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ABSTRACT 

Karunathilake, Sachithra H., Gaze Tracking Embedded Collaborative Robots for Automated 

Metrology and Reverse Engineering. Master of Science in Engineering (MSE), December, 2023, 

54 pp., 22 tables, 11 figures, 29 references, 31 titles.  

Conventional geometric metrology, or three-dimensional (3D) scanning, and reverse engineering 

heavily rely on the experience of the operators. With an increasing need for automation, robot arms 

have been adopted for this task. However, due to the large variety of parts and designs, automated 

path planning could provide a scanning solution that may overlook the critical area, which could 

potentially deteriorate the scan results. This study explores the integration of collaborative robotics 

(cobots) with eye tracking technology to improve the autonomous 3D scanning process. The 

primary objective of this study is to enhance the accuracy and efficiency of cobots in 3D scanning, 

particularly in the capture of functionally critical areas, and to provide a detailed description of 

regions with complex geometric features. The study develops a framework where the scanning 

path of the robot-carried scanner is partially guided by the eye-tracking data, i.e., the calibrated 

gaze tracking, to improve the automated 3D scanning process. This framework provides an 

innovative integration of human gaze movement with automatic robot path planning, providing a 

new way of human-autonomy teaming. Case studies are presented to present and validate the 

proposed framework to automatically improve the 3D point cloud collection process, specifically 

in the areas that usually require human manual intervention to capture details. 
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CHAPTER I 

 INTRODUCTION 

Three-dimensional (3D) scanning is a technology that could transform an object or an 

environment from a physical world to a digital world (Geng & Bidanda, 2017). With the major 

advancements and needs in Industrial 4.0 and 5.0, including digital twins, virtual reality/mixed 

reality. 3D scanning technologies have attracted significant interest in different applications. For 

example, in additive manufacturing, reverse engineering adopts 3D scanning techniques for the 

digitization step to translate the physical object into a digital point cloud for design 

reconstruction or metrology purposes(Geng & Bidanda, 2021); in autonomous driving, or 

robotics in general, 3D scanning could provide a survey of the surrounding environment with 

depth information, which provides more detailed information for path planning or decision 

making (Li et al., 2021). However, manual operations are typically required for conventional 3D 

scanning, especially those with requirements for high accuracy and precision with a relatively 

fast speed, e.g., in a manufacturing setting. In this case, an experienced operator carries an arm or 

handheld scanner, equipped with laser scanning capability or structured light scanners, to digitize 

the target objects. The quality of the collected point cloud is heavily influenced by the geometric 

complexity of the objects and the experience of the operator. Although multiple industrial 

vendors propose automated scanning solutions, where robots are adopted to carry the scanning 

instrument, automated path planning could provide a uniform scanning quality for different 

designs, which can overlook areas with complex geometric features. These features are generally
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related to the requirements in the functional specifications. A scan of these areas with low-

quality point clouds or low point density could impact subsequent decision-making or process 

planning in a manufacturing system. On the other hand, a more detailed scan with all areas of the 

targets could increase the burden for computing and point cloud processing, which, in turn, could 

impact the efficiency of the scanning project. 

In this study, we propose an innovative human-autonomy teaming framework that 

integrates gaze tracking into the online programming of a robotic arm carrying a 3D scanner to 

perform the scanning task. The robotic arm, equipped with automated path planning for 

scanning, is partially guided by the gaze movement of the operators, which introduces flexibility 

into the path to adapt to the target and the operator's expert knowledge regarding the specific 

object. In this way, we can increase the flexibility and efficiency of the 3D scanning task while 

preserving the safety and effectiveness of the operators. 

Section 2 reviews the literature and major advances in recent trends in Industry 5.0 and 

human-robot collaboration, with a particular focus on embedded collaborative robotics with eye 

tracking. Section 3 presents our framework that integrates gaze-tracking for scanning path 

planning. The results and corresponding discussions of the proposed framework are in Section 4. 

Concluding remarks and directions for future research motivated by our framework are presented 

in Section 5. 

Background to the Research Problem 

 While robots are highly precise, their ability to autonomously identify and focus on areas 

of an object that have intricate details or complex geometry is not always perfect. This limitation 
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can lead to less accurate 3D point cloud generation, especially for objects with complex designs 

or very fine features. The issue lies in the autonomous scanning system, which might not always 

differentiate between areas needing detailed attention and those that do not. As a result, some 

detailed parts might not be scanned with the required resolution, impacting the overall quality of 

the 3D model. 

Furthermore, in fully autonomous 3D scanning, ensuring that every part of the object is 

scanned with equal precision is challenging. Some areas, particularly those that are hard to reach, 

may not get scanned properly. This can lead to missing points in some parts of the 3D model. 

Consequently, human supervision in autonomous scanning often becomes necessary. Operators 

might need to intervene, adjusting the robot’s position or the scanning parameters to ensure that 

areas with high-detail and complex features are captured accurately. Therefore, there is a need 

for human intervention in the autonomous scanning process through collaborative robots to 

optimize and increase the efficiency of the scanning process.  

Research Questions 

The research aims to develop a method to incorporate eye tracking into 3D scanning using a 

robotic arm to optimize autonomous scanning. The research questions of this study are presented 

as follows:   

I. Can gaze tracking be integrated into fully autonomous scanning? 

II. Can the integration of gaze tracking improve the scanning results? 
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CHAPTER II 

 LITERATURE REVIEW 

The Fourth Industrial Revolution, also known as Industrial 4.0, applies cutting-edge 

technology to connect equipment and share data to build smart factories. These factories increase 

output, improve efficiency, and create new business prospects. The words "Industrial 4.0" and 

"Industrial 5.0" indicate important stages in the ongoing growth of industry in the fields of 

manufacturing and technology (Fatima et al., 2022). It directed automation (Kolberg & Zühlke, 

2015), data-driven decision-making, and the Internet of Things (IoT) into industrial processes, 

changing manufacturing and supply chains all over the world (Riley et al., 2021). 

This evolution of Industry 5.0 builds on the groundwork set by Industry 4.0 with 

additional needs and enhancements in  technology and human interaction to a new level (Leng et 

al., 2022). These advances require a broader approach to rethinking the role of technology in 

industry, with an emphasis on adaptation, sustainability, and resilience. As one of the 

fundamental driving forces in Industry 5.0, human-machine collaboration (Yang et al., 2022), or 

human-autonomy teaming, emphasizes not only automation but also the participation of 

operators in performing complex and flexible tasks efficiently and effectively. 

 Collaborative robotics, or cobot, is one of the most representative advancements in this 

transition, from Industry 4.0 to Industry 5.0. Cobots, introduced during the Industry 4.0 era,
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were designed to work alongside human operators, providing a more secure and adaptable 

automation solution in many industrial applications, primarily material handling (Vicentini, 

2021).  These robots are designed to enhance precision and strength in work assignments and 

provide repetitive motions on the production line to improve the safety of the operators. 

