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ABSTRACT

Gomez, Maribel C., Mathematical Evaluation of the Ulnar Nerve Somatosensory Evoked Potentials

(SSEPs). Master of Science (MS), December, 2023, 71 pp., 1 table, 32 figures, references, 15 titles

As the number of individuals suffering with low back and neck pain rises, we find people

undergoing spinal procedures more often. In means, of safeguarding the patient and their neuro-

logical structures during the procedure intraoperative neuro-physiological monitoring (I.O.M) has

been more widely used amongst surgeons orthopedic and neuro alike. During these procedures,

a modality widely used for both low back and neck surgery is somatosensory evoked potentials

(SSEPs). The aim of neuro-technicians is to obtain a baseline waveform that can be considered

present and reliable. When obtaining SSEPs the technician can encounter obstacles with ’noisy’

wave-forms due to signal interference which may be from physiological sources, as well as environ-

mental (technical) sources. The primary purpose of this paper is to provide a mathematical SSEP

model through observation of the cable equation, and an algorithm for recovering a noisy SSEP

signal through fast fourier transform (FFT), modal thresholding, and the application of bandpass

filters (BPFs) to obtain a baseline. This baseline is crucial to present a reliable waveform.
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CHAPTER I

INTRODUCTION

Back pain ranging from the neck, upper back around/near the shoulders and low back pain

radiating down to the lower extremities has been increasing amongst individuals. While some back

pain can be treated, many individuals are not improving through incorporating movement into their

day to day. The majority end up seeking alternative methods in the forms of prescription medicine,

injections or even surgical alternatives. During these procedures neurological structures are put

at risk and can be compromised. Orthopedic and neurosurgeons thus try to safeguard patients by

calling in clinical neuro-physiologists to monitor evoked potentials(EPs), electromyography (EMG)

and electroencephalography (EEG). One of the modalities most commonly and first used during

spinal procedures are Somatosensory Evoked Potenitals (SSEPs).

In preparing to study for a certification as a Clincical Neuro-physiologist or Certified

Intraoperative Neuro-monitor (CNIM), it can be seen that SSEPs have a very familiar pattern to

those with a mathematical eye-they take the form of trigonometric waveforms.

The primary purpose of this paper is to provide a mathematical model of obtaining an SSEP

measurement by application of the passive cable equation and fast fourier transform to reduce the

time in obtaining a baselines, and being able to get a present and reliable waveform. The overall aim

is to produce a mathematical model of a simulated ulnar nerve (UN) and producing an SSEP using

an algorithm coded in Matlab by applying numerical solutions of the cable equation, fast fourier

transform and ACNS guidelines. Intraoperative monitoring guidelines, obligatory peaks will be

used as a sample to compare the mathematically generated waves. In the application of this method

we hope to be able to extend this to other evoked potentials used to monitor the peripheral and

central nervous system to create a full simulator that can later be manipulated by adding different
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variables which can cause increased noise or create a change in the signal. Where noise will be

any other peak or trough in the signal that is not the most discernible peak around the given range

for each obligatory peak. Then further help in narrowing the parameter windows provided by the

guidelines to help determine the difference between increased noise or a potential change due to

patient alertness, technical artifact or actual injury as well as obtain the frequency for an SSEP

waveform that will generate an obligate peak, leading to a more efficient use of time. [5]

τ
∆v

∆t
(x, t)+ v(x, t)−λ

2 ∆x

∆t
(x, t) = 0 ,0 < x < ℓ ,0 < t (1.1)

[11]
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CHAPTER II

IOM

2.1 Introduction to Intraoperative Neuromonitoring

The use of intraoperative neuromonitoring (I.O.M) came about to help surgeons safeguard

neural structures during spinal corrections. Evidence shows that the use of I.O.M dates back to the

1970s. Other studies state it dates even further back to the 1930s where the idea of neural stimulation

involved placing microelectrodes to record neural activity, thus leading to the development of

electroencephalography (EEG) and electrocorticography (ECoG).

It’s primary use and motive was to understand epilepsy in more detail. From the endeavor,

EEG gave us insight to what is today known as brain waves. Further resesarch and experimentation

showed that neural stimulation produces neural activity, bringing to life the field of intraoperative

neuromonitoring.

I.O.M. was also used to omit the stagnara wake-up test during scoliosis and other corrective

spinal procedures. The first known surgeon to do this was Tamaki [8]. SSEPs were used in lieu of

such a test to bypass the patient not being properly unanesthesized.

2.2 Modalities

Based on the procedure a neurotechnician can help inform the surgeon of what modalities

may benefit the patient to ensure a reduction in post operative defecits. The following are the most

widely used modalities during a spinal procedure setup: monitoring of evoked potentials: (SSEPs)

somatosensory evoked potentials (sensory cortex/peripheral nerves) and (TcMEPs) transcranial

motor evoked potentials (motor cortex/muscle), compound motor action potential(CMAP), such as

(EMG) Electromyography (muscles), often times accompanied with a train of four. The train of four
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is used to help the tech inform of the reliability of the EMG channels or help the anesthesiologist

know if the level of muscle relaxation has changed via stimulation of the peripheral nerve. In order

to determine these modalities the neurotechnician must be aware of the level of surgery, as well as

the location. In obtaining this information the clinical neurophysiological team can determine which

neural structures are at risk and which modalities can be most beneficial. Communication takes

place between the reading neurologist and surgeon by means of the CNIM for overall determination

of what will be monitored during the procedure.

2.3 Data Acquisition

The technician can communicate to the anesthesiologist the modalities both surgeon and

reading neurologist have agreed to use throughout the procedure to ensure the patient receives the

adequate amount of care. The communication between anesthesiologist and neuro-technician must

also be relayed to the reading neurologist. The level of anesthetic as well as the type plays a pivotal

role in data acquisition.

The anesthesia team informs the room and technician when the patient is sedated, and the

technician can then proceed to placing the required electrodes. Electrode placement is dependent

on the modalities being used throughout the procedure. A typical setup involves subdermal needle

electrodes which are placed on muscles relevant to the surgery, in addition to a control. These

electrodes are often used to evaluate nerve stimulation or elicit a motor evoked potential. Surface

electrodes or subdermal needle electrodes near peripheral nerves are used for stimulation and head

electrodes (electrode type can vary, commonly subdermal needle electrodes) are used to record

evoked potentials.

Once all electrodes are placed and the patient has been positioned, the electrodes will be

connected to a system, commonly CADWELL Cascade and data can be collected. Each system has

a subset of pre-prepared templates that are created by the technician or provided by the technician’s

company. The templates ensure preset settings for the channels being observed, as well as, the

bandpass filter settings. Each modality has a range for the hi and lo cut. The filter setting can

typically range per company protocol as well. The bandpass filter ensures that data being obtained
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is within the range of the signal being observed and no outside sources can be rendered.

ACNS guidelines ensure parameters are within range to ensure patient safety in a clinical

and intraoperative setting. Evaluation and observance of them is one of the components that will

be used in modeling the intraoperative signal. For example, ACNS guidelines gives the range of

30-3000Hz for bandpass filters when pertaining to SSEPs. [6]

ACNS guidelines also recommend voltage parameters for stimulation. The technician

adheres to these guidelines while communicating with the reading neurologist. In the event the

voltage set does not give a robust signal, adjustment is made via manipulation of stimulus settings, as

well as increase in voltage all amidst patient safety. However, it should be noted that in increasing the

voltage of the stimulus the possibility of the signals becoming contaminated exists. Contamination

of the waveform can be with gaussian noise which the technologist refers to as “noisy”. Gabianni

and Cox refer to a signal having noise as a dirty signal.[11] Once all signals are ran all members of

the operative team are informed, baseline waveforms are stored and used as a comparison prior to

any surgical manipulation. [4]

2.4 Troubleshooting

The morphology of the SSEP can vary based on type of stimulation, injury, noise, as well as

placement of electrodes. These waveforms are monitored once the patient undergoes anesthesia

to completion of the surgery. It is the technologist’s job to obtain data during the procedure per

company protocol, surgeon’s request, or as requested by the online reading neurologist. In the event

that wave-forms cannot be obtained, the technologist must troubleshoot from computer to patient

and patient to computer.

