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ABSTRACT

Benitez, Marcel E., An Automatic Solver for Optimal Control Problems. Master of Science (MS),

December, 2023, 82 pp., 18 figures, 7 references.

Optimal control theory is a study that is used to find a control for a dynamical system over

a period of time such that a objection function is optimized. In this study we will be looking at

optimal control problems for ordinary differential equations or ODEs and see that we can use an

automatic solver using the forward-backward sweep using Matlab to solve for them from an 1

dimension to bounded cases and to nth dimension cases.
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CHAPTER I

INTRODUCTION

Optimal control theory is a branch in mathematics that computes optimal ways to control

a dynamic system. It is used in science, engineering and operations research. An example of an

application is sending a rocket to the moon with minimal fuel consumption; An ordinary differential

equation describes the state of the scenario being optimized and is depended on a time-dependent

control parameter An example will be calculating the movement or flow of electricity or the motion

of an object subject to external and internal forces.

In this paper we will be looking at Optimal control in ordinary differential equations, and

using Matlab to create an automatic solver to solve for one-dimensional, and multi-dimensional

cases, we will also consider cases where the control is bounded. Using the forward-backward sweep

method from a textbook called Optimal Control Applied to Biological Models by Suzanne Lenhart

[6] as a reference, we will create automatic solvers using the symbolic toolbox of Matlab. We will

test our algorithm with examples from the textbook and see how well the solvers do. But before

we go over the forward-backward sweep method, let us go over the basic problem, its necessary

conditions, the Hamiltonian and a few theories about optimization.

1.1 Basic problem and necessary conditions

In an optimal control problem in ordinary differential equations, u(t) is the control and x(t)

is the state. In this case the state variable satisfies the differential equation that depends on the

control variable:

x′ = g(t,x(t,),u(t)). (1.1)
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Now as the control function changes, the solution to the differential equation will change as well.

We then can see the control-to-state relationship as a map as u(t) 7→ x = x(u), as well x is a function

to the independent variable t, but we write x(u) as a reminder that x depends on u. Now our basic

optimal control problem will be consisting on finding a piecwise continuous control u(t) and the

associated state variable x(t) in order to maximize the given objective function, to which it will be

the following:

max
u

∫ t f

t0
f (t,x(t),u(t))dt

which is subject to

x′(t) = g(t,x(t),u(t)) (1.2)

x(t0) = x0

By maximizing the control this is called an optimal control. Note that x(t f ) is free it means that

the value of x(t f ) is unrestricted. In this study f and g will always be continuously differentiable

functions in all three arguments. Hence the control(s) will always be piecewise continuous, and the

associated states will always be piecewise differentiable as noted by Suzanne Lenhart.[6]

In this study we found that a principle technique for such an optimal control problem is to

solve a set of "necessary conditions" that the optimal control and the corresponding state need to

satisfy. We must clarify that it important to understand the logical difference of necessary conditions

and sufficient conditions of solution sets.

Necessary Conditions: If u∗(t), x∗(t) are optimal, then the following conditions... hold

Sufficient Conditions: if u∗(t), x∗(t) satisfy the following conditions..., then u∗(t),x∗(t) are

optimal. In the terms of our control

J(u) =
∫ t f

t0
f (t,x(t),u(t))dt

2



1.2 The Hamiltonian

Now lets say a piecewise continuous optimal control exists, and is given by u∗ with x∗ the

corresponding state solution. In particular J(u)≤ J(u∗)< ∞ for all controls u∗. Letting h(t) be a

continuous variation and ε ∈ R. Then

uε(t) = u∗(t)+ εh(t)

is another piecewiese continuous control.

Then let xε be the state corresponding to control uε , namely x∗ satisfies the following

equation
d
dx

xε(t) = g(t,xε(t),uε(t)) (1.3)

for when u∗ is continuous; And all trajectories will start in the same position, so take xε(t0) = x0.

It can easily be seen that uε(t)→ u∗(t) for all t as ε → 0. For all t

∂uε(t)
∂ε

|ε=0 = h(t).

This is also similar to xε . and based on the assumptions on g we get the following

xε(t)→ x∗(t)

for each fixed t. Furthermore its derivative

∂

∂x
xε(t)|ε=0,

for each t, exists; In this case we will only need to know that it exists not the actual value of quantity.

So the objective function at uε will be

J(uε) =
∫ t f

t0
f (t,xε(t),uε(t))dt.
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Let us now begin to see the adjoint function or variable λ . If we let λ (t) be a piecewise differentiable

function on [t0, t f ] be determined. Then by the Fundamental Theorem of Calculus gives the

following ∫ t f

t0

d
dt
[λ (t)xε(t)]dt = λ (t1)xε(t1)−λ (t0)xε(t0),

implying ∫ t f

t0

d
dt
[λ (t)xε(t)]dt +λ (t0)x0 −λ (t1)xε(t1) = 0.

Then adding 0 to the expression to out J(uε) gives

J(uε) =
∫ t f

t0
[ f (t,xε(t),uε(t))+

d
dt
(λ (t)xε(t)]dt

+λ (t0)x0 −λ (t1)xε(t1)

=
∫ t f

t0
[ f (t,xε(t),uε(t))+λ

′(t)xε(t)+λ (t)g(t,xε(t),uε(t))]dt

+λ (t0)x0 −λ (t1)xε(t1),

then after use of the product rule and knowing that g(t,xε ,uε) = d
dt xε for all but finitely many points.

The maximum of J1 with respect to the control u1 occurs at u∗ then the derivative of J(uε)1 with

respect to ε , in the direction of h, is zero. i.e

0 =
d

dε
J(uε)|ε=0 = lim

ε→∞

J(uε)− J(u∗)
ε

.

Which gives the limit of an integral expression. With another version of the Lebesgue Dominated

Convergence Theorem Given by Halsey Royden [4],this will be discussed in the appendix. This

theorem will let us move the limit and its derivative inside the integral. This is because of the

compact interval of integration and the piecewise differentiable of the intergrand. Thus we have the

following

4



0 =
d

dε
J(uε)|ε=0

=
∫ t f

t0

∂

∂ε
[ f (t,xε(t),uε(t))+λ

′(t)xε(t)+λ (t)g(t,xε(t),uε(t)dt]|ε=0

− ∂

∂ε
λ (t1)xε(t1)|ε=0.

Then after applying the chain rule to f and g , we then get

0 =
∫ t f

t0
[ fx

∂xε

∂ε
+ fu

∂uε

∂ε
+λ

′(t)
∂xε

∂ε
+λ (t)(gx

∂xε

∂ε
+gu

∂uε

∂ε
)]|ε=0 dt (1.4)

−λ (t1)
∂xε

∂ε
(t1)|ε=0

where the argument of the fx, fu, gx and gu terms are dependent on t,x∗(t),u∗(t). Then rearranging

terms in 1.4, we have the following

0 =
∫ t f

t0
[( fx +λ (t)gx +λ

′(t))
∂xε

∂ε
(t)|ε=0 +( fu +λ (t)gu)h(t)] dt (1.5)

−λ (t1)
∂xε

∂ε
(t1)|ε=0

By choosing the adjoint function to simplify 1.5. The coefficients of

∂xε

∂ε
(t)|ε=0

will then cancel out, followed by choosing the adjoint function λ (t). We then obtain the adjoint

equation

λ
′(t) =−[ fx(t,x∗(t),u∗(t))+λ (t)gx(t,x∗(t),u∗(t))]

and the boundary condition (or transversality condition)

λ (t1) = 0.

5



Now 1.5 reduces to

0 =
∫ t f

t0
( fu(t,x∗(t),u∗(t))+λ (t)gu(t,x∗(t),u∗(t))) h(t) dt.

And since this holds for any piecewise continuous variation function h(t), then it holds for

h(t) = fu(t,x∗(t),u∗(t))+λ (t)gu(t,x∗(t),u∗(t)).

But for this case

0 =
∫ t f

t0
( fu(t,x∗(t),u∗(t))+λ (t)gu(t,x∗(t),u∗(t)))2 dt

it implies the optimality condition

fu(t,x∗(t),u∗(t))+λ (t)gu(t,x∗(t),u∗(t)) = 0 for all t0 ≤ t ≤ t f .

With all these equations they form a set of necessary conditions that a optimal control and

state must satisfy; But in application, it is not necessary to rederive the above equations in this way

for a certain problem. In fact, all these conditions from the Hamiltonian H which is defined as

follows

H(t,x,u,λ ) = f (t,x,u)+λg(t,x,u)

With this we are then maximizing H with respect to u at u∗; And all the above conditions can be

written as terms for the Hamiltonian:

∂H
∂u

= 0 at ⇒ fu +λgu = 0 (Optimality condition),

λ
′ = −∂H

∂x
⇒ λ

′ =−( fx +λgx) (Adjoint equation),

λ (t1) = 0 (Transversality condition).
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Now we obtained the dynamics of the state equation as it :

x′ = g(t,x,u) =
∂H
∂λ

, x(t0) = x0

1.3 Optimization

In optimal control theory, the most important result would be the the Principle of Optimality.

This theory shows how the optimal control problem over sub-interval time notations of its original

time span relates to the optimal control in full time. The following theory is the Principle of

Optimality;

Let u∗ be an optimal control, and let x∗ be the resulting state, for the following problem

maxu J(u) = max
u

∫ t f

t0
f (t,x(t),u(t))dt

subject to x′(t) = g(t,x(t),u(t)), x(t0) = x0. (1.6)

Let t̂ be a fixed point in time such that t0 < t̂ < t f .Then functions û∗ = u∗|[t̂,t f ], and x̂∗ = x∗|[t̂,t f ] will

then form an optimal pair for the restricted problem

maxu Ĵ(u) = max
u

∫ t f

t̂
f (t,x(t),u(t))dt

subject to x′(t) = g(t,x(t),u(t)), x(t̂) = x∗(t). (1.7)

Lastly if u∗ is a unique optimal control for 1.6, then û∗ is the unique optimal control for 1.7. The

following is the proof of the theorem.

This is done by contradiction. Now suppose, the contrary, that û∗ is not optimal, meaning

there exists a control û1 on the interval [t0, t f ] such that Ĵ(û1) > Ĵ(û∗). Which constructs a new
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control u1 on the interval [t0, t f ] as the following

u1(t) =


u∗ for t0 ≤ t ≤ t̂

û1 for t̂ < t < t f .

Now if we let x1 be the state associated with control u1. Notice that u1 and U∗ both agree on [t0, t̂],

meaning that both x1 and x∗ will also agree there. Thus

J(u1)− J(u∗) = (
∫ t̂

t0
f (t,x1,u1)dt + Ĵ(û1))− (

∫ t̂

t0
f (t,x∗,u∗)dt + Ĵ(û∗))

= Ĵ(û1)− Ĵ(û∗)

> 0.

Notice that this contradicts out initial u∗ that was optimal for 1.6. Thus no control û1 exists, and û∗

is optimal for 1.7

1.4 Payoff Terms

Most of the time, in addition to maximizing (or minimizing) terms over the time interval,

We would like to maximize a function value at one particular point of time, most important, at the

end of the time interval. For example lets say you want to minimize the tumor cells at a final time in

a cancer model, or the number of infected individuals at a final time in an epidemic model. These

conditions must be altered appropriately. Let us consider the following set-up

maxu [φ(x(t f ))+
∫ t f

t0
f (t,x(t),u(t))dt]

subject to x′(t) = g(t,x(t),u(t)), x(t0) = x0,

where φ(x(t f )) is the goal with respect to the final position or population level, x(t f ). The function

φ(x(t f )) is called the payoff term. This can also be referred as the salvage term. Considering the
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resulting change on the derivation of the necessary conditions. The function then becomes

J(u) =
∫ t f

t0
f (t,x(t),u(t))dt +φ(x(t f )).