Collaborative robotics in Industry 4.0 was integrated by sophisticated sensor 

technologies, analytic algorithms, and intelligence to adapt when human operators are present in 

its working environment. These robots could function within close proximity to humans without 

risking their safety, resulting in higher efficiency and more dynamic manufacturing processes. 

Industry 5.0 elevates human-robot collaboration to a new level of integration and engagement. 

While Industry 4.0 emphasized process optimization and task automation, Industry 5.0 

emphasized the holistic inclusion of human workers in advanced decision-making and problem-

solving alongside robots. 

In Industry 5.0, collaborative robots extend beyond mere task execution. These 

cobots are equipped with advanced machine learning and artificial intelligence algorithms that 

allow them to learn from human operators with more intelligent decision-making processes 

and adapt to unexpected events in (near) real-time (Soori et al., 2023). Since then, they have 

evolved to be able to participate in operational tasks actively. Furthermore, emotional 

interactions and social contact between humans and robots are also prioritized in Industry 5.0 

(Chin, 2021). This indicates that robots assist humans in physical work and in recognizing and 

responding to human emotions and needs (Lu et al., 2022). This level of collaboration improves 

the entire work experience and results in pleasant and safer human-robot collaboration. 
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Human and Robot Collaboration 

Human-robot collaboration, enabled by the integration of cutting-edge technology such 

as recording human biological information, computer vision, and eye tracking sensors, marks a 

significant step forward in industry 5.0. The robot's ability to record and comprehend human 

biometric data, such as the actions of human workers, is a crucial component of this relationship 

between robots and humans. Robots can see and comprehend their human counterparts’ gestures, 

posture, and motion patterns thanks to cutting-edge computer vision capabilities (Tapus et al., 

2019). Given that robots may adapt their activities in real-time to complement the motions of the 

human worker, this knowledge is essential for tasks that call for close collaboration. 

Furthermore, robots can now record and read human biometric information beyond simple 

physical movement. Robots can recognize subtle information like facial expressions and 

emotional states based on different algorithms such as Convolutional Neural Networks (CNN) 

and Visual Geometry Groups (VGG), Xception Networks, and Deep Face Networks, which offer 

deeper insights into the emotions and engagement of human operators (Chiurco et al., 2022). 

However, Lampi et al. (2023) mentioned that there are instances where technostress emerges 

among employees working with physical robots. Computer vision's thorough comprehension of 

biometric data improves productivity and enables a more sympathetic and flexible approach to 

human-robot collaboration. Computer vision enables robots to perform tasks precisely while 

simultaneously improving safety by avoiding obstacles. Furthermore, eye-tracking technology 

enables robots to detect human intents, increasing engagement and adaptability in dynamic 

working contexts.  
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Collaborative Robotics  

Collaborative robots have been significantly growing and revolutionizing the reverse 

engineering and manufacturing industry. They are specifically designed to work with humans in 

performing tasks such as material handling, assembly, and welding. Combining the unique 

strengths of humans and robots, allows tasks to be performed effectively and efficiently. The 

main goal of collaborative robotics is to integrate robotic systems to complete tasks challenging 

for human operators, both from workplace safety or ergonomic perspectives and from the view 

of production quality (Pauliková et al., 2021).  

Vicentini (2021) stated that robots do not determine the level of collaboration. 

Applications and the unique ways humans use robot systems for tasks define the level of 

collaboration. Different levels of collaboration are available depending on how the operator 

interferes and works alongside the cobot. For instance, confined space collaborative robots refer 

to the use of robots or robotic systems designed to operate in restricted or confined spaces while 

working alongside human operators (Deshpande et al., 2018). Other types include open space 

(Follini et al., 2021) and human interactions (Hentout et al., 2019).  

Cobots can be effectively used in difficult or dangerous environments for humans to 

access. In manufacturing, these robots can be used for assembly tasks in tight spaces where 

human workers may have difficulty reaching. In emergency response scenarios, robots can be 

deployed to explore and assess hazardous environments, such as collapsed structures or 

contaminated areas. 

Cobots are versatile and can be easily integrated into different stages of the production 

process. Metrology is one such area that has attracted interest. The addition of cobots in 
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metrology also supports the trend towards smart manufacturing, as they can be connected to a 

network, enabling real-time data exchange and analysis. This connectivity allows instant 

feedback and adjustments in the manufacturing process, leading to reduced process time and 

higher-quality products. Moreover, the data collected by cobots can be used for process 

optimization. 

Eye Tracking  

Eye-tracking technology has developed as an effective tool for studying and analyzing 

human behavior and cognition. This technology allows for the comprehensive monitoring and 

analysis of eye movements and gaze points, revealing where people are looking, how long they 

concentrate on specific things, and their visual attention patterns. This information 

has great potential to learn the intentions and behavior of operators more efficiently and to 

improve collaborations between the human operator and automation systems (Ajoudani et al., 

2018).  

The Gaze Tracking Algorithm is one of the most important algorithms used in eye 

tracking for cobots. The cobot can match its actions to the worker's focus due to this algorithm, 

which enables it to estimate a worker's gaze location precisely (Palinko Oskar et al., 2016). By 

streamlining assembly procedures, they become more straightforward to understand and more 

effective.  

Cobots can easily coordinate their movements with the visual cues of the operator 

because of this level of object awareness (Krishna Sharma et al., 2020). This technology can be 

used to make object scanning more effective and streamlined. Gesturing gains extra depth when 

paired with Object Recognition Algorithms. Cobots can now recognize not just where an 
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operator is looking but also what they are looking at due to object identification, which is 

frequently driven by deep learning algorithms (van Dyck et al., 2021).  Cobots could recognize 

specific objects of interest inside their field of view by studying the real-time video feed from 

cameras or sensors and utilizing image recognition techniques (De et al., 2019).  

Eye and head movements are important in human-robot interaction because they allow 

robots to recognize significant areas of interest and respond effectively to human signals. When 

humans move their gaze on certain items or regions, it is a potent indicator of their concentration 

and intent (Klin et al., 2002). Robots with advanced computer vision and eye-tracking 

technology can detect these minute movements in look and head movement, allowing them to 

figure out what the human operator considers important or unpleasant in their surroundings. This 

ability allows robots to adapt their actions, prioritize work, and even offer aid when needed, 

resulting in a more natural and efficient human-machine collaboration. The ability of robots to 

understand and respond to human gaze and head movements improves safety, productivity, and 

overall user experience in industrial settings, healthcare, and everyday life (Grewal et al., 2020).  

Three-Dimensional Scanning Automation  

Cobots can move quickly and precisely scan a wide range of objects with various designs 

and large scales. Their agility and precise scanning paths enable them to adapt the context of the 

object and ensure comprehensive scanning coverage. Cobots are perfect for scanning complex 

components because of their agility and precision in scanning paths, which allow them to move 

around complex shapes swiftly. Their ability to work continuously without fatigue reduces 

downtime and increases overall productivity. In addition to these operational benefits, cobots 

offer a safer alternative to manual scanning, reducing the risk of workplace injuries and allowing 
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human workers to focus on more strategic, less repetitive tasks. This combination of speed, 

precision, and versatility makes cobots indispensable in modern scanning and quality control 

processes. 

