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ABSTRACT 

 

Rahman, Md Masnun, ML Predictive Models for Load Identification of Railroad Bridges 

Subjected to Train-Induced Vibration. Master of Science (MS), May 2024, 77 pp., 2 tables, 29 

figures, 44 references, 6 titles. 

 The U.S. rail network is among the world's largest, safest, and most efficient. However, 

many its railway bridges, which play an essential role in its connectivity, are over 100 years old, 

showing signs of structural deterioration exceeding their practical service life. The increased 

weight and speed of modern trains also pose a risk to these bridges. Traditional load 

identification and monitoring technologies like Weigh-in-Motion (WIM) systems are rarely used 

on railway bridges due to their cost and practical limits. This thesis explores a cost-effective 

approach to utilize vibration sensors on railway bridges to identify and predict train load features 

(speed and axle load), using machine learning (ML). The study involves finite element modeling 

of railway bridges, followed by applying ML algorithms like LSTM and RNN to estimate axle 

loads and speeds from vibration data. The results show the acceptable performance of developed 

time series ML models in predicting these parameters. 
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CHAPTER I 

 

INTRODUCTION 

 

 

1.1. Introduction 

 

The railroad network in the United States, which is among the largest and most efficient 

in the world, plays a crucial role in the nation's infrastructure, serving as a key component in 

both freight and passenger transportation. However, a significant portion of this network relies 

on bridges that are over a century old. With the passage of time and the evolution of rail 

transport, these aging structures are increasingly subjected to stresses beyond their original 

design parameters. 

 

1.2. Structural Health Monitoring 

 

With the advancement of modern computational power and technology, techniques such 

as structural health monitoring are becoming increasingly important, particularly in the context 

of railways and train infrastructure (Barke and Chiu 2005). Among these technologies, 

accelerometer and piezoelectric sensor systems are particularly well-suited for monitoring the 

health of rail structures (Hodge et al. 2014). These sensors can effectively measure vibrations 

and stresses on rail tracks and bridges, providing critical data for maintenance and safety 

assessments. Additionally, for comprehensive inspection of rail infrastructure, technologies like 

LiDAR and infrared thermography are highly beneficial (Taheri Andani et al. 2018). They can 
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detect structural damage along the tracks or on bridges that might not be visible otherwise. 

Ultrasonic testing and acoustic emission techniques are also valuable in this area, 
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especially for identifying internal flaws or cracks in rails, which are crucial for preventing 

accidents and ensuring smooth operation (Mariani et al. 2017). These advanced technologies are 

key to maintaining the safety, efficiency, and longevity of railway infrastructure. 

 

The techniques mentioned above primarily concentrate on monitoring the condition of 

rail tracks and bridge infrastructures. However, sometimes it becomes more critical to monitor 

the load imposed by modern trains and their speed. This is because understanding the weight and 

speed of trains directly helps in assessing whether a particular train is suitable for a specific 

bridge. This kind of monitoring is crucial in preventing bridge collapse due to heavy loads or 

high speeds that the bridge was not originally designed to withstand. By accurately measuring 

these factors, engineers can ensure that the structural integrity of bridges is not compromised, 

thereby maintaining safety and preventing potential disasters. This approach is particularly 

important in the context of older bridges, which may not have been built to accommodate the 

increased demands of contemporary train traffic. 

 

1.3. Weigh-in-Motion (WIM) Systems 

 

 

To address the above challenges, a method already established and operational on 

highways can provide valuable insights. On many highways, systems are in place to limit and 

monitor the weight of vehicles to protect road integrity and safety. One such system is the 

Weigh-in-Motion (WIM) System, which has been designed primarily for highway use. 
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WIM Systems are advanced technological setups that measure the weight of vehicles as 

they pass over a sensor at normal driving speeds. Unlike traditional static weighing stations, 

where vehicles must stop to be weighed, WIM systems allow for continuous traffic flow and 

real-time data collection. These systems typically consist of various sensors embedded in the 

roadway, such as piezoelectric cables or load cells, which detect and record the weight of a 

vehicle's axles and total weight as it moves over them. The data from these sensors are then 

processed by computer systems to calculate the vehicle’s weight. 

 

Recently, WIM technology has been adapted for use in railway infrastructures (Ye, Su, 

and Han 2014), taking cues from its highway counterparts but tailored to the specific needs of 

railroads. In this setup, sensors like strain gauges or load cells are installed on the tracks to 

measure the weight of trains in motion. These sensors accurately capture the weight of each axle 

as the train passes over, providing essential data on the train's load. However, the effective 

functioning of this system is primarily limited to ballasted tracks, where the railway tracks are 

connected directly to the ground. This limitation arises because the strain gauge and piezoelectric 

sensors require a solid and flat surface for optimal operation. This presents a challenge when it 

comes to railway bridges, where installing these sensors is more complex due to the different 

structural characteristics of railway bridges. As of now, there are no fully promising technologies 

available that can accurately and reliably predict the load on a railway bridge, making it a 

significant area in need of further research and technological development. This gap highlights 

the necessity for innovative solutions tailored specifically for railway bridge monitoring to 

ensure the safety and integrity of these critical structures in the railway network. 
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1.4. Objectives and Research Scope 

 

This research aims to utilize Machine Learning (ML) and Artificial Intelligence (AI) for 

analyzing and predicting train loads and speeds from data collected via affordable sensors such 

as accelerometers and strain gauges on railway bridges. By integrating sensor data with advanced 

ML techniques, including Long Short-Term Memory (LSTM) and Recurrent Neural Networks 

(RNN), the study focuses on accurate load identification and speed measurement. The project 

involves modeling both simple and complex railway bridge structures using analysis software 

like OpenSEESPy and SAP2000, examining their response to various train speeds and axles 

loads. The findings are expected to enhance real-time monitoring and maintenance practices, 

thereby improving the safety and efficiency of railway systems, especially on older bridges that 

are challenged by heavier, faster trains. 
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CHAPTER II 

 

LITERATURE REVIEW 

 

 

2.1. Load Identification as an Inverse Problem 

 

The inverse problem in load identification is about figuring out the unseen forces or loads 

on a structure by observing how the structure moves or responds. Unlike the direct approach of 

measuring forces, which can be difficult or not possible, this method works backward: starting 

with the outcomes (the structure's responses) to find the causes (the forces). 

