data.Dataset.from_tensor_slices ((x_train ,
tf.data.Dataset.from_tensor_slices ((x_test ,

VDP_ViT(image_size=image_size , patch_size=patch_size ,

depth=num_classes)

depth=num_classes)

num_layers=num_layers ,

embed_dim=embed_dim, num_heads=num_heads, mlp_dim=mlp_dim,

channels=channels ,

epochs # int(x_train.shape[0] / batch_size)

decay_steps)

dropout=drop_prob, name=’vdp_trans ’)

one_hot_y_train)). batch(batch_size)

one_hot_y_test)).batch(batch_size)

num_classes=num_classes ,

((initial_learning_rate — end_learning_rate) % (1 — step / decay_steps) ~ (power)) + end_learning_rate

tf . keras.optimizers.schedules.PolynomialDecay (initial_learning_rate=Ir,

decay_steps=num_train_steps ,

end_learning_rate=Ir_end, power=3.)

tf . keras.optimizers .Adam(learning_rate=learning_rate_fn)

Make it fast.

def train_on_batch(x, y):

with

mu_out,
print ("shape of mu_out",

trans_model . trainable

tf . GradientTape () as

tape:

sigma = trans_model(x, training=True)

mu_out. shape)

True

trans_model . summary ()

loss_final

regularization_loss

loss
gradients

gradients

gradients

optimizer.apply_gradients (zip (gradients ,

return

@tf. function

loss ,

nll_gaussian (y, mu_out,

tf.clip_by_value (t=sigma,

, clipnorm=1.0)

clip_value_min=tf.constant(le-2),

clip_value_max=tf.constant(le+8)))

tf . math.add_n(trans_model.losses)

0.5 = (loss_final + kl_factor % regularization_loss)

tape.gradient(loss, trans_model.trainable_weights)

[(tf.where(tf.math.is_nan(grad), tf.constant(1.0e-5,

gradients]

[(tf.where(tf.math.is_inf(grad), tf.constant(1.0e-5,

gradients]

mu_out, sigma, gradients, regularization_loss , loss

def validation_on_batch(x, y):

mu_out ,

cnn_model. trainable

vloss

regularization_loss

total_vloss

return

@tf. function

def test_on_batch(x,

trans_model . trainable

mu_out ,

return mu_out,

@tf. function

sigma

sigma

= trans_model (x, training=False)
= False
nll_gaussian(y, mu_out, tf.clip_by_value(t=sigma,

shape=grad.shape),

shape=grad.shape),

trans_model . trainable_weights))

_final

clip_value_max=tf.constant(le+8)))

tf .math.add_n(trans_model.losses)

= 0.5 = (vloss + kl_factor % regularization_loss)
total_vloss , mu_out, sigma
y):
= False

trans_model (x, training=False)

sigma

75

grad)) for grad in

grad)) for grad in

clip_value_min=tf.constant(le-2),

def create_adversarial_pattern (input_image, input_label):
with tf.GradientTape () as tape:

tape . watch(input_image)

trans_model . trainable = False
prediction , sigma = trans_model (input_image)
loss_final = nll_gaussian(input_label, prediction,

tf .clip_by_value (t=sigma, clip_value_min=tf.constant(le-4),
clip_value_max=tf.constant(le+3)))

clip_value_max=tf.constant(le+3)), num_classes, batch_size)

loss = 0.5 % loss_final

Get the gradients of the loss w.r.t to the input image.
gradient = tape.gradient(loss, input_image)
Get the sign of the gradients to create the perturbation
signed_grad = tf.sign(gradient)

return signed_grad

wandb. init (entity="fazlur7512",
project="VDP_Trans_mnist_epochs_{} _layer_{}_Ir_{} _kl_factor_{} _batch_size_{}_dimension_{}_patch_size_{}_head_{} _input_{}".format(

epochs, num_layers, lr, kl_factor, batch_size, embed_dim, patch_size, num_heads, image_size))

if Training:
wandb. init (entity="fazlur7512",
project="VDP_Trans_mnist_epochs_{} _layer_{} _Ir_{}_kl_factor_{}_batch_size_{}_dimension_{} _patch_size_{}_head_{} _input_{}".format(
epochs, num_layers, Ir, kl_factor, batch_size, embed_dim, patch_size, num_heads, image_size))
if continue_training:
saved_model_path = ’./saved_models/VDP_cnn_epoch_{}/’.format(saved_model_epochs)
trans_model . load_weights (saved_model_path + ’vdp_cnn_model ”)
train_acc = np.zeros(epochs)
valid_acc = np.zeros(epochs)
train_err = np.zeros(epochs)

valid_error = np.zeros(epochs)

start = timeit.default_timer ()

for epoch in range(epochs):

print (’Epoch: ', epoch + 1, ’/’, epochs)

accl =0

acc_validl = 0

errl =0

err_validl = 0

tr_no_steps = 0

va_no_steps = 0

————————————— Training ~————————————————"—

acc_training = np.zeros(int(x_train.shape[0] / (batch_size)))
err_training = np.zeros(int(x_train.shape[0] / (batch_size)))
for step. (x, y) in enumerate(tr_dataset):
update_progress(step / int(x_train.shape[0] / (batch_size)))
print(y.shape)
loss , mu_out, sigma, gradients, regularization_loss , loss_final = train_on_batch(x, y)
print(mu_out.shape)
errl += loss.numpy ()
corr = tf.equal(tf.math.argmax(mu_out, axis=1), tf.math.argmax(y, axis=1))
accuracy = tf.reduce_mean(tf.cast(corr, tf.float32))
accl += accuracy.numpy ()
if step % 100 ==

print (’\n gradient’, np.mean(gradients [0].numpy()))

76

print (’\n Matrix Norm’, np.mean(sigma))
print ("\n Step:", step, "Loss:", float(errl / (tr_no_steps + 1.)))
print (" Total Training accuracy so far: %.3f" % float(accl / (tr_no_steps + 1.)))
tr_no_steps += 1
wandb.log ({" Average Variance value": tf.reduce_mean(sigma).numpy(),
"Total Training Loss": loss.numpy(),
"Training Accuracy per minibatch": accuracy.numpy(),
"gradient per minibatch": np.mean(gradients[0]),
*epoch ’: epoch,
"Regularization_loss": regularization_loss .numpy(),

"Log-Likelihood Loss": np.mean(loss_final.numpy())

b
train_acc[epoch] = accl / tr_no_steps
train_err[epoch] = errl / tr_no_steps
print (*Training Acc ’, train_acc[epoch])

print (’Training error °, train_err[epoch])

S Validation

for step, (x, y) in enumerate(val_dataset):
update_progress (step / int(x_test.shape[0] / (batch_size)))
total_vloss , mu_out, sigma = validation_on_batch(x, y)
err_validl += total_vloss .numpy ()
corr = tf.equal(tf.math.argmax(mu_out, axis=-1), tf.math.argmax(y, axis=-1))
va_accuracy = tf.reduce_mean(tf.cast(corr, tf.float32))

acc_validl += va_accuracy .numpy ()

if step % 50 == 0:
print ("Step:", step, "Loss:", float(total_vloss))
print ("Total validation accuracy so far: %.3f" % va_accuracy)

va_no_steps += 1

wandb.log ({" Average Variance value (validation Set)": tf.reduce_mean(sigma).numpy(),
"Total Validation Loss": total_vloss.numpy(),
"Validation Acuracy per minibatch": va_accuracy.numpy ()
b
valid_acc[epoch] = acc_validl / va_no_steps
valid_error[epoch] = err_validl / va_no_steps
stop = timeit.default_timer ()

trans_model .save_weights (PATH + ’vdp_transfm_model *)

wandb.log ({" Average Training Loss": train_err[epoch],
"Average Training Accuracy": train_acc[epoch],
#"Average Validation Loss": valid_error[epoch],
#"Average Validation Accuracy": valid_acc[epoch],

*epoch ’: epoch

b
wandb.log ({"Average Training Loss": train_err[epoch],
"Average Training Accuracy": train_acc[epoch],
*epoch ’: epoch
1))
print (’Total Training Time: °, stop — start)
print(’Training Acc ’, train_acc[epoch])

print(’ Validation Acc , valid_acc[epoch])

print(’ ")
print (’ Training error ', train_err[epoch])
print (’ Validation error ', valid_error[epoch])

End Training

77

trans_model.save_weights (PATH + ’vdp_cnn_model *)

if (epochs > 1):
fig = plt.figure(figsize=(15, 7))
plt.plot(train_acc, 'b’, label="Training acc’)
plt.plot(valid_acc, ’r’, label="Validation acc’)
plt.ylim(0, 1.1)
plt.title ("Density Propagation Trans on Fashion MNIST Data")
plt.xlabel ("Epochs")
plt.ylabel (" Accuracy")
plt.legend (loc="lower right’)
plt.savefig (PATH + ’VDP_Trans_on_Fashion_MNIST_Data_acc.png’)

plt.close(fig)

fig = plt.figure(figsize=(15, 7))

plt.plot(train_err, ’b’, label="Training error’)
plt.plot(valid_error, ’r’, label="Validation error’)
plt.title ("Density Propagation Trans on Fashion MNIST Data")
plt.xlabel ("Epochs")

plt.ylabel ("Error")

plt.legend(loc="upper right’)

plt.savefig (PATH + *VDP_Trans_on_FMNIST_Data_error.png’)

plt.close(fig)

f = open(PATH + ’training_validation_acc_error.pkl’, "wb’)

pickle .dump ([train_acc , valid_acc, train_err, valid_error], f)

f.close ()

textfile = open(PATH + ’Related_hyperparameters.txt’, 'w’)
textfile.write(’ Input Dimension : ’ + str(image_size))
textfile.write (’\n Hidden units : > + str(mlp_dim))

textfile . write (’\n Number of Classes + str(num_classes))

textfile . write (’\n No of epochs + str(epochs))

textfile .write (’\n Initial Learning rate + str(lr))

textfile .write (’\n Ending Learning rate + str(lr_end))

textfile.write(’\n kernels Size +str(kernels_size))

textfile.write(’\n Max pooling Size : ’ +str(maxpooling_size))

textfile.write (’\n Max pooling stride +str(maxpooling_stride))

textfile.write(’\n batch size : ° + str(batch_size))
textfile.write (’\n KL term factor : ° + str(kl_factor))
textfile . write ("\n ")

if Training:

textfile.write(’\n Total run time in sec : + str(stop — start))

if (epochs == 1):

textfile.write ("\n Averaged Training Accuracy + str(train_acc))

textfile . write ("\n Averaged Validation Accuracy + str(valid_acc))

textfile . write ("\n Averaged Training error : + str(train_err))

textfile . write ("\n Averaged Validation error + str(valid_error))

else:

textfile.write ("\n Averaged Training Accuracy + str(np.mean(train_acc[epoch])))

textfile.write ("\n Averaged Validation Accuracy + str(np.mean(valid_acc[epoch])))

textfile.write ("\n Averaged Training error : + str(np.mean(train_err[epoch])))

textfile.write ("\n Averaged Validation error + str(np.mean(valid_error[epoch])))

textfile . write ("\n ")

78

textfile . write ("\n ")

textfile.close ()

if (Testing):
test_path = “test_results/’
if Random_noise:
test_path = ’test_random_noise_{}/’.format(gaussain_noise_std)

os.makedirs (PATH + test_path)

L

trans_model.load_weights (PATH + ’vdp_cnn_model *)

if Testing:
test_path = “test_results/’
if Random_noise:
test_path = “test_results_random_noise_{}/’.format(gaussain_noise_std)
full_test_path = PATH + test_path
if os.path.exists(full_test_path):
Remove the existing test path and its contents
shutil .rmtree (full_test_path)

os.makedirs (PATH + test_path)

trans_model.load_weights (PATH + ’vdp_cnn_model *)

test_no_steps = 0

true_x = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, image_size, image_size, 1])
true_y = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])

mu_out_ = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])

sigma_ = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])

sigma_ = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, num_classes ,num_classes])

acc_test = np.zeros(int(x_test.shape[0] / (batch_size)))
for step, (x, y) in enumerate(val_dataset):
update_progress(step / int(x_test.shape[0] / (batch_size)))
true_x[test_no_steps, :, :, :, :] =X
true_y [test_no_steps, :, :] =y
if Random_noise:
noise = tf.random.normal(shape=[batch_size , image_size, image_size, 1], mean=0.0,

stddev=gaussain_noise_std , dtype=x.dtype)

X = X + noise
mu_out, sigma = test_on_batch(x, y)
mu_out_[test_no_steps , :, :] = mu_out
sigma_[test_no_steps, :, :,:]= sigma
sigma_[test_no_steps, :, :] = sigma
corr = tf.equal(tf.math.argmax (mu_out, axis=1), tf.math.argmax(y, axis=1))
accuracy = tf.reduce_mean(tf.cast(corr, tf.float32))
acc_test[test_no_steps] = accuracy.numpy ()

if step % 100 == O:
print (" Total running accuracy so far: %.3f" % acc_test[test_no_steps])
test_no_steps += 1
New added line
wandb.log ({" Testing Accuracy per minibatch": accuracy.numpy ()

b

test_acc = np.mean(acc_test)

print(’ Test accuracy : , test_acc)
print("Best Test Accuracy :", np.amax(acc_test))
New added line

wandb.log ({" Testing Accuracy": (test_acc)})

79

pf = open(PATH + test_path + ’uncertainty_info.pkl’, ’wb’)
pickle .dump ([mu_out_, sigma_, true_x, true_y, test_acc], pf)

pf.close ()

var = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size])

if Random_noise:
snr_signal = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size])
for i in range(int(x_test.shape[0] / (batch_size))):
for j in range(batch_size):
noise = tf.random.normal(shape=[image_size , image_size, 1], mean=0.0, stddev=gaussain_noise_std ,
dtype=x.dtype)
snr_signal[i, j] = 10 % np.logl0(

np.sum(np.square (true_x[i, j, :, :, :]1)) / np.sum(np.square(noise)))
predicted_out = np.argmax(mu_out_[i, j, :])
var[i, j] = sigma_[i, j, int(predicted_out)]

print (’SNR’, np.mean(snr_signal))

#sigma_l = np.reshape(sigma_, int(x_test.shape[0] / (batch_size)) , batch_size)
#var = np.zeros([int(test_X.shape[0] / (batch_size)) , batch_size])
#for i in range(int(test_X.shape[0] / (batch_size)), batch_size):
for i in range(int(test_X.shape[O] / (batch_size))):
#s = np.abs(sigma_I[i])
#if (i !'= 0):
if (np.abs(s) > 10000):

var[i] = 0.0 # np.abs(sigma_l1[i-1])
else:
var[i] = s
else:
var[i] = s

#data_mean, data_std = np.mean(np.abs(sigma_1)), np.std(np.abs(sigma_1))
identify outliers

#cut_off = data_std = 3

#lower , upper = data_mean — cut_off, data_mean + cut_off
#outliers = [x for x in np.abs(sigma_I) if x < lower or x > upper]
#outliers_removed = [x for x in np.abs(sigma_1) if x > lower and x < upper]

#print (" outliers_removed *, np.mean(outliers_removed))

#writer = pd.ExcelWriter (PATH + test_path + ’variance.xlsx’, engine="xIsxwriter ')
#df = pd.DataFrame (np.abs(sigma_1))

Write your DataFrame to a file

#df.to_excel (writer , "Sheet")

#writer.save ()

#print (° Output Variance without outlier ’, np.mean(np.abs(var)))

#print (°Output Variance’, np.mean(np.abs(sigma_)))

valid_size = x_test.shape[0]
pred_var = np.zeros(int(valid_size))

true_var = np.zeros(int(valid_size))

correct_classification = np.zeros(int(valid_size))
misclassification_pred = np.zeros(int(valid_size))
misclassification_true = np.zeros(int(valid_size))

predicted_out = np.zeros(int(valid_size))

80

true_out = np.zeros(int(valid_size))

k=0
kl =0
k2 =0

for i in range(int(valid_size / batch_size)):
for j in range(batch_size):
predicted_out[k] = np.argmax(mu_out_[i, j, :])
true_out[k] = np.argmax(true_y[i, j, :])

pred_var[k] = sigma_[i, j, int(predicted_out[k])]

true_var[k] = sigma_[i, j, int(true_out[k])]

if (predicted_out[k] == true_out[k]):
correct_classification[kl] = sigma_[i, j, int(predicted_out[k])]
kl = k1 + 1

if (predicted_out[k] != true_out[k]):

misclassification_pred[k2] = sigma_[i, j, int(predicted_out[k])]

misclassification_true [k2] = sigma_[i, j, int(true_out[k])]
k2 = k2 + 1
k=k+1

print(’Average Output Variance’, np.mean(pred_var))

varl = pred_var # np.reshape(var, int(x_test.shape[0]/(batch_size))* batch_size)

writer = pd.ExcelWriter (PATH + test_path + ’variance.xlsx’, engine="xlsxwriter ’)

df = pd.DataFrame (np.abs(varl))
Write your DataFrame to a file

df.to_excel(writer , "Sheet")

dfl = pd.DataFrame(predicted_out)

dfl.to_excel (writer, ’Sheet’, startcol=4)

df2 = pd.DataFrame(true_out)

df2.to_excel(writer, ’Sheet’, startcol=7)

df3 = pd.DataFrame(correct_classification)

df3.to_excel (writer, ’Sheet’, startcol=10)

df4 = pd.DataFrame(misclassification_pred)

df4 .to_excel (writer , ’Sheet’, startcol=13)

df5 = pd.DataFrame(misclassification_true)
df5.to_excel (writer , “Sheet’, startcol=16)

writer.save ()

pf = open(PATH + test_path + ’var_info.pkl’, ’wb’)
pickle .dump ([correct_classification , misclassification_true , pred_var],