However, there are challenges associated with using cobots in 3D scanning. While cobots 

offer high precision, the level of detail they can capture in scanning can be limited due to their 

inability to determine the areas of the object with high details and geometric complexity. The 

current practice of robot-driven 3D scanning ignores the regional complexity of the target while 

placing equal weight on different design features. A rough scan may overlook areas with 

complex geometric features or details that have a strong connection with the target’s 

functionality; a detailed scan of all features could solve this issue while significantly increasing 

the burden in point cloud processing. It seems trivial for an experienced operator to plan the 

scanning path carefully, but it can be hard to program the robot to adapt to different objects. 

Therefore, there is a need for a framework to incorporate human knowledge or guidance into 

automated path planning. 
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CHAPTER III 

METHODOLOGY 

In this study, the primary objective was to integrate gaze tracking into the handheld 3D point 

cloud scanner to increase the accuracy of the robotic arm movement arm in identifying critical 

areas in an object to scan. This section of the paper describes the methods used to register the 

marker coordinates acquired from the handheld scanner with the coordinates from the eye 

tracking system.  

Figure 1: A summary of the metrics development process 
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The integration of the registered coordinates for planning the robotic arm's path for scanning 

is detailed, as well as the application of gaze tracking to identify critical areas that require 

rescanning. Figure 1 summarizes the metrics development process carried out in this study. The 

Formula 1 model car shown in Figure 2 was used as the scanning object.  

Figure 2: Formula 1 model car used as the scanning object. 

 

Scanner Coordinates  

The object was scanned using a Shining 3D EinScan HX scanner, as shown in Figure 3. 

These scanners usually use markers, small circular stickers pasted on the surface of the scanning 

object or platform, as reference points. These markers serve well in many aspects of the scanning 

process. They are mainly used for tracking and aligning physical objects with scanning software. 
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Handheld scanners such as the EinScanner HX continually scan objects from various 

perspectives as the operator moves them around. The EX-scanner HX software uses the markers 

as a frame of reference to track its location in relation to the object. This facilitates the software's 

ability to align precise 3D models by helping it realize how one scan fits in relation to the others. 

Moreover, these markers help maintain the accuracy of the scanning process and minimize 

errors. Certain objects are challenging for the scanner's software to distinguish from one region 

to another as they have repetitive textures or lack unique features. Markers generate distinct 

points that are simple for the program to recognize and track.  

Unlike stationery or tripod scanners, with a base, handheld scanners typically do not have a 

fixed “origin point”. An origin point is not a physical spot on the scanner as it is a marker-based 

coordinate system established throughout the scanning process. The portable scanner's software 

frequently needs an initialization step before beginning a scan.  

Figure 3: Shinning 3D Eiscan HX handheld scanner 
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A critical step of this study is to identify the coordinates of the markers in the EX-Scanner 

HX software and to define the origin point of the scan. 

 

Initially, eighteen markers were placed on the scanning table, as shown in Figure 4. Four 

markers were placed on the corners of the table at an equal distance, forming a perfect square 

shape, while the other fourteen markers were placed randomly within the boundaries set by the 

four corner markers.  

Marker coordinates were scanned and exported from the EX Scanner HX software in .P3 

file format, As shown in Table 1. The file presented the XYZ (3D) coordinates sequentially line 

by line. However, the data does not define whether these coordinates follow a particular order of 

the scan or if they correspond to the origin point of the scan, which poses difficulties in 

Figure 4: Scanning table with the markers 
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identifying the origin point considered by the software and aligning it with an origin point of the 

physical markers.  

The initial step involves identifying which line in the dataset of the software represents which 

physical markers. Therefore, the same eighteen markers were scanned three times, resulting in 

three sets of coordinate data to compare and determine whether each dataset from the scanner 

constantly corresponded to the same physical markers with every scan. The three datasets are 

given in Table 1, Table 2, and Table 3, respectively. 

Table 1: Marker coordinates of dataset 1 obtained from the scanner. 

X Y Z 

-8.748 88.0854 444.229 

141.331 44.7749 501.154 

-99.9607 -29.55 394.108 

66.5732 187.866 485.654 

184.314 207.819 536.017 

-160.749 239.649 397.871 

60.3446 308.54 495.921 

-54.6399 309.828 448.872 

75.3862 441.102 516.1 

-68.6248 485.521 461.768 

42.3092 608.279 520.249 

-229.345 554.506 402.753 

238.737 548.835 594.345 

313.305 669.07 637.304 

207.284 394.718 565.181 

352.564 372.877 622.266 

307.02 184.201 583.675 

437.552 82.9147 626.005 
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Table 2: Marker coordinates of dataset 2 obtained from the scanner. 

X Y Z 

-94.3461 48.9136 319.862 

70.4723 25.7427 375.433 

-34.0357 -99.3699 325.641 

-147.034 225.793 319.412 

-217.695 -64.8929 264.554 

16.8799 -238.464 329.02 

-143.775 -163.482 280.36 

-230.729 -238.783 241.939 

-339.727 -15.2919 226.708 

-139.012 -327.373 265.025 

-355.006 -232.586 198.849 

-76.9208 -445.442 274.628 

-289.945 -385.409 205.996 

-503.099 -223.126 147.422 

153.593 -175.817 383.59 

292.827 -169.385 432.896 

-68.348 -615.128 259.837 

95.0214 -374.68 342.244 

 

Table 3: Marker coordinates of dataset 3 obtained from the scanner. 

X Y Z 

-33.4292 92.8872 519.32 

-157.011 71.8072 472.691 

121.56 42.4 569.505 

-147.227 -99.4466 458.073 

-305.697 124.036 424.887 

-262.393 10.8022 428.345 

-302.833 -111.457 400.801 

l-415.078 84.3113 381.371 

-332.534 256.187 429.339 

-493.883 -20.6148 341.822 

-482.804 247.378 374.496 

-656.589 256.07 312.896 

-415.692 404.321 415.262 

-193.16 258.775 479.563 

-211.117 417.403 490.004 

-352.808 -256.498 367.154 

-48.739 289.58 534.61 

-177.739 558.932 516.773 
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 The coordinates of the corner markers of the squares were determined by the following 

algorithms.  

Maximum Distance 

This algorithm considers the diagonal of the square as the longest line segment that can be 

drawn between any two points among these 18 markers. Therefore, the opposing corners of the 

square were determined by finding the two points that are the farthest away.  