In the calculation of

0 = lim
ε→0

J(uε)− J(u∗)
ε

the changes only occur in the conditions of the final time

0 =
∫ t f

t0
[( fx +λgx +λ

′)
dxε

dε
|ε=0 +( fu +λgu) h ] dt (1.8)

−(λ (t f )−φ
′(x(t f )))

∂xε

∂ε
(t f ) |ε=0.

So, choosing an adjoint variable λ to satisfy the previous adjoint equation we get the following

λ
′(t) =− fx(t,x∗,u∗)−λ (t)gx(t,x∗,u∗),

λ (t f ) = φ(x∗(t f )),

then 1.9 is reduces to

0 =
∫ t f

t0
( fu +λgu) h dt,

and its optimally condition is

fu(t,x∗,u∗)+λgu(t,x∗,u∗) = 0

follows as before. the only change in it’s necessary conditions is the transversality condition, as it

follows

λ (t f ) = φ
′(x∗(t f )).
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CHAPTER II

FORWARD-BACKWARD SWEEP METHOD: ONE DIMENSION

2.1 Forward-Backward Sweep

We first consider the following optimal control problem

max
u

∫ t f

t0
f (t,x(t),u(t) dt + φ(x(t f ))

subject to x′(t) = g(t,x(t),u(t)), x(t0) = x0.

In order to solve such problems numerically, We must devise an algorithm that can generate a

approximation to a optimal piecewise continuous control u∗. First break a time interval [t0, t f ],

where t0 is the initial point and t f is the end point, into equally spaced specific points of interest as

such t0 = b1,b2, · · · ,bN ,bN+1 = t f ; And the approximation vector will be −→u = (u1,u2, · · · ,uN+1),

where ui ≈ u(bi).

As we discussed previously, any solution to the above optimal control problem, it must

satisfy

x′(t) = g(t,x(t),u(t)), x(t0) = x0,

λ
′(t) =−∂H

∂x
=−( fx(t,x,u)+λ (t)gx(t,x,u)), λ (t f ) = ∇φ(x(t f )),

0 =
∂H
∂u

= fu(t,x,u)+λ (t)gu(t,x,u) at u∗.

The third equation, which is the optimality condition, can be manipulated in order to find a

representation of u∗ in terms of t,x,and,λ . If these terms are then substituted back into the ODEs

for x,λ , then the two equations form its two-point boundary value problem.
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We would then like to take certain characteristics of the optimality system; but first we

are given a initial condition for state x and a final time condition for the adjoint λ . Second we

take a function g of t,x,and,u only. Now values of λ are not needed to solve the differential

equation for x using a standard ODE solver, in this case we will be using the Rung-Kutta. This

method is known as the Forward-Backward Sweep method, this method is also very intuitive. We

will be giving a rough outline of the algorithm below, according to Suzanne Lenhart[6]. With

−→x = (x1, · · · ,xN+1)and
−→
λ = (λ1, · · · ,λN+1) being the vector approximations for the state and

adjoint, here are the steps.

Step 1: Make an initial guess −→u over the interval.

Step 2: Using the initial condition x(t0) = x0 and the values for −→u , solve −→x forward in time according

to its differential equation in the optimality system.

Step 3: Using the transversality condition λN+1 = λ (t f ) = 0 and the values for −→u and −→x , solve λ

backward in time according to its differential equation in the optimality system.

Step 4: Update −→u by entering the new −→x and
−→
λ values into the characterization of the optimal

control.

Step 5: Check convergence. If values of the variables in this iteration and the last iteration are

negligibly close, output the current values as solutions, If values are not close, return to step

2.

There are a few notes form the algorithm that we must note. First for the initial guess,

−→u ≡ 0, it is almost always sufficient; But in certain problems, where the division by u occurs for

example a different initial guess must be used. And occasionally, the initial guess may require

adjusting if the algorithm has problems converging. Which it is often in step 4 that it is necessary

to use a convex combination between the previous control values and values given by the current

characterization. This most often speeds the convergence. In so doing, this is done with the provided

code from Suzanne Lenhart [6] and as well by the code that we have structured. As you will see in

11



step 2 and step 3, that any standard ODE solver can be used, but as we mentioned earlier we will

be looking and the Rung-Kutta 4 ODE solver. Especially when a given a step size h and an ODE

x′(t) = f (t,x(t)), and the approximation x(t +h) given x(t) we receive the following

x(t +h)≈ x(t)+
h
6
(k1 +2k2 +2k3 + k4)

where

k1 = f (t, x(t) )

k2 = f (t +
h
2
, x(t)+

h
2

k1)

k3 = f (t +
h
2
, x(t)+

h
2

k2)

k4 = f (t +h, x(t)+h k3).

There are also different types of convergence tests for step 5. But most often it is sufficient

to require ||u−uold||= ∑
N+1
i=1 |ui − uoldi| to be small, seeing that −→u is a vector of estimated values

of the control while in the current iteration, and −−→uold is the vector of estimated values of the previous

iteration. In this case , || · || is referred to the ℓ1 norm vector, which the sum of absolute value of its

terms. Both of these vectors are length of N +1 and have N time steps. The following equation is

used in a slightly stricter convergence test, because we require the relative error to be negligibly

small,

||−→u −−−→uold||
||u||

≤ δ ,

where δ is the accepted tolerance. Though we have the equation, a small adjustment was made;

There must allow for zero controls, so we multiply both sides by ||−→u || in order to remove from its
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denominator. Thus our requirement is

δ ||−→u ||− ||−→u −−−→uold|| ≥ 0,

δ

N+1

∑
i=1

|ui|−
N+1

∑
i=1

|ui −uoldi| ≥ 0.

This is a requirement of all variables, not for just the control, In the following examples we have set

N = 1000 and δ = 0.001

2.2 One Dimensional Maximum Optimal Control Problem

In this section we will be going over an 1 dimensional optimal control problem; And using

Matlab on how it is used to solve it automatically. We will see two versions one from the text book

and then introduce on what we have found. The following example is from the textbook by Suzanne

Lenhart [6]. Let

max
u

∫ 1

0
Ax(t)−b(t)2 dt

subject to x′(t) =−1
2

x(t)2 + Cu(t), x(0) = x0 >−2,

A ≥ 0, B > 0.

In this example we require that B > 0 so so that is a maximization problem. Now we must develop

the optimality system before we get to the code. First note the Hamiltonian is

H = Ax−Bu2 − 1
2

λx2 +Cλu,

after using optimality condition that we discussed in chapter I,

0 =
∂H
∂u

=−2Bu+Cλ ⇒ u∗ =
Cλ

2B
,
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we then now calculate the adjoint equations, and receive the following

x′(t) = −1
2

x2 +Cu,x(0) = x0

λ
′(t) = −A+ xλ ,λ (1) = 0.

With these two differential functions and the representation of u∗, we will be able to generate

the numerical code. We will first see what the textbook has shown us, and then what we have found.

2.2.1 Book version

The following code is given from the text book Optimal control Applied to Biological Models

by Suzanne Lenhart [6], note that the values A,B,C,x0 where set to A = 1,B = 1,C = 4,x0 = 1.

for k = 0, · · · do

Solve the State Equation

x′(t) = g(t,x,uk) for t ∈ [t0, t f ]

x(t0) = x0

Solve the Transversality Condition

λ ′(t) =−∂H
∂x (t,λ ,x,uk)

λ (t f ) = ∇φ(x(t f ))

Solve for u

solve ∂H
∂u (t,u,x,λ ) = 0 for u∗

uk+1 =
1
2uk +

1
2u∗

if Convergence critera is satisfied then

u = uk+1

end if

end for
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The first line gives a variable y as an output and taking in variables A,B,C,x0, other than

x0, A,B,C are set to be vectors, with inputs as we discussed above. The while loop begin with test

being −1 and it will keep running till test is non-negative and then it is convergence and the loop

will end. Since we need a variable time vector, we set t to be a vector that equally space nodes is

N +1 nodes that is between 0 and 1, t = linespace(0,1,N +1) and with that we set it to h to be

equal to be the spacing between, h = 1/N; We then set u to be our initial guess so as an array of

zeros of N +1 steps, u = zeros(1,N +1), as for our x and λ will not be guesses because they will

later on be replaced with the forward seep and the backward sweep process so we set them to be an

array of zeros of N +1 steps, λ = zeros(1,N +1) and x = zeros(1,N +1), but with the initial value

of x equal to x0, so x(1) = x0.

Within the while loop we set the previous values of the vectors −→u , −→x ,
−→
λ of their previous

values, we have them labeled as −−→uold,
−→xold,

−−→
λold , uold = u, xold = x, λold = λ . With the storing the

current values as the previous.

we can now use the Runge-Kutta method to solve −→x forward in time; Which begins in the

first for loop. It first calculates the value k1, which is the RHS (right hand-side) of the differential

equation, k1 =−0.5∗ x(t)2 +C ∗u(i) , then it calculates k2 with x being replaced with x+ h
2k1, we

also replaced the time variable t with t +h/2, but there is no dependence on t in the differential

equation, but u is a function of t. So when it comes to calculating k2 and k3 we replace ui with

ui+h/2. This is also not assigned by our vector. In this case they found an interpolating polynomial

of u; we have them labeled as k2 =−0.5∗ (x(i)+h2∗ k1)2 +C ∗0.5∗ (u(i)+u(i+1)),

k3 =−0.5∗ (x(i)+h2∗ k2)2 +C ∗0.5∗ (u(i)+u(i+1)). As for k4 we would need a full time step

so call ui+1, we have it as k4 =−0.5∗ (x(i)+h∗ k3)2 +C ∗u(i+1). Note that to find x1, we need

x2 and so on and so forth from x1 · · ·xN , But we need xN to find xN+1, hence the for loop only runs

N times. The following is how it is labeled as,

for i = 1:N

k1 = -0.5*x(i)^2 + C*u(i);

k2 = -0.5*(x(i) + h2*k1)^2 + C*0.5*(u(i) + u(i+1));
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k3 = -0.5*(x(i) + h2*k2)^2 + C*0.5*(u(i) + u(i+1));

k4 = -0.5*(x(i) + h*k3)^2 + C*u(i+1);

x(i+1) = x(i) + (h/6)*(k1 + 2*k2 + 2*k3 + k4);

end

With the second for loop, it uses the Runge-Kutta method as well to solve λ but this time

backwards. It is almost similar to the forward sweep, but we introduce a new index where i counts

to N, and j counts backwards from N +1 to 2, so we have it labeled as i = 1 : N, j = N +2− i. Just

like forward sweep we calculate k1, which comes from the differential equation, but since we are

moving backwards it needs a increment of − 1
N times. And for k2 and k3 we go a half step so we

replaced λ j with λ j − h
2k1 and λ j − h

2k2 and k4 is similar to the forward Runge-Kutta to solve for

−→x , where we need a full step. The following is how the backward code is labeled

for i = 1:N

j = N + 2 - i;

k1 = -A + lambda(j)*x(j);

k2 = -A + (lambda(j) - h2*k1)*0.5*(x(j)+x(j-1));

k3 = -A + (lambda(j) - h2*k2)*0.5*(x(j)+x(j-1));

k4 = -A + (lambda(j) - h*k3)*x(j-1);

lambda(j-1) = lambda(j) - ...

(h/6)*(k1 + 2*k2 + 2*k3 + k4);

end

Remember that each λi is used to find the previous, i.e λ2 is used to find λ1. Hence we count to 2.

