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ABSTRACT

Pedraza, Bryan J., Robust Uncertainty Estimation Framework in Deep Reinforcement Learning for

Active SLAM. Master of Science (MS), December, 2023, 57 pp., 2 tables, 12 figures, references, 36

titles.

Autonomous mobile robots are essential in various domains such as industry, manufacturing

and healthcare. Navigating autonomously and avoiding obstacles are crucial tasks that involve local-

izing the robot to explore and map unknown environments without prior knowledge. Simultaneous

localization and mapping (SLAM) present significant challenges. In this study, we introduce a new

approach to address robust navigation and mapping of robot actions using Bayesian Actor-Critic

(A2C) reinforcement learning. The A2C framework combines policy-based and value-based learn-

ing by dividing the model into two components: (1) the policy model (Actor) determines the actions

based on the state, and (2) the value model (Critic) evaluates whether the agent’s action depending

on its return value from being ahead or behind in an environment/game. This feedback guides the

training process in which both models interact and optimize their outputs over time. To achieve

robust exploration and collision-free navigation, we develop a Bayesian A2C model that generates

robot actions and quantifies the uncertainty associated with these actions. Our approach incorporates

Bayesian inference and optimizes the variational posterior distribution over the unknown model

parameters using the evidence lower bound (ELBO) objective. We employ a first-order Taylor series

approximation to estimate the mean and covariance of the variational distribution when passed

through non-linear functions in the A2C model. The propagated covariance estimates the robot’s

action uncertainty at the output of the actor-network. Experimental results demonstrate the superior

robustness of the proposed Bayesian A2C model when exploring environments with high levels

of noise compared to deterministic alternatives. Furthermore, the proposed framework has the

potential for various applications where robustness and uncertainty quantification are crucial.
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CHAPTER I

INTRODUCTION

1.1 Motivation and Problem Statement

Reinforcement learning has been an area of great interest in machine learning for quite

some time. Agents have recently shown remarkable performance in learning and outperforming

human-level skills [16, 35, 18], which may improve one area of interest known as Simultaneous

Localization and Mapping (SLAM). This is where a robot/agent equipped with a LiDAR (Light

Imaging Detection and Ranging) and/or camera localizes itself and maps an environment. The

approach to have the agent autonomously navigate on its own is known as active SLAM [1, 21]. The

robot would need to actively explore, navigate, map an unknown environment, and gather useful

data to construct a map of the real-world environment. However, the problem remains in exploring

unknown environments, which is challenging due to the agent/robot not having any prior knowledge

about the environment.

Deep reinforcement learning (DRL) facilitates learning based on some initial conditions,

exploring and navigating unseen environments [34]. Many DRL approaches have been proposed

in the literature to solve the active SLAM problem [19]. However, quantifying uncertainty in

the robot’s actions, especially important for cases where the agent undergoes noisy or corrupted

environments, is still missing. This thesis explores how estimating uncertainty in the robots’

actions and mapping for robust exploration and navigation in unknown environments (active SLAM

problem) may improve the performance and robustness compared to the traditional deterministic

models, particularly when the robot goes into noisy environments. This study aims to investigate

and develop a framework for handling uncertainty and assess the advantages of incorporating
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uncertainty into the system when addressing the active SLAM problem. Numerous techniques

have been proposed in previous studies to tackle active SLAM problems, including filter-based

methods, graph-based methods, optimization-based methods, and others [5, 12, 31, 34]. Nonetheless,

effectively exploring unfamiliar environments remains a daunting task due to the limited prior

knowledge and the essential requirement of accurately measuring uncertainty, particularly in highly

noisy environments and the impact on robustness in such cases.

1.2 Research Objectives and Contributions

This thesis introduces an innovative Bayesian Actor-Critic (A2C) model that applies deep

reinforcement learning for Active Simultaneous Localization and Mapping (SLAM) algorithm.

The proposed Bayesian A2C algorithm effectively estimates the actions performed by the robot

while also quantifying the uncertainty associated with those actions. By leveraging this uncertainty,

the robot can navigate in the correct direction and avoid potential collisions. To achieve this, we

employ Bayesian inference and optimize the variational posterior distribution of the A2C model

parameters using the Kullback-Leibler (KL) divergence, which minimizes the difference between

the approximate and true posterior distributions. The objective function in this optimization problem

is known as the evidence lower bound (ELBO) objective function. Building upon the existing

uncertainty propagation framework described in [7], we extend it by propagating the mean and

covariance of the variational posterior distribution through the Bayesian A2C networks. In order

to approximate the mean and covariance after non-linear layers, we employ the first-order Taylor

linearization. The resulting propagated covariance at the output of the actor network provides a

measure of uncertainty for the predicted action. This quantification of uncertainty enhances the

robustness of autonomous robot navigation, particularly when operating in noisy environments.

Our experimental results demonstrate that the Bayesian A2C model achieves higher reward values

compared to the deterministic A2C model. Furthermore, the Bayesian A2C model maintains

consistent performance and high reward values, even when the robot operates in a noisy environment

during validation without being trained specifically for that noisy environment.

2



1.2.1 Contributions

In particular, the research contributions are summarized as follows:

1. Build a novel active SLAM algorithm to efficiently learn to navigate and explore in an

unknown and highly noisy or malicious environment.

2. Integrate Bayesian theory in deep reinforcement learning in order to measure the uncertainty

of the predicted action using prior and posterior distributions over the Actor and Critic

networks’ parameters.

3. Improve the model’s robustness during exploration and object collision avoidance when

undergoing noisy conditions or corrupted unseen areas of the environment, using estimated

uncertainty in the predicted actions.

4. Investigates the essential aspects of reliability and dependability in intelligent robotic systems.

A well-structured theoretical and algorithmic foundation is developed, which has an influence

on the creation of mapping and active sensing algorithms for autonomous robots. These

abilities are important in areas such as security, surveillance, and environmental monitoring,

where promptly acquiring knowledge about the surrounding terrain, structures, and human

presence is crucial.

The scope of this research is to find an answer to the following questions:

1. How can uncertainty in the robot’s actions improve the exploration, navigation and mapping

of the environment?

2. How can the robot efficiently learn to adapt to sudden changes in the environment using

uncertainty in case of noisy or malicious environments?

3. How can uncertainty measurement improve the robustness of the robot’s actions and act as a

warning signal or failure mode detection mechanism to the agent itself?

3



1.3 Thesis Organization

This thesis is organized as follows. Chapter II discusses the literature review of deep

reinforcement learning and active SLAM algorithms. Then, Chapter III explains the Bayesian

Actor-Critic reinforcement learning algorithm. Chapter IV presents the experimental results and the

discussion. Finally, Chapter V includes the conclusion and future work.
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CHAPTER II

LITERATURE REVIEW

2.1 Deep Reinforcement Learning (DRL)

Deep reinforcement learning (DRL) combines the recent deep neural networks with a

framework of reinforcement learning (RL), which refers to goal-oriented algorithms. RL algorithms

help software agents learn how to achieve a specific goal; for example, they can maximize the points

won in a game over many moves [17, 16]. Although, in the beginning, DRL algorithms will not

know exactly what proper actions to do in a given space of an environment (can start from a blank

state), the agent learns through trial and error (reinforcement) to optimize to the best policy action

in order to reach the desirable end goal. The reward function is used to guide the agent. Developers

set up the reward function to determine how much to reward or penalize the agent after doing an

action and observe the changes in the environment. Due to this rewarding concept, some researchers

consider DRL to be semi-supervised learning (between supervised and unsupervised) because the

agent is slightly guided to an appropriate optimal policy action through rewards. However, the agent

is learning (optimizing) on its own through trial and error to achieve the goal [28].

The space in an environment can be very huge. For example, an agent learning how to

play chess can be challenging because the spacing is so vast in this grid world with a finite set of

actions. If the opponent or agent just moves one piece, the space of the environment is different than

before. Therefore, an agent must learn to take the best action in order to receive the best possible

reward and maximize its chance to win (end goal). Though this is only one example that explains

how spacing in environments can be huge, it can be even more in the real-world environment,

where objects or humans can shift position dynamically. Because of this complex spacing and
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decision-making on what actions to take, deep neural networks were introduced into the agent itself

to help compute non-linear complex functions in an environment. RL tries to mimic human thinking

in a trial-and-error way, such as human learning how to play tic-tac-toe for the first time [27]. The

human plays over and over again. It might lose (penalize), or it might win (reward).

Researchers are consistently working on enhancing active SLAM by introducing new

techniques, methods, and solutions. Several RL methodologies, including Q-learning, Deep Q-

Networks (DQN), double DQN, dueling double DQN, and Actor-Critic (A2C), along with their

variants, have been proposed in the literature [34, 20, 19, 2, 33]. However, there has been a notable

absence in the literature on how to integrate the uncertainty associated with predicted actions and its

impact on the behavior of robots operating in various noisy environments. Current robotic systems

lack robust mechanisms for both exploring the surroundings and effectively managing uncertainty,

which is crucial for intelligent decision-making systems.

2.2 Theory of Optimal Experimental Design (TOED): Exploration and Mapping in

Environment

A few attempts have been introduced in the literature to quantify the agent/robot’s path

planning to improve its localization and mapping accuracy. This can be done during the robot’s

exploration into new areas or exploitation in areas that have already been explored. This is achieved

by choosing a form of Theory of Optimal Experimental Design (TOED) function [22, 14], in other

words, an optimal criteria method for the robot to follow. A criteria method can lead the robot

to decide on where to move and what sensor measurements to take based on what it understands

about the environment. This leads to more efficient exploration and mapping of self-localization

and its environment. There are different criteria methods, such as T-optimality (T-opt), A-optimality

(A-opt), D-optimality (D-opt), E-optimality (E-opt), and Shannon’s entropy. However, Shannon’s

entropy originated from information theory (IT) but is very similar to the optimality methods.