Often times troubleshooting is not needed at the start of the procedure; other times it is

needed during initial data acquisition. Troubleshooting techniques consist of the following, but

are not limited to, issues that can be technical, physiological, or anesthetic. The technician must

observe the anesthetics being used. Once there is an understanding of the anesthetics being used, it

is important to check the stimulation parameters. Stimulus parameters are done per guidelines and

to ensure patient safety. However, at times the possibility of the stimulus producing a nociceptive
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response exists. In an event such as this, the technician can observe a change in frequency of the

waveforms in the EEG window, often defined as ‘increased noise’. Determining the obligate peaks

of the waveform is done through analysis of the waveform but also communication with the reading

neurologist. The most common modalities looked at in this situation are EEG and SSEPs. Careful

evaluation can result in understanding the frequency of the signals in EEG data.

Some of the techniques and areas observed when troubleshooting are the following: ensuring

filters did not somehow change or changing the Hi and Lo filters (adjusting band-pass – however is

not preferable during the surgery) or the addition of a notch filter, if applicable and when ringing

artifact cannot be created or is possible. Typically notch filters are not advised for SSEPs, as this

is when ringing artifact can most be encountered. The range of the lo-filter is not changed as

there is a risk to cutting off potential data. Troubleshooting areas still within the computer system

can also include checking the impedance which will ensure that the electrodes are still making

appropriate contact and are not faulty. In the event the impedance does not read below 5kOhms, per

company protocol and ACNS guidelines – the technologist can proceed by changing the electrodes

or ensuring proper contact between skin and electrode. Other computer techniques involve changing

the rep rate and evaluating signal frequencies. At the level of the patient, troubleshooting consists in

ensuring proper patient positioning both patient, patient’s extremities and equipment near the patient

and cables. Troubleshooting can be faster and more efficient when there is a basic understanding of

the physiological complexity of the waveform and observance of the changes of wave-forms.

2.5 Analysis of the Wave-forms

Throughout the procedure signals are ran intermittently. The number of times the signals

are stored can vary by company, as well as per surgeon. Certain modalities are run continuously

throughout the procedure but stored during critical stages (manipulation of neural structures,

placement of hardware...). Other modalities are run about every 5-10min unless other sources of

electrical (60Hz Gaussian) noise is present and can saturate the amplifiers. These subsequent signals

are compared to the initial baseline waveform.

In obtaining baselines the technicians must ensure that the signals meet criteria to be
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considered present. Communication with the reading neurologist is crucial at this stage as the

reading neurologist can guarantee that the signal morphology is present and can be considered

reliable or if adjustment in parameters is needed to obtain a more robust signal.

The SSEP morphology is typically trigonometric in appearance. At first glance to those with

a mathematical background can state the morphology looks like sine or cosine waves. ACNS guide-

line 11B states that the SSEP is a monophasic rectangular pulse ranging 100-300(µs,microseconds).

Understanding waveform morphology will not only help in obtaining a robust and repeatable signal

but it can also ensure fast troubleshooting. Often times one can get a square wave recording and

this can be indicative of being in an improper channel—thus having a technical issue[12].

After baseline acquisition ACNS has what is known as alarm criteria. [4] From SSEPs the

waveform must retain its morphology. If there is a decrease in amplitude 50% or greater or a change

in latency that is 10% or greater, the technologist must inform the surgical team. At this point in

time the technologist will communicate with the surgeon to determine if there was any change to

neurological structures to help with troubleshooting the change in waveform morphology and get a

return that is like baseline or no longer within alarm criteria. If the waveform does not return the

technologist must continue to advise the surgical team and continue to troubleshoot throughout the

procedure. If a technologist ever encounters a signficant amount of interference, "excess noise" the

possibility of running more trials (averaging) exists. [4]

Figure 2.1: OR SSEP Acquisition, with troubleshooting example

7



CHAPTER III

SOMATOSENSORY EVOKED POTENTIALS

3.1 Somatosensory Evoked Potentials (SSEPs)

Median Nerve (MN) and Ulnar Nerve (UN) SSEPs are used to monitor and gauge the

peripheral and central nervous system during procedures in which the dorsal column are at risk.

They are mostly monitored during spinal procedures, carpal and cubital tunnel procedures. However,

UN monitoring also occurs if there is a concern in the positioning of the upper extremity that can

compromise the integrity of the brachial plexus or other concerns of a deficit to the upper extremity.

We will primarily be doing an evaluation on UN SSEPs. UN SSEPs are evaluated by

applying a stimulus to the upper extremities. The relayed stimulus passes through an amplifier and

a resulting signal that has a sine/cosine wave appearance. Prior to the procedure, the technologist

obtains a set of baseline wave-forms and continuously monitors this signal throughout the procedure.

If at any point during the procedure the signal hits alarm criteria or is lost, troubleshooting takes

place to ensure that the loss or change of waveform, decreased amplitude, and increased latency are

not due to technical issues.

3.1.1 Clinical Guidelines

Intraoperative monitoring technologist are required to pass a certification exam after com-

pleting a program and participating in data acquisition during procedures. Standards and protocols

are set by the American Clinical Neurophysiology Society known as the, ACNS [6]. ACNS has a

set of guidelines that anyone in the field of intraoperative monitoring must know and understand.

These guidelines help safeguard the patient while also setting a standard for data acquisition.

ACNS guidelines for SSEPs are both for clinical and intraoperative standards and are listed
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under an overall guideline for evoked potentials. SSEPs also have their own guidelines listed under

sections 9 and 11. These guidelines provide what is known as the obligate peaks. Obligate peaks

for upper extremity SSEPs are a peripheral point known as Erbs point (N9), cervical points (N13)

subcortical points (P14 and N18) and cortical point (N20). N and P is used to differentiate between

the peak (maxima) and trough (minima) of the waveform and are used to discern repeatability and

reliability of the waveform. ACNS guidelines also provide what is known as the montage, the

location sites of where the electrodes are placed and recording from. Stimulus parameters are also

provided as a range for the technologist to have a baseline to compare. Manipulation or deviating

from these parameters is done if needed after there is communication with the reading neurologist

and the surgeon in the event waveforms cannot be obtained. Stimulus parameters given range from

the intensity (voltage) of the stimulus, band-pass filter settings (Hz), duration of the stimulus (pulse

width/duration, µs) as well as the rate at which the stimulus is being delivered (rep rate/s) [7]

3.1.2 Data Acquisition

When arriving at the operating room the technologist typically has a preset template for the

type of procedure that is being done. For simplicity and for this paper we will only cover the section

for SSEPs.

The template setup is to have three to four channel settings for upper (UE) and lower

extremities. This section will begin with evaluating and discussing the template settings for the

UE, the ulnar nerve (UN). The channel settings are Erbs Point (EP) which has a typical montage of

EPi-EPc meaning the ipsilateral and contralateral point (left and right). Placement of this electrode

is at the level of the clavicle. ACNS gives the specific location for placement of each. For future

instances in this paper EP will be denoted as N9 and is present in our window with a peak at about

9ms. The next channel is the cervical point N13 (Cs) and has the montage Cs-Ep, Fpz is the location

of the electrode at the frontal cortex per EEG guidelines. The trough of this point is typically at

about 14ms and will be denoted P14. The subcortical potential is a subthalamic point which will

be denoted as N18, Cpz-Fpz. Finally, the channel most often observed, but also most affected by

anesthetics is our cortical point (Cp3 or Cp4), denoted as N20. These obligate peaks are what is
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monitored throughout the procedure. Included in the template is the preset settings for the lo and hi

cut filters, typically the lo filter is set to 30Hz and 250Hz is set for P14/N18 and N20 waveforms,

while 30-1500Hz is used for N9. Understanding and changing the passband filters is important as

they can affect the overall morphology and latency of the signals, not to mention their size which

per guidelines, range 20-500µV . [7]

Baseline acquisition consists of setting a stimulus intensity, typically per ACNS guidelines

30-40mA. The intensity will only be increased further if the waveforms are not presenting. The

rep rate for intraoperative settings is set between 2-8/s [7] and ensuring it is not a multiple of 60Hz

gaussian noise—the only time it is set higher, (up to 20/s) is if obtaining the waveform is needed in

a faster amount of time. On average a total of 100 – 200 trials are done. This can vary per company

protocol and guidelines up to 1000 trials can sometimes be run. The trials are run to allow for

averaging, presenting in a waveform that has less noise such as done in Algorithm 3, Ch 5. Pulse

duration is typically between 100-300µs, this is another value can vary per company guidelines—a

typical parameter is about 250µs.