The representation of −→u is now using the new values for
−→
λ , But this is not stored as the

control, more as a temporary vector
−→
u1, we have this set up as u1 =C ∗ lambda/(2∗B). Now the

control −→u is the set of the last iteration of −→u , which is −−→uold and its new representation. This is

known as our convex combination as discussed from earlier. Then it follows to see if the variables

converge and labeled as temp1,temp2 and temp3; In which temp1 is for −→u , temp2 is for −→x , and
−→
λ .
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Then they all are multiplied by δ = 0.001. Then recall we need all three variables to be non-negative

values so we have test be reassigned to be the minimum of these three values. Therefore if all

three variables are non-negative then the while loop ends and convergence has been achieved, but if

convergence has not been achieved then it runs the while till convergence occurs. To which it is

labeled as the following,

u1 = C*lambda/(2*B);

u = 0.5*(u1 + oldu);

temp1 = delta*sum(abs(u)) - sum(abs(oldu - u));

temp2 = delta*sum(abs(x)) - sum(abs(oldx - x));

temp3 = delta*sum(abs(lambda)) - ...

sum(abs(oldlambda - lambda));

test = min(temp1, min(temp2, temp3));

Finally all values are then stored in the output matrix y

y(1,:) = t;

y(2,:) = x;

y(3,:) = lambda;

y(4,:) = u;

2.2.2 What We Have Constructed

We will now go over what we have constructed. Using the same problem and using the

same values as A = 1,B = 1,C = 4,x0 = 1. We first plug in our optimal control problem in this case

our F and G function; Our F function is labeled as max F = Ax(t)−b(t)2 dt

, and our G function is labeled as G = x′(t) =−1
2 x(t)2 + Cu(t). Our optimal control problem is

the maximum of the integral of 0 to 1. So t0 is 0 and our t f is 1. We will also be needing a maxiter of

40, so it we have a max number of iteration that is passes through our while loop. Finally a number

of time steps call it Nt . And since we have vectors x and u based of t, then we have a symbolic
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vector t,x,u. This function will take in our functions F and G and its variables and compute it. The

following is the psudocode,

for k = 0, · · · do

Solve the State Equation

x′(t) = g(t,x,uk) for t ∈ [t0, t f ]

x(t0) = x0

Solve the Transversality Condition

λ ′(t) =−∂H
∂x (t,λ ,x,uk)

λ (t f ) = ∇φ(x(t f ))

Solve for u

solve ∂H
∂u (t,u,x,λ ) = 0 for u∗

uk+1 =
1
2uk +

1
2u∗

if Convergence critera is satisfied then

u = uk+1

end if

end for
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Just like the book we need vector time, but numerically since our t is symbolic for the time

being. let call it tn and it is for the number of space nodes from t0 to t f with the number of time

steps N to which is set to Nt. and since we have a maxiter, we must have a starting iter called iter

and it is set to 0. Agian since we have a symbolic t,x,u we will name our variables u0,xn and our

u0 will be our initial guess and must be an array of zeros, and as well our xn. but similar to the

book our xn will have the initial guess of x0. Since we also need a
−→
λ vector, but a numerical λ

vector since later on we will be using a symbolic λ we shall call it λ0. We then have the following

labeling,

test = - 1

\delta = .001

N = Nt;

tn = linspace(t0,tf,N+1);

iter = 0;

u0 = zeros(1,N+1);

xn = zeros(1,N+1);

xn(1) = x0;

lambda0 = zeros(1,N+1);

Now before we go into our while loop, we must have make our functions anonymous

and set our G to @(t,x,u), and our F function to @(t,x,u, lambda) since they will both form our

Hamiltonian, that we discussed in chapter I. When then have a symbolic t,x,u and λ to help form

our Hamiltonian H, we then turn it into a anonymous function of t,x,u,λ , as the

Ganon = matlabFunction(G);

Ganon2 = @(t,x,u) Ganon(u,x);

Fanon= matlabFunction(F);

Fanon2 = @(t,x,u,lambda) Fanon(lambda,x);

syms t x u
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syms lambda

H = F + lambda.*G;

Hanon = matlabFunction(H);

Hanon2 = @(t,x,u,lambda) Hanon(lambda,u,x).

We then take the partial derivative of H with respect to x to find our λ ′ and our x′ is our derivative

of H with respect to λ , and finally to solve our u, we find the partial derivative of H with respect to

u and set it equal to 0. Once we have our x,u and λ we then set them as anonymous functions. With

Hx set to t,x,u, our Hλ set to t,x,u,λ and our Hu set to @(lambda) since we will be using it to find

the values in our backward sweep in the while loop. thus,

Hl = diff(Hanon2,x);

Hu = diff(Hanon2,u);

Hlanon = matlabFunction(Hl);

Hlanon2 = @(t,x,u,lambda) Hlanon(x,lambda);

usol = solve( Hu == 0 ,u);

uanon = matlabFunction(usol);

uanon2 = @(lambda) uanon(lambda).

oldu = u0;

oldx = xn;

oldlambda = lambda0;

Now that we have our anonymous functions, we can now go into the while loop; But lets

set an
−−→
oldu,

−−→
oldx,

−−−−−−−→
oldlambda and have it equal to u0,xn,λ0.This is because we must start with the

while loop with a numerical value not a symbolic value.Note unlike the textbook where oldu,oldx

and oldlambda is x,u,λ , our algorithm has x,u,λ as symbolic. The following is the while loop of

the code,

while (test < 0 && iter < maxiter )

iter = iter +1;
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x = RKXU(Ganon2,x0,t0,tf,N,oldu);

lambda = transversecond(Hlanon2,x,oldu,tf,N);

u1 = uanon2(lambda);

u = 0.5*(u1 + oldu);

temp1 = delta * sum(abs(u))-sum(abs(oldu-u));

temp2 = delta * sum(abs(x))-sum(abs(oldx-x));

temp3 = delta * sum(abs(lambda))- ...

sum(abs(oldlambda-lambda));

test = min(temp1,min(temp2,temp3)) ;

oldu = u;

oldx = x;

oldlambda = lambda;

end

Notice that the while loop is much shorter than the textbook version. That is due to the compartmen-

talization of the Runge-Kutta method. Both the forward sweep and the backward sweep have com-

partmentalized, as x=RKXU(Ganon2,x0, t0, t f ,N,oldu), and lambda= transversecond(Hlanon2,x,oldu, t f ,N).

Our forward sweep is our x and our backward sweep is our λ . This is our pesudo code for the

forward sweep function,

for k = 1, . . . ,Nt do

k1 = g(t,xk,uk)

k2 = g(t + h
2 ,xk +

h
2k1,

uk+uk+1
2 )

k3 = g(t + h
2 ,xk +

h
2k2,

uk+uk+1
2 )

k4 = g(t +h,xk +hk3,uk+1)

xk+1 = xk +
h
6(k1 +2k2 +2k3 + k4)

end for
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The matlab code can be found in appendix A1.4.1 With inputs of our function f , our initial

value x0, our t0 and t f , number of time step N, and initial guess u. We first input our h as our spacing

between t0 and t f equally by divided by N, then set out h2 as our half of h. We then take an array

of zeros of length x0 and N +1 with the first column being the initial value of x0. The for loop is

our Runge-Kutta , where it runs N times, our ti is our t +h∗ i or t function. our k1 is our function

f while taking the values of the ith column of our x and u, to which it feeds to our k2, to which

takes a half step where (ti +h2) is our variable for the time step and our u is now u(:, i)+(:, i+1)
2 . It is

similar as we did for k2 for k3 but it takes the value of k2 as input. Then k4 takes the value of k3 and

solves it but with a full step similar to k1. Finally it sums all of the column vectors of xi and the sum

k1,k2,k3,k4 multiply by h
6 and finds out i+1 column vector and gives our output x.

The final value of x then goes to backward sweep that uses the Runge-Kutta to solve for λ

backwards in time. The matlabcode can be found in the appendix 1.4.2

Almost similar to the forward sweep, it takes inputs of partial derivative function of H with

respect to x or Hx, our values from x that we have found, our u, which is our initial guess,the final

time value of t f , and our number of steps N. We also have in our code our initial time value as

t0 = 0 and our y is an array of zeros of size x with the initial column being equal to zero since we are

dealing with 1 dimensional problems, later on we will explain the nth dimensional problems. Our f

is our function with inputs @(t, lambda,x,u) of function Hx(t f − t,x,u, lambda), to which x and u

are then flipped since we are going backwards and will start form the negatives and going upwards

in values. Then it is plug in in our for loop, which like our forward sweep, uses our f function with

inputs of tk which is our time stepping of t0 +h∗ k from k = 1 : N and since we flipped our x and

u it means we start with negative values. With k1 being a full step, k2 and k3 being half steps and

k4 being another full step with increments of 1
N . After computing y it is then flip and plugged into

lambda, to which is then used for the last half of the while loop.

The following is the 2nd half of the while loop,

u1 = uanon2(lambda);
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u = 0.5*(u1 + oldu);

temp1 = delta * sum(abs(u))-sum(abs(oldu-u));

temp2 = delta * sum(abs(x))-sum(abs(oldx-x));

temp3 = delta * sum(abs(lambda))- ...

sum(abs(oldlambda-lambda));

test = min(temp1,min(temp2,temp3)) ;

oldu = u;

oldx = x;

oldlambda = lambda;

end

As well similar we would need a representation of −→u with values of
−→
λ , we will called u1 as a

temporary vector. Then the last set of u is convex combination of the previous representation

(uold) and the new representation. Then it checks for convergence with test = −1 for a non-

negative number; And with temp1 being for u, temp2 being for x and temp3 being for λ . If

convergence occurs then the while loop end, but if it hasn’t occur, then x,u,λ will then be plugged

into xold,uold,λold and the loop will begin again till convergence has achieved.

2.3 Bounded Case Optimal Control Problem

For many realistic problems they require bounded controls, before we get into the example,

let us go over the necessary conditions.
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2.3.1 Necessary Conditions

I order to solve bounded cases, we must develop alternate necessary conditions. So lets

consider the following problem

max
u

∫ t f

t0
f (t, x(t), u(t)) dt +φ(x(t f ))

subject to x′(t) = g(t, x(t), u(t)) x(t0) = x0

a ≤ u(t)≤ b,

where a and b are real fixed constants and a < b. we let J(u) be the value of the objective function

at control u, where x = x(u) is the state equation so we have the following

J(u) =
∫ t f

t0
f (t, x(t), u(t)) dt +φ(x(t f )).

We then let u∗, x∗ be a fixed optimal pair. and let h(t) be a piecewise continuous function where

exists a positive constant ε0 such that for all ε ∈ (0,ε0], uε(t) = u∗(t)+εh(t) is admissible, such as

a ≤ uε(t)≤ b for all t.

Due to bounds on the controls, its derivative of the objective function nay not be zero, and since

u∗ may be at the bounds (end points of the range) at some points in time; we may only know the

sign of the ε parameter. Let xε(t) be the corresponding state variable for each ε ∈ (0,ε0] as it was

done in I. First introducing a piecewise differentiable adjoint variable λ (t) and then applying the

Fundamental Theorem of Calculus with J(uε), we get the following

J(uε) =
∫ t f

t0
[ f (t, xε , uε) +λ (t) g(t,xε ,uε)+ xε

λ
′(t)] dt (2.1)

−λ (t0)x0 +λ (t1)xε(t1) +φ(x(t1)).
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The maximum of J(u) with respect to u occurs at u∗,

0 ≥ d
dε

J(uε) |ε=0 lim
ε⇒0+

J(uε)− J(u∗)
ε

. (2.2)

We must note that the constant ε was chosen to be positive, so that the limit can only be taken from

one side. The numerator will be non-postive clearly, as u∗ is the maximal. This gives the inequality

shown, instead of equality as in I; As before we choose the adjoint carable such that

λ
′(t) =−[ fx(t,x∗,u∗)+λ (t)gx(t,x∗,u∗)], λ (t1) = φ

′(x∗(t1)).

Now 2.1 and 2.2 is reduced to

0 ≥
∫ t f

t0
( fu +λgu) h dt, (2.3)

which this inequality holds true for all h as described above.

Let s be a point of continuity of u∗ with a ≤ u∗(s) < b. Now suppose fu +λgu > 0 at s.

As u∗ is continuous at s, so is fu +λgu. Thus there is a small interval I, containing s, on which

fu +λgu is strictly positive and u∗ < b. Now let

M = max{u∗(t) : t ∈ I}< b.