#if Random_noise:

textfile = open(PATH + test_path + ’Related_hyperparameters.txt’, ’w’)

textfile . write(’ Input Dimension + str(image_size))

textfile.write(’\n No of Kernels +str(num_kernels))

textfile .write (’\n Number of Classes + str(num_classes))

textfile.write (’\n No of epochs : ’ + str(epochs))

textfile.write(’\n Initial Learning rate : * + str(lr))

textfile.write (’\n Ending Learning rate + str(lr_end))

textfile.write(’\n kernels Size +str(kernels_size))

textfile.write (’\n Max pooling Size +str(maxpooling_size))

textfile.write(’\n Max pooling stride +str(maxpooling_stride))

81

pf)

textfile.write (’\n batch size + str(batch_size))

textfile.write(’\n KL term factor + str(kl_factor))

textfile . write ("\n ")

textfile . write ("\n Test Accuracy + str(test_acc))

textfile . write ("\n Output Variance: + str(np.mean(np.abs(var))))

textfile .write ("\n Correct Classification Variance: + str(np.mean(correct_classification)))

textfile.write ("\n MisClassification Variance: + str(np.mean(misclassification_pred)))

textfile . write ("\n ")

if Random_noise:
textfile . write (’\n Random Noise std: ’ + str(gaussain_noise_std))
textfile.write(’\n Random Noise HCV: ° + str (HCV))

textfile . write ("\n SNR: " + str(np.mean(snr_signal)))

textfile . write ("\n ")

textfile .close ()

if (Adversarial_noise):

elif (Adversarial_noise):

if (Adversarial_noise):
if Targeted:
test_path = ’test_results_targeted_adversarial_noise_{}/’.format(epsilon)
full_test_path = PATH + test_path
if os.path.exists(full_test_path):
Remove the existing test path and its contents
shutil .rmtree (full_test_path)
os.makedirs (PATH + test_path)
else:
test_path = “test_results_non_targeted_adversarial_noise_{}/ .format(epsilon)
full_test_path = PATH + test_path
if os.path.exists(full_test_path):
Remove the existing test path and its contents
shutil . rmtree (full_test_path)
os. makedirs (PATH + test_path)

trans_model.load_weights (PATH + ’vdp_cnn_model *)

test_no_steps = 0

true_x = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size, image_size, image_size, 1])
adv_perturbations = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size, image_size, image_size, 1])

true_y = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])

mu_out_ = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])
#sigma_ = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, class_num, class_num])
sigma_ = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])

acc_test = np.zeros(int(x_test.shape[0] / (batch_size)))

for step, (x., y) in enumerate(val_dataset):
update_progress (step / int(x_test.shape[0] / (batch_size)))
true_x[test_no_steps, :, :, :, :] =X

true_y[test_no_steps, :, :] =y

if Targeted:

y_true_batch = np.zeros_like (y)

y_true_batch[:, adversary_target_cls] = 1.0

adv_perturbations[test_no_steps, :, :, :, :] = create_adversarial_pattern(x, y_true_batch)
else:

adv_perturbations[test_no_steps, :, :, :, :] = create_adversarial_pattern(x, y)

82

adv_x = x + epsilon * adv_perturbations[test_no_steps, :, :, :, :]

adv_x = tf.clip_by_value(adv_x, 0.0, 1.0)

mu_out, sigma = test_on_batch(adv_x, y)

mu_out_[test_no_steps , :, :] = mu_out

sigma_[test_no_steps , :, :] = sigma

#sigma_[test_no_steps, :, :, :] = sigma

corr = tf.equal(tf.math.argmax (mu_out, axis=1), tf.math.argmax(y, axis=1))
accuracy = tf.reduce_mean(tf.cast(corr, tf.float32))
acc_test[test_no_steps] = accuracy.numpy ()

if step % 10 == 0:
print (" Total running accuracy so far: %.3f" % accuracy.numpy())

test_no_steps += 1

test_acc = np.mean(acc_test)

print(’Test accuracy : ’, test_acc)

pf = open(PATH + test_path + “uncertainty_info.pkl’, "wb’)
pickle .dump ([mu_out_, sigma_, adv_perturbations, test_acc], pf)

pf.close ()

var = np.zeros ([int(x_test.shape[0] / batch_size), batch_size])
snr_signal = np.zeros ([int(x_test.shape[0] / batch_size), batch_size])
for i in range(int(x_test.shape[0] / batch_size)):
for j in range(batch_size):
predicted_out = np.argmax(mu_out_[i, j, :])
var[i, j] = sigma_[i, j, int(predicted_out)]
snr_signal[i, j] = 10 = np.loglO(np.sum(np.square(true_x[i, j, :, :, :]1)) / np.sum(

np.square (epsilon * adv_perturbations[i, j, :, :, :])))

print (’ Output Variance’, np.mean(var))
print (’SNR’, np.mean(snr_signal))
valid_size = x_test.shape[0]

pred_var = np.zeros(int(valid_size))

true_var = np.zeros(int(valid_size))

correct_classification = np.zeros(int(valid_size))
misclassification_pred = np.zeros(int(valid_size))
misclassification_true = np.zeros(int(valid_size))
predicted_out = np.zeros(int(valid_size))

true_out = np.zeros(int(valid_size))

k=0
kl =0
k2 =0

for i in range(int(valid_size / batch_size)):
for j in range(batch_size):
predicted_out[k] = np.argmax(mu_out_[i, j, :])
true_out[k] = np.argmax(true_y[i, j, :])
pred_var[k] = sigma_[i, j, int(predicted_out[k])]

true_var[k] = sigma_[i, j, int(true_out[k])]

if (predicted_out[k] == true_out[k]):
correct_classification[kl] = sigma_[i, j, int(predicted_out[k])]
k1l = k1 + 1

if (predicted_out[k] != true_out[k]):

misclassification_pred[k2] = sigma_[i, j, int(predicted_out[k])]
misclassification_true [k2] = sigma_[i, j, int(true_out[k])]

k2 = k2 + 1

83

k=k+1

print (’ Average Output Variance’, np.mean(pred_var))

varl = pred_var # np.reshape(var, int(x_test.shape[0]/(batch_size))* batch_size)
print(varl)

writer = pd.ExcelWriter (PATH + test_path + ’variance.xIsx’, engine=’xlIsxwriter ’)
df = pd.DataFrame (np.abs(varl))

Write your DataFrame to a file

df.to_excel (writer , "Sheet")

dfl = pd.DataFrame(predicted_out)

dfl.to_excel (writer, ’Sheet’, startcol=4)

df2 = pd.DataFrame(true_out)

df2.to_excel (writer , ’Sheet’, startcol=7)

df3 = pd.DataFrame(correct_classification)

df3.to_excel (writer , “Sheet’, startcol=10)

df4 = pd.DataFrame(misclassification_pred)

df4 .to_excel (writer , ’Sheet’, startcol=13)

df5 = pd.DataFrame(misclassification_true)
df5.to_excel (writer , ’Sheet’, startcol=16)

writer.save ()

pf = open(PATH + test_path + ’var_info.pkl’, ’wb’)
pickle .dump ([correct_classification , misclassification_true , pred_var], pf)

pf.close ()

textfile = open(PATH + test_path + ’“Related_hyperparameters.txt’, 'w’)
textfile.write (’ Input Dimension : ’ + str(image_size))

#textfile . write (’\n No of Kernels : ’ + str(num_kernels))

textfile . write (’\n Number of Classes + str(num_classes))

textfile . write (’\n No of epochs + str(epochs))

textfile .write (’\n Initial Learning rate : ° + str(lr))

textfile . write (’\n Ending Learning rate + str(lr_end))

#textfile .write (’\n kernels Size + str(kernels_size))

#textfile . write ('\n Max pooling Size + str(maxpooling_size))

#textfile . write (’\n Max pooling stride + str(maxpooling_stride))

textfile .write (’\n batch size + str(batch_size))
textfile.write (’\n KL term factor : ° + str(kl_factor))

textfile . write ("\n ")

textfile .write ("\n Averaged Test Accuracy + str(test_acc))

textfile . write ("\n Output Variance: + str(np.mean(np.abs(var))))

textfile . write ("\n Correct Classification Variance: " + str(np.mean(correct_classification)))

textfile .write ("\n MisClassification Variance: " + str(np.mean(misclassification_pred)))

textfile . write ("\n ")

if Adversarial_noise:
if Targeted:
textfile.write (’\n Adversarial attack: TARGETED’)
textfile.write (’\n The targeted attack class: ’ + str(adversary_target_cls))
else:
textfile .write(’\n Adversarial attack: Non-TARGETED’)

textfile.write(’\n Adversarial Noise epsilon: * + str(epsilon))

84

textfile . write ("\n SNR: "

textfile . write ("\n

textfile .close ()

if (PGD_Adversarial_noise):
if Targeted:

test_path

full_test_path = PATH + test_path
if os.path.exists(full_test_path):

Remove the existing test path and its

shutil . rmtree (full_test_path)
os. makedirs (PATH + test_path)

else:

test_path
full_test_path = PATH + test_path
if os.path.exists(full_test_path):

Remove the existing test path and its

shutil .rmtree (full_test_path)

os.makedirs (PATH + test_path)

trans_model.load_weights (PATH + ’vdp_cnn_model *)

trans_model . trainable False

test_no_steps = 0

true_x

adv_perturbations

contents

contents

")

“test_results_targeted_PGDadversarial_noise_{}_max_iter_{}_{}/ .format(HCV, maxAdvStep,

np.zeros ([int(x_test.shape[0] / (batch_size)),

np.zeros ([int(x_test.shape[0] / (batch_size)),

true_y = np.zeros([int(x_test.shape[0] / (batch_size)),
mu_out_ = np.zeros ([int(x_test.shape[0] / (batch_size)),
#sigma_ = np.zeros ([int(x_test.shape[0] / (batch_size)),
sigma_ = np.zeros ([int(x_test.shape[0] / (batch_size)),
acc_test = np.zeros(int(x_test.shape[0] / (batch_size)))

epsilon = HCV / 3

+ str(np.mean(snr_signal)))

“test_results_non_targeted_PGDadversarial_noise_{}/’.format(HCV)

batch_size , image_size , image_size, channels])

batch_size , image_size, image_size,

batch_size , num_classes])

batch_size , num_classes])

batch_size, num_classes, num_classes])

batch_size , num_classes])

for step, (x., y) in enumerate(val_dataset):
update_progress (step / int(x_test.shape[0] / (batch_size)))
true_x[test_no_steps, :, :, :] =X
true_y [test_no_steps, :, :] =y
adv_x = x + tf.random.uniform(x.shape, minval=—epsilon, maxval=epsilon)
adv_x = tf.clip_by_value(adv_x, 0.0, 1.0)
for advStep in range(maxAdvStep):
if Targeted:
y_true_batch = np.zeros_like (y)
y_true_batch[:, adversary_target_cls] = 1.0
adv_perturbations [test_no_steps, :, :, :] = create_adversarial_pattern(adv_x, y_true_batch)
else:
adv_perturbations [test_no_steps, :, :, :] = create_adversarial_pattern(adv_x, y)
adv_x = adv_x + stepSize x adv_perturbations[test_no_steps, :, :, :]
pgdTotalNoise = tf.clip_by_value(adv_x - x, —epsilon, epsilon)
adv_x = tf.clip_by_value(x + pgdTotalNoise, 0.0, 1.0)
mu_out, sigma = test_on_batch(adv_x, y)
mu_out_[test_no_steps, :, :] = mu_out
#sigma_[test_no_steps, :, :, :] = sigma
sigma_[test_no_steps , :, :] = sigma

85

stepSize)

channels])

corr = tf.equal(tf.math.argmax(mu_out, axis=-1), tf.math.argmax(y, axis=-1))
accuracy = tf.reduce_mean(tf.cast(corr, tf.float32))
acc_test[test_no_steps] = accuracy.numpy ()
if step % 50 == 0:
print (" Total running accuracy so far: %.4f" % acc_test[test_no_steps])

test_no_steps += 1

test_acc = np.mean(acc_test)
print(’Test accuracy : ', test_acc)
print(’Best Test accuracy : ', np.amax(acc_test))

pf = open(PATH + test_path + ’uncertainty_info.pkl’, ’wb’)
pickle .dump ([mu_out_, sigma_, true_x , true_y, adv_perturbations, test_acc], pf)

pf.close ()

var = np.zeros ([int(x_test.shape[0] / batch_size), batch_size])
snr_signal = np.zeros([int(x_test.shape[0] / batch_size), batch_size])
for i in range(int(x_test.shape[0] / batch_size)):
for j in range(batch_size):
predicted_out = np.argmax(mu_out_[i, j, :])
var[i, j] = sigma_[i, j, int(predicted_out)]
snr_signal[i, j] = 10 * np.loglO(

np.sum(np.square(true_x[i, j, :, :, :])) / np.sum(np.square(epsilon % adv_perturbations[i, j, :, :, :]1)))

print (’ Output Variance’, np.mean(var))

print (’SNR’, np.mean(snr_signal))

H## varl = np.reshape(var, int(x_test.shape[0]/(batch_size))* batch_size)

#print(varl)

writer = pd.ExcelWriter (PATH + test_path + ’variance.xlsx’, engine="xIsxwriter)
df = pd.DataFrame(np.abs(varl))

Write your DataFrame to a file

df.to_excel (writer, "Sheet")

writer .save ()

textfile = open(PATH + test_path + ’Related_hyperparameters.txt’, ’w’)

textfile .write (’ Input Dimension + str(image_size))

#textfile .write(’\n No of Kernels : * + str(num_kernels))

textfile .write ("\n Number of Classes + str(num_classes))

textfile.write (’\n No of epochs : ’ + str(epochs))

textfile.write(’\n Initial Learning rate : * + str(lr))

textfile.write (’\n Ending Learning rate + str(lr_end))

#textfile .write (’\n kernels Size + str(kernels_size))

#textfile . write (’\n Max pooling Size + str(maxpooling_size))

#textfile . write (’\n Max pooling stride + str(maxpooling_stride))

textfile.write (’\n batch size + str(batch_size))
textfile.write(’\n KL term factor : > + str(kl_factor))

textfile . write ("\n ")

textfile . write ("\n Test Accuracy + str(test_acc))

textfile . write ("\n Output Variance: + str(np.mean(np.abs(var))))

textfile . write ("\n ")

if PGD_Adversarial_noise:
if Targeted:
textfile.write (’\n Adversarial attack: TARGETED’)
textfile.write (’\n The targeted attack class: ’ + str(adversary_target_cls))
else:

textfile .write(’\n Adversarial attack: Non-TARGETED’)

86

textfile . write (’\n Adversarial Noise epsilon: + str(epsilon))

textfile.write(’\n Adversarial Noise HCV: + str(HCV))

textfile . write ("\n SNR: " + str(np.mean(snr_signal)))

textfile . write ("\n stepSize: + str(stepSize))

textfile . write ("\n Maximum number of iterations: + str(maxAdvStep))

textfile . write ("\n ")
textfile.close ()

if __name__ == _main_

main_function ()

1.2 Source Code of Bayes-CCT

—x— coding: utf-8 —x—

import tensorflow as tf

tf .config.run_functions_eagerly (True)

from tensorflow import keras

import os

from tensorflow.keras.layers import (Dense, Dropout, LayerNormalization,)
os.environ ["CUDA_DEVICE ORDER"] = "PCI_BUS_ID"
For multiple devices (GPUs: 4, 5, 6, 7)

os.environ["CUDA_VISIBLE_DEVICES"] = "1,4,5,6,7"
import imageio

import matplotlib

import shutil

matplotlib.use(’Agg’)

import matplotlib.pyplot as plt
import numpy as np

import math

import time, sys

import pickle

import timeit

import xlsxwriter

from scipy.interpolate import make_interp_spline, BSpline

from tensorflow .keras.layers.experimental.preprocessing import Rescaling
from tensorflow.keras import layers

import tensorflow_addons as tfa

from keras.optimizers import SGD

import keras.backend as K

import pandas as pd

import wandb

from keras.preprocessing.image import ImageDataGenerator
os.environ ["WANDB_APLKEY"] = "3df171be2d23f8aaf89ddc494bb7116af7alec9b"”

import numpy as np

!pip install tensorflow_addons
import tensorflow as tf

from tensorflow import keras
import math

from tensorflow.keras import layers

import tensorflow_addons as tfa

87

from keras.optimizers import Adam
import keras.backend as K

import pandas as pd

plt.ioff ()
cifar10 = tf.keras.datasets.cifarl0
update_progress () : Displays or updates a console progress bar