Once all parameters are set, the stimulus is turned on and the signal is run continuously

throughout the procedure unless there is anything that can saturate the signal. This however, can

also vary and some studies have shown that it may be best to not run the signals continuously as to

prevent fatigue. It is of utmost importance that a baseline be taken and the signal be run prior to a

stage of change and immediately after a change in the operating site has occurred.

3.1.3 Ulnar Nerve

The ulnar nerve is typically used as the primary monitoring site when the surgical site is at

C8 or below or in the event that the brachial plexus being stretched out is at risk. For purposes of

this paper we will mainly be evaluating the ulnar nerve SSEP. The electrodes placed at the wrist

are typically surface electrodes, while the recording electrodes at the level of the clavicle (N9) and

head (N13, P14, N18 and N20) are subdermal electrodes, as listed with generator sites in table

3.1. [5] However, subdermal electrodes can also be used at the wrist, this is however dependent on

technologist and patient need.
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The ulnar nerve SSEP obligate peak latencies are often times determined by the length of

the extremity and temperature. The length of the ulnar nerve is important because it is what will

connect us to our area of concern, the UN and applying the passive cable equation. The UN runs

along the lateral aspect of the upper extremity passing the elbow (cubital area) up the arm through

the clavicle and branches off from the brachial plexus. The brachial plexus branches off from the

cervical roots and that subsequently continues through the brainstem, subthalamic and cortical level.

Figure 3.1: SSEP Pathway
[1]

Table 3.1: Somatosensory Evoked Potenitals and their generators

Somatosensory EPs

SSEPS Obligate Peak Generator (ms)

Erbs N9 Brachial Plexus
Cervical P14 Cervical gen
Cortical N20 Cortical gen
Cortical 2 P24 Cortcal 2 gen
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CHAPTER IV

ULNAR NERVE AND THE PASSIVE CABLE EQUATION

4.1 The Ulnar Nerve

Gabbiani and Cox [11] apply the passive cable equation to a neuronal model. A neuron

is the cell that constitutes our vast nervous system. The means by which our nervous system

communicates is still thoroughly being investigated. We know however, that a collection of neurons

is known as a neural network by which neurons communicate with each other. The anatomical

structure of a neuron is made up of separate parts which we will consider as compartments for

purposes of this paper, figure 4.1 all of which are taking the limit as the compartment size goes to 0.

Given that we are evaluating the nerve with a set of compartments, and there is a start and finish

to our SSEP we will consider the investigate via a discrete laplacian as Gabbiani and Cox, which

proves the existence of the passive cable equation. Overall, a neuron has a structure that is like that

of a cable and communicates via an electrical impulse. A nerve is an enclosed bundle of axons and

nerve fibers found in the peripheral nervous system (PNS) as denoted in the figure 4.2 below.

When looking at the anatomical structure of a nerve fiber we find that they too are cable-like.

The electrical impulse, known as an action potential is the means by which nerves communicate

and is known as cable theory [13] We will expand the theory of the cable equation to an entire

nerve and applying similarly Gabbiani and Cox who limit themselves to a cable that is uniform and

unbranched. [11]

The ulnar nerve is a peripheral nerve that branches off the brachial plexus containing both

motor and sensory outputs. For SSEPs we are mainly observing the sensory output of the ulnar
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Figure 4.1: Neuron anatomy
[2]

Figure 4.2: Cross sectional area of a Peripheral Nerve
[3]

nerve. We will consider the ulnar nerve as a cable of length l and having a radius r which we have

found using the ranges for cross sectional areas given by [9], which are between 5.9 - 6.7 mm. The

radius of the ulnar nerve was mathematically computed under the assumption that the ulnar nerve

primarily takes a cylindrical shape and cross-sectional area A given by

A = πr2 (4.1)
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As per Cartwright et. al, [9] the ulnar nerve is a circle mid-level of the humerus. Further, studies can

be done using the fact that the ulnar nerve takes an elliptical shape. For this paper, we will maintain

the assumption that the ulnar nerve is circular throughout.

4.2 The Ulnar Nerve and Ohm’s Law

As discussed in the SSEP chapter, a current is sent via an electrode to obtain a stimulus

response while a patient is under anesthesia throughout surgery. The electrical signal and change

of voltage can then be evaluated via Ohm’s law which studies the relationship between current I,

voltage V and resistance R. Ohm’s law is given by I = V
R Given that the voltage transcends the nerve

we can state there is a change of voltage that can be evaluated, ∆V . For SSEPs and passive cable

theory we know that there is a current being injected, that will be denoted as Istim giving a resulting

signal with an amplitude in microvolts µV . The potentials that move through the nerve are known

as, transmembrane potential Vm. Therefore,

Istim(x, t) =
∆Vm

R
(x, t) (4.2)

The voltage can be calculated at any point x along the ulnar nerve and is time dependent. The SSEP,

is a function of set points in space, x at time, t. By ACNS guidelines, there exist a set of obligate

peaks given at a set frequency, given by a rectangular pulse. The obligate peaks can be recorded at a

point in space, x when a current is injected Istim

4.3 Passive Cable Equation

Our passive cable equation is given by [11]

λ
2 ∂ 2Vm

∂x2 (x, t)− τm
∂Vm

∂ t
(x, t)−Vm(x, t) = 0 (4.3)

Vm(x, t) is the potential that travels through the UN after a delivered stimulus is provided
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across time, t. λ which is our space constant. The space constant, λ is given by

λ =

√
r

2Rigcl
(4.4)

Ri is the intracellular resistivity in Ωcm. gcl is the conductance. Gabbiani and Cox take Ri as

resistivity of the cytoplasm. For purposes of this paper we will assume Ri remains the same for a

nerve as though it were a neuron since we know membrane potentials vary in time, but not in space.

τm is the time constant given by

τm =CmRm (4.5)

Since we know that our potentials vary in time, we know τm can take varying forms depending

on the cell being observed. We also know that Cm is proportional to the surface area of the cell

being evaluated. Rm is the specific membrane resistance. Cm however will be set and assumed to

be 1µF/cm2 since the exact membrane capacitance for a dorsal horn has not yet been found. Per

Gabbiani and Cox, solutions to the passive cable equation, when dealing with sealed-ends is an

example of a Fourier Cosine Series. The eigenfunctions themselves are also cosine functions. [11].

Given that the solutions are cosine, and we assume our sensory pathway is a sealed-end we then

assume, that our model will also use a cosine function, as opposed to a sine function. We therefore,

use cos when creating the algorithm for our equation, and applied stimulus. We find our ulnar nerve

to be of a given length, ℓ and a radius, r. We assume the ulnar nerve to be divided into compartments,

N each of length dx = ℓ/N as done by [11]. Based on the morphology of a neuron each individual

component (axon, soma or dendrite) is considered a compartment within the neuron. A nerve is

composed of multiple neurons therefore we can extend the idea of compartmentalization to the UN.

Each point at which an evoked potential can be recorded will be considered a compartment. We

take the cross sectional area using Cartwrights findings on normal ulnar nerves [9] and assume the

cross sectional area to be given by the equation as discussed above. Gabbiani and Cox, give a model

of a simple cable that is compartmentalized. Below is a figure that was constructed by guidance of

said model. Each compartment has a capacitor, membrane capacitance, as well as a resistor, G in
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Figure 4.3: Simple Cable

figure 4.3 which is the conductance.

When comparing our simple cable above to our cable of interest, the ulnar nerve we can

compare how our SSEP is generated. Extending the idea of compartmentalization a little further,

the compartments like our levels, our obligate peaks are each points in space at which the signal is

being recorded during the procedure. The electrical potential that travels via an ulnar nerve can be

recorded when there’s an applied stimulus which provides our recorded SSEP.