Define a particular h by

h(t) =


b−M if t ∈ I,

0 if t /∈ I

Note that h > 0 in I. It can also be seen that a ≤ u∗+ εh ≤ b for all ε ∈ [0,1]. But

∫ t f

t0
( fu +λgu) h dt =

∫
I
( fu +λgu) h dt > 0

by choice of I and H. This will contradict 2.3 and it implies fu +λgu ≤ 0 at s. Similarly, let s

be a point of continuity of u∗ with a < u∗(s) ≤ b. Now suppose fu +λgu < 0 at s. As before,
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there is a small interval I, containing s, on which fu +λgu is strictly negative and u∗ > a. Let

m = min{u∗(t) : t ∈ I }, and define a variation function by h = a−m on I and 0 off I. Then,

a ≤ u∗+ εh ≤ b for all ε ∈ [0, 1]. But,

∫ t f

t0
( fu +λgu) h dt =

∫
I
( fu +λgu) h dt > 0

which again contradicts 2.3. So, fu +λgu ≥ 0 at s, This holds for all points of continuity of s. so in

summary

u∗(t) = a implies fu +gu ≤ 0 at t, (2.4)

a < u∗(t) < b implies fu +gu = 0 at t,

u∗(t) = b implies fu +gu ≥ 0 at t.

These conditions of 2.4 are the same as

fu +gu < 0 at t implies u∗(t) = a (2.5)

fu +gu = 0 at t implies a ≤ u∗(t) ≤ b

fu +gu > 0 at t implies u∗(t) = b.

This hold true for all points of continuity t of u∗. As they are irrelevant to the objection function

and the state equation. Neglecting the remaining points, the new necessary conditions can then be

complied as before forming the following Hamiltonian

H(t,x,u,λ ) = f (t,x,u) + λ (t) g(t,x,u),
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the necessary conditions for x∗ and λ remain unchange, namely for

x′(t) = ∂H
∂λ

, x(t0) = x0,

λ
′(t) = −∂H

∂x , λ (t1) = φ
′(x(t1)).

It then follows from the derivation as
u∗ = a if ∂H

∂u < 0

a ≤ u∗ ≤ b if ∂H
∂u = 0

u∗ = b if ∂H
∂u > 0.

(2.6)

The following problem that we have will be using is given in the book. The following problem that

has been made is the weight parameter of B has been removed and only two weight parameter are

being used, both A and C will be used in the following problem.

max
u

∫ 1

0
Ax(t)−u(t)2 dt

subject to x′(t) =−1
2

x(t)2 +Cu(t) x(0) = x0 >−2

M1 ≤ u(t)≤ M2,A > 0.

With the following weight parameters being equal to A = x0 = 1, and C = 4. the bounded parameters

with M1 = 0 and M2 = 2

2.3.2 What We Have Constructed

We will now go over what we have constructed. Using A = 1,C = 4,x0 = 1. We plug in our

optimal control problem; Our F function is max F = Ax(t)−u(t)2 dt

, and our G function is G = x′(t) = −1
2 x(t)2 + Cu(t). Our optimal control problem is the

maximum of the integral of 0 to 1. So t0 is 0 and our t f is 1. As previous we will also be needing a

maxiter and number pf iterations, to which it will remain the same as the previous cases i.e maxiter
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is 40 and Nt is 1000. Finally the bounded parameters as M1 = 0 and M2 = 2.

A = 1;

C = 4;

x0 =1;

M1 = 0;

M2 = 2;

syms t x u

F = A*x - u.^2;

G = -(1/2)*x.^2 + C*u;

Nt = 1000;

t0 = 0;

tf = 1;

maxiter = 40;

Then we plug in our function

[x,lambda,u] = OptControl8(F,G,x0,t0,tf,maxiter,Nt,M1,M2);

The following is the pseudo-code we have constructed

for k = 0, · · · do

Solve the State Equation

x′(t) = g(t,x,uk) for t ∈ [t0, t f ]

x(t0) = x0

Solve the Transversality Condition

λ ′(t) =−∂H
∂x (t,λ ,x,uk)

λ (t f ) = ∇φ(x(t f ))

Solve for u

solve ∂H
∂u (t,u,x,λ ) = 0 for u∗ between M1, and M2

uk+1 =
1
2uk +

1
2u∗
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if Convergence critera is satisfied then

u = uk+1

end if

end for

Similar as the previous cases we would need a representation of −→u with values of
−→
λ , we

will called u1 as a temporary vector. in line 35 before the last set of u is made, we must need the

minimum of the highest bound and the maximum of the lowest bound with the function uanon2 with

the result of λ given from the transverse condition. Thus the processes is repeated till convergence

has achieved.
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CHAPTER III

FORWARD-BACKWARD SWEEP METHOD: MULTI DIMENSIONAL

Before we head into Multi-dimensional optimal control theory let us review Optimal control

with several variables.

3.1 Optimal Control with several variables

This method is developed for one control and state and can be easily extended to multiple

state and control variables. so consider the a problem that has n state variables, m control variables

and a payoff function φ , we have the following equation

maxu1,··· ,um

∫ t f

t0
f (t,x1(t), · · · ,xn(t),u1(t), · · · ,um(t))dt +φ(x1(t f ), · · · ,xn(t f ))

subject to x′i(t) = gi(t,x1(t), · · · ,xn(t),u1(t), · · · ,um(t)),

xi(t0) = xi0 for i = 1,2, · · · ,n,

where functions f ,gi are continuously differentiable in all variables. There are no requirements

on m,n. Note that, m < n, m = n, m > n are acceptable. Using vector notation to change the

problem to be more a familiar form. We let x⃗(t) = [x1(t), · · · ,xn(t)], u⃗(t) =]u1(t), · · · ,um(t)]),

x⃗0 = [x10, · · · ,xn0], and g⃗(t, x⃗, u⃗) = [g1(t, x⃗, u⃗), · · · ,gn(t, x⃗, u⃗)]. We then can write it as the following

max⃗u

∫ t f

t0
f (t, x⃗(t), u⃗(t))dt +φ (⃗x(t f ))

subject to x⃗′(t) = g⃗(t, x⃗(t), u⃗(t)), x⃗(t0) = x⃗0.
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3.2 Multi-Dimensional Theory

Multi-Dimensional theory is a concept that has existed in mathematics. Suggesting that there

exits a dimension beyond three dimensions. To understand about multi-dimension theory, we must

have a strong knowledge of linear algebra and vector spaces. In a tradition representation on the

three-dimension space is usually (x, y, z) and the vectors are usually expressed using components

in their coordinate system; But in multi-dimensional theory the number of coordinate points is

increased and vectors also increases and becomes more numerous. So if there were to be a multi-

dimension defined as n-dimension vector space, where n is the number of dimensions, then there

would be n coordinates.

Multi-Dimensional theory allows us to explore more into complex systems that cannot

be described in three dimensions. Applications can be found in quantum mechanics and string

theory. Another tool that is used in multi-dimensional theory is linear transformation. A linear

transformation is taking vector spaces from place to another, and by doing this it maps out points

and objects in different dimensions. Which is a major role in multi-dimensional theory.

3.3 Multi-dimensional optimal control problem one

The following problem that we will using is the Epidemic Model. Optimal control is used

in this to find a vaccination schedule for an epidemic disease. Lets say that a micro-parasitic

infectious disease is considered. Now suppose that a permanent immunity to the disease can be

achieved through natural recovery or immunization; But we know that during birth immunity is not

achieved hence everyone is born susceptible, thus our goal is to minimize the number of a infectious

population and the overall cost of the vaccine during a fixed time period.

To model this, we used a standard SEIRN model. so we let S(t), I(t), and R(t) represent

the number of susceptible,infectious, and recovered or immune representatives over a time t. This

model allows for an incubation period for the disease inside its host,where an infected person latent

for some time before becoming infectious,which then creates an exposed class. So we let E(t) be

the number of exposed or latent individuals over a time t.
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As for N(t), it is the number of people in the population, so that N(t) = S(t)+E(t)+ I(t)+R(t).

So let (t) be the control as the percentage of susceptible individuals being vaccinated over

a period of time. As the vaccination of the entire susceptible population is impossible, we would

bound the control with 0 ≤ u(t)≤ 0.9. As well let b be the natural birth rate of the population and d

be the natural death rate. The incidence of the disease can be described by the term of cS(t)I(t). the

parameter e is the rate of exposed individuals that become infectious, and g is the rate of infectious

individual recovered. Therefore 1
e is the mean latent period, and 1

g is the mean infectious period

before recovery, if recovery occurs. The parameter a is the death rate due to the disease in the

infections individuals. We then have the following problem,

min
u

∫ T

0
AI(t)+u(t)2dt ⇐⇒ max

∫ T

0
−AI(t)−u(t)2dt

subject to

S′(t) = bN(t)−dS(t)− cS(t)−u(t)S(t), S(0) = S0 ≥ 0,

E ′(t) = cS(t)I(t)− (e+d)E(t), E(0) = E0 ≥ 0,

I′(t) = eE(t)− (g+a+d)I(t), I(0) = I0 ≥ 0,

R′(t) = gI(t)−dR(t)+u(t)S(t), R(0) = R0 ≥ 0,

N′(t) = (b−d)N(t)−aI(t), N(0) = N0,

0 ≤ u(t)≤ 0.9

Note that when solving for R it only appears in the R′ differential equation so we can ignore

R Since it does not depend on any other variable

3.4 Multi-dimensional optimal control problem two

The next problem we used is a HIV treatment model. Optimal control is used to find an

optimal strategy in the treatment for human immunodeficiency virus or HIV. This time is is based

off the immune system of the person.
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We consider the treatment of reverse transcription inhibitors, for example AZT, which effects "

infectivity" of the life cycle of HIV of the host cell.

This treament is assumed to act to reduce the infectivity of the virus for a finite time t until

the resistance occurs. SO this is measured bas on the increase of the CD4+T cell count. So we

let T (t) and Ti(t) be the concentration of unifected and infected CD4+T cells. We let V (t) be the

concentration of free virus particles, which is refered to the the population count per volume. So we

have
s

1+V (t)

be the source term of the rate of generation of new CD4+T cells. Let r be the growth rate of T

cells per day. Tmax is the maximum level of T cells, which implys that T (t) growth is logistic. Let

m1,m2,m3 is the natural death of uninfected cells (T ), infected cells (Ti) and free virus particles

(V ). N is the average number of virus particles produced before the host cell dies. u(t) is the control

or it describes the strength of the chemotherapy, where u(t) = 0 is the maximum and u(t) = 1 is no

therapy. We then have the following problem,

max
u

∫ t f inal

0
AT (t)− (1−u(t))2dt

subject to

T ′(t) =
s

1+V (t)
−m1T (t)+ rT (t)

[
1− T (t)+Ti(t)

Tmax

]
−u(t)kV (t)T (t),

T ′
i (t) = u(t)kV (t)T (t)−m2Ti(t),

V ′(t) = Nm2Ti(t)−m3V (t),

T (0) = T0 > 0, Ti(0) = Ti0 > 0, V (0) =V0 > 0,0 ≤ u(t)≤ 1.
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CHAPTER IV

MULTI DIMENSIONAL SWEEP

4.1 Multi Dimensional

As explain in the previous chapter we will be using the SERIN model as our example, the

following pseudo code is our multi-optimal control Matlab Code that we have constructed

for k = 0, · · · do

Solve the State Equation

x′(t) = g(t,x,uk) for t ∈ [t0, t f ]

x(t0) = x0

Solve the Transversality Condition

λ ′(t) =−∂H
∂x (t,λ ,x,uk)

λ (t f ) = ∇φ(x(t f ))

Solve for u
∂H
∂u (t,u,x,λ ) = 0 for u∗

uk+1 =
1
2uk +

1
2u∗

if Convergence critera is satisfied then

u = uk+1

end if

end for
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We will now go over what we have constructed. Using the SEIRN values as A = 0.1,b =

0.525,c = 0.0001,d = 0.5,e = 0.5,g = 0.1,a = 0.2,T = 20.Our bounded parameters are M1 = 0

and M2 = 0.9. For our initial values of our SEIRN model will be S0 = 1000,E0 = 100, I0 =

50,R0 = 15,N0 = S0 + E0 + I0 + R0; and since we need an x0 of the size of 1 by n matrix

transpose with the last entry being N0 we have it set as x0 = [1000;100;50;N0] , we must need a

identity matrix the length of x0. We then plug in our optimal control problem in F and G function;

Our F function is labeled as max F = A ∗ (I(:,3)′ ∗ x)+ u.2; dt, and our G function is labeled

as G = [b ∗ (I(:,4)′ ∗ x)− d ∗ (I(:,1)′ ∗ x)− c ∗ (I(:,1)′ ∗ x) ∗ (I(:,3)′ ∗ x)− u ∗ (I(:,1)′ ∗ x); c ∗ (I(:

,1)′∗x)∗(I(:,3)′∗x)−(e+d)∗(I(:,2)′∗x); e∗(I(:,2)′∗x)−(g+a+d)∗(I(:,3)′∗x); (b−d)∗(I(:

,4)′ ∗ x)−a∗ (I(:,3)′ ∗ x)];. Our optimal control problem is the maximum of the integral of 0 to T .