In the algorithm, the Euclidian distance is utilized to measure the distance between any two 

points. The Euclidian distance, 𝑑(𝑝𝑖, 𝑝𝑗) between point 𝑝𝑖  =  (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) and point 𝑝𝑗  =

 (𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) is as follows, 

𝑑(𝑝𝑖, 𝑝𝑗) = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

+ (𝑧𝑖 − 𝑧𝑗)
2
 

Distances between each pair of points are computed. The pair of points yielding the greatest 

(farthest) distance among all points are identified and designated as the corner points, which can 

be utilized for further alignment. In this way, two pairs of corner points are identified sequentially, 

while any selected points are removed from the candidate list. 

Convex Hull  

The convex hull algorithm is another way to identify corner points for alignment 

purposes. The convex hull is a concept in computational geometry that refers to the smallest 

convex set that contains a set of points. This convex hull is presented as a polygon in a two-

dimensional space, whereas in a three-dimensional space, it is presented as a polyhedron. The 

vertices of this convex polygon or polyhedron are a subset of the original points and are called 

the “hull points”. The convex hull is unique because it creates a border that defines the external 
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boundary of a set of points, excluding all internal points. To identify corner points from a set of 

3D points, the convex hull algorithm could be used.  

The correspondence of the order of these points is explored by considering their angular 

position relative to a central point, i.e., the centroid. These points were consistently sorted by 

measuring the angle from the centroid to each point on the hull. Although it was not explicitly 

constructed as a convex hull, this approach can detect extreme or border points in the dataset. 

The coordinates identified from the algorithms mentioned above as corner markers are 

established by calculating the distance between each point using the Euclidean distance function. 

This measurement can confirm whether the distances match up in a square pattern. 

These two methods were repeated after eliminating the identified coordinates of the 

corner points in the dataset. The intention is to find the coordinates of the next possible corners 

out of the remaining markers. 

Eye Tracker Coordinates  

After identifying the coordinate points of the markers in the software with the physical 

markers, the coordinates of the eye tracker have to be determined prior to marker registration. 

Therefore, a coordinate system must be assigned to the regions the eye tracker captures. The eye 

tracker used in the study provides the option to create a Live Area of Interest (LAOI), which can 

be designated to image objects or features of the environment captured through the eye tracker’s 

scene camera.  

The operator was instructed to look at the scanning table, and the four corner markers were 

designated to be the boundaries of the LAOI, as shown in the figure. In this study, two LAOIs 
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were created to accompany the identified eight corners, with four markers assigned to each of the 

two LAOI1 and LAOI2. The distance between the four corner markers was physically measured 

to be 597mm. After defining the two LAOI regions the operator can walk around the scanning 

table while the LOAIs remain defined and unchanged regardless of the movement of the 

operator. The gaze movement of the operator was tracked within the two defined LOAIs.  

As we have clearly defined LAOIs in the eye-tracking coordinate system, the closest point 

marker to the operator from the operator’s point of view can be recognized as the origin point of 

the eye-tracking coordinate system. The coordinate system is shown in Table 4. A visual 

representation of the two LAOI boundaries is shown in Figure 5.  

Table 4: Eye tracking LAOI coordinate system. 

LAOI Point X Y 

LAOI 1 0 0 0 

 1 597 0 

 2 597 597 

 3 0 597 

LAOI 2 0.5 257 55 

 1.5 567 375 

 2.5 312 592 

 3.5 49 363 
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Projecting 3D Points to 3D Space 

Since the coordinates of the markers provided by the 3D scanner and the vision system 

on the eye tracker have different dimensions, a multidimensional scaling (MDS) algorithm 

(Carroll & Arabie, 1998) is used to convert the coordinates for registration. The goal of MDS is 

to preserve pairwise distances between points while locating a lower-dimensional representation 

of the points. In addition, the stress value is calculated by measuring the difference between the 

original and decreased distances. 

In this study, two variants of MDS are used: one preserves Euclidean distances, while the 

other preserves Manhattan distances. The most popular and basic distance metric is the 

Euclidean distance, the straight-line distance between two locations in Euclidean space. In 

Figure 5: Boundaries of the LAOIs 
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contrast, the Manhattan distance, which sums the absolute differences of their Cartesian 

coordinates, is used in grid-like path calculations. The Manhattan distance formula is given in the 

following formula: 

𝑑(𝑝𝑖, 𝑝𝑗) = |𝑥𝑖 − 𝑥𝑗| + |𝑦𝑖 − 𝑦𝑗| + |𝑧𝑖 − 𝑧𝑗| 

Both metrics influence the location of points in the MDS-transformed space, which affects 

how the items' relationships are represented. The code uses these distances to conduct MDS on a 

given dataset, producing a two-dimensional representation of the points and comparing item 

configurations using various distance metrics. The stated "stress" number represents how well 

the MDS representation preserves the original distances, with lower values indicating a better 

match.  

Marker Registration 

The registration of the marker coordinates obtained from both the scanner and the eye tracker 

was a crucial part of this study. These coordinates should be precisely aligned so that the eye 

tracking information can be utilized to guide movement or path planning for the robotic 3D 

scanning system. Operators could quickly identify critical regions or areas with poor point cloud 

quality, while the eye tracking device could integrate this information into the movement 

instructions for the robotic arm. 

As one of the most popular registration algorithms, the iterative closest point (ICP) algorithm 

is implemented to remove the unnecessary rotational and translational factors in the coordinates 

of the markers from two sources. The ICP algorithm uses best-fit transform to reduce the 

distance between the two-point sets, which the algorithm repeatedly determines the best-fit via 
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homogeneous transformations, singular value decomposition (SVD), and closest neighbor 

search. Convergence is accelerated by using centroids for an initial posture estimate. 

Let 𝑨 =  {𝒂𝒊}𝒊=𝟏
𝒏  and 𝑩 =  {𝒃𝒊}𝒊=𝟏

𝒏  be the sets of markers collected by 3D scanning and 

eye tracking device. The main concept behind the ICP algorithm is to find the nearest neighbor 

of one set of points and then compute the rotation matrix and translation vector for these pairs of 

points. Then the error is minimized and optimized using SVD. The ICP algorithm can be 

explained using the following steps (Prochzkov & Martiek, 2018) 

For the computation of SVD, the centroids need to be calculated, which are presented as follows, 

𝐶𝐴 =
1

𝑛
∑ 𝐴𝑖

𝑛

𝑖=1

 

𝐶𝐵 =
1

𝑛
∑ 𝐵𝑖

𝑛

𝑖=1

 

Then, all the points in sets A and B are moved to the position, where the centroids are 

located at the origin, while the translational factors are removed, 

𝐴′ = {𝒂𝒊
′}𝒊=𝟏

𝒏 = {𝑎𝑖 − 𝐶𝐴}𝑖=1
𝑛  

𝐵′ = {𝑏𝑖
′}𝑖=1

𝑛 = {𝑏𝑖 − 𝐶𝐵}𝑖=1
𝑛  

Next, a rotation matrix 𝑅 can be found using SVD of the matrix 𝐻 =  𝐴′ 𝐵′𝑇 to remove the 

rotational factor and align the set of points 𝐴’ onto 𝐵’. 