Research papers [20, 6, 23] have discussed and compared different optimal criteria methods

that best decide a robot’s motion planning. The robot’s motion planning is based on its ability to

accurately localize itself and its pose while completing a map of the environment. The paper states
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that reducing the uncertainty on the map helps the robot better understand its own localization and

environment by exploring the areas it has not seen before while also completing an accurate map.

Previous studies have demonstrated that from the covariance matrix (Σ), which represents

the SLAM map, the T-opt can capture the average variance, the A-opt captures the harmonic average,

the D-opt captures the full dimensions of the map, and the E-opt captures a single minimum or

maximum eigenvalue. The results claimed that the D-optimal performed better due to its method

of capturing the whole map’s representation by using all landmarks in the formula method. For

example, if the robot is unsure about an area on the map, the robot may decide to move closer

and take measurements from that section to gain more information about the environment. The

D-optimality criterion from the TOED function is represented in the Equation 2.1 [19, 23, 2]:

(2.1)

The ℓ represents the length of the covariance matrix (Σ). The Equation 2.1 contains the eigenvalues

(λk), which are correlated to represent the landmarks in the map’s representation. As mentioned

before, the TOED and IT provide a variety of different methods for calculating different uncertainty

metrics on the exploration map in unknown/unseen areas. This is how the map is represented in

active SLAM’s algorithm [6]. The TOED introduced a logarithmic approach in restricting the

optimality criteria to never converge into zero, which became the D-opt function, which is similar

to Shannon’s entropy. This is prone to better exploration, capturing the global areas where the robot

is unsure of or areas where it didn’t map before. This function plans trajectories (path plan) to

explore outwards around the environment and helps navigate, explore, and build the SLAM map.

The metric system should then have an idea of where to explore and a path plan to reduce areas

where the robot is unsure. The system should also have the ability to gather landmarks information,

self-localization, and map building.

Note that in the agent’s position in the metrics method, exploration of unseen areas and
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mapping are done in the active SLAM algorithm. This algorithm runs independently from the

robot. This means that inside the Robot Operating System (ROS) [13], the SLAM algorithm is

an entirely different code/node than the robot itself. Therefore, the robot (node 1) communicates

with the active SLAM algorithm (node 2) and vice versa. It communicates in helping build the

environment’s map and the robot’s position during exploration by receiving the robot’s LiDAR

(or camera) scan measurements through the ROS framework. Another useful software inside the

ROS framework will be the Gazebo simulator (robot’s environment), where the robot will interact

and train repeatedly. Also, the OpenAI gym-gazebo extension [36] was used for both training

and testing purposes. On the robot and environmental setup. This open-source library provides

numerous preconfigured robots and environments, making them readily available for AI-related

tasks. The latest DRL approaches are the artificial intelligence network (Deep-Q Network [16],

Actor-Critic [12]) and their variations. These approaches work inside the robot and communicate

with the active SLAM algorithm. Therefore, the whole framework learns better policy actions based

on maximizing future rewards on a current state and learns actions to explore regions that the robot

is unsure of or has not seen. The following sections will further discuss these networks and some of

the approaches that previous researchers have done.

2.3 Q-learning in Reinforcement Learning

Q-learning is a reinforcement learning policy that will find the best action given a current

state. It chooses this action at random and aims to maximize the reward. Consider an advertisement

recommendation system. Usually, when we look up a product online, we get advertisements

which will suggest similar products over and over again. Using Q-learning, we can create an Ad

recommendation system, which will suggest related products to our previous purchase. The reward

will be if the user clicks on the suggested product.

In Q-learning, there are some important terms, such as the state, action, reward, episodes,

Q-values, and temporal difference (TD) learning [11]. The state, s, represents the current position

of an agent in an environment. The action, a, is the step taken by the agent when it is in a particular

state. For every action, the agent will get a positive or negative reward. The episode happens when
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Figure 2.1: A schematic layout of Q-learning.

an agent ends up in a terminating state and can’t take a new action. Q-values are used to determine

how well an action is taken in a particular state, i.e., Q(s,a). The temporal difference learning is a

formula used to find the Q-value by using the value of the current state and action and the next state

and action. Figure 2.1 presents a schematic layout that represents Q-learning.

2.3.1 Bellman Equation

The Bellman Equation is the essential building block of reinforcement learning. The

equation determines the long-term reward given the state we are in and assumes that we take the

best possible action currently and at each subsequent step. The equation is given as follows:

Q(s,a)← Q(s,a)+α
[
R(s,a)+ γ maxQ′(s′,a′)−Q(s,a)

]
, (2.2)

where (s,a) refer to the current state and action, s′,a′ refer to the previous state and action, R is the

reward, γ is a weighting factor and α is the learning rate.

2.4 Deep Q-Network (DQN) and Reward Function

Deep Q-Network (DQN) uses both Q-learning and deep learning, which contains a deep

neural network (DNN) with multiple layers within the agent itself. Along with the loss function,

the reward function for DQN helps efficiently optimize the weights within the agent’s network and
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learn better quality action policy for an environment. Particularly, the Q-function, known as the

action-value function, is used to quantify the expected reward by following a policy and taking

an action given a state. The DQN learns an optimal Q-function (a policy) to grant the robot the

best possible actions to take in order to maximize its expected reward over a number of iterations

[34, 19, 25]. The Q-function is seen as a return value by taking a specific action in a given state.

The Q-function is represented by Q(s,a), where s is for the state, a is for the action, and Q is for an

expected reward value or return value. A few variations of DQN methods have been proposed in the

literature, such as standard DQN [16], double DQN (DDQN) [30], rainbow [10], dueling DDQN

(D3QN) [32].

Placed and Castellanos approached the active SLAM by model-free DRL, or more specif-

ically, applied a D3QN architecture with Prioritization Experience Replay (PER) adopted from

[24] to stabilize and optimize the agent’s action policy [19]. The D3QN framework used a mixture

of double DQN and dueling DQN and showed better performances and stability over the other

Q-networks. The robot is equipped with just a LiDAR sensor and no camera in this approach. The

author used a standard squared error loss function on the model and the Q-learning function value,

which is used for updating the weights of the D3QN. The agent receives good rewards while it is

exploring; thus, guiding the agent to explore, map, and avoid collision is the goal.

On the other side, DDQN and D3QN used the advantaged function that helped the network

learn the advantages of taking a particular action over other actions and quantified how much better

or worse the action was. The advantaged function is calculated by the differences in reward value

received taken by an action and the predicted average value for all possible actions in a given state.

The return value (Q-value) is used as part of this function that is subtracted by the average value in

the current state. This is written as A(s,a), where both action and state are paired with the advantage.

This is also known as the temporal difference (TD) learning [31] used as feedback to quantify

how much the current estimate value needs to be adjusted for better outcomes. The optimization

problem adjusts the function in a direction to reduce the TD error, thus helping the robot make

better predictions about the expected return values and rewards by the action and the state.
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The role of the reward function is to guide a robot’s actions. The function helps the

robot transition from a state of ignorance about its environment and action policy to a state of

learning, where it can distinguish between acceptable and unacceptable actions in a given state.

Backpropagation in DRL is used in conjunction with the reward function to enable the robot to

learn from previous interactions and understand good actions versus bad ones. This approach helps

the robot make desirable decisions and take actions that lead to the desirable end goal. Essentially,

the reward function acts as a rule book that the agent must abide by, considering the agent has no

prior knowledge of the environment, the goal, or the actions. Through DRL and rewards, the robot

is guided towards its target goal by penalizing bad actions and rewarding good ones. Therefore, it

is imperative to decide the structure of the reward function for an artificial network, as it plays a

critical role in guiding the agent to perform optimal actions that lead to achieving specific goals.

The approach in [19] is to satisfy the active SLAM cost function J [6, 14]. This function computes

the sum of all free collision trajectories (Ti) and the expected uncertainty of the covariance map

(Ui) to determine the best policy class that optimizes the cost function J. Additionally, the approach

introduces two other variables, α and β , to represent the constant value for both sums, which are

low decimal values. In other words, the approach aims to enable the robot to navigate freely, avoid

collisions, and measure the unseen areas around the agent’s environment through the SLAM map’s

representation.

J = ∑
i

αUi +∑
i

βTi (2.3)

The active SLAM cost function J is presented as Equation 2.3 consisting of the collision-free

trajectory (Ti) and the potential unseen areas in the map (Ui), along with two low-value constant

variables, α and β [6].

Placed and Castellans translated the cost function in [6, 14] into a reward function. They

trained an agent in DRL to find the best optimal policy and optimize active SLAM function in

navigating and exploring [19]. By translating the cost function into a reward function, the agent can

be guided to the optimal goal of navigating and exploring. The reward function is very similar to
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the cost function in active SLAM but used in different methods and variables. Placed and Castellans

proposed a general reward function and demonstrated how collision-free rewards (R f ) and exploring

unseen areas (Ru) are individually calculated in the reward function [19]. This is heavily related to

Equation 2.3, but in a reward function for the network.

R = Ru +R f (2.4)

The reward function in the Equation 2.4 includes a reward when there is no collision, R f , and

a reward when successfully exploring the environment/areas that haven’t seen, Ru. Here R f is

essentially the same as T, and Ru is the same as U, but wrapped in a reward function. The function

penalizes the agent harshly when there’s a collision or very little when there’s a turn. This is

a standard rewarding method in guiding the agent for collision-free navigation seen in previous

research [34, 4].

More importantly, the author uniquely computed the Ru reward for when the agent suc-

cessfully explored the unseen areas of the environment. From the author’s reward function, the

f(Σ) is a criteria function used to compute the unexplored areas on the SLAM map and, in this

case, the D-optimally criteria from TOED. The author proposed the f(Σ) function or D-opt criterion

applied to the denominator of the equation because when the uncertainty of the environment is

large, the reward should be small, but when the uncertainty is small (explore unseen regions), the

reward should be high. This means that the agent will get positive rewards when it is successful in

exploring the environment, reducing the uncertainty. The numerator is a constant task-dependent

scale factor wrapped around a tanh(.) function that bounds the reward range from zero to one ([0,1]).