So t0 is 0 and our t f is T . We will also be needing a maxiter of 1 due to the fact it will run a bit

longer than our other cases, so it we have a max number of iteration that is passes through our while

loop. Finally a number of time steps call it Nt. And since we have vectors x and u based of t, then

we have a symbolic vector t,u and a symbolic matrix the size of x0. we then have the following

labeling

b = 0.525;

d = 0.5;

c = 0.0001;

e = 0.5;

g = 0.1;

a = 0.2;

M1 = 0;

M2 = 0.9;

T = 20;

A = 0.1;

S0 = 1000;

E0 = 100;
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I0 = 50;

R0 = 15;

N0 = S0+E0+I0+R0;

x0 = [1000;

100;

50;

N0];

I = eye(length(x0));

syms t u

syms x [size(x0)] matrix

F = A*(I(:,3)’*x) + u.^2;

phi = 0;

G =

[b*(I(:,4)’*x) - d*(I(:,1)’*x) - c*(I(:,1)’*x)*(I(:,3)’*x) - u*(I(:,1)’*x);

c*(I(:,1)’*x)*(I(:,3)’*x) - (e+d)*(I(:,2)’*x);

e*(I(:,2)’*x) - (g+a+d)*(I(:,3)’*x);

(b-d)*(I(:,4)’*x) - a*(I(:,3)’*x)];

t0 = 0;

tf =T;

maxiter = 1;

Nt =100;

Then we plug in our function

[x, lambda, u] = multiOptControl(F,G,x0,t0,tf,maxiter,Nt,phi,M1,M2)

Remember like the previous cases numerically since our t is symbolic for the time being. let call it

tn and it is for the number of space nodes from t0 to t f with the number of time steps Nt +1. and

since we have a maxiter, we must have a starting iter called iter and it is set to 0. Again since we
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have a symbolic t,u vector and our symbolic x is a symbolic matrix the size of x0 as well our λ is a

symbolic matrix the size of x we will name our variables u0 and our u0 will be our initial guess and

must be an array of zeros, and as well our xn. but similar to the book our xn will have the initial

guess of x0 in a for loop of 1 to the length of x0 since it has to go in every entry and replace every

beginning entry with x0. Since we also need a
−→
λ vector, but a numerical λ vector called λ0. We

then have the following labeling,

test = -1;

delta = 0.001;

tn = linspace(t0,tf,Nt+1);

iter = 0;

u0 = zeros(1,Nt+1);

xn = zeros(length(x0),Nt+1);

for i = 1:length(x0)

xn(i) = x0(i);

end

lambda0 = zeros(length(x0),Nt+1);

syms t u

syms x [size(x0)] matrix

syms lambda [size(x)] matrix

Now that we have our G we must make symbolic matrix to a array of symbolic scalar

variables we call it Gmatrix, We then make into a matlabFunction called Gmf, then with Gmf and

u,x we put them into another function that we have created called geval, in which we will explain

later on in the chapter as well as the other subcodes that we have constructed for this, it also set

to @(u,x) in Ganon followed by Ganon2 being a function of Ganon of u,x at t,x,u. The same

procedure follows as well for F.

Now given if φ is zero or a non-zero it will then follow an if loop. If φ = 0 then Lfxanon

will then be 0, else if non-zero then it will make phi into a matlabFunction and set it @(x) to which
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it will then differentiate the function with respect to x and make it into a another matlabFunction.

Then it follows as Lfxanon2 as a function of Lfxanon of x @(x).

We then make the Hamiltonian by the sum of F and the product of λ transpose and G.

Gmatrix = symmatrix2sym(G);

Gmf = matlabFunction(Gmatrix);

Ganon = @(u,x) geval(Gmf,u,x);

Ganon2 = @(t,x,u) Ganon(u,x);

Fmatrix = symmatrix2sym(F);

Fanon= matlabFunction(Fmatrix);

Fanon2 = @(t,x,u) Fanon(u,x);

if phi == 0

Lfxanon = 0;

elseif phi ~= 0

Lfanon = matlabFunction(phi);

Lfanon2 = @(x) Lfanon(x);

Lfx = diff(Lfanon2,x);

Lfxanon = matlabFunction(Lfx);

Lfxanon2 = @(x) Lfxanon(x);

end

H = F + lambda.’*G;

Once the Hamiltonian is made, we then take the gradient with respect to the following; For

Hx we take the gradient of H with respect to λ , for Hl we take the gradient of H with respect to x,

and finally Hu is the gradient of H with respect to u, then they all become a symbolic matrix to a

array of symbolic scalar variables. Hx is then a matlabFunction of Hxmatrix called Hxanon and

then converted to a function at (t,x,u) called Hxanon2. For Hl it is then inputted into a evaluation

function that we have constructed called leval with inputs Hlmatrix and the length of x0, this is to
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find the indices of both x and λ , whose outputs are labeled as xi and li, followed by being inputted

into another function that is a "wrapper" namely to coverts the cell array into their own separate

cells and its inputs are Hlmatrix,λ ,u,x, xi, and li. which becomes a function at t,x,u, lambda into a

variable Hlanon. As for Hu it is then solved for u when Humatrix is equal to zero and then enters

the same process as it did for Hlmatrix by being evaluated and then being inputted into a "wrapper."

Followed by oldu = u0, oldx = xn, and oldlambda = lambda0.

Hl = gradient(H,x);

Hlmatrix = symmatrix2sym(Hl);

[xi, li] = leval(Hlmatrix,length(x0));

Hlanon = @(t,x,u,lambda) lwrap(Hlmatrix,lambda,u,x,xi,li);

Hu = gradient(H,u);

Humatrix = symmatrix2sym(Hu);

usol = solve( Humatrix == 0 ,u);

[uli, uxi] = ueval(usol,length(x0));

uanon = @(lambda,x) uwrap(usol,lambda,x,uli,uxi);

oldu = u0;

oldx = xn;

oldlambda = lambda0;

We then start the while loop with test being less than 0 to check for convergence as well iter

being less than maxiter to check how many iterations it will take. As in the previous examples, we

then input variables Ganon2, x0, t0,Nt,oldu into the froward-backward sweep or the the Rung-kutta

to find x. Then our Lfxanon is then inputed into a if loop to see if it equals to zero. Note that this is

due to λ j(t1) = φx j(t1), for j = 1, · · · ,n .If our Lfxanon is equal to zero then our lambdaf which is

our Lfxanon. If it does not equal to zero then it enters another if loop, this time if the number of

function input arguments are given in the call to the currently executing function this case zero, if so

then it is then is then evaluated to its name or its handle, and will be our lambdaf, else then lambdaf

will be the evaluation of differentiation function we have created earlier with our input being the
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last column of x resulted earlier. To which lambdaf will be our φ function for our backward-forward

sweep or our transverse condition followed by our other inputs Hlanon, x,oldu, t f ,Nt to find our λ

while (test < 0 && iter < maxiter )

iter = iter +1;

x = RKXU(Ganon2,x0,t0,tf,Nt,oldu);

if Lfxanon == 0

lambdaf = Lfxanon;

elseif Lfxanon ~= 0

if nargin(Lfxanon) == 0

lambdaf = feval(Lfxanon);

else

lambdaf = Lfxanon2(x(:,end));

end

end

lambda = transversecondN(Hlanon,x,oldu,tf,Nt,lambdaf);

similar to our bounded cases we would need a representation of −→u with values of
−→
λ , we

will called u1 as a temporary vector. Before the last set of u is made, we must need the minimum of

the highest bound and the maximum of the lowest bound with the function uanon2 with the result

of λ given from the transverse condition to find our new representation and adding our previous

representation multiplied by 0.5 our convex combination is given. Then it checks for convergence

with test = −1 for a non-negative number; And with temp1 being for u, temp2 being for x and

temp3 being for λ .Thus the processes is repeated till convergence has achieved, with oldu,oldx,and

oldlambda being replaced with u,x,λ .

u1 = min(M2, max(M1,uanon(lambda,x)));

u = 0.5*(u1 + oldu);

temp1 = delta * sum(abs(u),2)-sum(abs(oldu-u),2);
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temp2 = delta * sum(abs(x),2)-sum(abs(oldx-x),2);

temp3 = delta * sum(abs(lambda),2)- ...

sum(abs(oldlambda-lambda),2);

test = min( [temp1; temp2; temp3] ) ;

oldu = u;

oldx = x;

oldlambda = lambda;

end

To which it is then graphed with x,u, and λ against time. We will show the results in the next

chapter.

4.2 Multi Dimensinal Greedy

The following the pesdo code for a muti-dimensional optimal control problem with a convex

combination parameter of 1/2 or a greedy update. This was researched by a fellow UTRGV student

by the name of Elina Seppala [5]. The following is the pesdo code for an Greedy Automatic Optimal

control Solver.

for i = 0, · · · do

Solve the State Equation (x′ = g(t,x,uk))

Solve the Transversality Condition (λ ′ =−Hx(t,λ ,x,uk))

Solve ∂H
∂u (t,u,x,λ ) = 0 for u∗

for φ j =
1

Nc
, 2

Nc
, . . . ,1 do

u = φ ju∗+(1−φ j)uk

Fj =
∫ t f

t0 f (t,u,x)dt +φ(x(t f ))

end for

j = index that maximizes Fj
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uk+1 = φ ju∗+(1−φ j)uk

if Convergence criteria is satisfied then

u = uk+1

end if

end for

For the Multi Dimensional Greedy, we will still be using the SEIRN model; It is similar to

the previous algorithm that we have constructed but with some minor changes, as well as adding

new sub-codes. Such as the following.

Everything remains the same as previous, however we added a new variable called Nc = 2

this is our representation of our convex combination parameter.

test = -1;

delta = 0.001;

tn = linspace(t0,tf,Nt+1);

iter = 0;

Nc = 2;

u0 = zeros(1,Nt+1);

Similar to the previous algorithm, everything remains, with changes to the after F becomes a

symbolic matrix variable to an array of symbolic scalar variables, it is then inputted into a function

called xeval for the length of x0, this is to find which indices of x are non zero, whose output is

xi. Is then plugged into a "wrapper" as well with other inputs Fmatrix, u,x, to which evaluates the

inputs giving it numerical value. It then follows the same as the previous algorithm.