 

This issue is called "inverse" because it flips the usual way of analyzing problems. In a 

typical "forward" problem, we would know the forces applied and try to predict the structure's 

reaction. However, in real-life situations like monitoring the condition of bridges or 

understanding the effects of moving trains on railway bridges, the actual forces can't be directly 

seen. What can be observed are the structure's responses, such as vibrations or changes in 

materials (Xu et al. 2018; Yang et al. 2004). 

  

Solving this inverse problem is challenging and requires complex analysis or computer-

based methods. The relationship between the forces and their effects can be complicated, 

especially for structures that don't behave in simple, linear ways. This task is made even harder 



 

5 

 

by issues like noise in the measurements, dealing with several unknown forces at once, and the 

unique characteristics of the materials and design of the structure (Mousavi, Holloway, and 

Olivier 2019). There are studies built on existing theories to tackle the inverse problem by 

aiming to reduce the difference between what's observed and what models predict. The problem's 

complexity is also due to its "ill-posed" nature, meaning it's tricky because of incomplete 

information about the structure's condition or initial state. In addressing the intricate inverse 

problems inherent to the load identification of railroad bridges subjected to train-induced 

vibration, these studies integrate sophisticated ML techniques, building upon recent 

advancements in AI. These methods include Gaussian process-based approaches (Su et al. 

2021a, 2021a; Wan and Ni 2018; Wang et al. 2021). In addition, methods like Quantile Random 

Forest (QRF) (Zhang et al. 2021a), Artificial Neural Networks (Yang et al. 2004; Zhong-Xian, 

Feng, and Bo 2008a), and Genetic Algorithms (GA) (Jiang, Au, and Cheung 2003a), each 

contributing uniquely to the solution of complex inverse problems through their predictive 

capabilities and computational efficiency. 

 

Specifically, Zhang et al. (Zhang et al. 2021b) introduced a probabilistic model that uses 

QRF in conjunction with Bayesian optimization, aiming at the prediction of typhoon-induced 

responses in long-span bridges. This model is distinguished by its superior prediction accuracy 

and reduced computational demands when compared to traditional optimization algorithms and 

models. Similarly, Yang et al. (Yang, Yan, and He 2016a) employed a Back Propagation (BP) 

neural network to precisely identify characteristics such as the position, wheelbase, and weight 

of vehicles on bridges. Their method demonstrated both feasibility and high accuracy in the 

identification of moving loads at uniform speeds. Further, Li et al. (Zhong-Xian, Feng, and Bo 
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2008b) explored the use of neural networks to enhance the reliability and accuracy of load 

identification, underscoring the potential of these ML strategies to revolutionize traditional 

approaches to structural monitoring and analysis. 

 

In the case of a Simply Supported Beam (SSB) treated as a bridge subjected to a single 

point load moving at a constant speed, the dynamic response can be accurately described by the 

classic Duhamel integral if the beam's response is linear (Yang et al. 2021a). The Duhamel 

integral is generally given by: 

y(t) = ∫ h(t − τ)f(τ)dτ
t

0

 (2.1) 

 

In this equation, y(t) represents the dynamic response of the beam at time t, h(t − τ) is 

the unit impulse response function, which characterizes how the beam responds over time to a 

load applied at a single instant, and f(τ) is the magnitude of the applied load at time τ. The 

integral in Equation (2.1) accumulates the effects of the load over time up to the current time t. 

 

For a beam that does not conform to linear or time-invariant principles, a different 

function, say Fij, is required to model the relationship between the input (the load) and the output 

(the response). This is especially true for nonlinear structures, where the dynamic response to a 

load can change over time or depending on the location of the load. The mapping function can be 

expressed as (Thomas, Wilson, and Wilson 1973): 

𝑦𝑗(𝑡) = 𝓕𝑖,𝑗[𝑓𝑖(𝑡)]    𝑖, 𝑗 = 1,2, …𝑁 (2.2) 

  

where yj denotes the rate of change of the dynamic response at point j on the beam, 𝓕i,j is the 

transfer function that maps the relationship between the rate of change of the applied load, and i 

and j indicate specific points or degrees of freedom on the beam. 
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The inverse problem aims to find an inverse function Mij that can estimate the applied 

load based on the observed response, within a certain error threshold: 

𝑴𝑖,𝑗[𝑦𝑗(𝑡)] = 𝑓(𝑡) ≈ 𝒇𝑖(𝑡) and |𝒇𝑖(𝑡) − 𝑓(𝑡)| < 𝜀 (2.2) 

 

where i, j = 1, 2,…N. The challenge of deriving Mij for nonlinear structures necessitates the use 

of more sophisticated and reliable techniques. This study introduces the use of LSTM networks, 

a type of RNN capable of capturing temporal dependencies, to approximate Mij. With extensive 

supervised learning, the LSTM network is trained to predict the dynamic responses of the beam, 

effectively substituting the need for an explicit analytical expression of the inverse function. This 

approach allows for a more feasible solution to the inverse problem in scenarios where direct 

measurement of the load is not possible. 