For an SSEP to be an obtained we apply a stimulus at the level of the wrist, our first node To

obtain a signal Gabbiani and Cox take each collective compartment and derive the passive cable

equation. V is the electrical potential difference and I is the current in terms of conductance, I = gV

and our equation then takes the form [11]

Istim(t) = I1 + I2 ++I3N−3 (4.6)

Each compartment that we evaluate has a capacitor and resistor. As a stimulus, Istim enters

the compartment it travels through the compartment and our transmembrane potential takes the
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Figure 4.4: UN SSEP Obligate Peaks

form, V = θn−θ0−VCl , so our stimulus as it transcends compartment, and the ulnar nerve becomes

Istim(t) =
C(θ1 −θ0)+G((θ1 −VCl)−θ0)

′+(θ1 −θ2)

R
(4.7)

It has been found that spinal cord ventral horn capacitance is 2.4µF/cm2 [15] but neural capaci-

tance’s can range from 0.75 – 2.4 µF/cm2. Since we are evaluating the UN for an SSEP we will be

evaluating the UN using the derivation of the cable equation that Gabbiani and Cox use for current

injected into a compartment [11]. This then allows us to investigate the space step ∆x which allows

us to understand the means by which current is injected. Our equation will then take the following

form:

Istim(t) =
Cm(2πr∆x)

dv
dt (

∆x
2 , t)+gcl(2πr∆x)v(∆x

2 , t)− v(3
2∆x, t)− v(∆x

2 , t)
∆x

(4.8)

The injected current will be a constant current or voltage per SSEP guidelines at the level of the

wrist as compartment starting point. When the stimulus is turned on by the neurotechnologist we
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will assume the current is injected and the cable equation becomes

∆v

∆x
(0, t) =

Ri

πr2 Istim(t),0 < t (4.9)

The above equation will then be evaluated at the first node – level of the wrist in relation to the

SSEP. By the means of an action potential, as the neuron depolarizes or repolarizes the membrane

potential gets closer to 0 which is given by the equation above as dx approaches 0. As the length of

the nerve continues to become the nerve at the level of the cervical cord and transcends all the path

through the level of the cortex where the head electrode is located by the cable’s far end [11]

∆v

∆x
(ℓ, t) = 0,0 < t (4.10)

The obligate peaks are than recorded at different levels of the tract (i.e., cable) by comparison on a

cable it would be all interior points. The equation for all interior points of the cable (peripheral,

cervical and sub-cortical obligate peaks) thus each interior obligate peak is given by the equation

above then as ∆x approaches 0

τ
∆v

∆t
(x, t)+ v(x, t)−λ

2 ∆x

∆t
(x, t) = 0 ,0 < x < ℓ ,0 < t (4.11)

which is our passive cable equation. Lastly, once the injected current is turned off and the tract is at

rest then our SSEP would be displayed by

v(x,0) = 0 0 < x < ℓ (4.12)

Gabbiani and Cox then evaluate the steady state solution with the applied stimulus. They suppose a

constant current stimulus by guideline 11B [7] and as discussed in Ch.SSEPs, we know a constant

current stimulator is recommended by guideline 9B which defines an SSEP, shows us that the

pulse/stimulus delivered is done with a constant voltage or constant current stimulator. It is most
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beneficial to use a constant current stimulator as with SSEPs we’re dealing with an impedance that

is constantly changing. Gabianni and Cox construct the exact eigenvector expansion solution to

current being injected into the cable. Evaluation and analysis is done using the two dimensional

Laplacian matrix, denoted as a second difference matrix. The solution of the passive cable equation,

results in a series of eigen functions, the eigenvalues are then taken for the ulnar nerve of interest.

This shows that when considering a cable of length ł and calling on the function evecS(ell, n) where

‘ell’ is our cable length ℓ and N is our set number of compartments. The length of an upper extremity

is determined by Tyler Edmond et. al [10] the equation for the length of the arm and forearm are

given as the following:

ℓarm = 0.14(h)+0.28(A)+0.41(S) (4.13)

ℓ f orearm = 0.12(h)+0.01(w)+0.27(S) (4.14)

taking the sum of these two equations, we then use this as the length for our UN since the area used

to determine the length of the upper extremity is the area of which the UN transcends. If the sex is

male than 0, if not than sex input is 1. The h, is for height in cm, A is for the age in years, and w is

for the weight, in kg. However, it must be noted that this is specific for children. We will assume

for the instances of this paper the l, is 1. All other parameters remain the same. Eigenvectors of the

two dimensional laplacian under a set of neumann boundary conditions and the finite difference

method. Our solution and the equation we use for our algorithm is then:

Vm(x, t) =
∞

∑
n=0

qn(0)qx

2πrCm

∫ t

0
Istim(s)exp((t − s)ζn)ds (4.15)

where ζn is

ζn = (λ 2
θ −1)/τ (4.16)

where θ is a constant value which is equal too −n2π2

l determined by Gabbiani and Cox. The above

equation can be further evaluated at both a steady and dynamic response, Istim. The steady and

dynamic response will take on a constant stimulus at which is denoted, Io. The steady response
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will have Io = 1mA and the dynamic response will be evaluated at Io = 40mA per SSEP guidelines.

For steady.m the following parameters are defined: r, l, Io,Cm,Gℓ,R2. Both the steady and dynamic

response is taken by evaluating our stimulus response by the weighted product of our eigenvalues

and eigenvectors.
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CHAPTER V

MATHEMATICAL EVALUATION OF THE SSEP

As discussed in Ch.4 Gabbiani and Cox identify the resulting eigenvectors as cosine func-

tions for a passive cable equation. The exact solution is a Fourier Cosine Series when evaluating

a sealed-end condition. An SSEP is a signal evaluated along the UN, starting at the level of the

wrist and ending at the head (somatosensory cortex), as per Ch.3. We thus assume our UN is

cable-like, with an N9 obligate peak which begins at the wrist and ends at the brachial plexus, since

it is a sealed-end we can apply Fourier Cosine Series. So the sensory pathway is too a sealed-end,

beginning at the point of stimulation and ending at the somatosensory cortex, and can apply Fourier

Cosine Series.

The applied stimulus by ACNS guidelines is a monophasic-rectangular pulse, as discussed

in Ch.2 with a set of bounding parameters, known as Istim in our passive cable equation (4.20). A

neural response will sum together in space and time by summation of synaptic potentials [14]. By

adhering to the guidelines, sealed-end conditions of passive cable equation, properties of synaptic

potentials and EEG we then assume Istim to take on a Cosine function with a set pulse width, rep

rate and current. Using Matlab we create a function for Istim with these parameters and substitute the

function for Istim in our equation (4.20). The Istim function invokes rectpuls to reflect the type of

pulse our stimulus has, as well as pulstran(t,d,func) to apply all bounding parameters. Figure

5.1 demonstrates the rectangular pulse with a unit-height from 0 to 1 (on or off), Cosine function,

designated rep rate, evaluated along 40ms time window. This is then evaluated with the passive

cable equation, resulting in our original signal, figure 5.2.

The rectangular pulse generated a unit-height response with a set sample rate at random

between 2-5Hz, as well as a randomly generated rep rate at 1.77Hz from prior experiences in the OR

21



Figure 5.1: Istim

Figure 5.2: original passive cable equation evaluated with Istim and iFFT of noisy passive cable
equation

per a reading neurologist in attempt to troubleshoot a signal. In addition to a pulse width between

100-300 (µs), microseconds, per Ch.2. Figure 5.1 demonstrates the rectangular pulse applied, is

on for a set current and continues throughout the tract. As described in chapter 3, the electrodes

placed along the nerve V (x, t), produce a resulting potential at time t ms. This is observed for V (20),

V (5), and V (80) which were selected at random and using Istim function with a rep rate of 1.77.