Gmatrix = symmatrix2sym(G);

Gmf = matlabFunction(Gmatrix);

Ganon = @(u,x) geval(Gmf,u,x);

Ganon2 = @(t,x,u) Ganon(u,x);
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Fmatrix = symmatrix2sym(F);

[xi] = xeval(Fmatrix,length(x0));

Fanon2 = @(x,u) fwrap(Fmatrix,u,x,xi);

if phi == 0

Lfxanon = 0;

elseif phi ~= 0

Lfanon = matlabFunction(phi);

Lfanon2 = @(x) Lfanon(x);

Lfx = diff(Lfanon2,x);

Lfxanon = matlabFunction(Lfx);

Lfxanon2 = @(x) Lfxanon(x);

end

H = F + lambda.’*G;

Hmatrix = symmatrix2sym(H);

Hanon = matlabFunction(Hmatrix);

Hanon2 = @(t,x,u,lambda) Hanon(lambda,u,x);

As previously mention, even in the while loop remains the same till we reached our convex

combination. After finding our new representation i.e u1, we then enter a for loop to find our convex

combination quicker. First we let a θ index be set to zero, then for θ from 1
Nc to 1 in 1

Nc time steps.

Then the index of θ is equal to thindex = thindex+1 this is to see how many iterations it takes.

Then set utry equal to the sum of (1−θ)∗u1 (which is our new representation) and θ ∗oldu (which

is our old representation). Then it is inputted in the Rung-kutta algorithm to find our x this time

with utry. Then another for loop is made this time from k = 1 : Nt +1, this is to see which arrays

of fmatrix is numerical for each last k-th column of x and for each k-th value of Utry. Once our

array is made, it is then inserted into a Trapezoidal method along with the initial time and final
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time value, which finds our objective function f . We then find the minimum of f and outputs

are fmin, and its indices or ind. Then we set our u to be our utry(θ) which is optimized by ind
Nc

i.e (u = (1− th) ∗ u1+ th ∗ oldu). Thus we have our convex combination and follows the same

algorithm as previous.

u1 = min(M2, max(M1,uanon(lambda,x)));

thindex = 0;

for th = (1/Nc):(1/Nc):1

thindex = thindex+1;

u_try = (1-th)*u1 + th*oldu;

x = RKXU(Ganon2,x0,t0,tf,Nt,u_try);

for k = 1:Nt+1

Farray(k) = Fanon2(x(:,k),u_try(k));

end

f(thindex) = Trapmethod(Farray,t0,tf);

end

[fmin, ind] = min(f);

th = ind/Nc;

u = (1-th)*u1 + th*oldu ;

temp1 = delta * sum(abs(u),2)-sum(abs(oldu-u),2);

temp2 = delta * sum(abs(x),2)-sum(abs(oldx-x),2);

temp3 = delta * sum(abs(lambda),2)- ...

sum(abs(oldlambda-lambda),2);

test = min( [temp1; temp2; temp3] ) ;

oldu = u;

oldx = x;
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oldlambda = lambda;

4.3 Subcodes

The following sections are pesdo-codes that were constructed used in the both Multi-Optimal

and Multi-Optimal Greedy.

4.3.1 Geval

The Geval is a function that we have constructed to be able to evaluate the G function. Given

inputs G which is our function matrix and inputs u and x. Which are the variables of the function

matrix and converts them into a numeric array, then we plug them back into our function matrix G

and evaluate out answer.

• Initial definition of g is a symbolic function in Matlab.

• Needed to covert g into a symbolic matrix type.

• Followed by converting into a Matlab function type.

• However if x : R⇒ Rn then this Matlab function expressed g as g(t,x1,x2, · · · ,xn,u).

• We used the num2cell command to convert the vector x into a cellular list.

4.3.2 Xeval

The Xeval is another function used to evaluate the our function F which is our control

function and input m for being the length of x0. We then create a real symbolic matrix x of size m

by 1. In a for loop from 1 to the length of our symbolic matrix x called k, for each iteration of k in

our variable fx will be the sum of the differation of F with respect to x. We then create a symbolic 0

called z and label i as our numeric 0. Then in a another for loop with k from 1 to the length of x, we

check to see if each varaible of fx is equal to zero for each iteration of k and labeled as fxz. Then in

a if loop we check to see if any indices from fxz are 0 and if they are zeros then our iteration count

or i will be adding one per zero. Then we count each indices of i equal to our for loop variable k.

We then end both the for and if loop and mark our array of indices into xi
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• f usually is not a function of every component of x

• If ∂ f
∂xk

(t,x,u) = 0, then xk was not an input variable of f .

f (t,xn1, · · · ,xnd ,u)

4.3.3 Fwrap

Then using the results that we have received in our xeval function. We then input the results

into another function called the F Wrapper function. Along with our other inputs f which will be

our function, our array of u, our initial x0. Then we make our matrix f into a matlab function and

labeled it as Fmf, then we check witch variables in x0 are non-zeros by plugging in our results from

our xeval into x0 called nx. Once we have our variables needed we then make them into a numeric

array that represents its numbers. Lastly we evaluate our variables into our matlabfucntion Fmf and

store the results into Fn.

• Where xn j for j = 1, · · · ,d are the state variables that fx explicitly depends on.

• We needed to automatically determine which indices of x are kept.

• We kept the indices if ∂ f
∂x j

̸= 0

• This was determined using the symbolic diff command and comparing it to a symbolic 0

4.3.4 Leval

Almost similar to our xeval function by having the same purpose by evaluating our function

to see which indices our non-zero. Except instead of just for one variable we are doing it for two

variables. Starting with our inputs Hl which is our Hamiltonian but differentiated with respect

to lambda and m in which it will be our length of x0. We create two real matrices both x and λ

both being the size of m by 1. In one for with k from 1 to the length of x, we get the sum of the

differation of the Hamiltonian with respect to λ labled l and in another for loop with k from 1 to

the length of λ we get the sum differation of the Hamiltonian with respect to x. We then create a
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symbolic zero labled z and creat a numeric zero called j for the first if loop. Similar to what we did

in the xeval functionwe just check if what variables in the array are zero or non-zero and store those

variables into another variable. These being li for the indices of λ then we clear indices to have a

clean state. Then repeat for x and store them into xi.

• Hx = ∇xH

• If ∂Hx
∂xk

= 0, then xk was not an input variable of Hx.

Hx(t,xn1, · · · ,xnd ,u,λm1, · · · ,λmc)

• Where xn j , for j = 1, . . . ,d, and λmk , where k = 1, . . . ,c, are the state and adjoint variables

that Hx explicitly depends on

4.3.5 lwrap

The following is our L wrapper or lwrap, it serves the same purpose as our Fwrap but again

instead of one variable, it will be with two variables which it will be our x and λ . With inputs being

the Hl =, our initial variables λ0, u0,x0 and our results from our leval function xi and li. First we

create a matlab function of Hl . Then we evaluate our initial values λ0 and x0 with xi and λ0 with

our li. We then make them into character arrays that represent the the numbers, both labled lnc and

xnc. once we have our arrays then we put the results into our matlabfuncion Hlanon with inputs lnc,

u0, and finally xnc, giving us our numeric λ .

• We needed to automatically determine which indices of λ and x are kept.

• We kept the indices if ∂Hx
∂x j

̸= 0 and if ∂Hx
∂λk

̸= 0

• This was determinded using the symbolic diff command and comparing it to a symbolic 0

• Lastly, to evaluate at each step of R.K., we extracted the indices that we determined Hx

explicitly uses of x and λ , then convert, via num2cell, those entries into cellular lists.
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4.3.6 Ueval

The U evaluation code is similar as the L evaluation code. With only the difference being

the inputs of u and m. And the differation for loops being the derivative of u with respect to λ and

with respect to x. We then labeled them as ul and ux. As same as before we make a symbolic zero z

and make numeric zero labeled j and first check for non-zero indices for lambda of ul and store

them into a variable uli and then we clear the indices so we do not have the previous indices and

repeat for the varaibles of x of ux and store them into uxi. We then have our outputs of uli and uxi

• Solving ∂H
∂u (t,u,x,λ ) = 0 for u∗

• If ∂Hu
∂xk

(t,u,x,λ ) = 0, then xk was not an input variable of Hu.

Hu(t,xn1, · · · ,xnd ,u,λm1, · · · ,λmc)

• Where xn j for j = 1, · · · ,d and λmk where k = 1, · · · ,c are the state and adjoint variables that

Hu explicitly depends on.

• We needed to automatically determine which indices of λ and x are kept.

• We kept the indices if ∂Hu
∂x j

̸= 0 and if ∂Hu
∂λk

̸= 0

• This was determined using the symbolic diff command and comparing it to a symbolic 0.

• Lastly to evaluate Hu for our solve step, we extracted the indices that we determined Hu

explicitly uses of x and λ then convert, via num2cell, those entries into cellular lists.

4.3.7 Trapmethod

Finally one of of last subcodes that we have created is the Trapezodial method. Where it 

takes inputs of f , a, and b. Where we have the length of f minus one labeled n, this is to subtract 

the length of our function by 1 and by getting the difference of the upper and lower limit labeled 

a and b we then divide the result by n and store it into h. We then create a starting point zero 

labeled s
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and in a for loop of i starting from two to n we add s with the arrays of f and store them into s. We

then have our formula for the sum of the 1st entry of f and the last entry of f and the product of

two multiplied by s. and the result of that is then multiplied by h over two and store our final resulet

into T .

• To compute the
∫ t f

t0 f (t,u,x)dt we used a composite Trapezoidal method

∫ t f

t0
f (t,u,x)dt ≈

Nt

∑
j=0

ω j f (t j,u j,x j).

• where ω j =
1
2(

t f−t0
Nt

) j = 0,n.

• and ω j =
t f−t0

Nt
, j = 1, . . . ,n−1.
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CHAPTER V

RESULTS

The Following are the results from each of the problems that we have used in the previous

chapters. Not that the Red-Dotted line is what we were able to produce, while the solid black line is

what the book was able to produce.

5.1 Max 1-dimensional case

These results were from the book by Lenheart [6] as we did in chapter 2 as the first example

2.1. Notice in the Graphs of Time vs Optimal and Time vs Control we have a decreasing effect

while the Time vs State has a growth effect. This shows that U or our control begins strong pushing

our x or our state upwards. As control decreases so does our optimal function, and our state begins

to decrease towards the end
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Figure 5.3: Time vs U

5.2 Bounded case

This is from when Our F function is max F = Ax(t)−u(t)2 dt

, and our G function is G = x′(t) =−1
2 x(t)2 + Cu(t). Similar to the maximum one dimension

case. Where our control begins strong pushing our state upwards. As control decreases so does our

optimal function, and our state begins to decrease towards the end
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5.3 Multi-Dimensional case

In this section we will be showing results from both types of the regular multi-dimensional

case and our greedy multi dimensional case. The results are from the SERIN model that we have

explained from earlier.

5.3.1 Regular

For the multi-dimensional case, we ran at a 1000 iterations and a maxiter of 40, it was a bit

longer than previous cases. But notice that for our control which represents the the vaccination,

showing that the more people were vaccinated the less infections occurred. Our optimal shows that

some variables start contestant at different starting points but eventually lead to 20.
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Figure 5.9: Time vs U

5.3.2 Greedy

For the Greedy method the results were similar but were achieved in a quicker Pace
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Figure 5.12: Time vs U
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5.4 Multi-Dimensional case HIV Treatment

In this section we will be showing results for the regular multi-dimensional case and our

greedy multi dimensional case for the HIV Treatment

5.4.1 Regular

For the multi-dimensional case, we ran at a 1000 iterations and a maxiter of 40, it was a bit

longer than previous cases to run.

55



0 2 4 6 8 10 12 14 16 18 20

t

0

100

200

300

400

500

600

700

800

900
x
(t

)
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5.4.2 Greedy

For the Greedy method, same results were produced, but in a quicker pace.
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CHAPTER VI

CONCLUSION

After constructing and implementing the automatic solver into different cases,we can

conclude that it functions for a one dimensional maximum case, a one dimensional bounded case

and in the Multi-Dimensional Optimal Control case, as long the user implements the identity matrix

to the size of x0 it and implements the G function or the state variable into a matrix form, as well if

the objective function is minimized then the user must also put a negative sign before inputting the

objective function, it should function as well.