As for the pair of points that lack correspondence, the nearest neighbor algorithm could find 

the closest point in set 𝐵 for each point in set 𝐴. 
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The ICP algorithm iteratively updates the transformation (using the best-fit transform) to 

minimize the distance between the corresponding points in sets 𝐴 and 𝐵. A pre-set tolerance can 

control the stopping condition of the algorithm. 

After aligning the markers in the scanning software and the scanning table with the LAOI 

coordinate system of the eye tracker, the robot could automatically identify the crucial areas 

from the gaze hint from the operator. 
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Scanning Using the Cobot 

In the initial scanning process, the path of the robotic arm was designed to move around the 

scanning table once as shown in Figure 6. This autonomous scanning process used a path that 

covered and captured 360o and the top of the object. After completing the initial one-round fully 

autonomous scan, we observed the scan 3D point cloud to identify areas with high details or 

geometric complexities that have not been appropriately scanned or that have missing points.  

The object was scanned again using integrated gaze tracking. An important part of the scanning 

process is the control of the robot's motion. The eight points registered by the ICP algorithm 

were used as reference points to move the robotic arm.  

 

 

 

Figure 6: KUKA robotic arm fully autonomous scanning path. 
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Eye Tracking Integration to Autonomous Scanning Process.  

Prior to setting up the scanning process. The robotic arm was moved to eight locations and 

obtained the coordinates of the arm position for each marker. In the eye tracking embedded 

scanning process, the operator identified the rescanning areas based on the autonomous scan and 

determined the areas that require rescanning. The operator moved the gaze to the marker 

corresponding to the areas requiring rescanning and obtained the coordinates from the eye 

tracker coordinate system pertaining to the marker with the gaze, as shown in Figure 7. 

Subsequently, the coordinates were input into the robotic arm program. The robotic arm was then 

moved to the assigned marker with the gaze and scanned again to capture the point cloud. The 

location of the scanning table in relation to the robot was crucial to its mobility. The robot's end 

effector can move within a range of proximity, but several limitations exist on how far it can go 

from its base. Moreover, because of the torque required at each joint, the movement to new 

positions could not maintain consistent velocities. 

 

Figure 7: Gaze movement as seen by the scene camera of the eye tracker. 
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Critical Area Identification 

To further analyze whether integrating human input into the autonomous scanning 

process through gaze tracking could optimize the scanning of complex geometries, we selected a 

critical area with a high level of detail and curvature. As shown in Figure 8, the cockpit area of 

the f1 model car was selected as the critical area as it had more details compared to the overall 

design of the car.   

 

Performance Metric for 3D Scanning 

To compare the performance for the two ways of scanning using cobot, an innovative 

performance metric considering the local point density with respect to the local curvature is 

proposed in this study. 

Figure 8: Critical area of the model Formula 1 car. 
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In 3D point cloud scanning, the local point density, or the number of points in a unit volume, 

can be utilized to describe how much information is included in a local area. Typically, the 

higher the local point density is, the more details can be captured in a 3D scanning project. A 

high local point density is essential to capture the fine features of an object, especially the areas 

of complex features, while a relatively low local point density is acceptable for simple features, 

such as prismatic features. 

The local point density, 𝝆𝒊, for any point 𝒊 in the point cloud can be calculated as follows, 

𝜌 =
𝑁

4
3 𝜋𝑟3

  

where 𝑁𝑖 is the number of points located in a local neighborhood of point 𝑖 with a pre-

determined radius 𝑟. 

Conversely, curvature represents a surface's deviation from being flat at a given location in 

computational geometry (Geng et al., 2022). It is a geometric property that characterizes how 

quickly the direction of the tangent vector of a point on the surface changes as one moves over 

the surface. At one extreme, the curvature for any point on a flat surface has an infinitesimal 

curvature; while, at the other extreme, a sharp edge has curvature that goes to infinity. Therefore, 

curvature could be utilized as a descriptor of the complexity of a surface. Regions with sharp 

edges or curves, suggestive of high complexity, have been determined to be correlated with 

substantial curvature. On the other hand, areas with flat surfaces correspond to minimal 

curvature values, indicating less complexity. The idea was that areas with more curvature have 

additional complex designs by nature. The local curvature ν at a point is estimated by fitting a 

plane to its neighboring points using the least-squares method described below. 
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Consider the 

𝐺𝑖 = 𝑈𝑖𝑠𝑖𝑉𝑖
𝑇 

where 𝐺𝑖 is a matrix whose rows are the neighboring points of point 𝑖 and, then, SVD is used 

to decompose the matrix 𝐺. The normal vector to the best-fit plane is obtained from the last row 

of 𝑉𝑖
𝑇in SVD. Finally, the curvature is approximated by the standard deviation of the distance 

between the neighboring points and the fitted plane. The deviation between the 𝑗𝑡ℎ point in the 

neighborhood and the fitted plane is given by 

𝑑𝑖 =
(𝐺𝑖𝑗 − 𝑝𝑖). 𝑛𝑖

‖𝑛𝑖‖
 

where 𝐺𝑖𝑗  represents the 𝑗𝑡ℎ point in the neighborhood of point 𝑖, 𝑛𝑖 is the normal vector of 

point 𝑖. Then the curvature can be calculated by, 

𝜈𝑖  =  2 ×  𝑆{𝑑𝑗} 

where 2 is a scaling factor used to adjust the curvature estimation, and 𝑆{𝑑𝑗} is the standard 

deviation of the set of deviations {𝑑𝑗}. 

The metric proposed in this study is the product of the local curvature and the point density 

(𝜌𝑖  ×  𝜈𝑖). This metric integrates the local curvature, 𝜈𝑖, which represents the complexity or 

complexity of the surface at that point, and the local point density, 𝜌𝑖, which indicates the 

number of points utilized to represent a specific area. The metric representing regions of the scan 

with high geometric complexity and detail levels may be obtained by multiplying the local point 

density by local curvature. A high value of 𝜌𝑖  ×  𝜈𝑖would refer to a scanned area that has a 

relatively adequate number of points and is both geometrically complexity and well-described. 
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On the other hand, low values of 𝜌𝑖  ×  𝜈𝑖can represent regions that are under-described, which 

may need additional, more careful scans. 

When we compare the different scanning strategies, both the average and the smallest value 

of 𝜌𝑖  ×  𝜈𝑖 are reported. In this study, we are assessing the details and geometric complexity of 

the point cloud generated from fully autonomous scanning and eye tracking integrated 

autonomous scanning. Ideally, we look for high 𝜌𝑖  ×  𝜈𝑖 value for the autonomous scan 

integrated with eye tracking compared to the fully autonomous scanning process. 

Experimental Setup  

The operator’s gaze movement was captured using the Argus Science ET Vision glasses. 