The resulting waveform is then evaluated by running an fft to find which frequencies are present
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within the signal. The Discrete Fourier Transform by definition is:

y(t) =
∞

∑
n=−∞

Cn
eint
√

2π
, t ∈ [0,2π]

where,Cn =< y,
eint
√

2π
>

=
1√
2π

∫ 2π

0
y(t)e−int dt

≈ 1√
2π

N−1

∑
j=0

y j

N
e
−in j

N 2π

with a DFT array ( 1
N [y0,y2, ...,yN−1]) The FFT is an algorithm to calculate the DFT functions in

O(NlogN) steps. Our FFT shows peaks between 0 - 1000 Hz, as seen in the figure (5.3). FFT of the

original signal is taken to help in determination of the frequency domain. It takes our signals and

outputs all present frequencies to allow an easier comparison to our dirty signal udirtyhat.

Figure 5.3: FFT of original signal

By theorem: Let u(t) be the periodic, SSEP signal over the interval [0,T ] and η j(t) for

j = 1, . . . ,M be independent, random variable with mean 0 and variance σ2. Then if

ũ(t) :=
M

∑
k=1

u(t +(k−1)T )+ηk(t), for t ∈ [0,T ]
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then the Variation of the noisy, average signal is given by:

Variation(ũ) =
σ2

M
.

and Corollary: If the Signal-to-Noise ratio (SNR) of the noisy SSEP is defined as the ratio of signal

power to noise power:

SNR =
signal power
noise power

where

signal power := E(u2)m, and

noise power := E(η2) = σ
2

then the SNR of the average noisy SSEP signal ũ is given by

SNRavg =
M E(u2)

σ2 = M ·SNRsingle.

The original signal is repeated and periodic and it is then made dirty, ’noisy’ by adding noise

over a set of a ten, one hundred and one thousand signals independently to mimic OR conditions,

figures 5.4 to 5.6.

We assume Gaussian, independent and mean 0 noise. Thus if we take N snapshots corre-

sponding to a period or multiple of a period, and then take the averaged of the snapshots, then we

expect a denoised signal. The average of these signals is then taken to be used as our dirty signal.

Noise was added to the original signal at 25 %, 50 %, and 90 %, figures 5.7 to 5.8.

Averaging is 25 %, done to mimic the OR conditions but also to help with reducing the

amount of noise that is present within the signal. [12] Hassan and Anwar state the theory of signal

averaging as follows:

v(k) = vs(k)+ vnoise(k) (5.1)
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Figure 5.4: Noisy signal averaged 10 times

Figure 5.5: Noisy signal averaged 100 times

Where v(k), is the signal, originalhat or udirtyhat that will be evaluated and have the addition

of noise vnoise(k), as noted in the theorem and corollary above. The signal that we are evaluating is

on an assumed periodic signal that is repeating around an expected mean of 0 for noise, as noted by

Hassan and Anwar, signal averaging is then expressed [12]

y(k) =
∑

N
i=1 Zi(k)

N
(5.2)

The resulting signals were then evaluated with an FFT, figure 5.4. This was done to evaluate

our signal frequencies and determine if there was a consistent peak that continued to present within
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Figure 5.6: Noisy signal averaged 1000 times

Figure 5.7: Signal with 25 % noise

the range of 0-1000 Hz and if they are true peaks in our signal.

We then compared the original and dirty signals to find the true modes of the dirty signals,

this resulted with peaks at frequencies within the same frequencies of our original signal with a

slight change in amplitude and latency. figure 5.10 to 5.15.

Prior to running the inverse FFT we added a threshold to the signal to eliminate all frequen-

cies that were not prominent or potentially part of the true signal. Thresholding FFT of the noisy

signal is done to complete the denoising process. We set the modes with absolute value less than

5% of the maximum mode magnitude to be 0. BandPass Filtering was done to account for aliasing.
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Figure 5.8: Signal with 50 % noise

Figure 5.9: Signal with 90 % noise

We took the bandpass filter at symmetric points of the mode. All modes for frequencies greater than

1500 Hz were set to zero, figures 5.16 to 5.18.

The inverse FFT was taken of the dirty signal to go from frequency domain back to our time

domain aiming to recover our original signal. Taking the inverse iFFT of our noisy signal with just
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Figure 5.10: FFT of true noisy signal no threshold or averaging, 25% noise

Figure 5.11: FFT of true noisy signal no threshold or averaging, 50% noise

thresholding resulted as demonstrated in the figures above. While hen resulted taking the inverse

iFFT of our noisy signal with just averaging resulted as demonstrated in the figures 5.19 to 5.21.

It is noted that the signal was comparable to our original signal with the exception being

changes in latency (time) and amplitude, figure 5.22.
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Figure 5.12: FFT of true noisy signal no threshold or averaging, 90% noise

Figure 5.13: FFT with averaging, 25% noise

5.1 Change of passive cable equation Parameters

Along with evaluating along different points of (x, t), we later evaluated the parameters

used for our equation. The change in capacitance, rep rate and pulse width in particular changed the

resulting signals, while length did not drastically change the values. All values were assumed in

particular for capacitance, since as mentioned above there is not yet a set capacitance for the dorsal
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Figure 5.14: FFT with averaging, 50% noise

Figure 5.15: FFT with averaging, 90 % noise

horn, the ventral horn capacitance demonstrated the signal produced in figure 5.2.

The values evaluated were for U1(t) =V (xsite1, t) and U2(t) =V (xsite2, t), as noted in figure

5.22. This is a detail specifically noted by neurotechnicians, as is noted by the guidelines that any

shift in latency that is 10 % or greater and a reduction of amplitude 50 % or greater should be noted,

and the surgical team must be made aware of such changes.
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Figure 5.16: Thresholding and bandpass filter only, 25 % noise

Figure 5.17: Thresholding and bandpass filter only, 50 % noise

Signals were also evaluated and recovered to show the importance of averaging and thresh-

olding. It was found that when both are done our recovered signal matches our original signal in

comparison to not having them, this is noted in the figures 5.23 to 5.26.
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Figure 5.18: Thresholding and bandpass filter only, 90 % noise

Figure 5.19: Averaging only, 25 % noise
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Figure 5.20: Averaging only, 50 % noise

Figure 5.21: Averaging only, 90 % noise

33



Figure 5.22: Original Signal with sites denoted U1(t) =V (xsite1, t) and U2(t) =V (xsite2, t).
These sites we looked at were to compare and review the amplitude and latency, to show the
importance of how an intraoperative neuromonitor accesses their data.

Figure 5.23: Combining Averaging, Thresholding and bandpass filter, 25 % noise
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Figure 5.24: Combining Averaging, Thresholding and bandpass filter, 50 % noise

Figure 5.25: Combining Averaging, Thresholding and bandpass filter, 90 % noise

Figure 5.26: Combining Averaging at 1000, Thresholding and bandpass filter, 90 % noise
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CHAPTER VI

CONCLUSION

The aim of this paper was to find a means of mathematically modeling the SSEP wave forms.

Using the cable equation evaluated at it’s interior points for the obligate peaks, and the resulting

cosine waves due to the sealed end conditions of fourier and the exact eigenvalue solution. We coded

a program in Matlab that invokes rectpuls and pulstran that gives a resulting waveform. This

waveform was also manipulated to have a set thresholding and averaging to mimic OR conditions.

FFTs were ran on the clean signal, signal without added noise, or averaging. An FFT was also

done for the dirty signal. Where the dirty signal which contained the addition of noise, signal

averaging and thresholding. After making adjustments to the period which we evaluated, then were

we able to obtain FFTs with frequencies ranging from 0-1000 Hz, which is within the range of

the guidelines 3 - 3000 Hz. The cause of this could have been the use of an assumed capacitance,

resistivity and conductance that wasn’t specific to the dorsal horn. We did however, find that

the parameter used regardless of which point along x, U1(t) = V (xsite1, t), the most prominent

frequencies remained consistent throughout. It was however noted, that the changes could play a

potential role in determining the importance of having the correct capacitance and if the change

in capactiance could cause a change in our overall waveform amplitude and latency, which is of

concern for neurotechnicians. Can the change in capacitance, then show that there is damage to the

nerve?

The use of intraoperative monitoring continues to play a large role in the operating room to

help reduce the incidence of post operative deficits. While the technician does not interpret wave

forms, they are online with a reading neurologist and relay information to the surgeon. A technician

understanding the mathematical components of wave forms can ensure better acquisition of data in
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a timely manner and help with troubleshooting.