This was not the first attempted in creating a automatic solver for optimal control problems.

There have been other attempted into such coding such as ICLOCS2 by Yuanbo Nie [7]. Where

it is a promising optimal control problem solver that offers advanced features, robust numerical

techniques, and user-friendly interfaces. Its open-source nature, computational efficiency, and broad

applicability make it a valuable tool for researchers and practitioners in the field of optimal control.

Another attempted is GPOPS-II by Michael A. Patterson [3]. It can solve multiple-phase optimal

control problems and the integration of hp-adaptive Gaussian quadrature collocation methods and

sparse nonlinear programming techniques makes GPOPS II a powerful tool of use in solving

optimal control problems,but this requires a fee depending on use such as government,university,

academic and single use, in which the fee will vary. Lastley using Hybrid Runge-Kutta methods

researched by Moosa Ebadi [1], this was approach combines the shooting method with the finite

difference approximation and leverages the benefits of hybrid Runge-Kutta methods to enhance

accuracy and computational efficiency.

This Research was inspired by Dr. Kristina P. Vatcheva and along with other professors

in a research article called Social distancing and testing as optimal strategies against the spread
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of COVID-19 in the Rio Grande Valley of Texas [2]. In this article, researchers were solving an

optimal control problem related to COVID-19 by hand, when my advisor Josef Sifuentes thought

an idea of an automatic solver for optimal control problems.
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APPENDIX A

APPENDIX

1.1 The Lebesgue Dominated Convergence Theorem

As stated from Royden [4], here is another version of the lebesgue dominated convergence

theorem.

Let fn be a sequence of measurable functions on E. Suppose there is a function g hat is

integrable over E and dominates fn on E in the sense that | fn| ≤ g on E for all n.

if fn → f pointwise a.e. on E, then f is integral over E and lim
n→∞

∫
E

fn =
∫

E
f

Proof Since | f | ≤ g on E and g is intergrable over E, then by the intergrable comparison test, f

and each fn are also integrable over E. Since f is intertable over E, then f is finite a.e on E. Which

makes the excising from E a countable collection of sets of measure zero and using the countable

addivitity of Lebesgue measure, we can assume that f and fn is fintite on E. Now the function g− f

and for each n, the funtion g− fn, are defined, nonnegative and measuravble. as well the sequence

|g− fn| covnerges pointwie a.e on E to g− f . By Fatou’s Lemma it tells us that

∫
E
(g− f )≤ lim in f ≤E (g− fn)

. Thus, by the linearity of integration for integrable functions,

∫
E

g−
∫

E
f =

∫
E
(g− f≤ lim in f

∫
E
(g− fn) =

∫
E

g− limsup
∫

E
fn
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, that is,

limsup
∫

E
fn ≤

∫
E

f

. Similarly, considering the sequence {g+ fn}, we have recived the following

∫
E

f ≤ lim in f
∫

E
fn

. Hence Proof.

1.2 One Dimensional

1.2.1 Maximum One Dimensional Code

function [x,lambda,u] = OptControl5(F,G,x0,t0,tf,maxiter,Nt)

test = -1;

delta = 0.001;

N = Nt;

tn = linspace(t0,tf,N+1);

iter = 0;

u0 = zeros(1,N+1);

xn = zeros(1,N+1);

xn(1) = x0;

lambda0 = zeros(1,N+1);

Ganon = matlabFunction(G);

Ganon2 = @(t,x,u) Ganon(u,x);

Fanon= matlabFunction(F);

Fanon2 = @(t,x,u,lambda) Fanon(lambda,x);

syms t x u

syms lambda

H = F + lambda.*G
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Hanon = matlabFunction(H);

Hanon2 = @(t,x,u,lambda) Hanon(lambda,u,x);

Hx = diff(Hanon2,lambda);

Hl = diff(Hanon2,x);

Hu = diff(Hanon2,u);

Hlanon = matlabFunction(Hl);

Hlanon2 = @(t,x,u,lambda) Hlanon(x,lambda);

usol = solve( Hu == 0 ,u)

uanon = matlabFunction(usol)

uanon2 = @(lambda) uanon(lambda)

oldu = u0;

oldx = xn;

oldlambda = lambda0;

while (test < 0 && iter < maxiter )

iter = iter +1;

x = RKXU(Ganon2,x0,t0,tf,N,oldu);

lambda = transversecond(Hlanon2,x,oldu,tf,N);

u1 = uanon2(lambda);

u = 0.5*(u1 + oldu);

temp1 = delta * sum(abs(u))-sum(abs(oldu-u));

temp2 = delta * sum(abs(x))-sum(abs(oldx-x));

temp3 = delta * sum(abs(lambda))- ...

sum(abs(oldlambda-lambda));

test = min(temp1,min(temp2,temp3)) ;

oldu = u;

oldx = x;

oldlambda = lambda;
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end

y(1,:) = tn;

y(2,:) = x;

y(3,:) = lambda;

y(4,:) = u;

figure(7)

plot(tn,x)

title(’Time vs X’)

xlabel(’Time’)

ylabel(’X’)

figure(8)

plot(tn,u)

title(’Time vs U’)

xlabel(’Time’)

ylabel(’U’)

figure(9)

plot(tn,lambda)

title(’Time vs Lambda’)

xlabel(’Time’)

ylabel(’Lambda’)

1.2.2 Bounded Case Code

function [x,lambda,u] = OptControl8(F,G,x0,t0,tf,maxiter,Nt,M1,M2)

test = -1;

delta = 0.001;

N = Nt;

tn = linspace(t0,tf,N+1);

iter = 0;
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u0 = zeros(1,N+1);

xn = zeros(1,N+1);

xn(1) = x0;

lambda0 = zeros(1,N+1);

Ganon = matlabFunction(G);

Ganon2 = @(t,x,u) Ganon(u,x);

Fanon= matlabFunction(F);

Fanon2 = @(t,x,u,lambda) Fanon(lambda,x);

syms t x u

syms lambda

H = F + lambda.*G;

Hanon = matlabFunction(H);

Hanon2 = @(t,x,u,lambda) Hanon(lambda,u,x);

Hx = diff(Hanon2,lambda);

Hl = diff(Hanon2,x);

Hu = diff(Hanon2,u);

Hlanon = matlabFunction(Hl);

Hlanon2 = @(t,x,u,lambda) Hlanon(x,lambda);

usol = solve( Hu == 0 ,u);

uanon = matlabFunction(usol);

uanon2 = @(lambda) uanon(lambda);

oldu = u0;

oldx = xn;

oldlambda = lambda0;

while (test < 0 && iter < maxiter )

iter = iter +1;

x = RKXU(Ganon2,x0,t0,tf,N,oldu);
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lambda = transversecond(Hlanon2,x,oldu,tf,N);

u1 = min(M2, max(M1,uanon2(lambda)));

u = 0.5*(u1 + oldu);

temp1 = delta * sum(abs(u))-sum(abs(oldu-u));

temp2 = delta * sum(abs(x))-sum(abs(oldx-x));

temp3 = delta * sum(abs(lambda))- ...

sum(abs(oldlambda-lambda));

test = min(temp1,min(temp2,temp3)) ;

oldu = u;

oldx = x;

oldlambda = lambda;

end

y(1,:) = tn;

y(2,:) = x;

y(3,:) = lambda;

y(4,:) = u;

figure(7)

plot(tn,x)

title(’Time vs X’)

xlabel(’Time’)

ylabel(’X’)

figure(8)

plot(tn,u)

title(’Time vs U’)

xlabel(’Time’)

ylabel(’U’)

figure(9)
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plot(tn,lambda)

title(’Time vs Lambda’)

xlabel(’Time’)

ylabel(’Lambda’)

1.3 Multi-Dimensional

1.3.1 Multi-Dimensional Code

function [x, lambda, u] = multiOptControl(F,G,x0,t0,tf,maxiter,Nt,phi,M1,M2)

test = -1;

delta = 0.001;

tn = linspace(t0,tf,Nt+1);

iter = 0;

u0 = zeros(1,Nt+1);

xn = zeros(length(x0),Nt+1);

for i = 1:length(x0)

xn(i) = x0(i);

end

lambda0 = zeros(length(x0),Nt+1);

syms t u

syms x [size(x0)] matrix

syms lambda [size(x)] matrix

Gmatrix = symmatrix2sym(G);

Gmf = matlabFunction(Gmatrix);

Ganon = @(u,x) geval(Gmf,u,x);

Ganon2 = @(t,x,u) Ganon(u,x);

Fmatrix = symmatrix2sym(F);

Fanon= matlabFunction(Fmatrix);
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Fanon2 = @(t,x,u) Fanon(u,x);

if phi == 0

Lfxanon = 0;

elseif phi ~= 0

Lfanon = matlabFunction(phi);

Lfanon2 = @(x) Lfanon(x);

Lfx = diff(Lfanon2,x);

Lfxanon = matlabFunction(Lfx);

Lfxanon2 = @(x) Lfxanon(x);

end

H = F + lambda.’*G;

Hl = gradient(H,x);

Hlmatrix = symmatrix2sym(Hl);

[xi, li] = leval(Hlmatrix,length(x0));

Hlanon = @(t,x,u,lambda) lwrap(Hlmatrix,lambda,u,x,xi,li);

Hu = gradient(H,u);

Humatrix = symmatrix2sym(Hu);

usol = solve( Humatrix == 0 ,u);

[uli, uxi] = ueval(usol,length(x0));

uanon = @(lambda,x) uwrap(usol,lambda,x,uli,uxi);

oldu = u0;

oldx = xn;

oldlambda = lambda0;

while (test < 0 && iter < maxiter )

iter = iter +1

x = RKXU(Ganon2,x0,t0,tf,Nt,oldu);

if Lfxanon == 0
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lambdaf = Lfxanon;

elseif Lfxanon ~= 0

if nargin(Lfxanon) == 0

lambdaf = feval(Lfxanon);

else

lambdaf = Lfxanon2(x(:,end));

end

end

lambda = transversecondN(Hlanon,x,oldu,tf,Nt,lambdaf);

u1 = min(M2, max(M1,uanon(lambda,x)));

u = 0.5*(u1 + oldu);

temp1 = delta * sum(abs(u),2)-sum(abs(oldu-u),2);

temp2 = delta * sum(abs(x),2)-sum(abs(oldx-x),2);

temp3 = delta * sum(abs(lambda),2)- ...

sum(abs(oldlambda-lambda),2);

test = min( [temp1; temp2; temp3] ) ;

oldu = u;

oldx = x;

oldlambda = lambda;

end

figure(7)

plot(tn,x)

title(’Time vs X’)

xlabel(’Time’)

ylabel(’X’)

figure(8); hold on

plot(tn,u);
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title(’Time vs U’)

xlabel(’Time’)

ylabel(’U’)

figure(9)

plot(tn,lambda)

title(’Time vs Lambda’)

xlabel(’Time’)

ylabel(’Lambda’)

1.3.2 Multi-Dimensional Greedy Code

function [x, lambda, u] = multiOptControlGreedy(F,G,x0,t0,tf,maxiter,Nt,phi,M1,M2)

test = -1;

delta = 0.001;

tn = linspace(t0,tf,Nt+1);

iter = 0;

Nc = 10;

u0 = zeros(1,Nt+1);

xn = zeros(length(x0),Nt+1);

for i = 1:length(x0)

xn(i) = x0(i);

end

lambda0 = zeros(length(x0),Nt+1);

syms t u

syms x [size(x0)] matrix

syms lambda [size(x)] matrix

Gmatrix = symmatrix2sym(G);

Gmf = matlabFunction(Gmatrix);

Ganon = @(u,x) geval(Gmf,u,x);
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Ganon2 = @(t,x,u) Ganon(u,x);

Fmatrix = symmatrix2sym(F);