This ensured that the R f reward was not overshadowed, maintaining a balance between both reward

values (R f and Ru). The agent optimizes an optimal policy to learn a good strategy in navigation

and exploration by the reward function, guiding the agent to achieve this goal in active SLAM.
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2.5 Actor-Critic

Although DQNs are useful in DRL by optimizing weight parameters to achieve a better

optimal Q(s,a) function and policies to attain a specific goal, the robot will only have a set of discrete

actions to take. The actions are determined by the DQN structure in learning to either go forward,

turn right, turn left, etc., based on the input state of the environment [16, 30]. This is particularly

useful for agents that need to learn the best action to take in a discrete set of environments, such as

a board game like checkers, where the player can only take a full step or no step. However, most

robots have some type of degree of freedom (DOF) joints like a two-link manipulator, servos, arms,

hands, fingers, or in some cases, motors in controlling the speed and angular turn on the wheels.

Robotics are all different in what they do and how they are built, but the common similarity between

all is that each needs to be able to deeply learn and take action in a continuous or discrete space

[12, 15].

The actor-critic (A2C) algorithm is the better choice for robotics and is another method used

in DRL where the robot has either a continuous or discrete output space of the actions. Actor-critic

is very similar to DQN, but instead of one network model (Q-network), there are two network

models. The whole model is split into two; one network is the actor, and the other network is

the critic. Both networks are independent of one another and, therefore, have independent weight

parameters and compute different outputs. These networks are deep neural networks, and both actor

and critic work together to determine the best-desired action. The actor network decides which

action should be taken, and the critic network criticizes the actor for every action it decides and

informs the actor how good or bad the action was in a given state and how it should be adjusted.

The critic’s job is to criticize the actor or give it a value score of the state based on evaluating the

chosen action and reward, much like a parent criticizing every action in each state. This is done

with the TD learning (or advantage function) that is sent to the actor by the critic.

The critic’s role is to predict values and the return values for each action paired with the

state. All the value placements for action paired with state are done by the critic, and all the actions

are predicted by the actor. Because the network is split, the actor can solely focus on actions and
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Figure 2.2: The basic structure of the Actor-Critic (A2C) method [26].

freely predict the output of the action with the help of the critic. This is very useful in the robotics

aspect in giving the robot learning ability and goals while allowing the robot to maneuver in an

open space. Figure 2.2 illustrates the basic structure of an AC2 method [26].

Many different variations of the A2C algorithm have been implemented in the literature,

such as asynchronous advantage actor-critic (A3C) [15], and soft actor-critic (SAC) [9] that showed

improvement compared to A2C. In a recent research article [33], a hybrid approach used a depth

camera and a LiDAR sensor equipped onto the robot instead of just having a LiDAR sensor seen

in other research papers. Here the depth-camera image is the input to the DRL network that

is composed of a convolution neural network, relational network, max-pooling, and two split

independent branches for the actor and critic networks.

Wen et al. introduced a unique method for the A2C framework [33]. The paper proposed

a network structure of exploration during real-time depth-camera feedback (image frame) on the

robot’s network model. The authors also proposed a network structure after the convolutional neural
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network (CNN) (as a feature extraction technique) that is split into two branches. The actor network

and critic network decide on the action and compute a value and TD error of the state environment.

However, Wen et al. had the actions set in a continuous space for the linear velocity and the angular

velocity in order for the robot to be able to learn to maneuver in an action range set [33].

Plenty of research papers developed useful methods for approaching the ongoing active

SLAM problem. However, they did not consider uncertainty in the robot’s action. The literature

failed to approach these issues and even failed to show the model’s robustness to noise, nor test the

model when the robot undergoes noisy conditions or when images are corrupted in an environment.

In [19], Placed and Castellans attempted to solve the active SLAM problem with a DQN, as

mentioned before. However, their experiment results were only compared to DQN family methods

(DDQN and D3QN). They failed to compare the proposed method with an A2C or present the

model’s performance in noisy environments. This thesis raises the question of whether A2C

performs better or just as well as the DQN family methods in test simulations in solving the active

SLAM problem and whether including uncertainty can enhance the robust features when the robot

is under disturbed conditions.

Although Wen et al. employed an A2C model to solve the active SLAM problem and used

complex environments during training to better prepare the robot for the real world, the paper still

failed to include uncertainty in exploring and mapping or in the network actions [33]. Moreover,

the paper didn’t show the robustness of the model under noisy environments. To the best of our

knowledge, all exploration methods ultimately failed to use the SLAM map in their algorithm or

reward function to guide the robot in exploring unknown areas in the environment. More importantly,

no uncertainty was calculated. The authors just created a SLAM map and estimated the position of

the robot on the map but didn’t use the map in the algorithm for any type of guidance for the robot.

Environments are not always clean, and signal interference happens, especially on ma-

chines/robots. Considering these conditions can be very crucial in testing the robustness of these

models and can lead to better performance when deployed onto real-world robots. In the real

world, there are a lot of signals in the air generated by hundreds of devices, and the uncertainty can
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go a long way in measuring how certain the robot is about its own prediction. Uncertainty is an

important factor to implement, and a recent study [7] showed that uncertainty can be very helpful to

a model’s prediction and data distribution of an environment. Including uncertainty may improve

the framework’s robustness whenever the model is under corrupted/noisy conditions. Uncertainty

measurement in the predicted actions may help predict better choices that are closer to the ground

truth regardless of an interrupted image.

2.6 Uncertainty on Network

Dera et al. proposed a unique approach to computing the uncertainty throughout a DNN

using Bayesian theory by estimating the posterior distribution of the unknown parameters [7].

They developed a model called PremiUm-CNNs (Propagating Uncertainty in Convolutional Neural

Networks) [7]. This method introduced a normal distribution over the CNN’s kernels (sometimes

called filters in CNN) as the prior distribution and estimated the posterior distribution over the

parameters. That allowed the network to propagate the uncertainty through the network. Bayesian

theory is the start of this approach where there is a prior distribution p(Ω), a likelihood distribution

p(D|Ω), and the posterior distribution p(Ω|D), which then captured the total knowledge about the

hypothesis (Ω) given the evidence (data), hence, Bayesian theorem equation [8].

Using the Bayes rule to estimate the uncertainty is very useful, yet the exact Bayesian

inference in DRL with the high dimensional parameter space is intractable (mathematically). We

approximate the true posterior distribution of the unknown parameters using the Variational Inference

(VI) framework [3]. The idea of VI is to approximate the true unknown posterior distribution p(Ω|D)

with another parametric distribution known as the variation distribution q(Ω). This is chosen to be

the simplest distribution, which is the Gaussian distribution, because with the Gaussian distribution,

the whole distribution can be fully characterized by the statistical parameters, I.e., the mean (µ) and

the covariance matrix (Σ). We will minimize the Kullback-Leibler (KL) divergence between the

variational distribution q(Ω) and the true posterior distribution p(Ω|D) [29, 3]. The KL divergence

is a known metric that computes the similarity measures between distributions. In other words, we

would like to have variational distribution q(Ω) as close as possible to the true posterior distribution
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p(Ω|D). The objective function in this framework is known as the evidence lower bound (ELBO),

which is the final objective function that is used for the optimization of the active SLAM problem

during training. This optimization function has two terms: the expected log-likelihood and the

regularization term.

Dera et al. also employed the famous Taylor series for the activation function (non-linear

transformation), which is known as an infinite series summation [7]. Therefore, the whole expression

can’t be used because an infinite number of access memory isn’t possible. However, approximating

the Taylor series to the first or second order is possible and still showed promising results. This paper

scopes the Taylor series down to the first order. Thus, the first-order Taylor series approximation is

up to the first derivative of the Taylor series formula, while the rest of the equation is a percent error.

The mathematical equations were then derived from this expression (first-order Taylor series) in

computing the next mean and covariance values for the next layer of neurons inside the network.

The standard Taylor Series expansion 2.5:

f (z) =
∞

∑
n=0

f n(a)
n!

(z−a)n (2.5)

Furthermore, the main idea is that only the mean and covariance are propagated throughout

the network. This creates each layer to have its own mean and covariance (distribution) through the

network and, respectively, at the output layer, which will represent the prediction (mean) and the

uncertainty of that prediction (covariance). Thus, if the covariance has a very small value, the model

will be certain about the prediction. Otherwise, if the covariance has a large value, the model will be

uncertain about the prediction. Therefore, the uncertainty is used as a measurement of whether the

model will be certain or uncertain about a prediction. Having uncertainty is critical when measuring

how certain the model is and, thus, is very beneficial when making crucial decisions.

The PremiUm-CNN model worked more toward a classification approach in which the

output was to classify the probability of an object while also computing the uncertainty of that

probable prediction [7]. The paper showed that the model was trained on several image datasets that

provided promising results in how uncertainty improved the overall prediction in classifying images,
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radar scans, medical, etc. This thesis project does not aim toward the classification approach but

rather an action prediction approach in a DRL scenario in which the network’s output is discrete

actions instead of the classification of an input image.
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CHAPTER III

METHODOLOGY

This thesis adopts the actor-critic (A2C) method instead of DQN for deep reinforcement

learning on the agent/robot. This is mainly due to the flexibility of the A2C method for robots, as

mentioned and discussed in the literature review section. A depth camera and a LiDAR will be

equipped on the agent/robot. The camera’s depth image/frame will be used as input to the DRL

neural network to determine the best possible action based on the state of the environment. A

LiDAR could also be used as input to the network, as seen in previous research, but a camera is more

suitable for detecting objects and determining the best action along the robot’s trajectory. In a sense,

this is better for object detection or collision avoidance. The LiDAR has trouble detecting objects

but is great for detecting the robot’s surroundings/environment by a 360-degree laser measurement.

The camera has trouble accurately measuring distance, but it is great for computer vision. Both have

pros and cons, but ultimately, they work together to achieve the goal of the active SLAM problem

in exploring unknown environments.