Accepts a float between O and 1. Any int will be converted to a float.
A value under O represents a “halt’.
A value at 1 or bigger represents 100%
def update_progress(progress):
barLength = 10 # Modify this to change the length of the progress bar
status = ""
if isinstance(progress, int):
progress = float(progress)
if not isinstance (progress, float):
progress = 0
status = "error: progress var must be float\r\n"
if progress < 0:
progress = 0
status = "Halt...\r\n"
if progress >= 1:
progress = 1
status = "Done...\r\n"
block = int(round(barLength = progress))
text = "\rPercent: [{0}] {1}% {2}".format("#" % block + "-" % (barLength — block), progress = 100, status)
sys.stdout.write (text)

sys.stdout. flush ()

Auxilary Functions

def x_Sigma_w_x_T(x, W_Sigma):
batch_sz = x.shape[0]
xx_t = tf.reduce_sum (tf.multiply(x, x), axis=-1,
keepdims=True) # [50, 17, 64] —> [50, 17, 1] or [50, 64] - > [50, 1]
xx_t_e = tf.expand_dims(xx_t,axis=2)

return tf.multiply (xx_t, W_Sigma) # [50,17,64] or [50, 64] or [50, 10]

def w_t_Sigma_i_w(w_mu, in_Sigma): # [64, 64] , [50, 17, 64] or [64, 10], [50, 64]
Sigma_1 = tf.matmul(in_Sigma, tf.multiply (w_mu, w_mu)) # [50, 17, 64] or [50, 10]

return Sigma_l

def tr_Sigma_w_Sigma_in(in_Sigma, W_Sigma):
Sigma = tf.reduce_sum(in_Sigma, axis=-1, keepdims=True) # [50,17, 1]

return tf.multiply (Sigma, W_Sigma) # [50,17, 64]

def sigma_regularizer(x):

input_size = 1.0

88

f_s = tf.math.softplus(x) # tf.math.log(l. + tf.math.exp(x))

return input_size = tf.reduce_mean(-1. — tf.math.log(f_s) + f_s)

Bayesian 1st ConV

class VDP_first_Conv (keras.layers.Layer):
def __init__(self, kernel_size, kernel_num, kernel_stride , padding="VALID"):
super (VDP_first_Conv, self).__init__()
self.kernel_size = kernel_size
self .kernel_num = kernel_num

self.kernel_stride = kernel_stride

self.padding = padding

def build(self, input_shape):
def sigma_regularizer_conv(x):

f_s = tf.math.softplus(x) # tf.math.log(l. + tf.math.exp(x))

return (self.kernel_size % self.kernel_size * input_shape[-1]) = tf.reduce_mean(f_s — tf.math.log(f_s) — 1.)
ini_sigma = -6.9
tau = 1. # / (self.kernel_sizex self.kernel_sizex input_shape[-1])
ini_sigma = -6.9
min_sigma = -4.5
tau = 1. # / (self.kernel_size % self.kernel_size = input_shape[-1])
self .w.mu = self.add_weight(name="w_mu’,

shape=(self.kernel_size , self.kernel_size, input_shape[-1], self.kernel_num),
initializer=tf.random_normal_initializer (mean=0.0, stddev=0.05, seed=None),
regularizer=tf.keras.regularizers.12(tau), # 11_I2(1l1=tau, I2=tau)
trainable=True ,
)
self.w_sigma = self.add_weight(name="w_sigma’,
shape=(self.kernel_num,),
initializer=tf.constant_initializer (ini_sigma),
tf .random_uniform_initializer (minval=min_sigma, maxval=ini_sigma, seed=None),
regularizer=sigma_regularizer_conv ,

trainable=True,

)
def call(self, mu_in):
batch_size = mu_in.shape[0]
num_channel = mu_in.shape[-1]
mu_out = tf.nn.conv2d(mu_in, self.w_mu, strides=[1, self.kernel_stride, self.kernel_stride, 1],

padding=self.padding, data_format="NHWC")
x_train_patches = tf.image.extract_patches(mu_in, sizes=[1, self.kernel_size, self.kernel_size, 1],
strides=[1, self.kernel_stride , self.kernel_stride, 1],
rates=[1, 1, 1, 1],
padding=self.padding) # shape=[batch_size , image_size, image_size, kernel_sizexkernel_sizesnum_cha
x_train_matrix = tf.reshape(x_train_patches , [batch_size, -1,

self . kernel_size = self.kernel_size % num_channel]) # shape=[batch_size, image_sizeximage_size,

x_train_matrix = tf.math.reduce_sum(tf.math.square(x_train_matrix),
axis=-1) # shape=[batch_size, image_sizeximage_size] = [16, 576]
X_XTranspose = tf.ones([1, 1, self.kernel_num]) * tf.expand_dims(x_train_matrix , axis=-1)

Sigma_out = tf.multiply (tf.math.log(1l. + tf.math.exp(self.w_sigma)),

X_XTranspose) # shape=[batch_size ,image_sizeximage_size, kernel_num]

89

Sigma_out = tf.reshape(Sigma_out, [batch_size,

Sigma_out =

return mu_out, Sigma_out

Bayesian Intermediate Conv

class VDP_intermediate_Conv (keras.layers.Layer):

def __init__(self, kernel_size=5,

super (VDP_intermediate_Conv, self).__init__ ()
self.kernel_size = kernel_size
self .kernel_num = kernel_num
self.kernel_stride = kernel_stride
self . padding = padding
f build (self, input_shape):
ini_sigma = -6.9
min_sigma = -4.5
tau = 1. # / (self.kernel_size

self .w.mu = self.add_weight(name="w_mu’,

shape=(self.kernel_
initializer=tf.random_normal_initializer (mean=0.0,

regularizer=tf.keras.regularizers.

trainable=True,
)

self .w_sigma = self.add_weight(name="w_sigma’,

tf.linalg.set_diag(Sigma_out,

mu_shape= [batch_size ,

kernel_num=16, kernel_stride=1,

mu_out.shape[1], mu_out.shape[l], self.kernel_num])

tf .abs(tf.linalg.diag_part(Sigma_out)))

image_size , image_size, kernel_num], sigma_shape=[batch_size , image_size, image_size, kernel

padding="VALID"):

self . kernel_size % input_shape[-1])

size , self.kernel_size, input_shape[-1], self.kernel_num),

stddev=0.05, seed=None),

12(tau), # 11_12(1l=tau, 12=tau)

shape=(self.kernel_num,),

initializer=tf.constant_initializer (ini_sigma),

tf .random_uniform_initializer (minval=min_sigma,

maxval=ini_sigma, seed=None),

regularizer=sigma_regularizer ,

trainable=True,
)
def call(self, mu_in,

Sigma_in): # [batch_size,

batch_size = mu_in.shape[0]
num_channel = mu_in.shape[-1]

mu_out = tf.nn.conv2d(mu_in, self.w_mu,

padding=self.padding ,

diag_sigma_patches =

diag_sigma_g = tf.reshape(diag_sigma_patches,
self.kernel_sizexself.kernel_size+num_channel |
mu_cov_square =
[self.kernel_size =
self.kernel_num])
mu_wT_sigmags_mu_w = tf.matmul(diag_sigma_g,

mu_cov_square)

image_size ,
shape=[batch_size ,

strides =[1,

tf .image . extract_patches (Sigma_in,
strides=[1,
rates=[1,

padding=self.padding)

[batch_size ,

tf .reshape (tf.math. multiply (self.w_mu,

image_size , channel]

im_size , im_size , num_channel]

self.kernel_stride , self.kernel_stride ,

1,

data_format="NHWC")

sizes=[1, self.kernel_size , 17,

self.kernel_size ,
self . kernel_stride , 17,

11,

self . kernel_stride ,

1, 1,

shape=[batch_size , new_im_size, new_im_size, kernel_sizesxkernel_sizesnui

-1,

self . kernel_size # self.kernel_size * num_channel]) # shape=[batch_size, new_im_sizexnew_im_siz

self.w_mu),
self.kernel_size # num_channel,

shape[kernel_sizexkernel_sizexnum_channel, kernel_num]

shape=[batch_size , new_im_sizesnew_im_size , kernel_num]

90

trace = tf.math.reduce_sum(diag_sigma_g,
trace = tf.ones([1, 1, self.kernel_num]) =
trace = tf . multiply (tf.math.log (1.

trace)

mu_in_patches

[batch_

self.kernel_size =

mu_gT_mu_g = tf.math.reduce_sum(tf.math. multiply (mu_in_patches,

axis=-1)

mu_gT_mu_gl = tf.ones([1, 1, self.

sigmaw_mu_gT_mu_g =

mu_gT_mu_gl)

Sigma_out =
Sigma_out = tf.reshape(Sigma_out,

return mu_out, Sigma_out

Bayesian Maxpooling

shape=[batch_size ,

2, keepdims=Tr

trace

ue)

shape=[batch_size ,

shape=[batch_size ,

+ tf.math.exp(self.w_sigma)),

strides =[1,

rates=[1,

size , -1,

kernel_num]) =

[batch_size ,

class VDP_MaxPooling(keras.layers.Layer):

"""VDP_MaxPooling """

def __init__(self, pooling_size=2, pooling_stride=2,
super (VDP_MaxPooling, self). __init__ ()
self .pooling_size = pooling_size
self.pooling_stride = pooling_stride
self.pooling_pad = pooling_pad

def call(self, mu_in, Sigma_in):

batch_size = mu_in.shape[0]

hw_in = mu_in.shape[1]

num_channel = mu_in.shape[-1]

shape=[batch_size ,

, new_im_sizexnew_im_size ,

tf .reshape (tf.image.extract_patches (mu_in,

shape=[batch_size ,

shape=[batch_size ,

mu_out.shape[1],

shape=[batch_size ,,im_size ,

im_size ,

sizes=[1,

1,1,

self.kernel_size % num_channel])

tf .expand_dims (mu_gT_mu_g,

axis=-1)

tf .multiply (tf.math.log (1. + tf.math.exp(self.w_sigma)),

trace + mu_wT_sigmags_mu_w + sigmaw_mu_gT_mu_g # # shape=[batch_size,

pooling_pad="SAME’):

im_size ,

im_size ,

shape=[batch_size ,

hw_out * hw_out],

new_im_sizexnew_im_size ,

self.kernel_size ,

self.kernel_stride ,

mu_in_patches),

shape=[batch_size ,

new_im_sizexnew_im_size ,

mu_out.shape[1],

num_channel]

shape=[batch_zise ,

hw_out * hw_out],

new_im_sizex new_im_size ,

1]

kernel_num]

kernel_num]

self.kernel_size ,

1,
1,

self.kernel_stride ,

1], padding=self.padding),

shape=[batch_size ,

new_im_sizexnew_im_size]

new_im_sizexnew_im_size ,

kernel_num]

new_im_sizesnew_im_size , kernel_num]

self.kernel_num])

num_channel]

self . pooling_size ,

1,
1T,

self.pooling_stride ,

new_sizexnew_size]

num_channel ,
dtype="int64 ")),
dtype="int64 *))

mu_out, argmax_out = tf.nn.max_pool_with_argmax(mu_in, ksize=[1, self.pooling_size,
strides=[1, self.pooling_stride ,
padding=self.pooling_pad)

hw_out = mu_out.shape[1]

argmax] = tf.transpose (argmax_out, [0, 3, 1, 2])

argmax2 = tf.reshape(argmaxl, [batch_size, num_channel,

—1]) # shape=[batch_size , num_channel,
x_index = tf.math.floormod(tf.compat.vl.floor_div(argmax2, tf.constant(num_channel,
tf . constant(hw_in, shape=[batch_size , num_channel,
aux = tf.compat.vl.floor_div(tf.compat.vl.floor_div(argmax2, tf.constant(num_channel,

tf .constant (hw_in,

y_index = tf.math.floormod (aux,

dtype="int64 *))

shape=[batch_size ,

91

shape=[batch_size ,

num_channel ,

hw_out * hw_out],

dtype="int64 ")),

num_channel ,

hw_out = hw_out],

new_im_sizexnew_im_size ,

self.kernel_size

kernel_num]

new_size ,new_size ,num_channel]

tf.constant (hw_in, shape=[batch_size,

index = tf.multiply (y_index, hw_in) + x_index # shape=[batch_size,

Sigma_inl = tf.transpose(tf.reshape(Sigma_in, [batch_size,

Sigma_out = tf.gather(Sigma_inl, index, batch_dims=2,

num_channel ,

—1, num_channel]),

hw_out % hw_out],

num_channel , new_sizexnew_size]

[0, 2, 1])

mu_out.shape[1], mu_out.shape[l],

shape=[batch_size ,new_size ,

scale=None,

axis=—1) # shape=[batch_size ,num_channel ,new_sizexnew_size]
Sigma_out = tf.reshape(tf.transpose(Sigma_out, [0, 2, 1]), [batch_size,
num_channel])
return mu_out, Sigma_out
Bayesian BatchNorm
class VDPBatch_Normalization(keras.layers.Layer):
def __init__(self, var_epsilon):
super (VDPBatch_Normalization, self).__init__ ()
self . var_epsilon = var_epsilon
def call(self, mu_in, Sigma_in):
mean, variance = tf.nn.moments(mu_in, [0, 1, 2])
mu_out = tf.nn.batch_normalization(mu_in, mean, variance, offset=None,
variance_epsilon=self.var_epsilon)
Sigma_out = tf.multiply (Sigma_in, 1 / (variance + self.var_epsilon))

return mu_out, Sigma_out

Bayesian Fully Connected Layers

stddev=0.05, seed=None),

—12., maxval=-2.2,

class LinearFirst(keras.layers.Layer):
"My = w.x + b"""
def __init__(self, units):
super(LinearFirst, self).__init__ ()
self .units = units
def build(self, input_shape):
tau = 0.01 # 1. /input_shape[-1]
ini_sigma = -6.5
self .w.mu = self.add_weight(name="w_mu’,
shape=(input_shape[-1], self.units),
initializer=tf.random_normal_initializer (mean=0.0,
regularizer=tf.keras.regularizers.12(tau),
trainable=True)
self.w_sigma = self.add_weight(name="w_sigma’,
shape=(self.units ,),
initializer=tf.constant_initializer (ini_sigma),
initializer=tf.random_uniform_initializer (minval=
regularizer=sigma_regularizer ,
trainable=True)
def call(self, inputs): # [50,17,64]
Mean

print(self.w_mu.shape)

mu_out = tf.matmul(inputs, self.w._mu) # + self.b_mu [50, 17, 64]

Varinace

W_Sigma = tf.math.log(

92

Mean of the output

dtype="int64 *))

new_size ,

seed=None) ,

num_channel]

1. + tf .math.exp(self.w_sigma)) # [64] # Construct W_Sigma from w_sigmas
Sigma_out = x_Sigma_w_x_T(inputs ,
W_Sigma) # [50, 17, 64] + tf .math.log (1. + tf.math.exp(self.b_sigma)) #tf.linalg.diag(self.b_sigma)
Sigma_out = tf . where(tf.math.is_nan(Sigma_out), tf.zeros_like(Sigma_out), Sigma_out)
Sigma_out = tf . where(tf.math.is_inf(Sigma_out), tf.zeros_like(Sigma_out), Sigma_out)
Sigma_out = tf.abs(Sigma_out)

return mu_out, Sigma_out

class LinearNotFirst(keras.layers.Layer):

y =w.x + b"""

def __init__(self, units):
super (LinearNotFirst, self).__init__ ()

self .units = units

def build(self, input_shape):
ini_sigma = -6.9
min_sigma = -4.5

tau = 1. # 1. /input_shape[-1]

self .w.mu = self.add_weight(name="w_mu’, shape=(input_shape[-1], self.units),
[64 , 64] or or [64, 10] or [10, 10]
initializer=tf.random_normal_initializer (mean=0.0, stddev=0.05, seed=None),
regularizer=tf.keras.regularizers.12(tau),
tau/self.units), #tf keras.regularizers.12(0.5%0.001),
trainable=True,)
self .w_sigma = self.add_weight(name="w_sigma’,
shape=(self.units ,),
initializer=tf.constant_initializer (ini_sigma),
tf .random_uniform_initializer (minval= min_sigma, maxval=ini_sigma, seed=None) ,
regularizer=sigma_regularizer , # tf.constant_initializer (ini_sigma)

trainable=True,)

def call(self, mu_in, Sigma_in): # [50,17,64], [50,17,64] or [50, 64] or [50, 10]

mu_out = tf.matmul(mu_in, self.w_mu) # + self.b_mu [50, 17, 64]

W_Sigma = tf.math.log (1. + tf.math.exp(self.w_sigma)) # [64]

Sigma_1 = w_t_Sigma_i_w(self .w_mu, Sigma_in) # [50,17,64]

Sigma_2 = x_Sigma_w_x_T(mu_in, W_Sigma) # [50, 17, 64]