 

2.2. Traditional Load Identification Methods 

 

 

Accurately measuring and predicting dynamic loads like train impacts on railway bridges 

is challenging in structural engineering. Direct measurement is often impractical due to 

limitations in testing technology and the complexity of large structures, which makes sensor 

installation difficult. As a result, identifying different types of dynamic loads has become a 

complex issue discussed extensively in the literature (Yang et al. 2021a). 

 

Traditional methods mainly focus on first determining a structure's dynamic 

characteristics, a task constrained by technological limitations and the intricate nature of these 

structures. In addition, these conventional approaches typically assume linear and predictable 

load responses, overlooking real-world nonlinear behaviors. For example, the vibrations from 
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high-speed trains demonstrate the inadequacy of traditional models to account for complex 

dynamic interactions within structures, potentially compromising infrastructure safety. This 

highlights the urgent need for more advanced methodologies to accurately predict and manage 

dynamic loads (Jiang et al. 2020). 

 

In the context of this, this paper aims to explore the theory of moving load identification 

in the time domain on a continuous beam, without prior knowledge of the load characteristics. 

Understanding the forces from vehicle-bridge interactions is critical for bridge design, as they 

significantly contribute to the live load. However, direct measurements can be costly and biased, 

and simulations may have modeling errors. Therefore, there is a need for a method to indirectly 

determine vehicular loads by analyzing the vibration responses of the bridge structure such as 

accelerations, velocities, displacements, and strains. This approach should account for the 

various parameters of the bridge and vehicle system in the measured responses, offering a more 

accurate and reliable means of assessing dynamic loads (Zhu and Law 2002). 

 

2.3. Load Identification using AI 

 

 

Methods for identifying dynamic loads have developed in three main categories: 1) 

frequency domain techniques, 2) time domain techniques, and 3) intelligent algorithms. 

 

Frequency-domain methods are the earliest and are considered the classical methods in 

this field. They primarily use direct inversion, least squares, or modal coordinate transformation 

techniques. These methods require inverting the frequency response function matrix to identify 

loads. However, matrix inversion often experiences significant ill-conditioning problems that 
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degrade solution accuracy (Zhang and Zhou 2023). Despite advancements in various techniques, 

industry professionals often favor frequency-domain methods for their maturity and reliability, 

making them a popular choice for identifying excitations like wind load, six-force-factor, and 

loads on mining machinery in numerous engineering applications (Hwang et al. 2016; Wang, 

Yang, and Xiao 2013; Wang et al. 2013; Zhang and Li 1986). 

 

Time-domain methods on the other hand directly incorporate time as a variable, making 

them more intuitive. The general procedure first uses a structure's model parameters to establish 

an inverse system model. Then, the input is identified from the system output(Jie Liu et al. 

2016). Many common time-domain methods employ modal decomposition or Duhamel integral 

techniques (CHE, Liu, and Jiang 2013; Li, Jiang, and Mohamed 2021). 

 

However, several factors limit the accuracy of dynamic load identification. These 

methods can experience ill-posedness, cumulative errors, and unclear system parameters 

(Beghini et al. 2023). Noise, complex structures, repeated frequencies, and resonance issues also 

substantially impact the accuracy of load identification. 

 

One of the early works in this field is the paper presented by O'Connor and Chan (1988), 

who introduced an interpretive time domain method to detect moving loads from bridge strain 

data. By modeling the bridge with lumped masses linked by massless elastic beams and 

analyzing the strains in a time series, they identified the loads (O’Connor and Chan 1988). Law 

et al. (1997, 1999) derived exact solutions for detecting moving forces on SSB (Law, Chan, and 

Zeng 1999). Chan et al. (1999) identified axle loads of a two-axle vehicle model using simulated 
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bridge responses (Chan et al. 1999). Zhu and Law (1999) combined modal superposition and 

optimization to locate forces on continuous multi span bridges (Zhu and Law 1999). However, 

these methods showed fluctuating force histories and noise sensitivity due to the ill-posed nature 

of the problem. To address this, Law et al. (1997, 1999) applied regularization techniques to time 

domain methods (Law et al. 2001), greatly improving result accuracy (Zhu and Law 1999). 

Regularization methods, notably direct techniques like Tikhonov regularization, play a pivotal 

role in stabilizing ill-posed problems by imposing constraints that guarantee stable and unique 

solutions. These strategies effectively balance the accuracy of data representation against the 

smoothness of the solution, thereby significantly boosting the dependability of mathematical 

models in various practical scenarios. Jacquelin (2003) (Jacquelin, Bennani, and Hamelin 2003) 

highlighted that while these methods are broadly applicable and stable, with rapid convergence 

rates, identifying suitable values for regularization parameters remains a challenge. Moreover, 

the Tikhonov regularization method, alongside Singular Value Decomposition (SVD) 

techniques, faces computational inefficiencies when applied to large-scale inverse problems. To 

address these limitations, several indirect regularization approaches have been developed, 

including the Landweber regularization method (Jang et al. 2011) and the conjugate gradient 

method (Jang 2013), offering alternative solutions for handling complex, large-scale 

computational challenges. 

 

The advancement of artificial intelligence has significantly impacted the field of 

structural engineering, particularly in addressing complex inverse problems like dynamic load 

identification. Utilizing a combination of ML and deep learning techniques has yielded notable 
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improvements in prediction accuracy, computational efficiency, and the management of time-

varying data characteristics. 