The following sections discuss the A2C structure, the idea behind implementing Bayesian

inference to the A2C, Variational Inference (VI), KL divergence between the true and approximation

distribution, the evidence lower bound (ELBO) objective function within the total loss function, the

first-order Taylor series approximation, and the mathematical derivation used for the Bayesian A2C.

3.1 The Actor Critic (A2C) Structure

We use convolutional neural networks (CNNs) in both the actor and critic models to extract

useful features or entities from an image/frame, which is a standard method for object detection or

recognition using cameras and video footage. An image could be an RGB image, a depth image, or

19



Figure 3.1: The proposed Bayesian A2C model framework consists of two convolutional neural
networks: the Actor network and the Critic network. The parameters of both networks are treated
as random variables that follow a variational posterior distribution. By propagating the mean
and covariance of this variational distribution through the non-linear layers of both networks, we
obtain the predictive distribution over the action written as p(at |st ,D). The mean and covariance
of this distribution represent the predicted action of the robot and the associated measurement of
uncertainty.

a pixel image. The two CNNs are connected through the temporal difference (TD) error function.

We develop the Bayesian inference for the actor CNN to estimate uncertainty in the robot’s actions.

The uncertainty is measured by the covariance matrix of the predictive distribution. The mean of

the predictive distribution represents the probable action to take. We adopt the PremiUm-CNN

model [7] for our proposed Bayesian A2C model. Therefore, the proposed thesis combines CNN,

A2C, and Bayesian inference with uncertainty. Figure 3.1 demonstrates the proposed Bayesian

actor-critic (A2C) reinforcement learning model.

We set up the actor and critic convolution neural networks with a consistent learning rate

and batch size of 16. The input image/frame size is set at 32×32, and the output layer of the actor

network will classify predictions into three actions: moving straight, right, or left, using the Softmax

function. The CNN architecture comprised 10 convolution layers, with the beginning three layers

containing 32 kernels of size (5×5), the following three layers with 64 kernels of size (3×3), and
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the subsequent three layers with 128 kernels of size (1×1). The final layer was fully connected with

softmax function. The output of the actor network as shown in Figure 3.1 consists of the mean and

covariance matrix. The mean indicates the predicted action, while the covariance matrix measures

the uncertainty associated with the predicted actions. The actor’s mean and covariance are passed

to the environment which will give a corresponding reward. This process involves propagating

the mean and covariance through the network using Bayesian inference, variational inference, KL

divergence, ELBO objective function, advantage function, and an activation function to produce an

action and uncertainty at the output.

3.2 Bayesian Formulation

The CNN used in this thesis is not a traditional deterministic CNN as seen where the

unknown parameters, weights, and quantities are set to a single set of real values. Instead, a

Bayesian approach is considered and implemented as a Bayesian CNN model where the unknown

parameters and weights are set to random variables with a prior probability distribution. This

means that all convolution kernels are random variables, resulting in all extracted feature maps,

multiplication, activation functions, logits, and softmax also being random variables. The kernels in

the CNN and the weights in the fully connected network are assumed to be independent of each

other. Every layer propagates the mean and covariance matrix. The independent assumption within

and across layers ensures that the feature maps can stand on their own without any repetition.

The Bayesian actor network incorporates prior knowledge about the parameters Ω before

observing the data, denoted by p(Ω). The likelihood of the process probability generated by the

data D, given an Ω, is represented by p(D|Ω). After observing the data D, the posterior probability

of the parameters Ω being true, which represents the total knowledge, is denoted by p(Ω|D). This

posterior is calculated using the well-known Bayesian theorem and is referred to as the probability

of a hypothesis given the evidence, p(H |E). However, in the context of machine learning, the focus

is on the robot collecting data as evidence, and thus, the probability is expressed as the probability

of Ω given the data, as shown in Equation 3.1. Although this posterior captures the total knowledge

and is something desirable to calculate, it is intractable to calculate the posterior due to the large
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dataset and the high-dimensional parameter space within the DNN, which has a vast of parameters

and layers of nonlinear activation functions.

p(Ω|D) =
p(Ω)p(D|Ω)

∑θ p(Ω)p(D|Ω)
(3.1)

When dealing with large networks with many parameters, using Bayesian inference can be

mathematically intractable. However, this issue can be solved by approximating the posterior. To

address this problem, variational inference (VI) was adopted as a solution. VI uses a parametric

distribution known as the variational distribution to approximate the true posterior distribution.

This approach transforms high-dimensional density estimation into an optimization problem that

minimizes the KL divergence between the approximation and true posterior distribution.

3.3 Variational Inference

Moreover, minimizing the KL divergence using the ELBO objective function helps reduce

the distributional distance between the approximation and the true posterior distribution. The ELBO

is derived from the KL divergence and variational inference and is used to obtain optimal parameters

of the approximate posterior distribution by minimizing the difference between the approximation

and the true posterior. Essentially, the ELBO approximates the true posterior with the variational

posterior.

The ELBO in this context has two critical components: the expected log-likelihood from the

training dataset and a regularization term. The mean and covariance of the variational distribution

propagate through the network’s layers. This applies not only to the CNN network but also to the

two independent CNN networks that branch off, i.e., the actor and critic networks, leading to the

creation of the proposed Bayesian A2C in this thesis.

The actor-critic model is a type of temporal difference (TD) learning approach that separates

the policy function from the value function. The policy function is responsible for determining the

agent’s actions based on the current state, while the value function estimates the expected return

for an agent starting at a specific state and following a particular policy. In the actor-critic method,
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the policy is known as the "actor," suggesting a set of possible actions for a given state, while the

estimated value function is called the "critic," which evaluates the actor’s actions based on the

policy.

To implement this method, we use CNNs for both the actor and critic models, and to

incorporate prior knowledge, we introduce a prior distribution over the actor network’s weights as

Ω∼ p(Ω). We applied variational inference to approximate the variational posterior distribution of

the weights given the data, written as p(Ω|Dt). Here, Dt = {at ,st} represents the dataset, where st

and at are the state and action at time t. This involves optimizing the ELBO objective loss function

L (φ ;Dt), as shown in Equation 3.2.

L (φ ;Dt) = Eqφ(Ω)
{log(p(Dt |Ω)})−KL[qφ(Ω)||p(Ω)] (3.2)

Here, the variational parameters φ refer to the mean and covariance of the variational posterior

qφ (Ω). T represents the the total training steps per epoch, ranging from 1 to T .

The ELBO’s objective function L (φ ;Dt) is composed of two components. The first part

corresponds to the negative expected log-likelihood of the training data (environment maps) given

the network parameters. The second part involves a regularization term, which is defined by

calculating the KL divergence between the proposed variational distribution qφ (Ω) and the prior

distribution p(Ω). During the training process of the Bayesian A2C networks, the ELBO loss

function is minimized using the gradient descent update rule as part of the total overall loss function.

The overall total objective function of the Bayesian A2C model can be expressed as Equation 3.3.

J (φ ;θ) =
T

∑
t=0

L (φ ;Dt)A(st ,at) (3.3)

A(st ,at) = R(st ,at)+Vθ (st +1)−Vθ (st) (3.4)

We define A(st ,at) (Equation 3.4) as the temporal difference (TD) loss. R are the rewards, Vθ (st +1)

is the average value of the future state, Vθ (st) is the value for the current state, and θ are the
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parameters associated with the Critic network. The Critic network performs all value placements

and advantage function calculations. This allows the Critic to critique the Actor’s predicted actions

in a state, letting it know which actions are bad and which are good or the advantage of a particular

action over the others in a given state. In this way, the Critic network guides the Actor in making

proper adjustments in order to take better actions next time around. Figure 3.1 provides a schematic

representation of the Bayesian A2C model, showing both the Actor and Critic networks’ roles in

the full framework.

3.4 Mathematical Derivation of the Uncertainty Propagation Framework

We adopt the first-order Taylor series (TS) to propagate the mean and covariance matrix of

the variational posterior through the non-linear activation function of every layer. The reason for

choosing the first order was due to the fact that the TS can be an infinite summation of terms by the

function’s derivatives at a single point. Storing all of the values/variables would require an infinite

amount of memory access, which realistically is not practically achievable. Additionally, processing

all of the infinite data would be computationally heavy as well. Although this approach could have

used higher orders such as second or third order or even higher orders, the higher the order of terms

in the network, the more memory and process are required. This would make backpropagation take

longer, as there would be more variables to adjust and tune, leading to more computational overhead

for the TS summation. Instead, an estimation was deemed a better approach for memory efficiency

and computational ease on the processor, and therefore, the first order was considered for this thesis.

In our model, we efficiently propagate the mean and covariance matrix, from the input to

the output of the actor network after passing them through non-linear activation functions (the

first-order TS) in each layer of the network. Consider a layer in the network, as shown in Figure 3.2.

Here, x represents the feature maps before the activation function, and z represents the feature maps

after the activation function f. f is defined as z = f(x). The activation function f used for each layer

in the network represents the first-order TS approximation. This allowed the model to propagate the

mean and covariance from x through f to obtain the next layer of feature maps z. The mathematical

formula used for both mean and covariance in between layers is represented as follows (Equation
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Figure 3.2: An example of a layer in the proposed Bayesian A2C network. Illustrates on how
the mean and covariance matrix are propagated through each layer using the first-order Taylor
Series approximation. Thus, the first-order Taylor series approximation for the non-linear activation
function.

3.5):

µz ≈ f(µx)

∑
z
≈∑

x
⊙(∇f(µx)∇f(µx)

T )
(3.5)

The mean and covariance can be derived in any non-linear function layer within the model. By

propagating the mean and covariance of the variational distribution, a predictive distribution for a

new action
∧
a given a state

∧
s and the training data set D can be obtained. The distribution p(at |st ,D)

is obtained by integrating out all possible values of the model parameters Ω. Therefore, the mean

of the distribution, p(at |st ,D), represents the robot’s intended action which could be a step or

a movement, while for the covariance matrix captures the level or measurement of uncertainty

associated with the predicted action. Thus, the closer the covariance value is to zero, the more

certain the model is, but the further away the value is from zero, a measurement, the more uncertain

it is about the action. Furthermore, both variables are produced at the final layer/output of the

Bayesian A2C network.