With finding the mathematical model to SSEPs we can later evaluate and test the algorithm

for different rep rates, add other variables that can affect an SSEP to help with faster troubleshooting.

Such as adding a temperature component to the passive cable equation or finding how to add an

anesthetic agent into the equation. Upon further understanding the full complexity and dynamic of

the sensory pathway, we hope that the algorithm can help in teaching technicians how to determine

the source of noise faster, or even helping the reading neurologist determine if the change that is

occurring is indicative of a true change. Is the change due to a change in membrane resistance

or capacitance after administration of anesthetics, changes in temperature, positional changes, or

changes due to manipulation of the pathway itself.
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APPENDIX A

CODEPOSTPROCESS.M

%Parameters required to run passive cable theory to find an algorithm to

%obtain SSEPs using FFTs and passive cable equation

clear; clc

%Parameters required for passive cable theory

I0 = 40; %amplitude of the stimulus, if stimulating

% an Ulnar nerve between 10-40mA

%Istim = @(t) I0 * ( cos(t)>0);

%Istim = @(t) I0*(t<20);

%Istim = @(t) I0*(t<1);

%Istim = @(t) I0 * (cos(t*2*pi*1.77)>0);

%Istim = @(t);

l = 1; % need to correct this to an actual value l

%n = 1000; %compartments in total

%k = 80; %specific comparments (subset)?

%r = sqrt(5.9/pi); %radius of the ulnar nerve.

% Need to check correct radius and make adjustments for the units.

% Assumption is we are using a const r

r = 1e-4;

R = 0.3; %intracellular membrane resistivity,
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% random value used need to input correct value

gcl = 1/15; % random value used need to input correct value

%C = 0.75;

C = 1;

%C = 2.4; % 1 microFarad (uF), switchced to 2.4

G = (2*pi*r)/(gcl); %need to double check

lambda = sqrt(r/(2*R*gcl)); %space constant

tau = C/G; % time constant

x = linspace(0,l);

%x = [0.05 0.2 0.8] * l;

%N = 100;

N = 600;

%N = 10;

%N = 1000;

%N = 3300;

%N = 6000;

%load data_all

load data1

load data2

load data3

%M = data1;%(t_iter);
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figure(2); clf %clean signal

plot (linspace(0,40,N), data1, ’k-’,’linewidth’,1.5)

hold on

xt = [9.41569 15.4925];

yt = [58.5096 42.2411];

plot(xt,yt,’.’, ’markersize’,14,...

’color’,’r’)

%plot((0:1/fs:40), data1)

hold on

%figure(21)

%plot (linspace(0,40,N), data2, ’r-’)

%hold on

%figure (22)

%plot (linspace(0,40,N), data3, ’b--’)

%hold on

xlabel(’Time (ms)’,’fontsize’,14)

ylabel(’Amplitude’,’fontsize’,14)

title(’Original Signal’)

T = 40;

dt = T/(N-1);

t = 0:dt:T;

%take this signal add the noise and get the average of this signal

%noiseY = 0.25 * max(data1);
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%noiseX = 0.25 * max(data2);

%noiseZ = 0.25 * max(data3);

noiseY = 0.50 * max(data1);

noiseX = 0.50 * max(data2);

noiseZ = 0.50 * max(data3);

%noiseY = 0.90 * max(data1);

%noiseX = 0.90 * max(data2);

%noiseZ = 0.90 * max(data3);

%noiseY = 10 * max(clean);

%noiseY = 0.10 * clean;

%noiseY = 0.60 * clean;

%noiseY = 1 * max(clean);

%noiseY = 0.05 * max(clean);

%noise = noiseY .* randn(size(data1)); %guassian

%noise1 = noiseX .* randn(size(data2));

%noise2 = noiseZ .* randn(size(data3));

%ekg = ekgnoise (1,N)

figure(31); %dirty signal no averaging

noise0 = noiseY .* randn(size(data1));

udirty0 = data1 + noise0;

plot(t, udirty0, ’k-’, ’linewidth’, 1.5)

hold on

axis tight

44



box off

xlabel( ’Time (ms)’,’fontsize’,14)

ylabel(’Amplitude (uV)’,’fontsize’,14)

title(’Noisy Signal’)

figure(3); clf %dirty signal, data1 averaged

%plot(t,data1,’k’);

for H = 1:100

noise = noiseY .* randn(size(data1)); %guassian

udirty(H,:) = data1 + noise; %make the noise different

end

udirty_avg = sum(udirty,1)/100;

%udirty = clean + noise + ekg....

%hold on

plot(t,udirty_avg,’k-’,’linewidth’,1.5)

hold on

axis tight

box off

xlabel(’Time (ms)’,’fontsize’,14)

ylabel(’Amplitude (uV)’,’fontsize’,14)

title(’Averaged Noisy Signal’)

%legend ({’V20’, ’V5’, ’V80’}, ’location’,’bestoutside’);

figure(3); clf %dirty signal, data2 averaged

%plot(t,data2,’k’);

for H = 1:100

noise = noiseX .* randn(size(data2)); %guassian
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udirty2(H,:) = data2 + noise;

end

udirty_avg2 = sum(udirty2,1)/100;

%udirty = clean + noise + ekg....

%hold on

plot(t,udirty_avg2,’r-’,’linewidth’,1.5)

hold on

axis tight

box off

xlabel(’Time (ms)’,’fontsize’,14)

ylabel(’Amplitude (uV)’,’fontsize’,14)

% figure(3) %dirty signal, data3

% plot(t,data3,’k’);

% for H = 1:100

% noise = noiseY .* randn(size(clean)); %guassian

% udirty3(H,:) = data3 + noise;

% end

% udirty_avg3 = sum(udirty3,1)/100;

% %udirty = clean + noise + ekg....

% %hold on

% plot(t,udirty_avg3,’r-’,’linewidth’,1.5)

% hold on

% axis tight

% box off

% xlabel(’Time (ms)’,’fontsize’,14)

% ylabel(’Amplitude (uV)’,’fontsize’,14)
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figure(40); clf %fft of dirty signal, data 1 unaveraged

f = (0:N/2)*25;

udirty0 = fft(udirty0)/N;

plot(f,abs(udirty0(1:1+N/2)),’k.’,’markersize’,14)

hold on

axis tight

box off

xlabel(’f (Hz)’,’fontsize’,14)

ylabel(’|Modes of an unaveraged signal|’,’fontsize’,8)

figure(4); clf %fft of dirty signal, data 1 averaged

f = (0:N/2)*25;

udirtyhat = fft(udirty_avg)/N;

plot(f,abs(udirtyhat(1:1+N/2)),’k.’,’markersize’,14)

hold on

axis tight

box off

xlabel(’f (Hz)’,’fontsize’,14)

ylabel(’|Modes of an Averaged Dirty Signal|’,’fontsize’,12)

%take fft of each data set that was added

figure(42); clf %fft of dirty signal averaged

f = (0:N/2)*25;

udirtyhat2 = fft(udirty_avg2)/N;
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plot(f,abs(udirtyhat2(1:1+N/2)),’r.’,’markersize’,20)

hold on

axis tight

box off

xlabel(’f (Hz)’,’fontsize’,14)

ylabel(’|u_{dirty}hat|’,’fontsize’,14)

% %take fft of each data set that was added

% figure(4) %fft of dirty signal

% f = (0:N/2)/(T*N);

% udirtyhat3 = fft(udirty_avg3)/N;

% plot(f,abs(udirtyhat3(1:1+N/2)),’bx-’, ’linewidth’, 1)

% hold on

% axis tight

% box off

% xlabel(’f (Hz)’,’fontsize’,14)

% ylabel(’|u_{dirty}hat|’,’fontsize’,14)

figure(5); clf %fft of clean signal, data1

f = (0:N/2)*25;

cleanhat = fft(data1)/N;

plot(f,abs(cleanhat(1:1+N/2)),’.’,’markersize’,20)

axis tight

box off

48



xlabel(’f (Hz)’,’fontsize’,14)

ylabel(’|Modes of Original Signal|’,’fontsize’,14)

% figure(15) %fft of clean signal, data1

%

% f = (0:N/2)*25;