 

ML algorithms such as Gaussian process-based methods (Kyprioti and Taflanidis 2021; 

Su et al. 2021b, 2021b; Wan and Ni 2018; Wang, Liu, and Bian 2022). Quantile Random Forest 

(QRF) (Zhang et al. 2021c), and Genetic Algorithms (GA) (Jiang, Au, and Cheung 2003b) have 

proven effective in predicting structural responses under variable loads, like those from typhoons 

on long-span bridges. For instance, a model combining QRF and Bayesian optimization 

proposed by Zhang et al. (Zhang et al. 2021d) demonstrated enhanced prediction accuracy with 

reduced computational demands. ANN with early applications by Cao et al. (1998) (Cao, 

Sugiyama, and Mitsui 1998) in aircraft wing load identification laying the groundwork for future 

advancements. Back Propagation (BP) ANNs have been employed for accurately identifying 

vehicle characteristics on bridges (Yang, Yan, and He 2016b; Yang et al. 2016b; Zhong-Xian et 

al. 2008a), though they face challenges such as slow convergence and susceptibility to local 

minima. The adoption of RNN models has addressed the need to capture the dynamic nature of 

traffic loads, offering an improved understanding of time sequence data despite challenges with 

long-term temporal correlations (Wu et al. 2018a). The field has seen a shift towards more 

sophisticated deep learning approaches to enhance the identification process. Support vector 

regression (Liu, Wang, and Gu 2021), deep regression adaptation networks (Wang et al. 2021), 

and deep RNNs (Zhou et al. 2019a) represent a leap forward in tackling dynamic load challenges 

with higher accuracy and efficiency. Deep Learning's role in dynamic load identification is 

viewed as a regression problem, with the model choice tailored to specific data features and 

objectives. Techniques ranging from Multilayer Perceptron (MLP) for table data, Convolutional 
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Neural Networks (CNNs) for image processing, to Support Vector Machines (SVMs) for limited 

sample learning, showcase the adaptability and potential of intelligent algorithms in structural 

analysis (Zhou et al. 2019b). 

 

This application of machine and deep learning methods marks a promising direction for 

solving inverse problems in engineering. It highlights the potential for more accurate, efficient, 

and adaptable solutions in structural analysis and beyond, paving the way for innovative 

applications in the field. 

 

2.4. Application of RNN and LSTM in Load Identification 

 

 

The incorporation of advanced ANN models, specifically RNN and their enhanced 

variant, LSTM networks, has marked a significant evolution. These models address the intricate 

problem of capturing and analyzing time-varying characteristics inherent in structural loads, 

utilizing their unique architectures to manage the sequence data effectively. RNNs are 

fundamentally designed to handle sequential data like time series and sensors signals, making 

them useful for dynamic load identification, a problem characterized by its time series nature. 

However, conventional RNNs encounter significant challenges, such as gradient vanishing or 

exploding, which impair their ability to learn long-term dependencies within the data (Ni et al. 

2016, 2016; Wu et al. 2018b). This limitation is crucial in structural engineering, where the 

temporal dimension of load data can significantly influence prediction accuracy and model 

reliability. 
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To mitigate these issues, LSTM networks introduce a sophisticated memory mechanism 

that includes three specific gates: the input, forget, and output gates. This design allows LSTMs 

to selectively remember and forget information, a feature that significantly enhances their 

capacity to model long-term temporal dependencies without succumbing to the gradient 

problems that plague traditional RNNs (Hochreiter and Schmidhuber 1997; Wu et al. 2018c). 

The introduction of bidirectional LSTMs (BLSTMs) further extends this capability by processing 

data in both forward and backward directions, thereby capturing dependencies across the entire 

time series more effectively (Graves and Schmidhuber 2005a). 

 

The application of LSTM networks transcends dynamic load identification. Initially 

developed for natural language processing, LSTMs have found utility in diverse fields, 

demonstrating their versatility and effectiveness. For instance, they have been employed in 

phoneme classification (Graves and Schmidhuber 2005b), human activity recognition (Ordóñez 

and Roggen 2016), traffic flow prediction (Jiang et al. 2016), sequential data reliability learning 

(Jun Liu et al. 2016), and financial market trend analysis (Li, Zhang, and Zhao 2019). This wide 

range of applications underscores the LSTM's robustness and adaptability in handling complex 

time series data across different domains. 

 

In the context of structural engineering, LSTMs offer a data-driven approach to inverse 

problem-solving, avoiding the simplifications and assumptions inherent in traditional physical 

models. Yang et al. present a robust RNN with LSTM for dynamic load identification on SSBs, 

achieving high accuracy with position error rates of 1.27% for sinusoidal and 1.26% for random 

excitations, and signal-to-noise ratios of 36.42 and 46.28. The model, featuring a BLSTM and 
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two fully connected layers, demonstrates adaptability and minimal sensitivity to sensor 

placement, advancing applications in structural dynamics and ML (Yang et al. 2021b). 

 

A similar concept applied by Zhou et al. to predict time series problems utilized a deep 

RNN equipped with LSTM and BLSTM layers for dynamic impact load identification on 

nonlinear structures. Their approach, validated by an extensive dataset including training, 

validation, and testing sets, achieved stable performance metrics such as mean peak error, mean 

impulse error, and mean root-mean-square error (RMSE), demonstrating the method's 

insensitivity to sensor placement and hyperparameter variations. 

 

Zhang and Zhou (2023) developed an AI-driven methodology using an array of lead 

zirconium titanate sensors and LSTM networks to identify moving loads on bridges, aiming to 

improve structural management and maintenance. The system's dataset includes simulated 

moving speeds and loads, achieving identification with high accuracy, demonstrated by mean 

absolute errors as low as 0.015 m/s for speed and 0.335 N for magnitude, confirming its efficacy 

in real-time traffic load monitoring (Zhang and Zhou 2023). 