The estimated uncertainty is a useful tool that can act as a warning signal, which allows the
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system to be self-aware of noisy signals in the predicted action at the output of the actor network.

Or better yet, it can send a flag or signal to other human users to make a proper adjustment outside

the robot’s scope. This reduces errors and improves precision, influencing the model to choose a

better action depending on the certainty of the action and state. Thus, the agent can act and respond

better in unknown or noisy environments.

3.5 Reward Setup

The reward function (Equation 3.6) consists of a standard non-collision method that harshly

penalizes the robot in case of a collision or slight bad behavior. In all other cases, the reward system

sends a large positive reward when the robot moves straight, a small reward if the agent turns, and a

reward when it explores successfully around the environment, completing the map representation

in both turning and forward actions. To achieve this, the optimal criteria function from TOED

was used to reward the agent when it successfully explored and mapped unknown areas of the

environment. Initially adopted from the active SLAM cost function J mentioned in the review of

the literature (Equation 2.3), the exploration reward is bounded by the tanh(.) function to set a range

for the SLAM cost function from 0 to 1, to avoid overshadowing the constant values in the turn or

forward action rewards. Positive rewards are received by the agent when the robot moves forward

without any collision and/or explores unseen areas, and penalization (negative rewards) when there

is a collision. This teaches the agent to differentiate between good and bad actions based on the

state it is in and learn from these experiences and data set (batch size of 16) collections during

training. The reward function is shown as follows:

(3.6)

During the training phase, the reward function was used. The D-optimally exploration reward was 
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derived from TOED. The robot was penalized whenever a collision occurred, and a positive 

reward was given when the robot moved forward and/or explored successfully without any 

collision.
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CHAPTER IV

EXPERIMENTS AND RESULTS

In our experimentation, we utilized the Gazebo simulator and an open-source OpenAI gym

extension called gym-gazebo. The gym-gazebo extension library has pre-built environments and

robots that are readily available for use with machine learning architecture methods. However,

we developed our own custom-proposed architecture/network known as Bayesian A2C and only

used the pre-made Turtlebot3 robot and the pre-built environments. The software framework,

libraries, messages, and tools for both the robot and its environment were constructed using the

Linux operating system and the Robot Operating System (ROS).

To compare the performance and improvement of the proposed Bayesian A2C model against

the deterministic (DET) A2C model, we trained, tested, and examined both models within a

simulated Gazebo environment. During testing, we evaluated the robustness of the Bayesian A2C

model by introducing random Gaussian and adversarial noise to the images/frames, simulating

noisy environments that may be encountered in real-world applications. This noise analysis was

performed for both the proposed Bayesian and DET models to ensure a fair comparison of up to

200 epochs/episodes.

For training the Actor and Critic convolutional neural networks (CNNs), we employed a

consistent learning rate and batch size of 16. The input image/frame size was set to 32×32, and the

output of the Actor network was classified into three actions: moving straight, right, or left, using

the Softmax function. The CNN architecture consisted of 10 layers, with the first 3 layers having 32

kernels (5×5), the following 3 layers having 64 kernels (3×3), and the subsequent 3 layers having

128 kernels (1×1). The final layer was fully connected. To evaluate performance and robustness,

we employed the moving average and cumulative rewards metrics throughout each run of epochs.
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4.1 Experimental Setup

The environment will be set up in the Gazebo simulator. However, at the beginning of

executing the network, OpenAI Gym and open-source code libraries are used to load up pre-defined

environments to quickly develop the proposed algorithm (Bayesian network model) and avoid the

tedious work of creating a robot and environments for the robot in the robotic operating system

(ROS) framework.

The Turtlebot3 robot is used in this approach for simulations to train the network model

and a deterministic model. After the simulation phase or after training, both models are deployed

into a test environment and compared to each other in terms of their performances, robustness,

convergence, and stability through the rewards received. The Turtlebot3 is a great robot for training

and testing different methods for the active SLAM problem, and it can be easily deployed and tested

from OpenAI library environments that are pre-made and pre-setup in the ROS framework. To

import these pre-defined environments, robots, and ROS setups, the Linux operating system (OS)

was installed.

Linux is a great OS to run machine learning models in Python and is flexible in allowing

the user to install repositories, dependencies, third-party libraries, etc., for any robotic project. If

equipped with an NVIDIA graphics processing unit (GPU), it can accelerate the machine learning

process in deep learning. This is because NVIDIA GPUs already have CUDA cores pre-built and

can easily install cudaDNN and libraries that are compatible with these GPUs. This benefit from

the NVIDIA GPU allows us not only to have access to CUDA cores but also to easily have our

machine with hardware acceleration turned on to speed up the processor in a heavy-duty task. This

helps in running training procedures for our model in machine learning environments during both

the training and testing phases.

The ideal environment setup is to create at least two simulated environments for training and

testing. Both models, the deterministic A2C model and our Bayesian A2C model, were trained in

the same environment with the same number of episodes to ensure a fair and identical comparison.

The test phase for both models was also conducted in the same environment, with the same amount

29



of noise added to the environment. This was done to examine the performance and robustness

improvements between the two models. The testing began with the weakest noise and gradually

increased the noise complexity of the environments until the noisiest level was reached. Two

different types of noise were tested: Gaussian noise and adversarial noise. Both types of noise

were gradually increased in level to analyze the robustness of both models under unfamiliar, noisy

conditions.

The proposed framework was deployed and tested on a simulated turtlebot3 robot. The

experimental results and procedures were documented and analyzed using other methods. To

analyze and examine the improved performance and robustness of the model when it undergoes

noisy conditions or corrupted images, the rewards of both models were graphed. This was done

to show the improvement of the Bayesian model over the traditional deterministic model and how

uncertainty can improve the model’s prediction in such noisy environments.

The thesis initially started from a simple starting point: an open-source code library, OpenAI

extension (gym-gazebo). This was to ensure that all the software, repositories, and dependencies

were installed correctly and to do at least basic machine learning tasks. The open-source code uses

basic deterministic networks that are already pre-coded and ready to use. However, this is just a

starting point to make sure that the core setup, such as the environment and robot, is up and running.

From here, the proposed framework proceeded to be built, developed, and executed. This involved

modifying the artificial network within the robot itself. Thus, we created our network/framework,

the Bayesian A2C.

Furthermore, after training our proposed model, the Bayesian A2C, and the traditional

deterministic A2C, we compared the two models during testing. We wanted to see how well

the Bayesian model improves in performance and robustness, especially when the images are

interrupted or corrupted by a noisy environment. This was done by purposefully adding Gaussian

and Adversarial noise.
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4.2 Training

The model’s performance was tested and validated in multiple training iterations. The

training aimed to teach the model how to navigate, explore, and build the map, also known as the

active SLAM problem. Two models were utilized for the training: the deterministic A2C and the

Bayesian A2C. Both models underwent 200 epochs of training, taking 1500 steps in each epoch. To

ensure a fair comparison between them, they were trained using the same environment and the same

robot. During training, the Bayesian A2C outperformed the deterministic A2C in gathering more

rewards during each episode. However, the deterministic A2C learned its optimal action policy faster

than the Bayesian A2C, resulting in a trade-off of longer training times but better performance and

stronger robust actions. Moreover, it took less time to train the deterministic A2C than the Bayesian

A2C because the Bayesian A2C consists of propagating the variational distribution throughout the

framework, which results in more weight parameters to tune and reinitialize in the model.

Figure 4.1 illustrates the training of both models: the Deterministic (red) and Bayesian

(blue) A2C. The y-axis represents the average rewards, and the x-axis represents the number of

steps throughout the run. The graphs demonstrate that the deterministic A2C reaches its optimal

policy faster than the Bayesian A2C. Therefore, the research measured the time it took to train both

models. Three different training runs were done for both models, and the average training time for

the deterministic A2C was about 2.99 hours, while the average training time for the Bayesian A2C

was about 4.08 hours.

The longer training time for the Bayesian A2C is due to the fact that there are more network

parameters to reinitialize and tune. However, this drawback is offset by the fact that the Bayesian

model performs better and has far better robustness in predicting actions to maneuver, navigate,

and explore the environment compared to the deterministic model. The results were examined and

compared for both models during the testing phase, where noise was purposely added, as discussed

in the next section.
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Figure 4.1: Training results for deterministic A2C (red) and Bayesian A2C (blue) in terms of
moving average reward.

4.3 Robustness & Noise Analysis

4.3.1 Gaussian

During testing, Gaussian noise was applied, and the results were examined at seven different

levels of noise. Only the standard deviation (σ ) was modified from the Gaussian formula, with the

mean (µ) kept at zero throughout all levels. Below is the well-known function shown in Equation

4.1:
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f (x) =
1

σ
√

2π
exp−(x−µ)2/(2σ2) (4.1)

By adjusting only the standard deviation (σ ), we were able to apply multiple different levels of

noise onto the images for both models. This adjustment allowed us to apply a little to a large amount

of noise or blur to the input images, where the standard deviation value ranged from 0.0001 up to

0.5. Furthermore, we tested seven different noise levels [0.0001, 0.001, 0.1, 0.2, 0.3, 0.4, 0.5], each

with a total of 200 epochs/episodes per run. A moving average and cumulative rewards were also

plotted in each run with a different noise level to examine the performance and, importantly, the

robustness between the two models: Bayesian A2C and the deterministic A2C. In total, we tested 7

different noise levels.

Figure 4.2: Examples of clean and noisy images used during testing. Starts left with a clean image,
then 0.1 noise level, then 0.3 noise level, and lastly 0.5 noise level.

In Figure 4.2, the noise levels are shown. The images start from the left with no noise (clean)

and gradually increase towards the right. The first image on the left is clean, while the last image on

the far right has the highest noise level of 0.5. As observed, the images were intentionally made

noisy and blurry to assess the model’s performance in each instance. We tested all noise levels on

both models and analyzed the enhanced robustness and performance of the proposed model.