Sigma_3 = tr_Sigma_w_Sigma_in(Sigma_in, W_Sigma) # [50, 17, 64]

Sigma_out = Sigma_l + Sigma_2 + Sigma_3 # + tf.linalg.diag(tf.math.log(1l. + tf.math.exp(self.b_sigma))) #[50, 17, 64]

Sigma_out = tf.where(tf.math.is_nan(Sigma_out), tf.zeros_like(Sigma_out), Sigma_out) # [50,2,17,64,64]
Sigma_out = tf.where(tf.math.is_inf(Sigma_out), tf.zeros_like(Sigma_out), Sigma_out) # [50,2,17,64,64]
Sigma_out = tf.abs(Sigma_out)

return mu_out, Sigma_out # mu_out=[50,17,64], Sigma_out = [50,17,64]

Bayesian Activation Functions

class VDP_GeLU(keras.layers.Layer):

def __init__(self):

super (VDP_GeLU, self).__init__()

def call(self, mu_in, Sigma_in): # mu_in = [50,17,64], Sigma_in= [50,17,64]

93

mu_out = tf.nn.gelu(mu_in) # [50,17,64]
with tf.GradientTape () as g:
g.watch(mu_in)
out = tf.nn.gelu(mu_in)
gradi = g.gradient(out, mu_in) # [50,17,64]
Sigma_out = activation_Sigma(gradi, Sigma_in)

return mu_out, Sigma_out # [50,2,17,64], [50,2,17,64,64]

def activation_Sigma(gradi, Sigma_in):
gradl = tf.multiply (gradi, gradi) # [50,17,64] or [50, 10]
return tf.multiply (Sigma_in, gradl) # [50,17,64] or [50, 10]

class VDP_ReLU(keras.layers.Layer):

" ReLU """

def __init__(self):
super (VDP_ReLU, self).__init__ ()

def call(self, mu_in, Sigma_in):
mu_out = tf.nn.relu(mu_in)
with tf.GradientTape () as g:
g.watch(mu_in)
out = tf.nn.relu(mu_in)
gradi = g.gradient(out, mu_in)
Sigma_out = activation_Sigma(gradi, Sigma_in)

return mu_out, Sigma_out

Bayesian Dropout

class VDP_Dropout(keras.layers.Layer):
def __init__(self, drop_prop):
super (VDP_Dropout, self).__init__ ()

self.drop_prop = drop_prop

def call(self, mu_in, Sigma_in, Training=True):
shape=[batch_size , seq length, embedding_dim]
scale_sigma = 1.0 / (1 - self.drop_prop)

if Training:

mu_out = tf.nn.dropout(mu_in, rate=self.drop_prop) # [50,17,64] or [50, 10]

print(’shape in dropout’,mu_out.shape)

non_zero = tf.not_equal(mu_out, tf.zeros_like(mu_out)) #

non_zero_sigma_mask = tf.boolean_mask(Sigma_in, non_zero)

idx_sigma = tf.dtypes.cast(tf.where(non_zero), tf.int32)
Sigma_out = (scale_sigma =#% 2) =% tf.scatter_nd(idx_sigma,
print(’sigma shape in dropout’, Sigma_out.shape)

else:
mu_out = mu_in
Sigma_out = Sigma_in

return mu_out, Sigma_out # [50,17,64], [50,17,64]

Bayesian Multi Layer Perceptron

94

[50.17.,64]

non_zero_sigma_mask ,

tf .shape(non_zero))

class VDP_MLP(tf.keras.layers.Layer):

def

__init__(self , hidden_features , out_features , dropout_rate=0.1):
super (VDP_MLP, self).__init__()

self.densel = LinearNotFirst(hidden_features)

self.densel = LinearNotFirst(mlp_dim)

self.dense2 = LinearNotFirst(out_features)

self.dense2 = LinearNotFirst(embed_dim)

self .dropoutl = VDP_Dropout(dropout_rate)

self.gelu_1 = VDP_GeLU()

call(self, mu_in, sigma_in):

mu_out, sigma_out = self.densel (mu_in, sigma_in)

print(’shape of x(MLP layer) :’,mu_out.shape)
mu_out, sigma_out = self.gelu_I(mu_out, sigma_out)
print(’shape of x through GeLU :’,mu_out.shape)
mu_out, sigma_out = self.dropoutl (mu_out, sigma_out)
print(’shape of x after dropout :’,mu_out.shape)
mu_out, sigma_out = self.dense2(mu_out, sigma_out)
print(’shape of x after 2nd dense :’,mu_out.shape)
mu_out, sigma_out = self.dropoutl (mu_out, sigma_out)
print(’shape of mu_out after MLP layer ', mu_out.shape)

return mu_out, sigma_out

Deterministic Layernorm

class LayerNorm(tf.keras.layers.Layer):

def

__init__(self , eps=le—4, sxkwargs):
self .eps = eps

super (LayerNorm, self).__init__ (xxkwargs)

build (self , input_shape):

self.gamma = self.add_weight(name="gamma’, shape=input_shape[-1:],
initializer=tf.keras.initializers .Ones(),

self.beta = self.add_weight(name="beta’, shape=input_shape[-1:],
initializer=tf.keras.initializers .Zeros(),

super (LayerNorm, self).build (input_shape)

call (self, x):

mean = K.mean(x, axis=-1, keepdims=True)
std = K.std(x, axis=-1, keepdims=True)
print("mean of LN", mean.shape)

print("std of LN",std.shape)

return self.gamma % (x — mean) / (std + self.eps) + self.beta

compute_output_shape(self , input_shape):

return input_shape

Bayesian Layernorm

class Bayesian_LayerNorm(layers.Layer):

def

__init__(self , eps=le-5, sxkwargs):
self.eps = eps

super (Bayesian_LayerNorm, self).__init__ (xxkwargs)

95

trainable=True)

trainable=True)

def build(self, input_shape):

self.gamma = self.add_weight(name="gamma’,

initializer=tf.keras.initializers .Ones(),

self .beta = self.add_weight(name="beta’

initializer=tf.keras.initializers.Zeros(),

super (Bayesian_LayerNorm, self).build (input_shape)

def call(self, mu_x,

shape=input_shape[-1:],

trainable=True)

shape=input_shape[-1:],

trainable=True)

sigma_x): # (batch_size, sequence_length, embedding_dim), (batch_size, sequence_length, embedding_dim)[50,17,
mean = K.mean(mu_x, axis=-1, keepdims=True) # [50,17,1]
std = K.std (mu_x, axis=-1, keepdims=True) # [50,17,1]

print(’std = , std.shape)

print(’gamma = °,self.gamma)

(mu_x — mean) / (std + self.eps) + self.beta

out_mu = self.gamma =
a = (self.gamma / (std + self.eps)) =% 2 # [50,17,64]
out_sigma = tf.math. multiply(a, sigma_x) # [50,17,64]

return out_mu, out_sigma

def compute_output_shape(self, input_shape):

return input_shape

Bayesian Multi Head Attention

class

def __init__(self, embed_dim, num_heads):

super (Bayesian_MultiHeadSelfAttention_First ,

self.embed_dim = embed_dim

self.num_heads = num_heads

if embed_dim % num_heads !'= 0:

raise ValueError(

f"embedding dimension = {embed_dim}

self.projection_dim = embed_dim // num_heads

self.query_dense = LinearNotFirst(embed_dim)

self . key_dense = LinearNotFirst(embed_dim)

self.value_dense = LinearNotFirst(embed_dim)

self.combine_heads = LinearNotFirst(embed_dim)

Bayesian_MultiHeadSelfAttention_First(tf.keras.layers.

self). _

should be divisible by number of heads =

Layer):

_init__()

{num_heads }"

def attention(self, mu_query, sigma_query, mu_key, sigma_key, mu_value, sigma_value, input_dimension):
mu_score = tf.matmul(mu_query, mu_key, transpose_b=True) # [50, 2, 17, 32] x [50, 2, 32, 17] = [50, 2, 17, 17]
print(’mu_score’,mu_score.shape)
a = tf.reduce_sum(tf.math. multiply (mu_query =x 2, sigma_key), axis=-1, keepdims=True) # [50, 2, 17, 1]
print(’a’, a.shape)
b = tf.transpose (tf.reduce_sum(tf.math. multiply (mu_key = 2, sigma_query), axis=-1, keepdims=True),

perm=[0, 1, 3, 2]) # [50, 2, 1, 17]

a_b=a+b # [50, 2, 17, 17]
¢ = tf.matmul(sigma_query, sigma_key, transpose_b=True) # [50, 2, 17, 17]
¢l = tf.reduce_sum(tf.math. multiply (sigma_query, sigma_key), axis=-1, keepdims=True) # [50, 2, 17, 1]
print(’cl’,cl.shape)
¢2 = tf.transpose(cl, perm=[0, 1, 3, 2]) # [50, 2, 1, 17]
¢ =cl +c2 # [50, 2, 17, 17]

96

64],[50,17,64]

print(’cl+c2’,c.shape)

sigma_score = a_b + ¢ # [50, 2, 17, 17]

print(’sigma score’,sigma_score.shape)

dim_key = tf.cast(tf.shape(mu_key)[-1], tf.float32)

mu_scaled_score = mu_score / tf.math.sqrt(dim_key) # [50, 2, 17, 17]
print(’mu scaled score’,mu_scaled_score.shape)

sigma_scaled_score = sigma_score * dim_key # [50, 2, 17, 17]
mu_weights = tf.nn.softmax (mu_scaled_score, axis=-1) # [50, 2, 17, 17]
Sigma for softmax function

ppl = tf.expand_dims(mu_weights, axis=-1) # [50, 2, 17, 17,1]

pp2 = tf.expand_dims(mu_weights, axis=3) # [50, 2, 17,1, 17]

ppT = tf.matmul(ppl, pp2) # # [50, 2, 17, 17.,17]

p_diag = tf.linalg.diag(mu_weights) # [50, 2, 17, 17,17]

grad = (p_diag — ppT) =x 2 # # [50, 2, 17, 17,17]

Sigma_weights = tf.squeeze (tf.matmul(grad,

Sigma_weights = tf.where(tf.math.is_nan(Sigma_weights),
Sigma_weights = tf.where(tf.math.is_inf(Sigma_weights),

Sigma_weights = tf.linalg.set_diag(Sigma_out,

mu_output = tf.matmul(mu_weights, mu_value) # [50,2,17,17] X [50,2,17,32]= [50,2,17,32]
print(’mu output’,mu_output.shape)

d = tf.matmul (mu_weights %% 2, sigma_value) # [50,2,17,32]

e = tf.matmul(Sigma_weights, mu_value =*x 2) # [50,2,17,32]

f = tf .matmul (Sigma_weights, sigma_value) # [50, 2, 17, 17]x[50,2,17.,32]= [50,2,17,32]

output_sigma =d + e + f

return mu_output, output_sigma # , mu_weights,

tf .expand_dims(sigma_scaled_score ,

axis=-1)))
tf . zeros_like (Sigma_weights),

tf . zeros_like (Sigma_weights),

tf.abs(tf.linalg.diag_part(Sigma_out)))

Sigma_weights

[50,

2,

Sigma_weights)

Sigma_weights)

17,

sigma_value)

separate_heads (self , mu_x, sigma_x, batch_size): # [50, 17,641, [50, 17, 64]

mu_x = tf.reshape(mu_x, (batch_size, -1, self.num_heads, self.projection_dim)) # [50, 17, 2 ,32]

print(’mu_x’,mu_x.shape)

sigma_x = tf.reshape(sigma_x, (batch_size, -1, self.num_heads, self.projection_dim)) # [50, 17, 2 32]
mu_x = tf.transpose(mu_x, perm=[0, 2, 1, 3]) # [50, 2, 17, 32]

sigma_x = tf.transpose(sigma_x, perm=[0, 2, 1, 3]) # [50, 2, 17, 32]

return mu_x, sigma_x # [50,2,17,32],[50,2,17.,32]

call (self , mu_inputs, sigma_inputs):

batch_size = tf.shape(mu_inputs)[0]

mu_query, sigma_query = self.query_dense(mu_inputs, sigma_inputs) # [50, 17,64] , [50, 17,64]
mu_key, sigma_key = self.key_dense(mu_inputs, sigma_inputs) # [50, 17,64] , [50, 17,64]

mu_value, sigma_value = self.value_dense(mu_inputs, sigma_inputs) # [50, 17,64], [50, 17,64]
mu_query, sigma_query = self.separate_heads(mu_query, sigma_query, batch_size)

mu_key, sigma_key = self.separate_heads(mu_key, sigma_key, batch_size)

mu_value, sigma_value = self.separate_heads (mu_value, sigma_value, batch_size)

print(’query2 in MHA after passing through separate heads=’',mu_query.shape)

mu_attention , sigma_attention = self.attention (mu_query, sigma_query , mu_key, sigma_key, mu_value,
mu_attention , sigma_attention = self.attention(mu_query, sigma_query, mu_key, sigma_key, mu_value,

tf .shape (mu_inputs)[1])

mu_attention = tf.transpose(mu_attention, perm=[0, 2, I,

print(’mu attention ', mu_attention.shape)

sigma_attention = tf.transpose(sigma_attention, perm=[0,
print(’sigma attention ’,sigma_attention.shape)

mu_concat_attention = tf.reshape(mu_attention ,

(batch_size ,

3]) # [50,17,2,32]

2, 1, 3])

-1, self.embed_dim))

97

17]

sigma_value ,

class

print("shape after concat_attention:",mu_concat_attention.shape) #[50,17,64]

sigma_concat_attention = tf.reshape(sigma_attention, (batch_size, -1, self.embed_dim))
print("shape after concat_attention sigma:",sigma_concat_attention.shape) #[50,17,64]
mu_output, sigma_output = self.combine_heads(mu_concat_attention, sigma_concat_attention)

print(’shape after combine head mu after first MHA’, mu_output.shape)

print(’shape after combine head sigma after first MHA’, sigma_output.shape)

sigma_output = self.combine_heads(sigma_concat_attention)

return mu_output, sigma_output

Bayesian_MultiHeadSelfAttention_Intermediate (tf.keras.layers.Layer):

def __init__(self, embed_dim, num_heads):

def attention(self, mu_query, sigma_query, mu_key, sigma_key, mu_value, sigma_value):

super (Bayesian_MultiHeadSelfAttention_Intermediate , self). __init__ ()
self .embed_dim = embed_dim

self .num_heads = num_heads

if embed_dim % num_heads != 0:

raise ValueError(

f"embedding dimension = {embed_dim} should be divisible by number of heads = {num_heads}"

self.projection_dim = embed_dim // num_heads
self.query_dense = LinearNotFirst(embed_dim)
self.key_dense = LinearNotFirst(embed_dim)

self.value_dense = LinearNotFirst(embed_dim)

self.combine_heads = LinearNotFirst(embed_dim)

mu_score = tf.matmul(mu_query, mu_key, transpose_b=True) # [50, 2, 17, 32] x [50, 2, 32, 17] = [50,

print(’mu_score’,mu_score.shape)

a = tf.reduce_sum(tf.math. multiply (mu_query =i 2, sigma_key), axis=-1, keepdims=True) # [50, 2, 17,

print(’a’, a.shape)

b = tf.transpose (tf.reduce_sum(tf.math. multiply (mu_key =#% 2, sigma_query), axis=-1, keepdims=True),
perm=[0, 1, 3, 2]) # [50, 2, 1, 17]

a_b=a+b # [50, 2, 17, 17]

cl = tf .reduce_sum(tf.math. multiply (sigma_query, sigma_key), axis=-1, keepdims=True) # [50, 2, 17,

print(’cl’,cl.shape)

c2 = tf.transpose(cl, perm=[0, 1, 3, 2]) # [50, 2, 1, 17]

c=cl +c2 # [50, 2, 17, 17]

print(’cl+c2’,c.shape)

sigma_score = a_b + ¢ # [50, 2, 17, 17]

print(’sigma score’,sigma_score.shape)

dim_key = tf.cast(tf.shape(mu_key)[-1], tf.float32)

mu_scaled_score = mu_score / tf.math.sqrt(dim_key) # [50, 2, 17, 17]
print('mu scaled score’,mu_scaled_score.shape)

sigma_scaled_score = sigma_score * dim_key # [50, 2, 17, 17]

mu_weights = tf.nn.softmax(mu_scaled_score, axis=-1) # [50, 2, 17, 17]
Sigma for softmax function

ppl = tf.expand_dims(mu_weights, axis=-1) # [50, 2, 17, 17,1]

pp2 = tf.expand_dims(mu_weights, axis=3) # [50, 2, 17,1, 17]

ppT = tf.matmul(ppl, pp2) # # [50, 2, 17, 17,17]

p_diag = tf.linalg.diag(mu_weights) # [50, 2, 17, 17.17]

grad = (p_diag — ppT) == 2 # # [50, 2, 17, 17,17]

98

2,

1]

1]

17,

17]

Sigma_weights = tf.squeeze (tf.matmul(grad, tf.expand_dims(sigma_scaled_score, axis=-1))) # [50, 2, 17, 17]
Sigma_weights = tf.where(tf.math.is_nan(Sigma_weights), tf.zeros_like(Sigma_weights), Sigma_weights)
Sigma_weights = tf.where(tf.math.is_inf(Sigma_weights), tf.zeros_like (Sigma_weights), Sigma_weights)