 

The integration of RNN and LSTM models into dynamic load identification represents a 

paradigm shift towards more intelligent, efficient, and accurate analysis techniques in structural 

engineering. Their ability to process and learn from time series data in a nuanced manner offers a 

promising avenue for enhancing the predictive modeling and understanding of complex 

structural behaviors under variable loading conditions. 
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CHAPTER III 

 

BASIC THEORY OF LSTM NETWORK AND APPLICATION IN INVERSE PROBLEM 

 

 

3.1. RNN Network 

 

 

Recurrent Neural Networks (RNNs) are particularly well-suited for modeling sequential 

data, such as time series from accelerometers for load prediction. The unique architecture of 

RNNs, which includes feedback loops, enables them to maintain a state or 'memory' of previous 

inputs, allowing for the retention and utilization of historical data over time. This characteristic is 

illustrated in Figure 1, which depicts the process of unfolding an RNN. The figure transitions 

from a single, compact RNN representation on the left to an extended sequence that showcases 

the network's operation over discrete time steps, labeled from 1 to t. Each time step consists of an 

input node (in grey), a hidden node (in green), and an output node (in orange), with arrows 

indicating the flow of information. Notably, the hidden nodes pass information both to the output 

and to the next time step, highlighting the recurrent nature of the network. The unfolding of the 

RNN across time steps demonstrates the network's capability to integrate current input with past 

information to make informed predictions, a process vital for complex tasks like load forecasting 

in dynamic environments (Yang et al. 2021c): 

𝐻(𝑡) = 𝑊ℎ𝑖 ⋅ 𝑋(𝑡) +𝑊ℎℎ ⋅ 𝑆(𝑡 − 1) + 𝑏ℎ (3.1) 

𝑆(𝑡) = 𝑓(𝐻(𝑡)) (3.2) 

𝑂(𝑡) = 𝑊oh ⋅ 𝑆(𝑡) (3.3) 
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Figure 1: Traditional RNN cell architectures for sequential data processing (Alzubaidi et al. 

2021) 

 

 

In these equations, X(t) represents the data input at time 𝑡, such as readings from an 

accelerometer. 𝐻(𝑡) is a combination of the input and the previous hidden state, reflecting the 

network's memory. The nonlinear function 𝑓 creates the hidden state 𝑆(𝑡), which in turn 

determines the output 𝑂(𝑡). This structure allows RNNs to capture and process the temporal 

patterns inherent in sequential data. 

 

The recurrent connections in the hidden layer are what set RNNs apart. They enable the 

network to adapt to various sequence lengths, making them flexible and capable of modeling 

complex dynamics. This adaptability is crucial for predicting loads from time series data, where 

capturing the flow and trends in the sequence is key. 
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3.2. LSTM Network 

 

 

LSTM networks have emerged as an evolution of RNNs, addressing the shortcomings of 

their precursor in handling sequential data. Originating from the multi-layer perceptron, RNNs 

were designed with the capability to process sequences by utilizing a hidden state as memory, 

allowing them to preserve temporal dependencies. The structure of a simple RNN features loops 

where the output of the hidden layer at one time step becomes part of the input at the subsequent 

step (Van Houdt, Mosquera, and Nápoles 2020). However, the vanishing gradient problem, as 

identified by Bengio et al. (1994), presents a significant obstacle to neural network training, 

particularly in learning long-term dependencies within extensive time series data (Lipton, 

Berkowitz, and Elkan 2015). This issue hinders the network's ability to effectively propagate 

information through many layers, affecting its learning capability for tasks requiring memory of 

long sequences. especially for the long-time series. Figure 2 is a standard LSTM cell where xt is 

the input information at time t, ht is the output information at time t, and the hidden layer A 

transports the information at time t-1 to time t recurrently in order to maintain the previous 

information at the present moment. 

 

Figure 2: LSTM cell architectures for sequential data processing (Liu 2020) 
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Figure 2 shows the process of a traditional RNN which can be expressed mathematically as 

follows: 

 

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊ℎ𝑊𝑡−1 +𝑊𝑥𝑥𝑡 + 𝑏) (3.4) 

 

where tanh(.) is an activation function defined as follows: 

𝑡𝑎𝑛ℎ (𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (3.5) 

 

LSTM networks were conceived to overcome this limitation of the vanishing gradient 

problem by introducing a more sophisticated hidden layer structure. Hochreiter and Schmidhuber 

(1997) introduced mechanisms within the LSTM that enable the network to selectively retain or 

discard information through a series of gated operations (Hochreiter and Schmidhuber 1997). A 

typical LSTM unit comprises a memory cell state that traverses the entire chain, along with three 

gates: the forget gate, input gate, and output gate (Gers, Schmidhuber, and Cummins 2000). 

 

The memory cell state is central to the LSTM's design, maintaining the flow of 

information and ensuring the network's capability to handle long sequences effectively. Each 

gate within the LSTM performs distinct functions as follows: Forget Gate (ft), Input Gate (it), 

Cell State Update (ct), Output Gate (ot). 

 

Figure 3: Schematic diagram of LSTM cell operations and information flow (Sanatel and 

Günel 2023) 
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3.2.1. Forget Gate (ft) 

 

The forget gate in an LSTM cell is responsible for determining which information from 

the cell state is retained or discarded as the network processes data. It is a crucial component that 

helps in mitigating the vanishing gradient problem commonly faced in traditional RNNs by 

selectively maintaining relevant information through long sequences (Yang et al. 2021c). 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (3.6) 

  

𝑓𝑡 is the output of the forget gate at time step, σ is the sigmoid activation function that outputs a 

value between 0 and 1, 𝑊𝑥𝑓 is the weight matrix associated with the input, 𝑥𝑡 is input vector at 

the current time step, 𝑊ℎ𝑓 is weight matrix associated with the hidden state, ℎ𝑡−1 is hidden state 

vector from the previous time step, and 𝑏𝑓  is bias term for the forget gate. 