First, this thesis discusses and examines the test performance for the standard deterministic

(DET) A2C in Gaussian noise (top graph), Figure 4.3. The line plot red represents noise level

0.0001, blue represents 0.001, green represents 0.1, yellow represents 0.2, black represents 0.3, cyan

represents 0.4, and purple represents 0.5 for both graphs respectively. The deterministic A2C did
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Figure 4.3: The experiment test results for deterministic A2C (top) and Bayesian A2C (bottom) in
all Gaussian noises.

well in mapping, navigating, and exploring when placed in the test environment. The agent received

acceptable test results in rewards throughout the epochs, but this was only the case when the noise

was very low and insignificant to what the model was trained on, such as the 0.0001 and 0.001

values. Only small drops in performance/rewards from these noises were seen. However, when

the noise increased to a significant difference from what the model was trained and seen before,

the performance dropped pretty significantly as well. The performance hit came around the 0.2

value but dramatically dropped when the noise value came to 0.3 and only got worse as the noise
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increased. The gap between 0.3 and 0.4 dropped heavily in performance as compared to lower noise

values. Then, the gap widened and dropped even more when the noise increased to 0.5, the highest

noise value tested for this experiment. From the experiment results, we concluded the robustness of

the deterministic was very poor whenever the noise level on the images changed. Depending on

how noisy the interruption was, it affected the agent’s performance badly. This can be appalling in

cases in the real world where a robot may experience interruption, interference, or corruption but

still wants to choose the best possible action or at least close to the best performance when there

is no noise at all. Figure 4.3 shows the performance of the proposed Bayesian and deterministic

models for all noise levels and shows the poor robustness of the deterministic model. The graph

also plots the moving average reward through the 200 epochs tested through the run.

Next, this thesis analyzed the performance and robustness of the Bayesian (Bayes) A2C

(bottom graph) in Figure 4.3 that used the same noise levels, test environment, and the same number

of epochs in each run. Everything was done the same as done previously with the deterministic

A2C to keep a fair comparison between the two models. The only thing different was, of course,

the network model itself on the agent. The Bayesian A2C performed outstandingly not only in its

performance but also in robustness, which was the main purpose and goal of this study.

At the lowest noise levels, the performance was remarkable, with a high gain of rewards,

and it had little effect on the performance whether the noise was set at 0.0001 or 0.1. The model’s

reward started high but then dropped notably at the 0.2 noise level, as expected, and the intention

was to examine how much the performance dropped. We assumed that the drop would only be

minor coming into the experiment, and the results proved to be true.

At the 0.3 and 0.4 noise levels, the performance had a very minor decrease and stayed in a

small range of reward values compared to the best case. The worst performance, however, was, of

course, when the noise level was at 0.5, the highest value. Though even at the highest level, the

agent still performed well with only about an 8-point reward drop. It’s not much compared to the

best performance. The bottom graph in Figure 4.3 showed as the noise increased, so did the drops,

but very minor drops and stayed close to the best-case performance. Thus, the hit on the model
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was insignificant and stayed close to the case where there was no noise, which was proposed in our

hypothesis.

From the experiment, we analyzed the results and concluded the uncertainty measurement

on the network helped the agent to choose better actions and predict better outcomes based on what

it was certain or uncertain about. This can be especially true when noise levels increase greatly with

only a slight performance drop due to the strong robustness of our proposed Bayesian A2C model.

All the test noise results can be seen in Figure 4.3; the moving average reward was plotted for 200

epochs from all noise levels.

Next, the comparison between the Bayesian A2C and the deterministic A2C moving average

reward was discussed and examined. The top graph and bottom graph in Figure 4.3 were plotted on

the same graph to show the different performances between the two. The Bayesian A2C model was

found to have performed better than the deterministic A2C, with an approximately 80-point better

average performance. Additionally, the Bayesian model demonstrated better robustness throughout

the noise levels, maintaining a high reward value above 900 at all levels with only a minor hit in

performance. In contrast, the deterministic model was harshly affected by noise increase, resulting

in significant drops in performance from one noise level to the next. Figure 4.4 illustrates the

improved robustness of the Bayesian A2C and how adding an uncertainty measurement and self-

awareness mechanism to the agent itself can really help the agent predict better actions when noise

changes occur. Overall, the proposed Bayesian model demonstrated superior robustness and kept it

to somewhat the same performance throughout all noise levels when compared to the deterministic

model.

In Figure 4.4, the moving average rewards, performance, and robustness of the proposed

Bayesian A2C model (solid lines) and deterministic (DET) A2C model (dotted lines) are demon-

strated. The experiment shows the improved robustness achieved when noise was added to the

images. Additionally, the raw cumulative rewards were also tested and plotted, but for clarity,

only the moving average results are presented here. It’s worth noting that the cumulative rewards

exhibited a similar relationship and behavior with the moving average, which led to a focus on the
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Figure 4.4: The experiment test results for both deterministic A2C (dotted lines) and Bayesian A2C
(solid lines) in all Gaussian noises.

average for analysis.

Notably, the moving average and cumulative rewards of the DET model were significantly

higher in the clean environment compared to the noisy environment, with rewards sharply decreasing

as the environment became noisy. This was not the case for the Bayes model, which stayed at a very

high reward rate for all noise levels and had strong robustness. The Bayes model’s performance

only changed slightly as the noise level in the environment changed greatly, while the same was

done for the DET model. Therefore, the Bayes model proves to be more stable and robust.

4.3.2 Adversarial Noise/Attack

Additionally, during testing, the input images were subject to adversarial attacks. Adversarial

noise differs from Gaussian noise in that it teaches a model to employ various tactics to deceive and

mislead our network (the Bayesian A2C and deterministic A2C). Essentially, it acts like an attacker

towards the model itself, attempting to mislead the agent into generating improper actions.
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The primary concept here is that the adversarial model attacker purposely attempts to make

our model predict incorrect actions or cause unexpected behavior and learn from those interactions

to further deceive our model even more with each iteration. As a result, minor or significant changes

in the input images can quickly deceive the model into predicting erroneous actions by determining

which part of the image to blur, distort, or make fuzzy. This process enabled the research to analyze

the strength of the robustness of these two models when adversarial attacks learn various ways to

deceive them. Essentially, it is a technique to assess the flexibility of these models and comprehend

their weaknesses and vulnerabilities when under attack and how well they can defend against them,

hence, their robustness.

In the adversarial attack, changes in the noise level are different compared to the Gaussian

noise. It involves adjusting the epsilon value. This variable was adjusted to modify the strength of

the attack added to the images for each run and was used in the formula (Equation 4.2) to deceive

our models by increasing the amount of additional noise, distortion, or blur that would be added

to the images or parts of the images. The values of this variable ranged from 0.0001, representing

the weakest noise, to 0.2, the strongest noise. Specifically, 6 different noise attacks and 6 different

runs were tested, with values of [0.0001, 0.001, 0.01, 0.05, 0.1, 0.2] being employed. However, to

maintain a valid comparison, 200 epochs were considered for each run.

XFGSM = X+ εsign[∇xJ (X,yaction)] (4.2)

Equation 4.2 represents the adversarial attack function used to generate the attacks on the model.

The function uses a gradient descent method to learn effective ways to fool and trick the model

by calculating the gradient of the model’s output prediction (yaction) with respect to the input (X).

Then, the gradient is multiplied by a constant value known as epsilon (ε), which is the variable that

we modify in each run to change the level of attack. After multiplication, it is added to the original

image to create a corrupted image that is fed to the model as input, resulting in the attack. Basically,

in this approach, the attacker corrupts or modifies the original input through gradient descent to
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deceive the model into making mistakes and predicting bad actions. The attack then learns to better

fool the model since it uses the model’s output and input to calculate the gradient to distort the

original input.

In addition, this section explores the comparison of performance, robustness, and the

relationship between the two models in the context of adversarial attacks, ultimately demonstrating

the superiority of the Bayesian A2C over the deterministic A2C. This comparison is particularly

noteworthy as it highlights the effectiveness of the proposed approach and underscores the superiority

of the proposed model when compared to the deterministic standard model.

First, the deterministic A2C was examined in the context of adversarial attacks (top graph

of Figure 4.5). The line plot red represents attack level 0.0001, blue represents 0.001, green

represents 0.01, yellow represents 0.05, cyan represents 0.1, and purple represents 0.2 for both

graphs, respectively. Based on the findings in the graph, the level with the lowest amount of noise

demonstrated the best performance, reaching above the 880 reward mark. As expected, the level

with the most amount of noise performed the worst, collecting about 840 rewards in each epoch.

The same trend was observed with every noise level increase, causing a significant performance

drop. Specifically, from the least amount of noise to the most amount of noise, there was about a

55-point reward drop. All noise levels are shown in the top graph of Figure 4.5, highlighting the

robustness of the proposed model.

Next, the rewards collected in each epoch for the proposed Bayesian A2C (bottom graph of

Figure 4.5) were also discussed. Here, the model performed well and maintained a high reward

count at around 910 until the noise level increased to a very high value. The Bayesian model

performed remarkably in almost all noise levels and had strong robustness in each level with not

much change to its performance. From 0.0001 to 0.05, it remains almost the same, with a very

minor performance hit. In this range, there were not many drops. However, when the noise level

reached very high noise values of 0.1 and 0.2, a notable drop was seen. However, in the graph,

there was a heavy performance drop that did not come until reaching the strongest noise tested.

So, the experimental results still showed how well the robustness was in the range of the lower
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Figure 4.5: The experiment test results for both deterministic A2C (top) and Bayesian A2C (bottom)
in all adversarial attacks.

and mid-noise levels. Even in cases where noise was added to the model, it still performed well in

collecting good reward values. The model performed well for most noise levels with reward values

above 900, or even close to it in the case of 0.1 noise level. The average reward values for all the

noise levels are shown in the bottom graph of Figure 4.5, demonstrating the strong robustness of the

Bayesian model.