[xi] = xeval(Fmatrix,length(x0));

Fanon2 = @(x,u) fwrap(Fmatrix,u,x,xi);

if phi == 0

Lfxanon = 0;

elseif phi ~= 0

Lfanon = matlabFunction(phi);

Lfanon2 = @(x) Lfanon(x);

Lfx = diff(Lfanon2,x);

Lfxanon = matlabFunction(Lfx);

Lfxanon2 = @(x) Lfxanon(x);

end

H = F + lambda.’*G;

Hl = gradient(H,x);

Hlmatrix = symmatrix2sym(Hl);

[xi, li] = leval(Hlmatrix,length(x0));

Hlanon = @(t,x,u,lambda) lwrap(Hlmatrix,lambda,u,x,xi,li);

Hu = gradient(H,u);

Humatrix = symmatrix2sym(Hu);

usol = solve( Humatrix == 0 ,u);

[uli, uxi] = ueval(usol,length(x0));

uanon = @(lambda,x) uwrap(usol,lambda,x,uli,uxi);

oldu = u0;

oldx = xn;

oldlambda = lambda0;

while (test < 0 && iter < maxiter )
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iter = iter +1

x = RKXU(Ganon2,x0,t0,tf,Nt,oldu);

if Lfxanon == 0

lambdaf = Lfxanon;

elseif Lfxanon ~= 0

if nargin(Lfxanon) == 0

lambdaf = feval(Lfxanon);

else

lambdaf = Lfxanon2(x(:,end));

end

end

lambda = transversecondN(Hlanon,x,oldu,tf,Nt,lambdaf);

u1 = min(M2, max(M1,uanon(lambda,x)));

thindex = 0;

for th = (1/Nc):(1/Nc):1

thindex = thindex+1;

utry = (1-th)*u1 + th*oldu;

x = RKXU(Ganon2,x0,t0,tf,Nt,utry);

for k = 1:Nt+1

Farray(k) = Fanon2(x(:,k),utry(k));

end

f(thindex) = Trapmethod(Farray,t0,tf);

end

[fmin, ind] = min(f);

th = ind/Nc;

u = (1-th)*u1 + th*oldu ;

temp1 = delta * sum(abs(u),2)-sum(abs(oldu-u),2);
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temp2 = delta * sum(abs(x),2)-sum(abs(oldx-x),2);

temp3 = delta * sum(abs(lambda),2)- ...

sum(abs(oldlambda-lambda),2);

test = min( [temp1; temp2; temp3] ) ;

oldu = u;

oldx = x;

oldlambda = lambda;

end

figure(10)

plot(tn,x)

title(’ Greedy Time vs X’)

xlabel(’Time’)

ylabel(’X’)

figure(11); hold on

plot(tn,u);

title(’Greedy Time vs U’)

xlabel(’Time’)

ylabel(’U’)

figure(12)

plot(tn,lambda)

title(’Greedy Time vs Lambda’)

xlabel(’Time’)

ylabel(’Lambda’)

1.4 Sub-Codes

1.4.1 Forward-Backward Sweep Code

function x = RKXU(f,x0,t0,tf,N,u)
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h = (tf-t0)/N;

h2 = h/2;

x = zeros(length(x0),N+1);

x(:,1) = x0;

for i = 1:N

ti = t0 + h*i;

k1 =f(ti, x(:,i), u(:,i));

k2 =f((ti + h2),(x(:,i) + h2*k1) , (u(:,i)+ u(:,i+1))/2);

k3 =f((ti + h2),(x(:,i) + h2*k2) , (u(:,i)+ u(:,i+1))/2);

k4 =f((ti+h), (x(:,i)+h*k3) , u(:,i+1));

x(:,i+1) = x(:,i) + (h/6)*(k1 + 2*k2 + 2*k3 + k4);

end

1.4.2 Transverse Condition Codes

Without Payoff Function Code

function lambda = transversecond(Hx,x,u,tf,N)

t0 = 0;

h = (tf-t0)/N;

h2 = h/2;

y = zeros(size(x));

y(:,1) = 0;

f = @(t,lambda,x,u) Hx(tf-t,x,u,lambda);

x = fliplr(x);

u = fliplr(u);

for k = 1:N

tk = t0 + h*k;

k1 = f((tk),(y(:,k)),(x(:,k)),(u(:,k)));

75



k2 = f((tk+h2),(y(:,k)+h2*k1),((x(:,k)+x(:,k+1))/2),((u(:,k)+ u(:,k+1))/2));

k3 = f((tk+h2),(y(:,k)+h2*k2),((x(:,k)+x(:,k+1))/2),((u(:,k)+ u(:,k+1))/2));

k4 = f((tk+h2),(y(:,k)+h*k3),(x(:,k+1)),(u(:,k+1)));

y(:,k+1) = y(:,k) + (h/6) *(k1 + 2*k2 + 2*k3 +k4);

end

lambda = fliplr(y);

With Payoff Function Code

function lambda = transversecondN(Hx,x,u,tf,N,phi)

t0 = 0;

h = (tf-t0)/N;

h2 = h/2;

y = zeros(size(x));

y(:,1) = phi;

f = @(t,lambda,x,u) Hx(tf-t,x,u,lambda);

x = fliplr(x);

u = fliplr(u);

for k = 1:N

tk = t0 + h*k;

k1 = f((tk),(y(:,k)),(x(:,k)),(u(:,k)));

k2 = f((tk+h2),(y(:,k)+h2*k1),((x(:,k)+x(:,k+1))/2),((u(:,k)+ u(:,k+1))/2));

k3 = f((tk+h2),(y(:,k)+h2*k2),((x(:,k)+x(:,k+1))/2),((u(:,k)+ u(:,k+1))/2));

k4 = f((tk+h2),(y(:,k)+h*k3),(x(:,k+1)),(u(:,k+1)));

y(:,k+1) = y(:,k) + (h/6) *(k1 + 2*k2 + 2*k3 +k4);

end

lambda = fliplr(y);
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1.4.3 G Evaluation Code

function Gn = geval(G,u,x)

xnc = num2cell(x);

Gn = G(u,xnc{:});

1.4.4 X Evaluation Code

function [xi] = xeval(f,m)

syms x [m 1] real

for k = 1:length(x)

fx(k) = sum(diff(f,[’x’ num2str(k)]));

end

z = sym(0);

i = 0;

for k = 1:length(x)

fxz = isequal(fx(k),z);

if(fxz == 0)

i = i+1;

indices(i) = k;

end

end

xi = indices;

1.4.5 F Wrapper Code

function Fn = fwrap(f,u,x0,xi)

Fmf= matlabFunction(f);

nx = x0(xi);

xnc = num2cell(nx);

Fn = Fmf(u,xnc{:});
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1.4.6 L Evaluation Code

function [xi, li] = leval(Hl,m)

syms x [m 1] real

syms lambda [m 1] real

for k = 1:length(lambda)

l(k) = sum(diff(Hl,[’lambda’ num2str(k)]));

end

for k = 1:length(x)

lx(k) = sum(diff(Hl,[’x’ num2str(k)]));

end

z = sym(0);

j = 0;

for k = 1:length(lambda)

lz = isequal(l(k),z);

if(lz == 0)

j = j+1;

indices(j) = k;

end

end

li = indices;

clear indices

i = 0;

for k = 1:length(x)

xz = isequal(lx(k),z);

if(xz == 0)

i = i+1;

indices(i) = k;
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end

end

xi = indices;

1.4.7 L Wrapper Code

function lambdan = lwrap(Hl,lambda0,u0,x0,xi,li)

Hlanon = matlabFunction(Hl);

nl = lambda0(li);

nx = x0(xi);

lnc = num2cell(nl);

xnc = num2cell(nx);

lambdan = Hlanon(lnc{:},u0,xnc{:});

1.4.8 U Evaluation Code

function [uli, uxi] = ueval(u,m)

syms x [m 1] real

syms lambda [m 1] real

for k = 1:length(lambda)

ul(k) = diff(u,[’lambda’ num2str(k)]);

end

for k = 1:length(x)
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ux(k) = diff(u,[’x’ num2str(k)]);

end

z = sym(0);

j = 0;

for k = 1:length(lambda)

ulz = isequal(ul(k),z);

if(ulz == 0)

j = j+1;

Indices(j) = k;

end

end

uli = Indices;

clear Indices

i = 0;

for k = 1:length(x)

uxz = isequal(ux(k),z);

if(uxz == 0)

i = i+1;

Indices(i) = k;

end

end

uxi = Indices;

1.4.9 U Wrapper Code

function Un = uwrap(u,lambda0,x0,uli,uxi)
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uslanon = matlabFunction(u);

for t_iter = 1:length(x0)

nul = lambda0(uli,t_iter);

nux = x0(uxi,t_iter);

ulc = num2cell(nul);

uxc = num2cell(nux);

Un(t_iter) = uslanon(ulc{:},uxc{:});

end

1.4.10 Trapezoidal Method Code

function T = Trapmethod(f,a,b)

n = length(f)-1;

h = (b-a)/n;

s = 0;

for i = 2:n

s = s+f(i);

end

T = h/2*(f(1)+f(end)+2*s);

81



BIOGRAPHICAL SKETCH

The author Marcel E. Benitez was born in July 31, 1995, in Chicago, Illinois. He would

later then moved to McAllen, Texas in 2000. He has two siblings, a late older brother Andree C.

Benitez and a younger sibling Aimee E. Benitez with parents Miguel A. Benitez Jr. and Leonilla

Benitez. To contact him, his email address will be mefren1599@aol.com.

From 2010-2014, he was enrolled in McAllen High school in Mcallen, Texas. After

graduating in 2014, he would enroll to University of Texas Rio Grand Valley in Edinburg, Texas.

He would be enrolled as an undergraduate student from 2014-2020. In 2020 he would then received

a Bachelors in science in Applied Mathematics.

In 2020, he would continue his education at University of Texas Rio Grand Valley, He

was then awarded the NSF S-STEM Mathematics Graduate Scholarship. He would enrolled as a

graduate student from 2020-2023. In 2023, he would then received a Masters in science in Applied

Mathematics from University of Texas Rio Grand Valley.

82


	An Automatic Solver for Optimal Control Problems
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	CHAPTER I. Introduction
	Basic problem and necessary conditions
	The Hamiltonian
	Optimization
	Payoff Terms

	CHAPTER II. Forward-Backward Sweep Method: one Dimension
	Forward-Backward Sweep
	One Dimensional Maximum Optimal Control Problem
	Book version
	What We Have Constructed

	Bounded Case Optimal Control Problem
	 Necessary Conditions
	What We Have Constructed


	CHAPTER III. Forward-Backward Sweep Method: Multi Dimensional
	Optimal Control with several variables
	Multi-Dimensional Theory
	Multi-dimensional optimal control problem one
	Multi-dimensional optimal control problem two

	CHAPTER IV. Multi Dimensional Sweep
	Multi Dimensional 
	Multi Dimensinal Greedy
	Subcodes
	Geval
	Xeval
	Fwrap
	Leval
	lwrap
	Ueval
	Trapmeathod


	CHAPTER V. Results
	Max 1-dimensional case
	Bounded case
	Multi-Dimensional case
	Regular
	Greedy

	Multi-Dimensional case HIV Treatment
	Regular
	Greedy


	CHAPTER VI. Conclusion
	REFERENCES
	APPENDIX A
	The Lebesgue Dominated Convergence Theorem
	One Dimensional
	Maximum One Dimensional Code
	Bounded Case Code

	Multi-Dimensional
	Multi-Dimensional Code
	Multi-Dimensional Greedy Code

	Sub-Codes
	Forward-Backward Sweep Code
	Transverse Condition Codes
	G Evaluation Code
	X Evaluation Code
	F Wrapper Code
	L Evaluation Code
	L Wrapper Code
	U Evaluation Code
	U Wrapper Code
	Trapezoidal Method Code


	Biographical Sketch