The ETVision device uses a technique known as "Pupil to CR" Tracking to monitor eye 

movements. This method uses the dark pupil's location and the corneal reflections (CRs) to 

determine an individual's gaze direction. The cornea's anterior surface is what generates these 

reflections in the eye. With the help of two near-infrared LEDs mounted on the headset, the 

system illuminates the eyes. The eye camera located in the device captures the infrared light, 

which is barely visible to the operator’s eyes.  The corneal reflections appear as bright spots 

when viewed through the camera. The pupil's center moves in relation to these bright dots as the 

eye moves. The eye tracking system determines the direction of gaze with respect to a coordinate 

system centered on the scene camera by measuring the change in location between the pupil and 

the CRs. The position of the pupil or CRs alone allows the system to track the operator's gaze 

even while the headset is stationary.  

The technical specifications of the eye tracker used in the experiment were as follows: 

Gaze Measurement Frequency of 180 Hz, enabling precise data collection. The eye tracker’s 
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estimated accuracy is around 0.5 degrees, allowing precise eye movement measurement. The ET 

vision system also consists of SDK samples for a python programming language to import live 

eye tracking data through the ET remote software.  

The object scanning was done using a Shinning 3D Einscan HX handheld scanner 

attached to the KUKA KR10 R1100 robotic arm. It provides two scanning modes: rapid 

scanning and laser scanning. This study only utilized the laser scanning mode. However, the eye 

tracking procedure used in the study can be applied to optimize rapid scanning as well.  

The Laser Scan mode can increase precision up to 0.04mm and volumetric accuracy to 

0.04+0.06mm/m; Rapid Scan offers accuracy of up to 0.05mm and a volumetric accuracy of 

0.05+0.1mm/m. In contrast to the Laser Scan's 480,000 points per second at 55 frames per 

second (FPS), the Rapid Scan mode achieved an impressive scan speed of 1,200,000 points per 

second at 20 FPS. The camera frame rate in both modes was 55 frames per second. In terms of 

alignment, Laser Scan only used Markers Alignment while Rapid Scan used Texture, Markers, 

Texture Alignment, and Hybrid alignment. Both had a working distance of 470mm. The depth of 

field ranges for Rapid Scan and Laser Scan were 200 mm to 700 mm and 350 mm to 610 mm, 

respectively. For both Rapid Scan and Laser Scan, the maximum field of view (FOV) was 420 x 

440 mm and 380 x 400 mm, respectively. Finally, for Rapid Scan, the point distance varied from 

0.25mm to 3mm, and for Laser Scan, tightened to 0.05mm to 3mm.  

The EinScanner HX was attached to the KUKA robotic arm. The 11.1 kg maximum 

payload capacity of the KUKA robot made it easy to carry and move the 345g weight 

EinScanner with ease. With a posture repeatability of ± 0.02 mm in accordance with ISO 9283 

standards, it demonstrated its accuracy in movement and placement. The six axes of motion 

ensured that the robot could move in many directions. In particular, the motion range of Axis 1 
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(A1) was ±170 degrees; that of Axis 2 (A2) was ±190 to 45 degrees; that of Axis 3 (A3) was 

±120 to 156 degrees; that of Axis 4 (A4) was ±185 degrees; that of Axis 5 (A5) was ±120 

degrees; and that of Axis 6 (A6) was ±350 degrees. This range of motion made it possible to be 

quite flexible. 

.
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CHAPTER IV  

RESULTS AND DISCUSSION 

This Chapter includes the results obtained for the proposed methodologies mentioned in the 

previous Chapter. The computations were carried out using Python programming language.  

The Maximum Distance and convex hull algorithms were used to identify the coordinates of 

the four corner markers from the scanner for each of the three datasets. In the Maximum 

Distance method, corner markers were identified according to their maximum Distance from one 

another. Convex Hull algorithm typically uses the outermost points that form the smallest convex 

shape encompassing all the points. The code was formulated to give the coordinates of the 

markers counterclockwise for both methods.  

Table 5 depicts the coordinates of the corner markers, as identified by each algorithm for the 

first dataset. It was observed that, out of the eighteen markers, both algorithms recognized the 

same markers as the outermost markers. However, the order in which these coordinates were 

arranged differed between the two algorithms. The order identified by the Maximum Distance 

algorithm is 14, 12, 3, and 18. Conversely, the convex hull algorithm determined the sequence as 

3, 18, 14, and 12.  
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Table 5: Coordinates of the corner markers from dataset 1. 

Order X Y Z Max_distance 

Convex 

hull  

1 -8.748 88.0854 444.229     

2 141.331 44.7749 501.154     

3 -99.9607 -29.55 394.108 3 1 

4 66.5732 187.866 485.654     

5 184.314 207.819 536.017     

6 -160.749 239.649 397.871     

7 60.3446 308.54 495.921     

8 -54.6399 309.828 448.872     

9 75.3862 441.102 516.1     

10 -68.6248 485.521 461.768     

11 42.3092 608.279 520.249     

12 -229.345 554.506 402.753 2 4 

13 238.737 548.835 594.345     

14 313.305 669.07 637.304 1 3 

15 207.284 394.718 565.181     

16 352.564 372.877 622.266     

17 307.02 184.201 583.675     

18 437.552 82.9147 626.005 4 2 

 

These coordinates are confirmed by calculating the lengths of the four sides of the square 

using the Euclidean distance, as shown in Table 6. Upon measuring the physical distance 

between the corner points, the length was approximately 597 mm. Interestingly, the calculated 

lengths were approximately equal to the physical length of the corner markers. 

Table 6: Lengths between each pair of coordinates based on dataset 1. 

Length Max_dis Convex hull 

(1,2) 602.1695 596.1077 

(2,3) 598.2779 599.2854 

(3,4) 596.1077 602.1695 

(4,1) 599.2854 598.2779 

 



34 

 

Table 7: Coordinates of the corner markers from dataset 2. 

Order X Y Z Max_distance Convex hull  

1 -94.3461 48.9136 319.862     

2 70.4723 25.7427 375.433     

3 -34.0357 -99.3699 325.641     

4 -147.034 225.793 319.412 2 4 

5 -217.695 -64.8929 264.554     

6 16.8799 -238.464 329.02     

7 -143.775 -163.482 280.36     

8 -230.729 -238.783 241.939     

9 -339.727 -15.2919 226.708     

10 -139.012 -327.373 265.025     

11 -355.006 -232.586 198.849     

12 -76.9208 -445.442 274.628     

13 -289.945 -385.409 205.996     

14 -503.099 -223.126 147.422 3 1 

15 153.593 -175.817 383.59     

16 292.827 -169.385 432.896 1 3 

17 -68.348 -615.128 259.837 4 2 

18 95.0214 -374.68 342.244     

 

Table 8: Lengths between each pair of coordinates based on dataset 2. 

Length Max_dis  Convex hull 

(1,2) 602. 098 596.0798 

(2,3) 598.24  599.2359 

(3,4) 596.0798 602. 098   

(4,1) 599.2359 598.24 
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Table 9: Coordinates of the corner markers from dataset 3. 