Furthermore, Figure 4.6 showcases the moving average reward, performance, and robustness

of the proposed Bayesian A2C model (solid lines) compared to the deterministic (DET) A2C model
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Figure 4.6: The experiment test results for both deterministic A2C (dotted lines) and Bayesian A2C
(solid lines) in all adversarial attacks.

(dotted lines). The Bayesian A2C shows superior robustness, especially at mid-level noises. The

performance drops only about 3 reward points during those mid-noise levels. Although there was a

notable and drastic drop at the 0.1 level, the model still received a respectable amount of rewards and

outperformed the deterministic model at that level. Despite the drop, the rewards were acceptable,

and the performance still improved over the standard deterministic model. Another drop occurred at

the 0.2 level from the Bayesian A2C and was on par with the deterministic A2C for the first time in

the experiment test. However, in all other level cases, the Bayesian outperformed dramatically in

achieving higher rewards and having little effect from these changes in noise levels.

Again, the same relationship happened here with what had happened in the Gaussian section,

which showed enhanced robustness in most noise level changes. The raw cumulative rewards

were also plotted, but for simplicity, the moving average was the only graph shown in this section.

However, it showed the same aspects as the moving average, plus the moving average had a clear
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illustration with a smooth line trend instead of a fluctuating or oscillating line from the cumulative

rewards. The DET model showed instability again by dropping dramatically with every noise

increase in the environment, while the Bayes model showed strong stability (or robustness) through

most noise level changes. Bayesian A2C outperformed and improved over the DET model by

achieving a very high reward rate and kept that performance through almost all noise levels with

little to no change at all. This was tremendous to prove our claim and hypothesis in enhancing

the robustness of models by including the uncertainty measurement on the agent itself. Thus,

again, it showed how strong and stable the robustness was on the Bayesian A2C and backed up our

assumptions and theory.

In concluding this section, we can see that the proposed model exhibited similar behavior

when faced with either Gaussian or adversarial noise. However, the Bayesian A2C outperformed

the deterministic A2C in almost every case and demonstrated improved robustness. The Bayesian

A2C showed superior performance and robustness, with only minor reward drops in all cases.

Adversarial noise proved to be stronger due to its ability to learn different ways of tricking the

model and dynamically changing the noise being generated for the images. On the other hand, the

Gaussian noise was treated like a constant value term or a static value being added to the images.

Theoretically, this approach worked in our theory, and the experiments confirmed that it applied

practically as well. These experiments were a success and showed that including uncertainty can

improve the model’s prediction and generate better actions based on what is certain or uncertain

depending on the state it’s in, whether it’s noisy or not. The Bayesian model’s performance was

excellent regardless of whether the noise was constant or dynamically changing like an attack, with

high reward values and only minor drop hits. Overall, this proved to be a successful experiment in

what was proposed that demonstrated strong, robust behavior in all cases in the tested environment.

4.3.3 Uncertainty Analysis

Variance vs Signal to Noise Ratio (SNR). This portion discusses the relationship between

the action variance and the signal-to-noise ratio (SNR). Since only the Bayesian A2C generates the

variance and uncertainty measurement, this section examined only the Bayesian model due to the
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fact that the deterministic model does not capture these quantities, leaving only the proposed model

to analyze. The variance represents the model’s uncertainty over the predicted actions. It measures

how far or broad the prediction was compared to the mean of all past predictions. Each prediction

value varies and is measured individually by how far apart each value is from the mean value point.

Therefore, just like the spread of all vast value points quantifies the noise in the incoming signal.

When the variance is low, it means that the individual value is very close to the mean from all values,

which is wanted and favorable to this outcome. However, when the variance is high, it is quite the

opposite. The individual value is further away from the mean and has a larger spread, which is

not wanted because it signifies a larger noise on the image signal that may impact the final action

output.

The SNR serves as a ratio of noise level added to the original image, or in other words,

the ratio between the original image value and the noise value that is generated by the adversarial

model/attacker. In essence, it is a ratio measurement of the quality of the signal relative to the

noise by examining the image signal’s strength to the noise strength generated. The formula uses a

logarithmic expression on both the input signal (the image) and the incoming noise added, expressed

as decibels (dB) terms. A low value of SNR represents a weak image signal compared to the stronger

noise strength being generated. When the SNR value is high, the image signal is stronger than the

incoming noise, implying a clearer image signal. Obviously, a higher SNR value is more desirable

than a low SNR value because the model/agent can extract more useful entities or information

from these images, and a clear image is better to use and see than a disturbed, noisy image. The

experiment examined the relationship between different cases of SNR values (noisy images) with

variance values to analyze the uncertainty predictions on actions and signals under a set of noise

stress.

In Figure 4.7, the x-axis represents the SNR values evaluated during testing for all noise

levels, while the y-axis represents the action variance also evaluated during testing for all noise

levels. Since two types of noise, Gaussian and adversarial noise were tested, two line graphs were

plotted to represent them. The dotted blue curve graph represents Gaussian noise and has 7 SNR
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Figure 4.7: Action variance vs signal to noise ratio (SNR) graph. The dotted blue curve represents
the Bayesian A2C under Gaussian noise, while the solid blue curve represents the adversarial
attacks.

and variance data points plotted, namely [0.0001, 0.001, 0.1, 0.2, 0.3, 0.4, 0.5]. The solid blue curve

graph represents adversarial noise and has 6 SNR and variance data points plotted, namely [0.0001,

0.001, 0.01, 0.5, 0.1, 0.2].

The model exhibited a gradual increase in the variance from the beginning to the end,

especially for adversarial noise. Although the increase was not significant for Gaussian noise, it was

enough to demonstrate the correlation between action variance and SNR as a representative of the

noise level. The graph reads from right to left, where the most right SNR corresponds to a 0.0001

level of noise while the most left SNR value corresponds to a high noise level of 0.5. This indicated

that initially, the SNR was high, and the variance was low. As the noise increased (equivalently,

SNR decreased), the action variance value also increased. As previously mentioned, this was an

anticipated outcome due to the relationship between these concepts related to noise. Nonetheless,

this relationship was noticeable, especially in the adversarial plot.
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The adversarial display showed an increase from the start (from right to left) of around 42

dB, almost like an exponential increase. This occurred because the graph began (from the right)

with the lowest noise value (0.0001) and ended (left) with the highest noise value (0.2). As we

mentioned earlier, the action variance was expected to be large when the image was noisy and

small when the image was less noisy or in a clean state due to the predicted action and uncertainty.

However, the opposite was true for the SNR, which was large when the image was less noisy but

small when the image was extremely noisy. Hence, the image signal became strong as the noise

became weak or small, as demonstrated on the line graph. Above the SNR value of 42 dB, the line

became steady, indicating that there was less and less noise in the image. Then, the model became

certain about its predicted actions as the noise level dropped. Finally, the action variance began to

decrease while the SNR values began to increase.

It was expected that when images are noisy, the uncertainty in the actions would be higher.

This means that the uncertainty would increase, or the action variance of the prediction would be

larger, while the SNR would be smaller under noisy conditions. On the other hand, under clean

conditions, the uncertainty would decrease. This was demonstrated on both line graphs, which

experienced a decrease as the noise became less. The relationship between the variance and SNR is

inversely proportional, while the variance is proportional to noise.

Reward vs Signal to Noise Ratio (SNR). In this section, the relation between the maximum

and average rewards with respect to the SNR values for both Gaussian and adversarial noise is

discussed. The maximum reward values were determined by the highest reward received throughout

the 200 epochs in each noise level. The average reward values were calculated as the average of all

rewards received from the 200 epochs in each noise level.

The max and average rewards were both plotted in a separate graph against SNR (Figure

4.8) for both Gaussian (blue line) and adversarial (red line) noise. The Gaussian and adversarial

noise and the Bayesian and deterministic models were both plotted on the same graph for the

analysis. To distinguish both models from each other, the Bayesian A2C was plotted as a solid line,

while the deterministic A2C was plotted as a dotted line. As mentioned in the section before, the
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Figure 4.8: Maximum (top) and average (bottom) rewards vs signal to noise ratio (SNR) graphs.
The blue curve represents Bayesian A2C under Gaussian noise (dotted line) and adversarial attacks
(solid line), while the red curve represents deterministic A2C under the same noise conditions.

adversarial noise has 6 data points, and the Gaussian noise has 7 data points plotted since those

were the amounts of noise tested.

It is noted that both the maximum and average values showed a similar resemblance.

However, the only noticeable difference was at the left end of the graph, which was the low values

of SNR (noisy) from the deterministic model on the adversarial noise (red dotted line trend). The

average started lower around 800 and began to have a steeper change than the maximum values

as the SNR increased. Whereas the maximum values started higher around 825 but began to have
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more of a smooth exponential increase of change. The same applies to the Bayesian A2C model

under adversarial noise (red solid line trend). Though the main difference between the max and

average rewards is the models themselves, both values remain similar.

As previously mentioned, lower values of SNR indicate that the noise is stronger than the

original input image, resulting in more noise. Higher values of SNR indicate that the noise is weaker

than the image itself, resulting in a cleaner image with less noise. In both models, whether under

Gaussian or adversarial noise, the rewards received decreased when SNR values were low, but the

rewards received increased as the SNR increased. More noise led to fewer rewards, resulting in

poor performance. However, less noise resulted in more rewards and better performance. In all

cases where SNR was low, the models performed worse, and when SNR was high, the performance

was at its best. This was expected, given that noise on the images affects the performance of the

models, but to what extent and by how much?

In the case of the Bayesian A2C under Gaussian noise, the rewards received per 200 epochs

were not significantly affected by the SNR values being either low or high. While the performance

did drop from the highest to the lowest, it was only by about 5-10 points. In comparison, the

deterministic A2C saw a significant drop of around 95 points from the highest reward to the lowest

reward. This demonstrates the improved robustness of the proposed Bayesian A2C model, as it is

able to maintain close to the best performance even under noisy conditions or when the SNR values

drop. It stayed close to the best performance while the hit/drop was minimal, showcasing strong

resistance to noise. Moreover, the performance of the model improved, reaching the 900 rewards

mark, showing that it has both better performance and strong robustness to noise overall.