Sigma_weights = tf.linalg.set_diag(Sigma_out, tf.abs(tf.linalg.diag_part(Sigma_out)))

mu_output = tf.matmul(mu_weights, mu_value) # [50,2,17,17] X [50,2,17,32]= [50,2,17,32]
print(’mu output’,mu_output.shape)

d = tf.matmul(mu_weights %% 2, sigma_value) # [50,2,17,32]

e = tf.matmul(Sigma_weights, mu_value =% 2) # [50,2,17,32]

f = tf.matmul(Sigma_weights, sigma_value) # [50, 2, 17, 17]x[50,2,17,32]= [50,2,17,32]
output_sigma =d + e + f

return mu_output, output_sigma # , mu_weights, Sigma_weights

def separate_heads(self, mu_x, sigma_x, batch_size): # [50, 17,64], [50, 17, 64]
mu_x = tf.reshape(mu_x, (batch_size, -1, self.num_heads, self.projection_dim)) # [50, 17, 2 ,32]
print(’mu_x’,mu_x.shape)
sigma_x = tf.reshape(sigma_x, (batch_size, -1, self.num_heads, self.projection_dim)) # [50, 17, 2 32]
mu_x = tf.transpose (mu_x, perm=[0, 2, 1, 3]) # [50, 2, 17, 32]
sigma_x = tf.transpose(sigma_x, perm=[0, 2, 1, 3]) # [50, 2, 17, 32]
return mu_x, sigma_x # [50,2,17,32],[50,2,17,32]

def call(self, mu_inputs, sigma_inputs):
batch_size = tf.shape(mu_inputs)[0]
mu_query, sigma_query = self.query_dense(mu_inputs, sigma_inputs) # [50, 17.64] ., [50, 17.,64]
mu_key, sigma_key = self.key_dense(mu_inputs, sigma_inputs) # [50, 17,64] ., [50, 17,64]

mu_value, sigma_value = self.value_dense(mu_inputs, sigma_inputs) # [50, 17,64], [50, 17,64]

mu_query, sigma_query = self.separate_heads(mu_query, sigma_query, batch_size)
mu_key, sigma_key = self.separate_heads(mu_key, sigma_key, batch_size)
mu_value, sigma_value = self.separate_heads(mu_value, sigma_value, batch_size)

print(’query2 in MHA after passing through separate heads=’,mu_query.shape)

mu_attention , sigma_attention = self.attention(mu_query, sigma_query, mu_key, sigma_key, mu_value, sigma_value)
mu_attention = tf.transpose(mu_attention, perm=[0, 2, 1, 3]) # [50,17.,2,32]

print(’mu attention ', mu_attention.shape)
sigma_attention = tf.transpose(sigma_attention, perm=[0, 2, 1, 3])

print(’sigma attention ’,sigma_attention.shape)

mu_concat_attention = tf.reshape(mu_attention, (batch_size, -1, self.embed_dim))

print("shape after concat_attention:",mu_concat_attention.shape) #[50,17,64]

sigma_concat_attention = tf.reshape(sigma_attention, (batch_size, -1, self.embed_dim))
print("shape after concat_attention sigma:",sigma_concat_attention.shape) #[50,17,64]
mu_output, sigma_output = self.combine_heads(mu_concat_attention, sigma_concat_attention)

print(’shape after combine head mu’, mu_output.shape)
print(’shape after combine head sigma’, sigma_output.shape)
sigma_output = self.combine_heads(sigma_concat_attention)

return mu_output, sigmaioutput
Bayesian Transformer Block
class VDP_TransformerBlock_first(tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads, mlp_dim, dropout=0.1):

super (VDP_TransformerBlock_first, self).__init__ ()

self.att = Bayesian_MultiHeadSelfAttention_First(embed_dim, num_heads) # [64,2]

99

self .mlp = VDP_MLP(mlp_dim # 2, mlp_dim, dropout) # [64%2,64,dropout]
self.layernorml = Bayesian_LayerNorm(eps=le—6)
self.layernorm2 = Bayesian_LayerNorm(eps=le—6)

self .dropoutl = VDP_Dropout(dropout)

def call(self, mu_input, sigma_input, training):
mu_output, sigma_out = self.layernorml (mu_input, sigma_input) # [50,17,64]
print("output of first LN before MHA",inputs_norm.shape) #[50,17,64]
mu_output, sigma_out = self.att(mu_output, sigma_out) # [50,17,64]
print("output of MHA in TB",mu_output.shape)
mu_output, sigma_outl = self.dropoutl (mu_output, sigma_out, training=training) # [50,17,64]
print("output of MHA in TB after dropout",mu_output.shape)
mu_outl = mu_output + mu_input # [50,17,64]

print(’output of of MHA before entering to MLP’,mu_outl.shape)

mu_outl_norm, sigma_outl_norm = self.layernorm2(mu_outl, sigma_outl)
mu_mlp_output, sigma_mlp_output = self.mlp(mu_outl_norm, sigma_outl_norm)
mu_mlp_output, sigma_mlp_output = self.dropoutl (mu_mlp_output, sigma_mlp_output, training=training)

print(’2nd LN and MLP output’, mu_mlp_output.shape)
mu_output = mu_mlp_output + mu_outl
with tf.GradientTape() as g:
g.watch(mu_outl)
out = mu_mlp_output + mu_outl
gradi = g.gradient(out, mu_outl)
sigma_output = tf.math. multiply (tf.math. multiply (gradi, gradi), sigma_outl)

return mu_output, sigmaioutput

class VDP_TransformerBlock_Intermediate (tf.keras.layers.Layer):
def __init__(self, embed_dim, num_heads, mlp_dim, dropout=0.1):
super (VDP_TransformerBlock_Intermediate , self). __init__ ()
self.att = Bayesian_MultiHeadSelfAttention_Intermediate (embed_dim, num_heads) # [64,2]
self .mlp = VDP_MLP(mlp_dim # 2, mlp_dim, dropout) # [64%2,64,dropout]
self.layernorml = Bayesian_LayerNorm(eps=le-6)
self.layernorm2 = Bayesian_LayerNorm(eps=le—6)

self.dropoutl = VDP_Dropout(dropout)

def call(self, mu_inputs, sigma_inputs, training):
mu_norm, sigma_norm = self.layernorm2 (mu_inputs, sigma_inputs) # [50,17,64]
print("output of first LN before MHA",inputs_norm.shape) #[50,17,64]
mu_output, sigma_out = self.att(mu_norm, sigma_norm) # [50,17,64]
print("output of MHA in TB",mu_output.shape)
mu_output, sigma_outl = self.dropoutl (mu_output, sigma_out, training=training) # [50,17,64]
print("output of MHA in TB after dropout",mu_output.shape)
mu_outl = mu_output + mu_inputs # [50,17,64]

print(’output of of MHA before entering to MLP’,mu_outl.shape)

mu_outl_norm, sigma_outl_norm = self.layernorm2(mu_outl, sigma_outl)
mu_mlp_output, sigma_mlp_output = self.mlp(mu_outl_norm, sigma_outl_norm)
mu_mlp_output, sigma_mlp_output = self.dropoutl (mu_mlp_output, sigma_mlp_output, training=training)

print(’2nd LN and MLP output’, mu_mlp_output.shape)
mu_output = mu_mlp_output + mu_outl
with tf.GradientTape() as g:

g.watch(mu_outl)

out = mu_mlp_output + mu_outl

gradi = g.gradient(out, mu_outl)

100

sigma_output = tf.math. multiply (tf.math. multiply (gradi, gradi), sigma_outl)

return mu_output, sigmaioutput

Bayesian Fully Connected Layer

class DDense(keras.layers.Layer):

def

class

de

-

__init__(self, units=32):

Initialize the instance attributes
super (DDense, self).__init__()

self .units = units

build (self , input_shape):

Create the state of the layer (weights)

w_init = tf.random_normal_initializer ()

self.w = tf.Variable (name="kernel ’,
initial_value=w_init(shape=(input_shape[-1],

trainable=True)

initialize bias
b_init = tf.zeros_initializer ()

self.b = tf.Variable (name="bias ",

self.units),

dtype="float32 "),

initial_value=b_init(shape=(self.units ,), dtype="float32 "),

trainable=True)

call (self, inputs):

Defines the computation from inputs to outputs

return tf.matmul(inputs, self.w) + self.b

mysoftmax (keras.layers.Layer):

f

-

__init__(self):

super (mysoftmax, self).__init__ ()

call (self, mu_in, Sigma_in):

mu_out = tf.nn.softmax (mu_in)

print(’shape of mu in softmax’, mu_out.shape)

ppl = tf.expand_dims(mu_out, axis=2)

print(’shape of ppl’,ppl.shape)

ppl = tf.expand_dims(tf.expand_dims(mu_out, axis=2), axis=3)
pp2 = tf.expand_dims(mu_out, axis=3)

print(’shape of pp2’,pp2.shape)

a = tf . transpose(mu_out,perm = [0,2,1])

ppT = tf .matmul (ppl, pp2)

ppT = tf.matmul(mu_out, a)

ppT = tf.matmul(mu_out, tf.transpose (mu_out, perm=[0, 2, 1]))

print (’shape of ppT’, ppT.shape)

p_diag = tf.linalg.diag(mu_out)

101

class

def

def call(self,

class

de

de

grad p_diag - ppT

grad mu_out — ppT

print (’shape of grad’, grad.shape)

print(’shape of sigma_in’, Sigma_in.shape)

Sigma_out tf .squeeze (tf.matmul(grad,

print(’sigma_out in softmax’, Sigma_out.shape)

Sigma_out tf . where (tf.math.is_nan(Sigma_out),

Sigma_out tf . where(tf .math.is_inf(Sigma_out),

Sigma_out tf.linalg.set_diag(Sigma_out,

return mu_out, Sigma_out

mysoftmax_diag (keras.layers.Layer):
_init__ (self):

super (mysoftmax_diag, self). __init__()

#[50,256]
tf .nn.softmax (mu_in) #[50,256]

mu_in, Sigma_in):

mu_out

print(’shape of mu in softmax’, mu_out.shape)

tf .expand_dims (Sigma_in ,

axis=-1)), axis=3)

tf.zeros_like (Sigma_out), Sigma_out)

tf . zeros_like (Sigma_out), Sigma_out)

tf .abs(tf.linalg.diag_part(Sigma_out)))

ppl = tf.expand_dims(mu_out, axis=2) #[50,256, 1]

print(’shape of ppl’,ppl.shape)

ppl = tf.expand_dims(tf.expand_dims(mu_out, axis=2), axis=3)
pp2 = tf.expand_dims(mu_out, axis=3)

#print (*shape of pp2’,pp2.shape)

a = tf . transpose(mu_out,perm = [0,2,1])

ppT = tf.matmul(ppl, ppl,transpose_b=True) # [50,256,1]X[50,1,256]
ppT = tf.matmul(mu_out, a)

ppT = tf.matmul(mu_out, tf.transpose (mu_out, perm=[0, 2,

print (’shape of ppT’, ppT.shape)

[50,10,10]

1)

p_diag = tf.linalg.diag(mu_out) #[50,256, 256]
grad = tf.math.square(p_diag - ppT) #[50,256, 256]
grad = mu_out — ppT

print(’shape of grad’, grad.shape)

print (’shape of sigma_in’, Sigma_in.shape)

Sigma_out tf.squeeze (tf.matmul(grad,

print(’sigma_out in softmax’, Sigma_out.shape)

Sigma_out tf . where (tf.math.is_nan(Sigma_out),

Sigma_out tf . where(tf.math.is_inf(Sigma_out),

Sigma_out tf.linalg.set_diag(Sigma_out,

return mu_out, Sigma_out

mysoftmax_1(keras.layers.Layer):
f __init__(self):

super (mysoftmax_1, self). __init__()

—-

call (self, mu_in, Sigma_in):

mu_out tf .nn.softmax (mu_in)

print (’shape of mu in last softmax’,

tf .expand_dims (Sigma_in ,

mu_out. shape)

axis=-1))) #[50,256]

tf.zeros_like (Sigma_out), Sigma_out)

tf.zeros_like (Sigma_out), Sigma_out)

tf .abs(tf.linalg.diag_part(Sigma_out)))

102

print (’shape of sigma in last softmax’, Sigma_in.shape)
ppl = tf.expand_dims(mu_out, axis=2)
print (’shape of ppl in last softmax’, ppl.shape)

pp2 = tf.expand_dims(mu_out, axis=1)

print(’shape of pp2 in last softmax’, pp2.shape)
ppT = tf.matmul(ppl, pp2)
print(’shape of ppT in last softmax’, ppT.shape)

p_diag = tf.linalg.diag(mu_out)
grad = p_diag - ppT
print(’shape of grad in last softmax’, grad.shape)
print (tf .matmul(Sigma_in, tf.transpose(grad, perm=[0, 2, 1])).shape)
Sigma_out = tf.matmul(grad, tf.matmul(Sigma_in, tf.transpose(grad, perm=[0, 2, 1])))
Sigma_out = tf.squeeze(tf.matmul(grad, tf.expand_dims(Sigma_in, axis=2)), axis=2)
Sigma_out = tf.matmul(grad, tf.transpose (tf.matmul(Sigma_in, tf.transpose(grad, perm=[0, 2, 1])),perm=[0,2,1]))
Sigma_out = tf.where(tf.math.is_nan(Sigma_out), tf.zeros_like(Sigma_out), Sigma_out)
Sigma_out = tf.where(tf.math.is_inf(Sigma_out), tf.zeros_like(Sigma_out), Sigma_out)
Sigma_out = tf.linalg.set_diag(Sigma_out, tf.abs(tf.linalg.diag_part(Sigma_out)))
return mu_out, Sigma_out
Softmax for mu
mu_out = tf.nn.softmax (mu_in, axis=-1)
#Sigma_out = Sigma_in % tf.expand_dims(tf.linalg.diag_part(mu_out), axis=-1)
Sigma_out = Sigma_in * mu_out

return mu_out, Sigma_out

Outer product of mu_out for Sigma_out

ppl = tf.expand_dims(mu_out, axis=-1)

pp2 = tf.expand_dims(mu_out, axis=-2)

ppT = ppl =* tf.transpose(pp2, perm=[0, 2, 1])
p_diag = tf.linalg.diag(mu_out)

Ensure non-negativity and avoid NaN/Inf

Sigma_out = tf.matmul(ppT, tf.matmul(Sigma_in, ppT, transpose_b=True))

Sigma_out = tf.linalg.set_diag(Sigma_out, tf.abs(tf.linalg.diag_part(Sigma_out)))
Sigma_out = tf . where(tf.math.is_nan(Sigma_out), tf.zeros_like(Sigma_out), Sigma_out)
Sigma_out = tf.where(tf.math.is_inf(Sigma_out), tf.zeros_like(Sigma_out), Sigma_out)

return mu_out, Sigma_out

Bayesian Vision Transformer

class VDP_VIiT(tf.keras.Model):

def __init__(
self ,
image_size ,
patch_size ,
kernel_size ,
kernel_num ,
kernel_stride ,
pooling_size ,
pooling_stride ,
pooling_pad ,

num_layers ,

103

num_classes ,
embed_dim ,
var_epsilon ,
num_heads ,
mlp_dim ,

units ,
channels=3,
drop_prop=0.1,

name=None

super (VDP_VIiT, self).__init__ ()

num_patches = (image_size // patch_size) #x 2
self.patch_dim = channels % (patch_size #x 2)
self .patch_size = patch_size

self .embed_dim = embed_dim

self .num_layers = num_layers

self.kernel_size = kernel_size

self.num_heads = num_heads

self.kernel_num = kernel_num

self.kernel_stride = kernel_stride
self.pooling_size = pooling_size
self.pooling_stride = pooling_stride

self.pooling_pad = pooling_pad
self .num_classes = num_classes
self . var_epsilon = var_epsilon

self .drop_prop = drop_prop
self.units = units

self .rescale = Rescaling (1.0 / 255)
pos_embed, seq_length = self.positional_embedding(image_size)
positions = tf.range(start=0, limit=seq_length, delta=1)

self.position_embeddings = pos_embed(positions)

self.class_emb = self.add_weight("class_emb", shape=(1, 1, embed_dim))

self.patch_proj = DDense(embed_dim)

self.conv=Deterministic_Conv (kernel_size , kernel_num, kernel_stride , padding="VALID")

self.conv_1 = VDP_first_Conv(kernel_size=self.kernel_size , kernel_num=self.kernel_num ,

kernel_stride=self.kernel_stride , padding="VALID")

self.conv_2 = VDP_intermediate_Conv (kernel_size=self.kernel_size , kernel_num=self.kernel_num,
kernel_stride=self.kernel_stride , padding="SAME’)

self.conv_3 = VDP_intermediate_Conv (kernel_size=self.kernel_size , kernel_num=self.kernel_num,
kernel_stride=self.kernel_stride , padding="SAME’)

self.conv_4 = VDP_intermediate_Conv (kernel_size=self.kernel_size , kernel_num=self.kernel_num,
kernel_stride=self.kernel_stride , padding="SAME’)

self.conv_5 = VDP_intermediate_Conv (kernel_size=self.kernel_size , kernel_num=self.kernel_num,
kernel_stride=self.kernel_stride , padding="SAME’)

self.conv_6 = VDP_intermediate_Conv (kernel_size=self.kernel_size , kernel_num=self.kernel_num,
kernel_stride=self.kernel_stride , padding="SAME’)

self.relu = VDP_ReLU()

self.maxpooling_1 = DMaxPooling(pooling_size , pooling_stride , pooling_pad)

self . maxpooling_11 = VDP_MaxPooling(pooling_size=self.pooling_size, pooling_stride=self.pooling_stride ,
pooling_pad=self.pooling_pad)

self.dropout_1 = VDP_Dropout(self.drop_prop)

self.batch_norm = VDPBatch_Normalization(self.var_epsilon)