 

The output 𝑓𝑡 of the forget gate is a vector with values between 0 and 1. This output is 

element-wise multiplied by the previous cell state 𝑐𝑡−1 to determine which information is to be 

retained (values close to 1) or forgotten (values close to 0). This mechanism allows the LSTM to 

preserve long-term dependencies while removing information that is no longer relevant for future 

steps. 

 

3.2.2. Input Gate (it) and Candidate Layer (gt) 

 

The input gate in an LSTM cell is denoted as  it and it plays a pivotal role in updating the 

cell state with new information. The gate uses a sigmoid activation function to carefully decide 

which values will be allowed to pass through (Yang et al. 2021c). The mathematical 

representation is: 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (3.7) 
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In this equation, 𝑊𝑥𝑖 is the weight matrix that interacts with the input at the current time step 

(𝑥𝑡), 𝑊ℎ𝑖 is the weight matrix applied to the output of the previous time step's hidden state, and 

𝑏𝑖 is s the bias term, adding an offset to the gate's activity. 

 

In conjunction with the input gate, the candidate layer, represented by: 

𝑔𝑡 = 𝜑(𝑊𝑥𝑔𝑥𝑡 +𝑊ℎ𝑔ℎ𝑡−1 + 𝑏𝑔) (3.8) 

 

𝜑 typically signifies the tanh activation function, which outputs values in the range of -1 to 1, 

providing a regulated input to the cell state. In Equation (3.8), 𝑊𝑥𝑔 and 𝑊ℎ𝑔 are weight matrices 

for the input vector 𝑥𝑡 and the previous hidden state ℎ𝑡−1 respectively, 𝑏𝑔 is the bias term for the 

candidate layer. 

 

The output of the input gate 𝑖𝑡 and the candidate layer 𝑔𝑡 are crucial components in 

updating the cell state, combining to form a filtered addition to the cell state. This process allows 

the network to maintain a memory of previous inputs in a controlled manner, contributing 

significantly to the LSTM's ability to capture long-term dependencies in data. 

 

3.2.3. Cell State Update (ct): 

 

The cell state update is a fundamental part of an LSTM cell's functionality, representing 

the cell's memory at each time step. The cell state, denoted as 𝑐𝑡, is updated by combining past 

information, held in the previous cell state 𝑐𝑡−1, with new candidate values proposed by the 

candidate layer 𝑔𝑡 as shown below, 

𝑐𝑡 = 𝑓𝑡⊙ 𝑐𝑡‑1 + 𝑖𝑡⊙ 𝑔𝑡 (3.9) 
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where 𝑐𝑡 is the new cell state at the current time step, 𝑓𝑡 is the output of the forget gate at the 

current time step t, applied to the previous cell state, 𝑐𝑡−1  is the previous cell state from the time 

step t−1, and 𝑖𝑡 is the output of the input gate at the current time step t, regulating the addition of 

new information. In Equation (3.9), 𝑔𝑡 is the vector of candidate values created by the candidate 

layer, which could be added to the cell state, and ⊙ is the Element-wise multiplication, also 

known as the Hadamard product, ensuring that each element of the forget gate output and the 

input gate output is applied to corresponding elements of the previous cell state and the candidate 

values, respectively. 

 

The update process of 𝑐𝑡 is critical for the LSTM's ability to carry relevant information 

throughout the processing of sequences, allowing the network to maintain long-term 

dependencies. This is particularly useful in tasks where context from earlier in the sequence is 

necessary to understand later elements, such as in language modeling or time-series prediction. 

The careful modulation of information flow by the forget and input gates allows the LSTM to 

manage its memory effectively, preventing the vanishing gradient problem and enabling the 

network to learn over many time steps. 

 

3.2.4. Output Gate (ot) and Hidden State (ht) 

 

The output gate and hidden state within an LSTM cell play crucial roles in determining 

the final output at each time step, taking into account the current cell state and the previous 

outputs. The output gate decides which parts of the cell state will contribute to the hidden state, 

which in turn influences the cell’s output at the current time step and the state passed to the next 

time step. 
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The output gate’s activation, 𝑜𝑡, is computed as follows: 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (3.10) 

 

where 𝑜𝑡 is the output of the output gate, which regulates the flow of information from the cell 

state to the hidden state. In this equation, 𝑊𝑥𝑜 is the weight matrix for the output gate applied to 

the input vector 𝑥𝑡 at the current time step, 𝑥𝑡 is the input vector at the current time step, 𝑊𝑥𝑜 is 

the weight matrix for the output gate applied to the previous hidden state ℎ𝑡−1 from the previous 

time step, and bo is the bias term for the output gate. 

 

The hidden state ht is updated using the output of the output gate and the current cell 

state ct, passed through a tanh function to normalize its values: 

ℎ𝑡 = 𝑜𝑡⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) (3.11) 

 

where ht is the hidden state vector at the current time step, ot is the output from the output gate, 

which decides how much of the cell state is passed to the hidden state, and tanh(ct) is the 

hyperbolic tangent of the current cell state, normalizing it to values between -1 and 1. In this 

equation, 𝑐𝑡 is the current cell state, representing the memory of the network up to the current 

time step. 

 

The interplay between the output gate and the updated cell state to produce the hidden 

state allows the LSTM to effectively control the amount of memory information influencing the 

output and being carried forward. This mechanism enables LSTMs to make decisions based on 

long-term dependencies, addressing challenges in sequence prediction tasks such as language 

modeling, time-series analysis, and more. 
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CHAPTER IV 

 

NUMERICAL MODELING OF DYNAMIC SYSTEM SUBJECTED TO MOVING LOAD 

 

 

In Chapter 4, the examination of numerical modeling of dynamic systems subjected to 

moving loads focuses on two models: a simple beam and a bridge. These models were selected 

to illustrate both fundamental response characteristics and complex interactions under dynamic 

conditions. Through simulations, the aim is to enhance understanding and predictive capability 

of structural behavior, facilitating advanced analysis and design in practical engineering 

applications. 