Under adversarial noise, the performance of the Bayesian A2C had a greater impact than that

of the Gaussian test, especially at the lowest SNR values when the noise level was set at 0.1 and 0.2.

This was unexpected, as adversarial attacks can learn to trick the model and force it to generate bad

behavior or actions rather than compare Gaussian noise. Despite the high noise levels and low SNR

values, the Bayesian model still outperformed the deterministic model and conveyed a more robust

model throughout all the SNR points. Additionally, the deterministic A2C performance gradually
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decreased with each SNR drop and dropped significantly at the SNR value of 30 (noise level at 0.1),

which was a very high noise level for adversarial noise but worth testing. Although both models

experienced a performance drop, the Bayesian’s performance remained more consistent and steady

on the mid/highest SNR values. Similar to the Gaussian test, the adversarial test also demonstrated

the superior performance and robustness of the Bayesian model against different types of noise

strength.

Table 4.1: All the Bayesian A2C Experimental Values for Gaussian Noise.

0.0001 0.001 0.1 0.2 0.3 0.4 0.5
Variance 21.306 21.306 21.635 21.782 21.791 21.9 22.054

SNR 83.8 63.8 23.8 17.8 14.3 11.7 9.8
(Bay)Max Reward 916.7 915.423 914.288 913.864 912.926 909.846 909.011
(Bay)Avg Reward 916.316 915.313 913.596 913.379 913.127 912.864 911.365

(DET)Max Reward 846.197 838.76 832.301 808.853 771.164 730.738 683.2
(DET)Avg Reward 836.894 832.734 825.627 812.423 774.136 734.537 682.93

Table 4.2: All the Bayesian A2C Experimental Values for Adversarial Attacks.

0.0001 0.001 0.01 0.05 0.1 0.2
Variance 20.941 20.96 21.136 22.67 24.535 26.081

SNR 83.811 63.811 43.81 29.831 23.81 17.79
(Bay)Max Reward 921.269 918.518 917.844 915.77 886.264 837.315
(Bay)Avg Reward 918.213 917.156 916.469 913.695 880.293 841.899

(DET)Max Reward 883.674 877.642 873.43 868.769 853.136 827.648
(DET)Avg Reward 878.989 868.454 863.324 862.221 858.373 802.962

Tables 4.1 and 4.2 provide important information on the data values collected during the

experiments for both Bayesian and deterministic A2C in Gaussian noise and adversarial attacks.

Table 4.1 presents all the different Gaussian noise levels tested, along with their variance, SNR, and

reward values. This table allows for a direct comparison between the Bayesian and deterministic

A2C values. These values were used for graphing purposes, but the table shows the actual raw

values used for those graphs.

As the noise increases in each test run, the variance increases gradually while the SNR

decreases, affecting both factors. Variance measures the model’s uncertainty about the actions,

and as variance (uncertainty) increases, the SNR decreases, becoming very noisy in each test run.
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Additionally, the table shows the rewards and the relationship between each factor, with the rewards

decreasing as noise increases, indicating how increasing noise affects performance. Therefore,

increasing noise affects not only the uncertainty but also the performance of both models.

However, because the proposed model (Bayesian) includes uncertainty and a stronger robust

feature on the model, the effect on performance is not significant compared to the deterministic

A2C. This is also represented by the graphs in the previous section, Figure 4.7 and Figure 4.8, which

illustrate the relationship between the variance and SNR and the rewards received and the SNR,

respectively.

More importantly, the focus is mainly on Table 4.2, where adversarial attacks were intro-

duced into the models. Similar to the Gaussian noise, the adversarial attack consists of reward drops,

decreases in SNR values, and an increase in variance, all while the adversarial attack gradually

increases. However, since adversarial attacks are known to be a harsher method of adding noise than

Gaussian, due to the way it learns proper tactics to purposely trick and fool the model, the rewards

drop even more, but the variance increases more as well. At noise attack 0.0001, the variance starts

at 20.94, which is common at that noise range, but when the noise attack increases and reaches 0.1

and 0.2, that’s when the variance spikes up dramatically to 26.08. At 26.08 (where it’s bolded on

the table), the variance spiked the highest, rightfully so due to the fact that the Bayesian A2C is

under the highest attack. Unfortunately, when the noise attack is at 0.2, the performance on rewards

does drop on the Bayesian A2C (and the deterministic A2C). However, the fortunate part and more

important aspect is that the Bayesian model captures the uncertainty over the actions (variance)

when the robot is under attack or in noisy conditions, especially in high attacks/noise. Notably,

Table 4.2 shows how variance captures the model’s behavior of the uncertainty over the actions

when there is a very high attack on the robot and highlights the model’s self-awareness when the

robot is under attack and becomes aware when it’s very uncertain about the actions. Thus, the

Bayesian model is aware when it’s in a noisy or high attack condition because the variance spikes

up dramatically, and it becomes aware that the actions the model is predicting are very uncertain.

There may be a better action to do or a better-exploring trajectory. The model predicts the best
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possible case for the circumstance it’s in but can only do so much considering that constant noise 

and attacks are being thrown at it, disturbing its view and environment. With the variance, this can 

raise a flag to itself or possibly a warning signal to a human user to make that human interaction 

adjustment whenever the model becomes very uncertain and is aware it’s under high attack/noise. 

This mechanism of variance can be used for self-awareness on the robot and can be fed back to 

the robot to cause a self-warning mechanism to itself and into its algorithm/code to make proper 

adjustments.

Or, better yet, extend this to other robotic applications, such as biomedical, surgeries, patent 

diagnoses, automation, self-driving, drones, etc., where humans are involved, such as doctors, 

nurses, drivers, or other specialized experts who can interact with and adjust the behavior of the 

robot and its predictions when it is under attack or in high-noise conditions. Thus, when uncertainty 

spikes up about its predictions (variance), the robot becomes aware of this and sends a warning 

signal for caution or alert to itself and the human user to fix the issue the robot is f acing. This 

approach may reduce errors and improve precision in multiple applications that rely on robots to 

learn and predict various tasks by becoming aware when they are uncertain about their predictions 

due to the conditions they face, such as being under attack or in high noise interference.

In contrast, the Bayesian A2C model exhibits remarkable stability even in the presence 

of noisy environments. Throughout the epochs run in various noise conditions, the model’s per-

formance experienced only minor drops in the analyzed moving average and cumulative reward, 

demonstrating consistent strong robustness. These results indicate that the Bayesian A2C model 

excels in handling noisy environments, as evidenced by the consistently high reward values it 

achieves. This superior robustness of the proposed Bayesian A2C model against noisy environments 

can be attributed to its capability to propagate uncertainty through the layers and non-linearities 

of the Actor and Critic networks. This uncertainty is derived from the covariance matrix of the 

variational posterior distribution of the Actor and Critic network parameters. By incorporating this 

additional information in the form of a covariance matrix during navigation and exploration of the
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environment during training, the learning process is enhanced, leading to a more noise-resistant 

model, as presented in our proposal. Hence, the improved robustness to noise.
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CHAPTER V

CONCLUSION

This thesis presents an innovative approach to active simultaneous localization and mapping

(SLAM) through the utilization of Bayesian A2C reinforcement learning. The central focus of

this method is to effectively manage uncertainty through a network, particularly the A2C. This is

accomplished by incorporating Bayesian inference techniques to integrate the mean and covariance

values from the variational posterior distribution into both the Actor and Critic networks. Through

the non-linear activation function using first-order Taylor series approximation between layers, it

estimates uncertainty and predicts an action. The mean and covariance are propagated to estimate the

predictive distribution of the robot’s actions. Specifically, the mean serves as the robot’s predicted

actions, while the covariance provides valuable insights into the uncertainty associated with each

action. Experiments were conducted within the OpenAI gym Gazebo simulator that demonstrated

the substantial enhancement and robustness in navigation within noisy environments achieved by

this newly proposed Bayesian A2C approach. This proposed technique demonstrated superior

performance, remarkable results and stability within various noisy simulated scenarios interrupted

by Gaussian and adversarial noise.

52



5.1 Future Works

This study could be extended to real-world robots in future work, with real-world distortions

and noises introduced into the environment to analyze the model’s robustness in these cases. The

study could also be extended to other forms of robots, such as underwater robots, medical robots,

micro-robots and drones, to examine how the model improves their movement in both simulation

tests and real-world scenarios.

With this new proposed self-awareness mechanism, including uncertainty, a robot under

high noise stress could raise a self-warning signal and adjust its behavior accordingly. Or, better

yet, it could raise a warning signal to a human user, who could then intervene to solve the problem.

For example, in the biomedical field, if an agent becomes very uncertain about the predictions it is

choosing, it could raise a warning signal to a doctor or nurse, who could then make the necessary

human adjustment on a particular patient. Another robotic application that could be improved is

autonomous driving, where the robot may be uncertain about certain situations and could raise

a signal to the driver so that they can maneuver or make the necessary adjustments. Many other

robot applications could be discussed and explained, such as air drones, search-and-rescue robots,

submarines, space applications, and automation. In all of these fields, it is important to have a strong

and robust action plan in place when conditions and environments change unexpectedly.

Having a self-warning signal or an alert signal to a human user to make the adjustment

outside the robot’s domain is crucial because this new method can definitely reduce the risk of

human error, improve precision in diagnosing patients, assist nurses/doctors/drivers/itself, etc.,

and improve the robot’s performance in whatever its environment and goals are. By introducing

uncertainty into the robot and allowing it to have more self-awareness about its environment, the

changes in the environment, the uncertainty on the choices it is predicting based on the changing

conditions, and the system’s behavior, this research and implementation can be extended to a variety

of other robotic applications where robust actions are critical and minimal to zero error is needed.
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