% cleanhat = fft(data1)/N;

% plot(f,abs(cleanhat(1:1+N/2)),’g-’)

% axis tight

% box off

% hold on

% xlabel(’f (Hz)’,’fontsize’,14)

% ylabel(’|{clean}hat|’,’fontsize’,14)

figure(15); clf %fft of clean signal, data2

f = (0:N/2)*25;

cleanhat2 = fft(data2)/N;

plot(f,abs(cleanhat2(1:1+N/2)),’r.’,’markersize’,20)

axis tight

box off

hold on

xlabel(’f (Hz)’,’fontsize’,14)

ylabel(’|{clean}hat|’,’fontsize’,14)
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% figure(15) %fft of clean signal, data3

%

% f = (0:N/2)/(T*N);

% cleanhat3 = fft(data3)/N;

% plot(f,abs(cleanhat3(1:1+N/2)),’r-’)

% axis tight

% box off

% hold on

% xlabel(’f (Hz)’,’fontsize’,14)

% ylabel(’|{clean}hat|’,’fontsize’,14)

figure(19); clf %no averaging no thresholding

plot (linspace(0,40,N), data1, ’k’)

recoveredA = ifft(udirty0);

hold on

plot (t, N*recoveredA, ’r--’)

xlabel(’Time (ms)’,’fontsize’,12)

ylabel(’Amplitude (uV)’, ’fontsize’, 12)

title(’Original and Recovered’)

%legend (’data1’,’recovered’)

figure(20); clf %averaging no thresholding

plot (linspace(0,40,N), data1, ’k’)

recoveredA = ifft(udirtyhat);

hold on
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plot (t, N*recoveredA, ’r--’)

xlabel(’Time (ms)’,’fontsize’,12)

ylabel(’Amplitude (uV)’, ’fontsize’, 12)

title(’Original and Recovered’)

%legend (’data1’,’recovered’)

maxnode1 = max(abs(udirty0));

maxnode = max(abs(udirtyhat));

maxnode2 = max(abs(udirtyhat2));

udirty0(abs(udirty0) < 0.05 * maxnode1) = 0;

udirtyhat(abs(udirtyhat) < 0.05 * maxnode) = 0;

udirtyhat2(abs(udirtyhat2) < 0.05 * maxnode2) = 0;

ff = [f(1:end-1) fliplr(f(1:end-1))];

udirty0 = udirty0 .* (ff < 1500);

udirtyhat = udirtyhat .* (ff < 1500);

udirtyhat2 = udirtyhat2 .* (ff < 1500);

%udirtyhat3 (abs(udirtyhat3)<150) = 0;

%udirtyhat (abs(udirtyhat)<100) = 0;

figure(61); clf

plot(abs(udirty0),’bx-’)

figure(6); clf
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plot(abs(udirtyhat),’bx-’)

hold on

plot(abs(udirtyhat2),’g-’)

% hold on

% plot(abs(udirtyhat3),’o-’)

%figure(2); %clf

%recovered = ifft(udirtyhat);

%hold on

%plot (t,N*recovered, ’r--’)

figure(23); clf %thresholding, no avg

plot (linspace(0,40,N), data1, ’k’)

recovered0 = ifft(udirty0);

hold on

plot (t, N*recovered0, ’r--’)

xlabel(’Time (ms)’,’fontsize’,12)

ylabel(’Amplitude (uV)’, ’fontsize’, 12)

title(’Original and Recovered,Thresholding’)

%legend (’data1’,’recovered’)

figure(24); clf %avg, thresholded recovered signal

recovered = ifft(udirtyhat);

hold on

plot (t,N*recovered, ’k--’)

xlabel(’Time (ms)’,’fontsize’,12)

ylabel(’Amplitude (uV)’, ’fontsize’, 12)

52



title(’Original and Recovered,Thresholding’)

figure(24); clf %avg, thresholded recovered signal data2

recovered2 = ifft(udirtyhat2);

hold on

plot (t,N*recovered2, ’r--’)

% figure (24)

% recovered3 = ifft(udirtyhat3);

% hold on

% plot (t,N*recovered3, ’g--’)

figure(25); clf %clean, data1

plot (linspace(0,40,N), data1, ’k’)

recovered = ifft(udirtyhat);

hold on

plot (t,N*recovered, ’r--’)

xlabel(’Time (ms)’,’fontsize’,12)

ylabel(’Amplitude (uV)’, ’fontsize’, 12)

title(’Original and Recovered’)

%legend (’data1’,’recovered’)

figure(26); clf %data2

plot (linspace(0,40,N), data2, ’k’)

hold on

recovered2 = ifft(udirtyhat2);

plot (t,N*recovered2, ’b--’)
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xlabel(’Time (ms)’,’fontsize’,12)

ylabel(’Amplitude (uV)’, ’fontsize’, 12)

title(’Original and Recovered’)

%legend (’data2’,’recovered’)

% figure(27) %data3

% plot (linspace(0,40,N), data3, ’k’)

% recovered3 = ifft(udirtyhat3);

% hold on

% plot (t,N*recovered3, ’g--’)

% xlabel(’Clean and ifft, data3’,’fontsize’,14)
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APPENDIX B

PREPROCESSCODE.M

%Parameters required to run passive cable theory to find an algorithm to

%obtain SSEPs using FFTs and passive cable equation

clear all; clc

%Parameters required for passive cable theory

I0 = 40; %amplitude of the stimulus, if

% stimulating an Ulnar nerve between 10-40mA

%Istim = @(t) I0 * ( cos(t)>0);

%Istim = @(t) I0*(t<20);

%Istim = @(t) I0*(t<1);

%Istim = @(t) I0 * (cos(t*2*pi*1.77)>0);

%Istim = @(t);

l = 1; % need to correct this to an actual value l

%n = 1000; %compartments in total

%k = 80; %specific comparments (subset)?

%r = sqrt(5.9/pi); %radius of the ulnar nerve.

% Assumption is we are using a const r

r = 1e-4;

R = 0.3; %intracellular membrane resistivity,

gcl = 1/15; % random value used need to input correct value
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C = 1;

%C = 2.4; % 1 microFarad (uF), switched to 2.4

G = (2*pi*r)/(gcl); %need to double check

lambda = sqrt(r/(2*R*gcl)); %space constant

tau = C/G; % time constant

x = linspace(0,l);

N = 100;

%N = 600;

%N = 1000;

%N = 3300;

%N = 6000;

%for loop that takes the time iteration

% to evaluate the passive cable

%equation using the Istim Function with a rep rate at 1.77

%for t = 0:4

t_iter = 0;

for t = linspace(0,40,N)

%fs = 1.77;

%for t = 0:1/fs:40

t_iter = t_iter +1;

V = 0;

for n = 0:100
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%for n = 0:1000

theta = (-n^2*pi^2)/(l^2);

zeta = (lambda^2*theta-1)/tau;

if n == 0

q = 1/sqrt(l);

else

q = sqrt(2/l)*cos((n*pi*x)/l);

end

V = V + ((q*sqrt(2/l))/(C*2*pi*r)) * integral(@(s) ...