 

4.1. Simply Supported Beam (SSB) 

 

4.1.1. Single Axle Load 

 

In this section, we introduce and validate a Finite Element (FE) model of a Simply 

Supported Beam (SSB) bridge through comparison with analytical solutions. Specifically, as 

shown in Figure 4, we focus on a single span simply supported railroad bridge subjected to a 

single axle load (P) traveling at a constant speed (V). This model simplifies the bridge as a linear 

elastic system, assuming it has a uniform cross-section along with constant mass and flexural 

rigidity (EI). 
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Figure 4: SSB model under transverse concentrated moving load. 

 

The vertical displacement of the simply supported single-span bridge mentioned 

previously can be calculated analytically as follows. Let u (x, t) represent the displacement of the 

beam in the y-axis at position x and time t, with L denoting the bridge length, m the mass per unit 

length, ce the external damping coefficient, ci the internal damping coefficient, E the modulus of 

elasticity, and I the moment of inertia. To simplify the model while maintaining accuracy, we 

make several assumptions: (i) the bridge is homogeneous with a constant cross-section, (ii) only 

one moving load is present on the bridge at any time, (iii) only the moving force is considered, 

ignoring inertia effects, (iv) the load moves at a constant speed v across the entire bridge, (v) the 

bridge starts from a state of rest, and (vi) we disregard any surface irregularities of the bridge and 

track. The motion equation for a SSB subjected to a moving force P at a constant speed v is then 

introduced as follows (Pokhrel 2023): 

𝑚𝑢̈ + 𝑐𝑒𝑢̇ + 𝑐𝑖𝐼𝑢̇
⁗ + 𝐸𝐼𝑢⁗ = 𝑃𝛿(𝑥 − 𝑣𝑡),                      0 ≤ 𝑣𝑡 ≤ 𝐿  (4.1) 

 

Where, primes (′) and dots (˙) denote differentiation with respect to coordinate x and time t, 

respectively, and δ is the Dirac delta function. The boundary conditions are. 

𝑢(0, 𝑡) = 0,  𝑢(𝐿, 𝑡) = 0,  𝐸𝐼𝑢″(0, 𝑡) = 0,  𝐸𝐼𝑢″(𝐿, 𝑡) = 0 (4.2) 
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The beam is assumed to be at rest prior to the arrival of the moving vehicle so the initial 

conditions are. 

𝑢(𝑥, 0) = 0,  𝑢̇(𝑥, 0) = 0 (4.3) 

 

The transverse deflection of the beam u (x, t) due to only the nth mode of vibration can be 

written as, 

𝑢(𝑥, 𝑡) = ∅𝑛(𝑥)𝑞𝑛(𝑡) (4.4) 

Where, Φn is the nth vibration mode which satisfies boundary conditions. qn(t) represents the 

generalized coordinate for the nth vibration mode. 

Substituting value of Equation (4.4) in Equation (4.1), Multiplying both sides of Equation (4.1) 

by Φn and integrating with respect to x from 0 to L, the generalized equation of motion of the 

beam is obtained as 

𝑚𝑞̈𝑛 (𝑡)∫ [∅𝑛(𝑥)]
2𝑑𝑥 + 𝑞𝑛̇(𝑡) ×

𝐿

0

{𝑐𝑒∫ [∅𝑛(𝑥)]
2𝑑𝑥 + 𝑐𝑖𝐼

𝐿

0

∫ ∅𝑛
⟨4⟩(𝑥)∅𝑛(𝑥)𝑑𝑥

𝐿

0

}

+ 𝐸𝐼𝑞𝑛(𝑡)∫ ∅𝑛
⟨4⟩(𝑥)∅𝑛(𝑥)𝑑𝑥

𝐿

0

= 𝑝∅𝑛(𝑣𝑡) 

(4.5) 

where, 

∫ 𝛿(𝑥 − 𝑎)∅𝑛(𝑥)𝑑𝑥 
𝐿

0

= ∅𝑛(𝑎) (4.6) 

  

Let us denote the vibration frequency ωn of the nth mode of the beam as 

𝜔𝑛
2 =

𝐸𝐼

𝑚

∫ ∅𝑛
⟨4⟩(𝑥)∅𝑛(𝑥)𝑑𝑥

𝐿

0

∫ [∅𝑛(𝑥)]2𝑑𝑥
𝐿

0

 (4.7) 

 

We can write, 𝑐𝑒 = 𝛼𝑒𝑚, and 𝑐𝑖 = 𝛼𝑖𝐸 and ξn is the corresponding damping coefficient for nth 

mode of vibration given by, 

𝜉𝑛 =
1

2
(
𝛼𝑒
𝜔𝑛

+ 𝛼𝑖𝜔𝑛) (4.8) 

Then Equation (4.5) becomes 
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𝑞̈𝑛  + 2𝜉𝑛𝜔𝑛𝑞𝑛̇ + 𝜔𝑛
2𝑞𝑛 =

𝑝∅𝑛(𝑣𝑡)

∫ 𝑚[∅𝑛(𝑥)]2𝑑𝑥
𝐿

0

 (4.9) 

 

This equation of motion is valid only when the acting position vt of the moving load is located 

within the beam, i.e., 0 ≤ vt ≤ L. Once the moving load leaves the beam, only free vibration 

remains.  