Order X Y Z Max_distance Convex hull  

1 -33.4292 92.8872 519.32     

2 -157.011 71.8072 472.691     

3 121.56 42.4 569.505 4 2 

4 -147.227 -99.4466 458.073     

5 -305.697 124.036 424.887     

6 -262.393 10.8022 428.345     

7 -302.833 -111.457 400.801     

8 -415.078 84.3113 381.371     

9 -332.534 256.187 429.339     

10 -493.883 -20.6148 341.822     

11 -482.804 247.378 374.496     

12 -656.589 256.07 312.896 2 4 

13 -415.692 404.321 415.262     

14 -193.16 258.775 479.563     

15 -211.117 417.403 490.004     

16 -352.808 -256.498 367.154 3 1 

17 -48.739 289.58 534.61     

18 -177.739 558.932 516.773 1 3 

Table 10: Lengths between each pair of coordinates based on dataset 3. 

Length Max_dis  Convex hull 

(1,2) 602. 1533 596.0796 

(2,3) 598.2916 599.3045 

(3,4) 596.0796 602. 1533 

(4,1) 599.3045 598.2916 

 

The Max distance and convex hull algorithms were applied to the second and third 

datasets to determine if the same markers would be identified as corner markers upon multiple 

scans. As depicted in Table 7 and Table 9, the results showed that both algorithms identified the 

same markers as corner markers but in a different sequence in their respective datasets. The 

accuracy of these coordinates was confirmed by calculating the Euclidean distance, as shown in 

Table 8 and Table 10. However, the order of the corner markers identified in the second and 
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third datasets was different compared to the first dataset. In all three datasets, the length of the 

four sides calculated based on the coordinates were approximately equal regardless of the order.  

The results show that the order of the markers changes every time a scan is done. The 

scanner starts the scanning process by identifying the object's orientation and creating a 

coordinate system based on its starting location in relation to the object, which can be defined as 

an arbitrary “origin” point. Therefore, the origin point can change every time a scan is done. As 

the scanning process proceeds, the scan uses the markers to identify its location in relation to the 

origin point. Therefore, the corner markers cannot be identified based on the order of the XYZ 

marker coordinates presented in the .P3 file as shown in Table 11.  

Table 11: Order of the corner markers identified by each dataset. 

Dataset The row that was identified as the corner markers 

1  3, 12, 14, 18 

2 4, 14, 16, 17 

3 3, 12, 16, 18  

 

The subsequent outermost points were determined by excluding the four identified in the 

three datasets. The algorithms' accuracy had already been confirmed, and only the Max distance 

method was used for this purpose because, despite their different orders, both algorithms 

produced the same coordinates. Only dataset 1 was used in the computation of the remaining 

coordinates. Based on the findings, the next four markers were found to be rows 6, 11, 16, and 2.  
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Table 12: Second set of corner markers identified in dataset 1. 

 

 

The original XYZ (3D) coordinates for the eight markers were converted to XY (2D) 

coordinate system to be aligned with the 2D coordinates of the eye tracker coordinate system. 

The new original coordinate values and transformed coordinate values are shown in Table 12.  

 

 

 

Order X Y Z 

Max 

distance  

1 -8.748 88.0854 444.229  

2 141.331 44.7749 501.154 4 

4 66.5732 187.866 485.654  

5 184.314 207.819 536.017  

6 -160.749 239.649 397.871 1 

7 60.3446 308.54 495.921  

8 -54.6399 309.828 448.872  

9 75.3862 441.102 516.1  

10 -68.6248 485.521 461.768  

11 42.3092 608.279 520.249 2 

13 238.737 548.835 594.345  

15 207.284 394.718 565.181  

16 352.564 372.877 622.266 3 

17 307.02 184.201 583.675  



38 

 

Table 13: Conversion of 3D coordinates to 2D coordinates. 

 

The newly transformed 2D coordinates were then confirmed by calculating the Euclidean 

distance between the points, as shown in Table 14. The calculated distances of each pair of 

points in the 2D system are approximately equal to the corresponding distances in the 3D system. 

The stress value was found out to be 0.12914. Figure 9 and Figure 10 depict the 3D to 2D point 

coordinate conversion for LAOI 1 and 2. 

Table 14: Euclidean distance between the points of 3D coordinates and 2D coordinates. 

 Points Lengths using 3D Coordinates Lengths using 2D coordinates 

LAOI 1 (0,1) 596.1077 598.415  

 (1,2) 599.2854 602.1238  

 (2,3) 602.1695 599.3071  

 (3,0) 598.2779 595.9947 

LAOI 2 (0.5,1.5) 438.2888 438.19 

 (1.5,2.5) 402.5911 402.6516 

 (2.5,3.5) 408.5811 408.6486 

 (3.5,0.5) 374.0262 373.9994 

 

 3D Coordinates Transformed 2D Coordinates 

 X Y Z X Y 

LAOI 1 -99.9607 29.55 394.108 -392.296788 156.8594507 

 -229.345 554.506 402.753 157.08576 394.0920478 

 313.305 669.07 637.304 393.9074819 -159.5039278 

 437.552 82.9147 626.005 -158.696454 -391.4475707 

LAOI 2 -160.749 239.649 397.871 241.3625669   158.33677611 

 42.3092 608.279 520.249  131.4855523 -265.85363746 

 352.564 372.877 622.266 -251.02048405  -140.08612556 

 141.331 44.7749 501.154 -121.82763515   247.60298691 
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Figure 9: Visualization of 3D to 2D coordinate conversion for LAOI 1. 

 

 

Figure 10: Visualization of 3D to 2D coordinate conversion for LAOI 2. 
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The ICP point registration algorithm was applied to align the 2D coordinates of the 

scanner with the coordinates of the eye tracking coordinate system. Figure 11 demonstrates that 

4 corner markers 0,1,2,3 were aligned somewhat accurately with only slight deviations.  

 

Figure 11: Eye tracker coordinates and scanner coordinates registration. 

 

Initial Scan 

After the fully autonomous scan, the operator observed the areas with high details that 

required eye tracking integration to optimize the scanning results. Based on the observation, the 

robotic arm was moved to the markers as shown in Table 15.  
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Table 15: Gaze movement- initial scan. 

Movement Eye tracker LAOI coordinate 

1 0.5 

2 3.5 

3 2 

4 3.5 

 

The images in Table 16 showcase mesh data from scans of the F1 model car. The first 

column displays the results from the fully autonomous scan, while the second column displays 

the images of autonomous scanning optimized by eye tracking. In comparison, gaps observed 

between the points in the first image indicated that the point cloud has a lower point density. As 

a result, the surface may appear rougher and have less detail. The scanned data of the fully 

autonomous scan exhibits visible irregularities, as several regions show sparse dots, potentially 

indicating that the scan did not fully capture all the characteristics of the F1 model car. Closer 

visual observations indicated possible noise in both scans. 
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Table 16: Comparison of fully autonomous scanning eye tracking integrated autonomous 

scanning results in scan 1. 