Istimfunc(s, 1.77).*exp((t-s)*zeta), 0,t);

%V = V + ((q*sqrt(2/l))/(C*2*pi*r)) * integral(@(s)

% Istimfunc(s).*exp((t-s)*zeta), 0,t);

sum(V)

end

% plot (x,V)

% title([’t=’ num2str(t)])

% ylim ([0 1e8])

% ylim ([0 2e7])

%ylim ([0 1e7])

%ylim ([0 1e5])

% pause(0.01)

%if(mod(t_iter, 10) ==0)

%figure(1);

%plot (x,V)

%title([’t=’ num2str(t)])

%ylim([-1e4 1e4])

58



%drawnow

% % pause (0.01)

%end

data1(t_iter) = V(20);

data2(t_iter) = V(5);

% data3(t_iter) = V(80);

end

M = data1;%(t_iter);

figure(2) %clean signal

plot (linspace(0,40,N), data1, ’k’)

%plot((0:1/fs:40), data1)

hold on

%figure(21)

plot (linspace(0,40,N), data2, ’k--’)

hold on

%figure (22)

% plot (linspace(0,40,N), data3, ’k--’)

% hold on

xlabel(’Time (ms)’,’fontsize’,14)

ylabel(’Amplitude’,’fontsize’,14)

%lgd = legend ({’V20’, ’V5’,’V80’},’location’, ’bestoutside’);

%lgd.FontSize = 8;
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if ( ~exist(’N’) )

disp(’N is the number of samples’);

disp(’ using N = 100 (default).’);

N = 100;

%N;

end

T = 40;

dt = T/(N-1);

t = 0:dt:T;

clean = M;

%take this signal add the noise and get the average of this signal

noiseY = 0.25 * max(clean);

%noiseX = 0.25 * max(data2);

%noiseZ = 0.25 * max(data3);

%noiseY = 10 * max(clean);

%noiseY = 0.10 * clean;

%noiseY = 0.60 * clean;

%noiseY = 1 * max(clean);

%noiseY = 0.05 * max(clean);

noise = noiseY .* randn(size(clean)); %guassian

%noise1 = noiseX .* randn(size(data2));

%noise2 = noiseZ .* randn(size(data3));

%ekg = ekgnoise (1,N)

figure(3); clf %dirty signal, data1
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plot(t,clean,’k’);

for H = 1:100

noise = noiseY .* randn(size(clean)); %guassian

udirty(H,:) = clean + noise; %make the noise different

end

udirty_avg = sum(udirty,1)/100;

%udirty = clean + noise + ekg....

%hold on

plot(t,udirty_avg,’r-’,’linewidth’,1.5)

hold on

axis tight

box off

xlabel(’Time (ms)’,’fontsize’,14)

ylabel(’Amplitude (uV)’,’fontsize’,14)

%legend ({’V20’, ’V5’, ’V80’}, ’location’,’bestoutside’);

figure(3); clf %dirty signal, data2

plot(t,data2,’k’);

for H = 1:100

noise = noiseY .* randn(size(data2)); %guassian

udirty2(H,:) = data2 + noise;

end

udirty_avg2 = sum(udirty2,1)/100;

%udirty = clean + noise + ekg....

%hold on
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plot(t,udirty_avg2,’r-’,’linewidth’,1.5)

hold on

axis tight

box off

xlabel(’Time (ms)’,’fontsize’,14)

ylabel(’Amplitude (uV)’,’fontsize’,14)

% figure(3); clf %dirty signal, data3

% plot(t,data3,’k’);

% for H = 1:100

% noise = noiseY .* randn(size(data3)); %guassian

% udirty3(H,:) = data3 + noise;

% end

% udirty_avg3 = sum(udirty3,1)/100;

%udirty = clean + noise + ekg....

%hold on

% plot(t,udirty_avg3,’r-’,’linewidth’,1.5)

% hold on

axis tight

box off

xlabel(’Time (ms)’,’fontsize’,14)

ylabel(’Amplitude (uV)’,’fontsize’,14)

figure(4) ;clf%fft of dirty signal, data 1

f = (0:N/2)*25;

%f = (0:N/2)/(T-N);
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udirtyhat = fft(udirty_avg)/N;

plot(f,abs(udirtyhat(1:1+N/2)),’kx-’)

hold on

axis tight

box off

xlabel(’f (Hz)’,’fontsize’,14)

ylabel(’|u_{dirty}hat|’,’fontsize’,14)

%take fft of each data set that was added

figure(4) ;clf %fft of dirty signal

%f = (0:N/2)/(T*N);

f = (0:N/2)*25;

udirtyhat2 = fft(udirty_avg2)/N;

plot(f,abs(udirtyhat2(1:1+N/2)),’k-’)

hold on

axis tight

box off

xlabel(’f (Hz)’,’fontsize’,14)

ylabel(’|u_{dirty}hat|’,’fontsize’,14)

% % %take fft of each data set that was added

% % figure(4) ;clf %fft of dirty signal

% % %f = (0:N/2)/(T*N);

% % f = (0:N/2)*25;

% % udirtyhat3 = fft(udirty_avg3)/N;

% % plot(f,abs(udirtyhat3(1:1+N/2)),’bx-’, ’linewidth’, 1)

% % hold on
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% % axis tight

% % box off

% % xlabel(’f (Hz)’,’fontsize’,14)

% % ylabel(’|u_{dirty}hat|’,’fontsize’,14)

figure(5) ; clf%fft of clean signal, data1

%f = (0:N/2)/(T*N);

f = (0:N/2)*25;

cleanhat = fft(clean)/N;

plot(f,abs(cleanhat(1:1+N/2)),’kx-’)

axis tight

box off

xlabel(’f (Hz)’,’fontsize’,14)

ylabel(’|{clean}hat|’,’fontsize’,14)

figure(15) ;clf%fft of clean signal, data1

%f = (0:N/2)/(T*N);

f = (0:N/2)*25;

cleanhat = fft(clean)/N;

plot(f,abs(cleanhat(1:1+N/2)),’g-’)

axis tight

box off

hold on

xlabel(’f (Hz)’,’fontsize’,14)

ylabel(’|{clean}hat|’,’fontsize’,14)
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%figure(15);clf %fft of clean signal, data2

%f = (0:N/2)/(T*N);

f = (0:N/2)*25;

cleanhat2 = fft(data2)/N;

plot(f,abs(cleanhat2(1:1+N/2)),’kx-’)

axis tight

box off

hold on

xlabel(’f (Hz)’,’fontsize’,14)

ylabel(’|{clean}hat|’,’fontsize’,14)

% figure(15) ;clf%fft of clean signal, data3

%

% %f = (0:N/2)/(T*N);

% f = (0:N/2)*25;

% cleanhat3 = fft(data3)/N;

% plot(f,abs(cleanhat3(1:1+N/2)),’r-’)

% axis tight

% box off

% hold on

% xlabel(’f (Hz)’,’fontsize’,14)

% ylabel(’|{clean}hat|’,’fontsize’,14)

udirtyhat (abs(udirtyhat)<150) = 0;
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udirtyhat2 (abs(udirtyhat2)<150) = 0;

% udirtyhat3 (abs(udirtyhat3)<150) = 0;

%udirtyhat (abs(udirtyhat)<100) = 0;

figure(6)

plot(abs(udirtyhat),’bx-’)

hold on

plot(abs(udirtyhat2),’g-’)

hold on

plot(abs(udirtyhat3),’o-’)

figure(2)

recovered = ifft(udirtyhat);

hold on

plot (t,N*recovered, ’r--’)

figure(24)

recovered = ifft(udirtyhat);

hold on

plot (t,N*recovered, ’k--’)

xlabel(’IFFTs’,’fontsize’,14)

figure (24)

recovered2 = ifft(udirtyhat2);
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hold on

plot (t,N*recovered2, ’b--’)

figure (24)

recovered3 = ifft(udirtyhat3);

hold on

plot (t,N*recovered3, ’g--’)

figure (25) %clean, data1

plot (linspace(0,40,N), data1, ’k’)

recovered = ifft(udirtyhat);

hold on

plot (t,N*recovered, ’r--’)

xlabel(’Clean and ifft, data1’,’fontsize’,14)

figure(26) %data2

plot (linspace(0,40,N), data2, ’k’)

hold on

recovered2 = ifft(udirtyhat2);

plot (t,N*recovered2, ’b--’)

xlabel(’Clean and ifft, data2’,’fontsize’,14)

% figure(27) %data3

% plot (linspace(0,40,N), data3, ’k’)

% recovered3 = ifft(udirtyhat3);

% hold on

% plot (t,N*recovered3, ’g--’)
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% xlabel(’Clean and ifft, data3’,’fontsize’,14)
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APPENDIX C
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APPENDIX C

ISTIMFUNC.M

function y1 = Istimfunc(t, reprate)

%function y1 = Istimfunc(t)

%d =[0:reprate:40;cos(2*pi*25*(0:reprate:40))]’;

d =[0:2:40;cos(2*pi*reprate*(0:2:40))]’;

%d =[0:250e-6:40;cos(2*pi*10*(0:250e-6:40))]’;

y1 = pulstran(t,d,@rectpuls);

%y1 = pulstran(t,@rectpuls);
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