104

-

self.class_emb = self.add_weight("class_emb", shape=(1,

self.patch_proj = DDense(embed_dim)

self.enc_layers = VDP_TransformerBlock_first(d_model, num_heads, mlp_dim,
self.enc_layers = [VDP_TransformerBlock(d_model, num_heads, mlp_dim, dropout)
for _ in range(num_layers) |
self .enc_layersl = VDP_TransformerBlock_first(embed_dim, num_heads, mlp_dim,
self .enc_layers = [

VDP_TransformerBlock_Intermediate (embed_dim, num_heads, mlp_dim, drop_prop)

for _ in range(num_layers)
1
self.layernorml = Bayesian_LayerNorm(eps=le—6)
self . mysoftma = mysoftmax ()
self .mysoftm = mysoftmax_diag ()

self.fc_1 = LinearNotFirst(self.units)

self.fc_1 = LinearNotFirst(units=self.kernel_num)
self.fc_1 = LinearNotFirst(units=1)
self.fc_2 = LinearNotFirst(units=self.num_classes)

self.mlp_head = VDP_MLP(mlp_dim, num_classes)
self.mlp_head = VDP_MLP(mlp_dim, num_classes)

call(self, x, training):
print (’Input dimension :’, x.shape)

batch_size = tf.shape(x)[0]

print(’shape of x before conv’, x.shape)
x = self.rescale(x)
patches = self.extract_patches(x)

x = self.patch_proj(patches)
mu, sigma = self.conv_1(x)

print(’shape of x after conv’, x.shape)

mu, sigma = self.relu(mu, sigma)
mu, sigma = self.batch_norm(mu, sigma)
x=self.maxpooling_11(x)

print(’shape of x after maxpool’, x.shape)

x=tf.reshape(x, [batch_size, -1, self.kernel_num])

mu, sigma = self.conv_2(mu, sigma)

print(’shape of x after conv’, mu.shape)

1, embed_dim))

mu, sigma = self.relu(mu, sigma)

mu, sigma = self.batch_norm(mu, sigma)

mu, sigma = self.conv_3(mu, sigma)

mu, sigma = self.relu(mu, sigma)

mu, sigma = self.batch_norm(mu, sigma)

mu, sigma = self.maxpooling_11(mu, sigma)
mu, sigma = self.dropout_I(mu, sigma, Training=training)
print(’shape of x after maxpool’, mu.shape)
mu, sigma = self.conv_4(mu, sigma)

mu, sigma = self.relu(mu, sigma)

mu, sigma = self.batch_norm(mu, sigma)

105

dropout) _ in range(num_layers)]

drop_prop)

mu, sigma = self.conv_5(mu, sigma)

mu, sigma = self.relu(mu, sigma)

mu, sigma = self.batch_norm(mu, sigma)

mu, sigma = self.maxpooling_11(mu, sigma)

mu, sigma = self.dropout_1(mu, sigma, Training=training)
mu, sigma = self.conv_6(mu, sigma)

mu, sigma = self.relu(mu, sigma)

mu, sigma = self.batch_norm(mu, sigma)

mu, sigma = self.maxpooling_11(mu, sigma)

mu, sigma = self.dropout_1(mu, sigma, Training=training)
mu = tf.reshape(mu, [batch_size, -1, self.kernel_num])
sigma = tf.reshape(sigma, [batch_size, -1, self.kernel_num])

print(’shape of x after reshape’, mu.shape)
mu, sigma = self.enc_layersl (mu, sigma)

for layer in self.enc_layers:

mu, sigma = layer (mu, sigma, training)
Bayesian Sequence Pooling

mu_l, sigma_l = self.layernorml (mu, sigma)

print (’shape of mu after LN in seq pool’, mu_l.shape)
mu, sigma = self.fc_1(mu_l, sigma_1) #[50,49,1]
print(’shape of mu in fc’, mu.shape)

xl=layers.Dense(1)(x)

print(x1.shape)

mu_weights = tf.nn.softmax (mu, axis =1) # [50,49,1]

Sigma for softmax function

ppl = tf.expand_dims(mu_weights, axis=-1) # [50, 49,1,1]

pp2 = tf.expand_dims(mu_weights, axis=3) # [50, 49,1.1]

ppT = tf .matmul(mu_weights, mu_weights , transpose_b=True) # #[50,49,49]

print(’shape of ppT’,ppT.shape)

p_diag = tf.linalg.diag(tf.squeeze(mu_weights)) # [50,49,49]

print(’shape of p_diag’,p_diag.shape)

grad = tf.math.square(p_diag — ppT) # # [50,49,49]

print(’shape of grad’,grad.shape)

Sigma_weights = tf .matmul(grad, sigma) #[50,49,49]X[50,49,1]1=[50,49.,1]

print(’sigma_out in softmax’, Sigma_weights.shape) #[50.,49,1]

#Sigma_weights = tf.squeeze (tf.matmul(grad, tf.expand_dims(sigma_scaled_score, axis=-1)))
Sigma_weights = tf.where(tf.math.is_nan(Sigma_weights), tf.zeros_like (Sigma_weights), Sigma_weights)
Sigma_weights= tf.where(tf.math.is_inf(Sigma_weights), tf.zeros_like (Sigma_weights), Sigma_weights)

Sigma_weights = tf.linalg.set_diag(Sigma_out, tf.abs(tf.linalg.diag_part(Sigma_out)))

#mu_output = tf.matmul(mu_weights, mu_l, transpose_a=True) [50,1,49] X [50,49,256] = [50,1,256]

#mu_xbar, sigma_xbar = self.mysoftma(mu,sigma)

106

#print (’shape of mu_xbar’,mu_xbar.shape) #[50,225,1]

#print (’shape of sigma_xbar’,sigma_xbar.shape) #[50,225,1]

mu_score = tf.matmul(mu_weights, mu_l, transpose_a=True) # [50,1,49] X [50,49,256] = [50,1,256]
print(’shape of mu_score’,mu_score.shape)#[50,1,1]

a = tf .matmul(Sigma_weights, mu_1 =% 2, transpose_a=True) # [50, 1, 256]

print(’shape of a in seq pool’, a.shape) #[50,1,128]

b = tf.matmul(mu_weights =% 2, sigma_1, transpose_a=True) # [50,1,49] X [50,49,256] = [50,1,256]
print(’shape of b in seq pool’, b.shape)

¢ = tf.matmul(Sigma_weights, sigma_1, transpose_a=True) ## [50,1,49] X [50,49,256] = [50,1,256]
sigma_score = a + b + ¢ # [16, 1, 128]/ [50,1,256]

#mu_output = tf.matmul(mu_weights, mu_value) # [50,2,17,17] X [50,2,17,32]= [50,2,17,32]
print(’mu output’,mu_output.shape)

#d = tf.matmul (mu_weights =% 2, sigma_value) # [50,2,17,32]

#e = tf .matmul(Sigma_weights, mu_value =*x 2) # [50,2,17,32]

#f = tf .matmul(Sigma_weights, sigma_value) # [50, 2, 17, 17]x[50,2,17,32]= [50,2,17,32]

#output_sigma =d + e + f

mu= mu_score

sigma= sigma_score

mu = tf.squeeze(mu_score, -2)

print (’shape of mu after squeeze seq pool’, mu.shape)
sigma = tf.squeeze(sigma_score, -2)

print(’shape of sigma after seq pool’, sigma.shape)

mu, sigma

Final Classification

mu, sigma = self.fc_2(mu, sigma) #[50,10]

print (’shape of mu in fc during final classification ’, mu.shape)
mu_out, sigma_out = self.mysoftm(mu, sigma)
print (’shape of mu after last softmax’,mu.shape)

#mu_out = tf.squeeze (mu, -2)

#sigma_out = tf.squeeze(sigma, -2)

#print (*shape of mu during final classification after passing through dense and softmax’, mu_out.shape)
#print (*shape of sigma during final classification ’, sigma_out.shape)

sigma_out = tf.where(tf.math.is_nan(sigma_out), tf.zeros_like(sigma_out), sigma_out)

sigma_out = tf.where(tf.math.is_inf(sigma_out), tf.zeros_like(sigma_out), sigma_out)

return mu_out, sigma_out

First (class token) is used for classification
mu, sigma = self.mlp_head(mu_out[:, 0], sigma_out[:, 0])
print (’shape of mu’, mu.shape)

print(’shape of sigma’,sigma.shape)

B

return mu_out, sigma

Loss Function(Modified)

def nll_gaussian(y_test, y_pred_mean, y_pred_sd):

mu = y_test — y_pred_mean

107

mu_2 = mu sk 2

y_pred_sd = y_pred_sd + le-5

tf .math.divide_no_nan(l., y_pred_sd)

s =

lossl = tf.math.reduce_mean(tf.math.reduce_sum (tf.math. multiply (mu_2, s), axis=-1))
loss2 = tf.math.reduce_mean(tf.math.reduce_sum(tf.math.log(y_pred_sd), axis=-1))
loss = tf.math.reduce_mean(tf.math.add(lossl, loss2))

loss = tf.where(tf.math.is_nan(loss), tf.zeros_like(loss), loss)

loss = tf.where(tf.math.is_inf(loss), tf.zeros_like(loss), loss)

return loss

convert images to float32 format and convert labels to int32

def preprocess(image, label):

image = tf.image.convert_image_dtype (image, tf.float32)
label = tf.cast(label, tf.int32)
label = tf.cast(label, tf.float32)

return image, label

Peform augmentations on training data

def augmentation(image, label):

image = tf.image.random_flip_left_right(image)
image = tf.image.random_brightness(image, max_delta=0.5) # Random brightness
return image, label

Main Function

def main_function(input_dim=28, num_kernels=[32], kernels_size=[5],

epochs =20, 1r=0.001, Ir_end = 0.0001, kl_factor = 0.01,
Random_noise=True, gaussain_noise_std=0.5, Adversarial_noise=False, epsilon
Training = False, continue_training = False, saved_model_epochs=50):

def main_function(image_size=32, patch_size=8, num_layers=2,

channels=3, drop_prop=0.1, batch_size=50, epochs=435, 1r=0.001,

kernel_size=5, kernel_num=128, pooling_size=2,

Targeted=False , Random_noise=False, gaussain_noise_std=0.5,

Adversarial_noise=False , HCV=0.5, adversary_target_cls=3,

maxAdvStep=20, continue_training=False, saved_model_epochs=30):

PATH = ’./VDP_cnn_epoch_{}/’.format(epochs)

(x_train, y_train), (x_test, y_test) = keras.datasets.cifarl0.load_data()
X_train, Xx_test = x_train / 255.0, x_test / 255.0

X_train = x_train.astype("float32")

Xx_test = x_test.astype (" float32")

one_hot_y_train = tf.one_hot(np.squeeze(y_train).astype(np.float32),

one_hot_y_test = tf.one_hot(np.squeeze(y_test).astype(np.float32),

x_train = tf.image.resize(x_train, [64, 64]) # resizing image shape to 64 X 64

print(’shape after resizing image’,x_train.shape)

#

#

tr_dataset = tf.data.Dataset.from_tensor_slices ((x_train, one_hot_y_train))
#

val_dataset = tf.data.Dataset.from_tensor_slices ((x_test, one_hot_y_test))

tr_dataset = tf.data.Dataset.from_tensor_slices ((x_train ,

108

maxpooling_size=[2],

Ir_end=0.0001,
pooling_stride=2, kernel_stride=1,
epsilon=0.5,

PGD_Adversarial_noise=True,

maxpooling_stride=[2], maxpooling_pad="SAME’, class_num=10

= 0, adversary_target_cls=3, Targeted=False,

num_classes=10, embed_dim=128, num_heads=4, mlp_dim=128,

kl_factor=0.001,
pooling_pad="VALID’,
Training=False , Testing=True,

stepSize=1,

depth=num_classes)

depth=num_classes)

one_hot_y_train)). batch(batch_size)

val_dataset = tf.data.Dataset.from_tensor_slices ((x_test, one_hot_y_test)).batch(batch_size)

x_test = tf.image.resize(x_test, [64, 64])

tr_dataset = tf.data.Dataset.from_tensor_slices ((x_train, one_hot_y_train))
val_dataset = tf.data.Dataset.from_tensor_slices ((x_test, one_hot_y_test))
tr_dataset = tf.data.Dataset.from_tensor_slices ((x_train, y_train))
val_dataset = tf.data.Dataset.from_tensor_slices ((x_test, y_test))

AUTO = tf.data.AUTOTUNE
applying transformations

tr_dataset = tr_dataset.shuffle(1024) # shuffle the images

tr_dataset = tr_dataset.map(preprocess, num_parallel_calls=AUTO) # mapping our preprocess function to train_data
tr_dataset = tr_dataset.map(augmentation, num_parallel_calls=AUTO) # mapping our augmentation funtion to train_data
dataset_size = tf.data.experimental.cardinality (tr_dataset).numpy()

print ("Size of tr_dataset:", dataset_size)

#tr_dataset = tr_dataset.batch(batch_size) # Converting train_data to batches

tr_dataset = tr_dataset.prefetch(

AUTO) # using prefetch which prepares subsequent batches of data while other batches are being computed.

dataset_size = tf.data.experimental.cardinality (tr_dataset).numpy()
print (" Size of tr_dataset:", dataset_size)
val_dataset = tf.data.Dataset.from_tensor_slices ((x_test, y_test))

applying transformations

val_dataset = val_dataset.map(preprocess, num_parallel_calls=AUTO) # mapping our preprocess function test_data
#val_dataset = val_dataset.batch(batch_size)

val_dataset = val_dataset.prefetch (

AUTO) # using prefetch which prepares subsequent batches of data while other batches are being computed.

trans_model = VDP_ViT(image_size=image_size , patch_size=patch_size, num_layers=num_layers, num_classes=num_classes,
embed_dim=embed_dim ,
num_heads=num_heads, mlp_dim=mlp_dim, kernel_size=kernel_size , kernel_num=kernel_num,
kernel_stride=kernel_stride , pooling_size=pooling_size ,
pooling_stride=pooling_stride , pooling_pad=pooling_pad, var_epsilon=le-4, channels=channels ,

drop_prop=drop_prop , name=’vdp_trans ')

num_train_steps = epochs #* int(x_train.shape[0] / batch_size)
step = min(step, decay_steps)

((initial_learning_rate — end_learning_rate) * (I — step / decay_steps) ~ (power)) + end_learning_rate

learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay(initial_learning_rate=Ir,
decay_steps=num_train_steps ,
end_learning_rate=Ilr_end , power=3.)

optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate_fn) # , clipnorm=1.0)

@tf. function # Make it fast.
def train_on_batch(x, y):
with tf.GradientTape () as tape:
mu_out, sigma = trans_model(x, training=True)
print ("shape of mu_out", mu_out.shape)
trans_model . trainable = True
trans_model . summary ()

print(’ y in train on batch’, y)

109

@tf .

@tf.