Autonomous scanning  Autonomous scanning optimized by eye 

tracking 

Top  Top  

Side Side 

Rear Rear 

 Front side Front-side 
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While conducting the scanning process, we observed that the robotic arm moved faster 

when performing the scan nearest to its base than it did toward other markers. We believe this 

prevented the scanner from capturing points below the model car's rear wing, which had intricate 

details and significant curvature, as shown in the images of the rear of the car in both scans. 

Therefore, we rotated the model car 180o and performed a second scan to address this issue. 

Second Scan with 180o Object Rotations 

Following the rotation of the model, fully autonomous scanning was performed. Similar 

to the previous scan, the results indicated imperfections in the scan and an inability to capture 

areas with high details, indicating the requirement to integrate gaze tracking to identify the areas 

with high details to obtain a better scan. 

The operator observed the areas with high details that required eye tracking integration to 

optimize the scanning results. Based on the observation, the robotic arm was moved to the five 

markers, as shown in Table 17. 

Table 17: Gaze movement after 180-degree object rotation. 

Movement Eye tracker LAOI coordinate 

1 2.5 

2 1.5 

3 1 

4 1.5 

5 3 
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Upon closer examination, it was evident that the integration of gaze tracking enhanced 

the scanning procedure, as the table illustrates, as this method gathered information more 

successfully than the fully autonomous scan. The images shown in Table 18 additionally 

demonstrate the successful recording of points beneath the rear wing of the model car using the 

gaze-tracking-enhanced scan. Turning the model car 180o had no effect on the point cloud 

generation in the front area of the model car, which has less detailed than the rear. 

 

 

 

 

 

 

 

 

 

 

 



45 

 

Table 18: Comparison of fully autonomous scanning eye tracking integrated autonomous 

scanning results after object rotation. 

 

Autonomous scanning  Autonomous scanning optimized by eye 

tracking 

a b 
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Critical Area Analysis 

The same procedure was followed to obtain point cloud data for the critical area of the F1 

model car. The gaze tracking was integrated to the following marker to optimize the details 

captured in the process as shown in Table 19. 

Table 19: Gaze tracking- Critical area. 

Movement Eye tracker LAOI coordinate 

1 3.5 

2 2.5 

 

Delta Time Calculation 

Table 20 shows the approximate time spent obtaining the eye tracking coordinates for 

each process. The approximate time taken to input the coordinates in the KUKA robotic arm 

software and move the robotic arm is given in Table 21. The robotic arm showed an average 

movement time of 58 seconds from the origin to the coordinate obtained from gaze tracking and 

back to the origin point. The entire process of offline programming to integrate eye tracking into 

the autonomous scanning system takes approximately 5 minutes and 6 seconds. 
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Table 20: Eye tracking implementation time. 

Method Duration  

Autonomous scanning optimized by eye tracking. 94 seconds 

Autonomous scanning optimized by eye tracking- 180 object rotation 140.478 seconds 

Autonomous scanning of the critical area optimized by eye tracking  46.022 seconds  

 

Table 21: Robotic arm movement time. 

LAOI 

Marker  

Origin to Marker Origin to marker & back to point  

0 30 sec 51 seconds  

0.5 31 sec 59 seconds  

1 25 sec 86 seconds  

1.5 28 seconds 70 seconds  

2 21 seconds 76 seconds 

2.5 23 seconds 47 seconds  

3 21 seconds 47 seconds 

3.5 15 seconds 38 seconds  

Center 20 seconds 48 seconds  

Average  23 seconds 58 seconds 
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Density and Curvature Metric 

Table 22 depicts the average 𝜌∗𝜈 and minimum 𝜌∗𝜈 values from each fully autonomous 

scans and eye tracking integrated autonomous scans carried out in the study. All three scans 

carried out by the fully autonomous scanning process show a modest average 𝜌∗𝜈 value, which   

indicates a balanced mixture of less detailed and highly detailed regions throughout the scan. 

However, the three eye tracking integrated autonomous scans have a higher average 𝜌∗𝜈 

compared to the fully autonomous scans, suggesting that, overall, they contain more complex 

and detailed regions than the first scan. The higher average implies better capturing intricate 

details or inherently more complex surfaces.    

A minimum value of 0 for 𝜌∗𝜈 in both scanning methods indicates the presence of 

surface areas with low point density or curvature.  

Table 22: Density and curvature metric. 

Method   Scan  Average 𝜌∗𝜈 Min. 𝜌∗𝜈  

Fully autonomous   Scan one  0.376412 0 

 Scan two with a 180o object rotations 0.354264 0 

 Critical area 0.340837 0 

Gaze tracking integrated  Scan one 0.46072 0 

 Scan two with a 180o object rotations 0.44095 0 

 Critical area  0.433029 0 
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CHAPTER V 

CONCLUSION AND FUTURE WORK 

This study proposes a method to integrate eye tracking to improve the autonomous 3D point 

cloud scanning process using collaborative robots. The experiment findings demonstrate a 

significant improvement in the autonomous scanning process in capturing high details and 

complex curvature with the integration of the human gaze to guide the robotic arm to critical 

areas with high details and geometric complexity.  

The metrics proposed in the paper provide valuable quantitative evaluation and comparison 

of point cloud scans’ complexity and detail, which will be helpful in applications where accuracy 

and detail are essential, such as reverse engineering.  

   A new direction of research can be developed based on the proposed metric. Moreover, 

the coordinate data obtained from eye-tracking can be extracted and streamed live to control the 

movement of the robotic arm in real-time. The marker registration can also be extended to other 

markers to increase the variations of the robotic arm.  

Aligning 3D markers in 3D space can also be given higher priority. The technology 

evaluates the surroundings on a 2D plane while utilizing eye-tracking glasses. However, greater 

focus can be placed on aligning 3D coordinates produced from the scanner with the 3D coordinate 

system of a 3D vision system, such as the HoloLens 2, which includes gaze tracking.  
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The methodology suggested in this paper could be used in autonomous driving, where 

combining gaze tracking with 3D scanning can significantly improve the vehicle's perception 

system by focusing on regions of interest detected by the human gaze. Incorporating eye tracking 

integrated 3D scanning into an autonomous driving system may result in more efficient and 

context-aware scanning of the driving environment. For instance, if the driver of an autonomous 

car frequently glances at a specific object or region, the system may prioritize scanning of that 

area. This method assures that critical objects on the road, such as road signs, pedestrians, and 

unforeseen barriers, are identified quickly and precisely. Autonomous vehicles may construct 

detailed and prioritized 3D maps of their surroundings by altering the scanning focus based on 

gaze direction and gathering depth and spatial information. The LAOI feature of the ET vision 

eye tracking glasses is meant to account for object relative position, making it especially suitable 

for autonomous driving applications. The system's eye-tracking capabilities are maintained 

within a consistent reference frame as the vehicle navigates through varied surroundings, 

ensuring that head movement or vehicle motion does not interfere with the data acquired. As a 

result, future research could look into applying the proposed methods in the paper to autonomous 

driving systems. 
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