@tf.
def

print(’ mu_out in train on batch’, mu_out)
y = tf.cast(y, tf.float32)
print(’y after converting to float’, y)

loss_final = nll_gaussian(y, mu_out,

regularization_loss =

loss =

print(loss)

print (mu_out)

print(sigma)

print(loss_final)

print(regularization_loss)
gradients = tape.gradient(loss,

gradients = [grad if grad is not None else

zip (gradients ,
if len(gradients) !=

print("Some gradients are None.")

else:

gradients = [(tf.where(tf.math.is_nan(grad),
gradients]

gradients = [(tf.where(tf.math.is_inf(grad),

gradients]

Handle None gradients

optimizer.apply_gradients (zip (gradients ,
print(’sjshshshs *)

print(gradients)

return loss, mu_out, sigma, gradients ,
function

validation_on_batch(x, y):

mu_out, sigma = trans_model(x, training=False)
cnn_model. trainable = False
vloss = nll_gaussian(y, mu_out, tf.clip_by_value(t=sigma,

tf.clip_by_value (t=sigma,

tf.zeros_like (var) for grad,

tf .constant(1.0e-5,

tf .constant(1.0e-5,

regularization_loss ,

clip_value_max=tf.constant(le+8)))

tf .math.add_n(trans_model.losses)

0.5 = (loss_final + kl_factor % regularization_loss)

trans_model . trainable_weights)

var in

trans_model . trainable_weights)]

len(trans_model . trainable_weights):

shape=grad.shape), grad)) for grad

shape=grad.shape), grad)) for grad

trans_model . trainable_weights))

loss_final

clip_value_min=tf.constant(le-3),

clip_value_max=tf.constant(le+8)))

regularization_loss = tf.math.add_n(trans_model.losses)

total_vloss = 0.5 = (vloss + kl_factor =

return total_vloss , mu_out, sigma
function

test_on_batch(x, y):
trans_model . trainable = False

mu_out, sigma = trans_model(x, training=False)

return mu_out, sigma

function

create_adversarial_pattern (input_image , input_label):
with tf.GradientTape () as tape:
tape.watch(input_image)
trans_model . trainable = False

prediction , sigma = trans_model (input_image)

loss_final = nll_gaussian(input_label, prediction,

tf.clip_by_value (t=sigma,

regularization_loss)

clip_value_min=tf.constant(le-4),

clip_value_max=tf.constant(le+3)))

110

clip_value_min=tf.constant(le-3),

in

in

clip_value_max=tf.constant(le+3)), num_classes, batch_size)

loss = 0.5 % loss_final

Get the gradients of the loss w.r.t to the input image.
gradient = tape.gradient(loss, input_image)
Get the sign of the gradients to create the perturbation
signed_grad = tf.sign(gradient)

return signed_grad

wandb. init (entity="fazlur7512",

project="VDP_cct_cifar10_epochs_{} _layer_{} _Ir_{}_kl_factor_{}_batch_size_{}_dimension_{} _patch_size_{}_head_{} _input_{}".format(

epochs, num_layers, lr, kl_factor, batch_size, embed_dim, patch_size, num_heads, image_size))

if Training:
wandb. init (entity="fazlur7512",
project="VDP_cct_cifarl0_epochs_{} _layer_{} _Ir_{}_kl_factor_{} _batch_size_{}_dimension_{}_patch_size_{}_head_{}_input_{}".format(
epochs, num_layers, Ir, kl_factor, batch_size, embed_dim, patch_size, num_heads, image_size))
if continue_training:
saved_model_path = ’./saved_models/VDP_cnn_epoch_{}/’.format(saved_model_epochs)
trans_model .load_weights (saved_model_path + ’vdp_cnn_model)
train_acc = np.zeros(epochs)
valid_acc = np.zeros(epochs)
train_err = np.zeros(epochs)

valid_error = np.zeros(epochs)

start = timeit.default_timer ()

for epoch in range(epochs):

print ("Epoch: °, epoch + 1, ’/’, epochs)

accl =0

acc_validl = 0

errl = 0

err_validl = 0

tr_no_steps = 0

va_no_steps = 0

Training ~———————————————————

acc_training = np.zeros(int(x_train.shape[0] / (batch_size)))

err_training = np.zeros(int(x_train.shape[0] / (batch_size)))
for step, (x, y) in enumerate(tr_dataset):
update_progress(step / int(x_train.shape[0] / (batch_size)))
print(y.shape)
loss , mu_out, sigma, gradients, regularization_loss , loss_final = train_on_batch(x, y)
print (’mu_out shape in train on batch’, mu_out.shape)

errl += loss.numpy()

corr = tf.equal(tf.math.argmax(mu_out, axis=1), tf.math.argmax(y, axis=1))
corr = tf.equal(mu_out,y)

print(’i am here’, corr)

accuracy = tf.reduce_mean(tf.cast(corr, tf.float32))

accl += accuracy.numpy ()
if step % 100 ==
print (’\n gradient’, np.mean(gradients [0].numpy()))
print (’\n Matrix Norm’, np.mean(sigma))
print ("\n Step:", step, "Loss:", float(errl / (tr_no_steps + 1.)))
print (" Total Training accuracy so far: %.3f" % float(accl / (tr_no_steps + 1.)))
tr_no_steps += 1
wandb. log ({" Average Variance value": tf.reduce_mean(sigma).numpy(),

"Total Training Loss": loss.numpy(),

111

"Training Accuracy per minibatch":
"gradient per minibatch":
*epoch ’: epoch,
"Regularization_loss ":
"Log—Likelihood Loss":
1))
train_acc[epoch] =

accl / tr_no_steps

train_err[epoch] = errl / tr_no_steps

print(’ Training Acc ’, train_acc[epoch])

print (’ Training error ', train_err[epoch])

N — Validation

for step., (x, y) in enumerate(val_dataset):

update_progress(step / int(x_test.shape[0]

total_vloss , mu_out, sigma =

err_validl += total_vloss .numpy ()

corr = tf.equal (tf.math.argmax(mu_out, axis=-1),

va_accuracy = tf.reduce_mean(tf.cast(corr,
acc_validl += va_accuracy .numpy ()
if step % 50 == 0:

print (" Step:", step, "Loss:",

print (" Total validation accuracy so far:
va_no_steps += 1

wandb.log ({" Average Variance value (validation Set)":

tf .

accuracy .numpy (),

np.mean(gradients [0]),

regularization_loss .numpy (),

np.mean(loss_final .numpy())

/ (batch_size)))

validation_on_batch(x, y)

math . argmax (y, axis=-1))

tf . float32))

float(total_vloss))

%.3f" % va_accuracy)

tf .reduce_mean(sigma).numpy () ,

va_accuracy .numpy ()

"Total Validation Loss": total_vloss.numpy(),
"Validation Acuracy per minibatch":
b

valid_acc[epoch] = acc_validl / va_no_steps

valid_error[epoch] = err_validl / va_no_steps

stop = timeit.default_timer ()

trans_model .save_weights (PATH + ’vdp_transfm_model ’)
wandb.log ({" Average Training Loss": train_err[epoch],
"Average Training Accuracy":
"Average Validation Loss":
"Average Validation Accuracy":
*epoch *:

b

epoch

wandb.log ({"Average Training Loss": train_err[epoch],

train_acc[epoch],
valid_error[epoch],

valid_acc[epoch],

"Average Training Accuracy": train_acc[epoch],
*epoch ’: epoch
b

print(’ Total Training Time: ', stop — start)

print (’ Training Acc ', train_acc[epoch])
print (’ Validation Acc ’, valid_acc[epoch])

print(’)

print(’Training error °, train_err[epoch])

print (* Validation error ', valid_error[epoch])

O End Training

trans_model .save_weights (PATH + ’vdp_cnn_model *)

if (epochs > 1):

fig = plt.figure(figsize=(15, 7))

plt.plot(train_acc, ’b’, label="Training acc’)

plt.plot(valid_acc, ’r’, label=’Validation acc’)

112

plt.ylim(0, 1.1)

plt.title ("Density Propagation Trans on Fashion MNIST Data")
plt.xlabel ("Epochs")

plt.ylabel (" Accuracy")

plt.legend (loc="lower right)

plt.savefig (PATH + *VDP_Trans_on_Fashion_MNIST_Data_acc.png’)

plt.close(fig)

fig = plt.figure(figsize=(15, 7))

plt.plot(train_err, ’b’, label="Training error)
plt.plot(valid_error, ’r’, label="Validation error’)
plt.title ("Density Propagation Trans on Fashion MNIST Data")
plt.xlabel ("Epochs")

plt.ylabel ("Error")

plt.legend (loc="upper right’)

plt.savefig (PATH + *VDP_Trans_on_FMNIST_Data_error.png’)

plt.close(fig)

f = open(PATH + ’training_validation_acc_error.pkl’, "wb’)
pickle .dump ([train_acc , valid_acc, train_err, valid_error], f)

f.close ()

textfile = open(PATH + ’Related_hyperparameters.txt’, 'w’)

textfile .write(’ Input Dimension : ° + str(image_size))

textfile . write (’\n Hidden units + str(mlp_dim))

textfile.write (’\n Number of Classes + str(num_classes))

textfile . write (’\n No of epochs : ’ + str(epochs))
textfile.write(’\n Initial Learning rate : * + str(lr))

textfile.write (’\n Ending Learning rate : ’ + str(lr_end))

textfile.write(’\n kernels Size +str(kernels_size))

textfile.write(’\n Max pooling Size +str(maxpooling_size))

textfile.write(’\n Max pooling stride +str(maxpooling_stride))

textfile . write (’\n batch size + str(batch_size))

textfile.write(’\n KL term factor + str(kl_factor))

textfile . write ("\n ")

if Training:

textfile .write(’\n Total run time in sec : + str(stop — start))

if (epochs == 1):

textfile.write ("\n Averaged Training Accuracy + str(train_acc))

textfile.write ("\n Averaged Validation Accuracy + str(valid_acc))

textfile.write ("\n Averaged Training error : + str(train_err))

textfile.write ("\n Averaged Validation error + str(valid_error))

else:

textfile.write ("\n Averaged Training Accuracy + str(np.mean(train_acc[epoch])))

textfile . write ("\n Averaged Validation Accuracy + str(np.mean(valid_acc[epoch])))

textfile . write ("\n Averaged Training error : + str(np.mean(train_err[epoch])))

textfile . write ("\n Averaged Validation error + str(np.mean(valid_error[epoch])))

textfile . write ("\n ")

textfile . write ("\n ")

textfile.close ()
if (Testing):

test_path = “test_results/’

if Random_noise:

113

test_path = ’“test_random_noise_{}/’.format(gaussain_noise_std)

os.makedirs (PATH + test_path)
trans_model.load_weights (PATH + ’vdp_cnn_model *)

if Testing:
test_path = “test_results/’

if Random_noise:

test_path = “test_results_random_noise_{}/’.format(gaussain_noise_std)

full_test_path = PATH + test_path

if os.path.exists(full_test_path):
Remove the existing test path and its contents
shutil . rmtree (full_test_path)

os.makedirs (PATH + test_path)

trans_model.load_weights (PATH + ’vdp_cnn_model *)

test_no_steps = 0

true_x = np.zeros([int(x_test.shape[0] / (batch_size)),

true_y = np.zeros([int(x_test.shape[0] / (batch_size)),

batch_size ,

batch_size ,

mu_out_ = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size,
sigma_ = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size,
sigma_ = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size

acc_test = np.zeros(int(x_test.shape[0] / (batch_size)))

for step, (x, y) in enumerate(val_dataset):

update_progress (step / int(x_test.shape[0] / (batch_size)))

true_x[test_no_steps, :, :, :, :] =X
true_y [test_no_steps, :, :] =y

if Random_noise:

image_size , image_size ,
num_classes])
num_classes])

num_classes])

3D

, num_classes ,num_classes])

noise = tf.random.normal(shape=[batch_size , image_size, image_size, 1], mean=0.0,
stddev=gaussain_noise_std , dtype=x.dtype)
X = X + noise
mu_out, sigma = test_on_batch(x, y)
mu_out_[test_no_steps, :, :] = mu_out
sigma_[test_no_steps, :, :,:]= sigma
sigma_[test_no_steps , :, :] = sigma
corr = tf.equal(tf.math.argmax(mu_out, axis=1), tf.math.argmax(y, axis=1))
accuracy = tf.reduce_mean(tf.cast(corr, tf.float32))
acc_test[test_no_steps] = accuracy .numpy ()

if step % 100 == 0:

print (" Total running accuracy so far: %.3f" % acc_test[test_no_steps])

test_no_steps += 1

New added line

wandb.log ({" Testing Accuracy per minibatch": accuracy.numpy ()

b

test_acc = np.mean(acc_test)

print (’Test accuracy : , test_acc)

print("Best Test Accuracy :", np.amax(acc_test))
New added line

wandb.log ({" Testing Accuracy": (test_acc)})

pf = open(PATH + test_path + “uncertainty_info.pkl’, "wb’)

pickle .dump ([mu_out_, sigma_, true_x, true_y, test_acc], pf)

pf.close ()

var = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size])

114

if Random_noise:
snr_signal = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size])
for i in range(int(x_test.shape[0] / (batch_size))):
for j in range(batch_size):
noise = tf.random.normal(shape=[image_size, image_size, 1], mean=0.0, stddev=gaussain_noise_std ,
dtype=x.dtype)
snr_signal[i, j] = 10 = np.loglO(

np.sum(np.square(true_x[i, j, :, :, :])) / np.sum(np.square(noise)))
predicted_out = np.argmax(mu_out_[i, j, :])
var[i, j] = sigma_[i, j, int(predicted_out)]

print (’SNR’, np.mean(snr_signal))

sigma_l = np.reshape(sigma_, int(x_test.shape[0] / (batch_size)) , batch_size)
var = np.zeros ([int(test_X.shape[O] / (batch_size)) , batch_size])
for i in range(int(test_X.shape[0] / (batch_size)), batch_size):
for i in range(int(test_X.shape[0] / (batch_size))):
s = np.abs(sigma_1[i])
if (i !'= 0):
if (np.abs(s) > 10000):

var[i] = 0.0 # np.abs(sigma_1[i-1])

else:
var[i] = s

else:

var[i] = s
data_mean, data_std = np.mean(np.abs(sigma_1)), np.std(np.abs(sigma_1))
identify outliers

cut_off = data_std = 3

lower, upper = data_mean — cut_off, data_mean + cut_off
outliers = [x for x in np.abs(sigma_1) if x < lower or x > upper]
outliers_removed = [x for x in np.abs(sigma_1) if x > lower and x < upper]

print (’outliers_removed ', np.mean(outliers_removed))

writer = pd.ExcelWriter (PATH + test_path + ’variance.xlsx’, engine=’"xlsxwriter ’)
df = pd.DataFrame (np.abs(sigma_1))

Write your DataFrame to a file

df.to_excel(writer , "Sheet")

writer.save ()

print (*Output Variance without outlier °, np.mean(np.abs(var)))

H ¥ ¥ ¥ ¥ ¥ H F H H H H H H FH FHF R K K K K H H H K

print (’Output Variance’, np.mean(np.abs(sigma_)))

valid_size = x_test.shape[0]
pred_var = np.zeros(int(valid_size))

true_var = np.zeros(int(valid_size))

correct_classification = np.zeros(int(valid_size))
misclassification_pred = np.zeros(int(valid_size))
misclassification_true = np.zeros(int(valid_size))

predicted_out = np.zeros(int(valid_size))

true_out = np.zeros(int(valid_size))
k=0
kl =0
k2 =0

for i in range(int(valid_size / batch_size)):
for j in range(batch_size):
predicted_out[k] = np.argmax(mu_out_[i, j, :])
true_out[k] = np.argmax(true_y[i, j, :])

pred_var([k] = sigma_[i, j., int(predicted_out[k])]

115

prin

varl
writ
df =
W
df .t

true_var[k] = sigma_[i, j,

if (predicted_out[k] == true_out[k]):

correct_classification[kl] =

k1l = k1 + 1

if (predicted_out[k] !=
misclassification_pred[k2] =
misclassification_true [k2] =
k2 = k2 + 1

k=%k+1

t(’ Average Output Variance’

= pred_var # np.reshape(var,
er = pd.ExcelWriter (PATH + test_path +
pd.DataFrame (np.abs(varl))

rite your DataFrame to a file

o_excel(writer , "Sheet")

true_out[k]):

sigma_[i, j.

sigma_[i, j,

sigma_[i, j,

int(x_test.shape [0]/(batch_size))=*

*variance . xlIsx 7,

dfl = pd.DataFrame(predicted_out)
dfl.to_excel(writer, ’Sheet’, startcol=4)
df2 = pd.DataFrame(true_out)

df2.to_excel (writer , ’Sheet’, startcol=7)
df3 = pd.DataFrame(correct_classification)
df3.to_excel (writer , ’Sheet’, startcol=10)
df4 = pd.DataFrame(misclassification_pred)
df4 .to_excel (writer , 'Sheet’, startcol=13)
df5 = pd.DataFrame(misclassification_true)
df5.to_excel(writer, ’Sheet’, startcol=16)

writer.save ()

pf = open(PATH + test_path +

pickle .dump([correct_classification ,

if Random_noise:

textfile =

textfile . write(’ Input Dimension

textfile.write(’\n No of Kernels

textfile.write (’\n Number of Classes

textfile.write (’\n No of epochs : ’~ +
textfile.write (’\n Initial Learning rate

textfile.write (’\n Ending Learning rate

textfile.write(’\n kernels Size ’
textfile.write(’\n Max pooling Size
textfile.write(’\n Max pooling stride

var_info .pkl’,

misclassification_true ,

open(PATH + test_path + ’Related_hyperparameters.tx

int(true_out[k])]

int (predicted_out[k])]

int(predicted_out[k])]

int(true_out[k])]

, np.mean(pred_var))

batch_size)

engine="xlsxwriter ’)

wb”)

pred_var], pf)

’ 4+ str(image_size))

+str (num_kernels))

+ str(num_classes))

str(epochs))

o+ str(lr))

+ str(lr_end))
+str(kernels_size))
+str(maxpooling_size))

+str(maxpooling_stride))

")

textfile.write (’\n batch size + str(batch_size))
textfile.write (’\n KL term factor : ° + str(kl_factor))
textfile . write ("\n

textfile.write ("\n Test Accuracy : " + str(test_acc))

textfile.write ("\n Output Variance:

textfile .write ("\n Correct

textfile . write ("\n MisClassification Var

textfile . write ("\n

Classification Variance:

iance:

+ str(np.mean(np.abs(var))))

+ str(np.mean(misclassification_pred)))

116

+ str(np.mean(correct_classification)))

if Random_noise:
textfile . write (’\n Random Noise std: * + str(gaussain_noise_std))
textfile.write(’\n Random Noise HCV: ° + str (HCV))
textfile.write ("\n SNR: " + str(np.mean(snr_signal)))

textfile . write ("\n ")

textfile .close ()

if (Adversarial_noise):

elif (Adversarial_noise):

if (Adversarial_noise):
if Targeted:
test_path = “test_results_targeted_adversarial_noise_{}/ .format(epsilon)
full_test_path = PATH + test_path
if os.path.exists(full_test_path):
Remove the existing test path and its contents
shutil .rmtree (full_test_path)
os.makedirs (PATH + test_path)
else:
test_path = ’test_results_non_targeted_adversarial_noise_{}/ .format(epsilon)
full_test_path = PATH + test_path
if os.path.exists(full_test_path):
Remove the existing test path and its contents
shutil . rmtree (full_test_path)
os. makedirs (PATH + test_path)
trans_model.load_weights (PATH + ’vdp_cnn_model *)

test_no_steps = 0

true_x = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, image_size, image_size, 3])
adv_perturbations = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size, image_size, image_size, 3])

true_y = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])

mu_out_ = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])
sigma_ = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size, class_num, class_num])
sigma_ = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])

acc_test = np.zeros(int(x_test.shape[0] / (batch_size)))

for step, (x, y) in enumerate(val_dataset):
update_progress (step / int(x_test.shape[0] / (batch_size)))
true_x[test_no_steps, :, :, :, :] =X

true_y [test_no_steps, :, :] =y

if Targeted:

y_true_batch = np.zeros_like(y)

y_true_batch[:, adversary_target_cls] = 1.0

adv_perturbations[test_no_steps, :, :, :, :] = create_adversarial_pattern(x, y_true_batch)
else:

adv_perturbations [test_no_steps, :, :, :, :] = create_adversarial_pattern(x, y)
adv_x = x + epsilon * adv_perturbations[test_no_steps, :, :, :,]

adv_x = tf.clip_by_value(adv_x, 0.0, 1.0)

mu_out, sigma = test_on_batch(adv_x, y)

mu_out_[test_no_steps, :, :] = mu_out

sigma_[test_no_steps , :, :] = sigma

sigma_/[test_no_steps, :, :, :] = sigma

corr = tf.equal(tf.math.argmax(mu_out, axis=1), tf.math.argmax(y, axis=1))
accuracy = tf.reduce_mean(tf.cast(corr, tf.float32))

117

acc_test[test_no_steps] = accuracy.numpy ()
if step % 10 ==
print ("Total running accuracy so far: %.3f" % accuracy.numpy())

test_no_steps += 1

test_acc = np.mean(acc_test)

print(’ Test accuracy : ', test_acc)

pf = open(PATH + test_path + “uncertainty_info.pkl’, "wb’)
pickle .dump ([mu_out_, sigma_, adv_perturbations , test_acc], pf)

pf.close ()

var = np.zeros ([int(x_test.shape[0] / batch_size), batch_size])
snr_signal = np.zeros ([int(x_test.shape[0] / batch_size), batch_size])
for i in range(int(x_test.shape[0] / batch_size)):
for j in range(batch_size):
predicted_out = np.argmax(mu_out_[i, j, :])
var[i, j] = sigma_[i, j, int(predicted_out)]
snr_signal[i, j] = 10 % np.loglO(np.sum(np.square(true_x[i, j, :, :, :]1)) / np.sum(

np.square(epsilon # adv_perturbations[i, j, :, :, :])))

print (’ Output Variance’, np.mean(var))
print (’SNR’, np.mean(snr_signal))
valid_size = x_test.shape[0]

pred_var = np.zeros(int(valid_size))

true_var = np.zeros(int(valid_size))

correct_classification = np.zeros(int(valid_size))
misclassification_pred = np.zeros(int(valid_size))
misclassification_true = np.zeros(int(valid_size))

predicted_out = np.zeros(int(valid_size))

true_out = np.zeros(int(valid_size))

k=0
kl =0
k2 =0

for i in range(int(valid_size / batch_size)):
for j in range(batch_size):
predicted_out[k] = np.argmax(mu_out_[i, j, :])
true_out[k] = np.argmax(true_yl[i, j, :])

pred_var[k] = sigma_[i, j, int(predicted_out[k])]

true_var[k] = sigma_[i, j, int(true_out[k])]

if (predicted_out[k] == true_out[k]):
correct_classification[kl] = sigma_[i, j, int(predicted_out[k])]
kl = k1 + 1

if (predicted_out[k] != true_out[k]):

misclassification_pred[k2] = sigma_[i, j, int(predicted_out[k])]
misclassification_true [k2] = sigma_[i, j, int(true_out[k])]
k2 = k2 + 1

k=%k+1

print (* Average Output Variance’, np.mean(pred_var))

varl = pred_var # np.reshape(var, int(x_test.shape[0]/(batch_size))* batch_size)
print(varl)

writer = pd.ExcelWriter (PATH + test_path + ’variance.xIsx’, engine=’"xlsxwriter)
df = pd.DataFrame (np.abs(varl))

Write your DataFrame to a file

df.to_excel (writer , "Sheet")

118

dfl = pd.DataFrame(predicted_out)

dfl.to_excel(writer, ’Sheet’, startcol=4)

df2 = pd.DataFrame (true_out)

df2.to_excel (writer , ’'Sheet’, startcol=7)

df3 = pd.DataFrame(correct_classification)

df3.to_excel(writer, ’Sheet’, startcol=10)

df4 = pd.DataFrame(misclassification_pred)

df4 .to_excel (writer , ’Sheet’, startcol=13)

df5 = pd.DataFrame(misclassification_true)
df5.to_excel (writer , ’'Sheet’, startcol=16)

writer.save ()

pf = open(PATH + test_path + ’var_info.pkl’, ’wb’)
pickle .dump ([correct_classification , misclassification_true , pred_var], pf)

pf.close ()

textfile = open(PATH + test_path + ’Related_hyperparameters.txt’, ’w’)

textfile .write(’ Input Dimension : ’ + str(image_size))

textfile.write(’\n No of Kernels + str(num_kernels))

textfile.write (’\n Number of Classes + str(num_classes))

textfile . write ("\n No of epochs + str(epochs))

textfile.write(’\n Initial Learning rate : * + str(lr))

textfile.write (’\n Ending Learning rate + str(lr_end))

textfile.write(’\n kernels Size : ° + str(kernels_size))

textfile.write(’\n Max pooling Size + str(maxpooling_size))

textfile.write(’\n Max pooling stride + str(maxpooling_stride))

textfile . write (’\n batch size + str(batch_size))

textfile.write(’\n KL term factor : > + str(kl_factor))

textfile . write ("\n ")

textfile .write ("\n Averaged Test Accuracy + str(test_acc))

textfile . write ("\n Output Variance: + str(np.mean(np.abs(var))))

textfile.write ("\n Correct Classification Variance: + str(np.mean(correct_classification)))

textfile .write ("\n MisClassification Variance: + str(np.mean(misclassification_pred)))

textfile . write ("\n ")

if Adversarial_noise:
if Targeted:
textfile .write(’\n Adversarial attack: TARGETED’)
textfile.write (’\n The targeted attack class: ’ + str(adversary_target_cls))
else:
textfile .write(’\n Adversarial attack: Non-TARGETED’)
textfile . write (’\n Adversarial Noise epsilon: ° + str(epsilon))
textfile . write ("\n SNR: " + str(np.mean(snr_signal)))

textfile . write ("\n ")

textfile .close ()

if (PGD_Adversarial_noise):
if Targeted:
test_path = ’test_results_targeted_PGDadversarial_noise_{}_max_iter_{}_{}/ . format (HCV, maxAdvStep,
stepSize)
full_test_path = PATH + test_path

119

if os.path.exists(full_test_path):
Remove the existing test path and its contents
shutil .rmtree (full_test_path)
os.makedirs (PATH + test_path)
else:
test_path = “test_results_non_targeted_PGDadversarial_noise_{}/’.format(HCV)
full_test_path = PATH + test_path
if os.path.exists(full_test_path):
Remove the existing test path and its contents
shutil .rmtree (full_test_path)

os. makedirs (PATH + test_path)

trans_model.load_weights (PATH + ’vdp_cnn_model *)

trans_model . trainable = False
test_no_steps = 0
true_x = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, image_size, image_size, channels])

adv_perturbations = np.zeros (

[int(x_test.shape[0] / (batch_size)), batch_size, image_size, image_size, channels])

true_y = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])

mu_out_ = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])
sigma_ = np.zeros([int(x_test.shape[0] / (batch_size)), batch_size, num_classes,
sigma_ = np.zeros ([int(x_test.shape[0] / (batch_size)), batch_size, num_classes])

acc_test = np.zeros(int(x_test.shape[0] / (batch_size)))

epsilon = HCV / 3

for step, (x, y) in enumerate(val_dataset):
update_progress(step / int(x_test.shape[0] / (batch_size)))
true_x[test_no_steps, :, :, :] =X

true_y [test_no_steps, :, :] =y

adv_x = x + tf.random.uniform(x.shape, minval=—epsilon, maxval=epsilon)
adv_x = tf.clip_by_value(adv_x, 0.0, 1.0)
for advStep in range(maxAdvStep):
if Targeted:
y_true_batch = np.zeros_like (y)

y_true_batch[:, adversary_target_cls] = 1.0

num_classes])

adv_perturbations [test_no_steps , :, :, :] = create_adversarial_pattern(adv_x, y_true_batch)
else:

adv_perturbations [test_no_steps, :, :, :] = create_adversarial_pattern(adv_x, y)
adv_x = adv_x + stepSize = adv_perturbations[test_no_steps, :, :, :]

pgdTotalNoise = tf.clip_by_value(adv_x - x, —epsilon, epsilon)

adv_x = tf.clip_by_value(x + pgdTotalNoise, 0.0, 1.0)

mu_out, sigma = test_on_batch(adv_x, y)

mu_out_[test_no_steps, :, :] = mu_out

sigma_[test_no_steps, :, :, :] = sigma

sigma_[test_no_steps, :, :] = sigma

corr = tf.equal(tf.math.argmax(mu_out, axis=-1), tf.math.argmax(y, axis=-1))
accuracy = tf.reduce_mean(tf.cast(corr, tf.float32))

acc_test[test_no_steps] = accuracy .numpy ()

if step % 50 == 0:
print (" Total running accuracy so far: %.4f" % acc_test[test_no_steps])
test_no_steps += 1
test_acc = np.mean(acc_test)

print (’ Test accuracy : , test_acc)

120

print (’Best Test accuracy : , np.amax(acc_test))

pf = open(PATH + test_path + ’uncertainty_info.pkl’, ’wb’)

pickle .dump ([mu_out_, sigma_, true_x , true_y, adv_perturbations, test_acc], pf)
pf.close ()
var = np.zeros ([int(x_test.shape[0] / batch_size), batch_size])
snr_signal = np.zeros([int(x_test.shape[0] / batch_size), batch_size])
for i in range(int(x_test.shape[0] / batch_size)):
for j in range(batch_size):

predicted_out = np.argmax(mu_out_[i, j, :])

var[i, j] = sigma_[i, j, int(predicted_out)]

snr_signal[i, j] = 10 * np.loglO(

np.sum(np.square (true_x[i, j, :, :, :])) / np.sum(
np.square (epsilon * adv_perturbations[i, j, :, :, :])))
print (*Output Variance’, np.mean(var))
print (’SNR’, np.mean(snr_signal))
varl = np.reshape(var, int(x_test.shape[0]/(batch_size))* batch_size)
#print(varl)
writer = pd.ExcelWriter (PATH + test_path + ’variance.xlsx’, engine="xlsxwriter ’)
df = pd.DataFrame(np.abs(varl))
Write your DataFrame to a file
df.to_excel(writer, "Sheet")
writer .save ()
textfile = open(PATH + test_path + ’Related_hyperparameters.txt’, 'w’)
textfile.write(’ Input Dimension : ° + str(image_size))
textfile.write(’\n No of Kernels * + str(num_kernels))
textfile.write (’\n Number of Classes ’ + str(num_classes))
textfile . write (’\n No of epochs : ’ + str(epochs))
textfile .write (’\n Initial Learning rate : ° + str(lr))
textfile.write (’\n Ending Learning rate + str(lr_end))
textfile.write(’\n kernels Size * + str(kernels_size))
textfile.write(’\n Max pooling Size ’ + str(maxpooling_size))
textfile.write(’\n Max pooling stride ’ + str(maxpooling_stride))
textfile .write (’\n batch size : ° + str(batch_size))
textfile.write (’\n KL term factor : ° + str(kl_factor))
textfile .write ("\n ")
textfile.write ("\n Test Accuracy " + str(test_acc))
textfile.write ("\n Output Variance: " + str(np.mean(np.abs(var))))
textfile . write ("\n ")
if PGD_Adversarial_noise:
if Targeted:
textfile .write(’\n Adversarial attack: TARGETED’)
textfile.write (’\n The targeted attack class: ° + str(adversary_target_cls))

else:

textfile.write (’\n Adversarial attack: Non-TARGETED’)
textfile . write (’\n Adversarial Noise epsilon: ° + str(epsilon))
textfile.write (’\n Adversarial Noise HCV: ’ + str (HCV))
textfile.write ("\n SNR: " + str(np.mean(snr_signal)))

textfile . write ("\n stepSize: + str(stepSize))

textfile . write ("\n Maximum number of iterations: + str(maxAdvStep))

textfile . write ("\n ")

textfile.close ()

121

if __name__ == ’__main__"~

main_function ()

122

BIOGRAPHICAL SKETCH

Fazlur Rahman Bin Karim is from Chattogram, Bangladesh. He finished his Bachelor of
Science in Electrical and Electronic Engineering from Chittagong University of Engineering and
Technology in December 2014. After completing graduation, he worked in the industrial sector
of Bangladesh for five years as an Operations Engineer. He moved to the USA to pursue a Master
of Science in Electrical Engineering (EE) at the University of Texas Rio Grande Valley (UTRGV)
in January 2022. He started his job as a Graduate Research Assistant (GRA) and researched
Probabilistic Machine Learning with Dr. Dimah Dera.

Under the guidance of Dr. Dimah Dera, an accomplished researcher in machine learning,
he pursued his Master’s thesis. His research focuses on advancing Bayesian deep neural networks
for sequential data, and he applied this work in practical contexts that include healthcare and
optimization.

He obtained his Master of Science in Engineering degree from the University of Texas Rio
Grande Valley (UTRGV), USA, in December 2023. After completing his master’s, he is going to
join the University of Texas at Dallas, Richardson, Texas, as a Graduate Research Assistant for his

PhD in Electrical Engineering. He can be reached at fazlur0902033 @ gmail.com.

123

	Robust and Uncertainty-Aware Image Classification using Bayesian Vision Transformer Model
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	CHAPTER I. Introduction
	Motivation: Importance of Vision Transformer
	Biomedical Imaging
	Autonomous Driving

	Background and Problem Statement
	Problem Statement

	 Research Objectives and Contributions

	CHAPTER II. Literature Review
	Image Classification with Deep Neural Networks
	Vision Transformer
	Patch Embedding
	Positional Embedding
	Transformer Encoder

	Compact Convolutional Transformer
	Convolutional Tokenizer
	Positional Embedding
	Transformer Encoder
	Sequence Pooling

	Bayesian Inference in ViT

	CHAPTER III. Methodology
	Input image Preprocessing
	Patch based Tokenization

	Image Classification using Bayesian Transformer Models
	Bayesian Formulation
	Variational inference

	Mathematical Basis of the Image Classification Methods
	 Image Classification with Bayesian Vision Transformer, Bayes-ViT
	 Image Classification with Bayesian Compact Convolutional Transformer, Bayes-CCT

	Algorithm of proposed model
	Algorithm of proposed Bayes-ViT
	Algorithm of proposed Bayes-CCT

	CHAPTER IV. Experimental Results and Analysis
	Experimental Setup.
	Multi Label Classification Problem.

	Dataset Selection for Model Development
	MNIST dataset.
	Fashion-MNIST dataset
	CIFAR-10 dataset

	Performance Evaluation
	Robustness and Noise Analysis

	Results and Discussion
	 Uncertainty Analysis for Self-Awareness

	CHAPTER V. Future Work and Conclusion
	Future Work
	Detection of Disease in Biomedical Imaging
	Object Detection in autonomous driving / Self-driving cars

	Conclusion

	REFERENCES
	APPENDIX A
	Source Code of Bayes-ViT
	Source Code of Bayes-CCT

	Biographical Sketch