 

For a simply supported beam, the nth mode shape of vibration is given by, 

∅𝑛(𝑥) = 𝑠𝑖𝑛
𝑛𝜋𝑥

𝐿
 (4.10) 

 

and the frequency of vibration ωn obtained from Equation (4.7) is, 

𝜔𝑛 = (
𝑛𝜋

𝐿
)
2

√
𝐸𝐼

𝑚
 (4.11) 

 

Substituting the value into Equation (4.9) yields the equation of motion for the nth mode 

of the SSB as 

q̈n  + 2ξnωnqṅ +ωn
2qn =

2p

mL
sin (

nπvt

L
) (4.12) 

 

which is uncoupled from the other modes of vibration. From this equation, the generalized 

coordinate of qn for the nth mode can be solved as 

qn =
2pL3/(EIn4π4)

(1 − Sn
2)2 + (2ξnSn)2

×

{
 

 

(1 − Sn
2) sinΩnt − 2ξnSn cos Ωnt

+ e−ξnωnt

[
 
 
 

2ξnSn cosωdnt +
Sn

√1 − ξn
2

(2ξn
2 + Sn

2 − 1) sinωdnt

]
 
 
 

}
 

 

 

(4.13) 
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Where, ωdn is the damped frequency of vibration of the beam and given by 

ωdn = ωn√1 − ξn
2
 (4.14) 

Ωn is the excitation frequency.  

Ωn =
nπv

L
 (4.15) 

Sn is the non-dimensional speed parameter defined as the ratio of the frequency of excitation of 

the moving load to the nth frequency of vibration of the beam. 

Sn =
Ωn
ωn

=
nπv

ωnL
 (4.16) 

 

Consequently, the total displacement u(x, t) of the beam caused by all the vibration 

modes can be summed as follows: 

u(x, t) = ∑

2pL3

EIn4π4

(1 − Sn
2)
2
+ (2ξnSn)2

∞

n=1

×

{
 

 

(1 − Sn
2) sinΩnt − 2ξnSn cos Ωnt

+ e−ξnωnt

[
 
 
 

2ξnSn cosωdnt +
Sn

√1 − ξn
2

(2ξn
2 + Sn

2 − 1) sinωdnt

]
 
 
 

}
 

 

× sin
nπx

L
 

(4.17) 

 

This is the solution for displacement of the beam caused by a single moving load while 

considering the effect of damping.  

 

In the above Equation (4.16), the terms containing Ωnt represents the forced vibration of 

the bridge induced by the moving load, and the terms with ωdnt are the free vibration. This 
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equation applies within the limit of the beam length. After the load has passed, the response is a 

free vibration with initial conditions equal to the conditions in the beam at the moment when the 

force leaves the span. 

 

Practically, the effect of damping on the bridge is so small, due to the short acting time of 

the moving loads. So, it can be ignored completely. By neglecting the effect of damping, the total 

displacement u (x, t) can be written as; 

u(x, t) =
2pL3

EIπ4
∑

1

n4
sin

nπx

L

∞

n=1

× (
sinΩnt − Sn sinωnt

1 − Sn
2 ) (4.18) 

This is the equation of displacement of the simple beam at section x subjected to the moving load 

p acting at position vt without damping effect. 

 

The result obtained for the midpoint displacement by considering the first mode only is 

sufficient, because all the anti-symmetric modes of vibration have zero contribution to the 

midpoint displacement. This gives the sense of using only the first mode which can yield 

generally good approximate solutions for vehicle-induced response (Yang et al., 2004). 

 

4.1.2. Multi Axle Load 

 

To assess the impact of various loading scenarios on railway structures, a scaled beam 

model with two moving point loads was utilized as shown in Figure 5. This theoretical 

framework allows for the addition of multiple axles, accurately simulating a full-scale train with 

variable axle spacings. This method enables precise representation and analysis of complex 

loading dynamics in railway systems, ensuring their structural integrity under diverse conditions. 
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Figure 5: SSB subjected to double moving point loads (N=2) 

 

Let’s examine a simplified beam model of length L, subject to two-point loads at an axle 

distance d. This setup would be iteratively replicated in real-world applications to accommodate 

variable axle spacings. Within this context, the wheel load function F(t) characterizes the 

dynamic load distribution of a train moving along the beam. This function is crucial for 

determining the stress response of the beam under transient loading conditions, enabling the 

evaluation of structural performance and resilience. The function F(t) can be defined as (Pokhrel 

2023): 

𝐹(𝑡) =∑𝑃 × 𝑈𝑗(𝑡, 𝑣, 𝐿)

𝑁

𝑗=1

 (4.19) 

where, 

𝑈𝑗(𝑡, 𝑣, 𝐿) = 𝛿[𝑥 − 𝑣(𝑡 − 𝑡𝑗] × [𝐻(𝑡 − 𝑡𝑗) − 𝐻 (𝑡 − 𝑡𝑗 −
𝐿

𝑣
)] (4.20) 

 

In Equation 4.20 δ is dirac delta function, x is coordinate of the beam, H is step function, tj is 

arriving time of the jth load at the beam, tj = (j − 1)d/v, and N - total number of moving loads. 

The action of the jth  moving load is effective by the term H(t−tj) once entering the beam, and 

will be disabled by the term H(t − tj − L/v) while it leaves the beam. 

Then Equation (4.19) can be modified to. 
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𝐹(𝑡) =∑𝑃 × [𝑈𝑗(𝑡, 𝑣, 𝐿) + 𝑈𝑗(𝑡 − 𝑡𝑐, 𝑣, 𝐿)]

𝑁

𝑗=1

 (4.21) 

 

This is applicable once neglecting the effect of inertia of the moving masses and the train 

bridge interaction. Again, the forcing function Fn(t) for the nth generalized coordinate can be 

given by 

𝐹𝑛(𝑡) =
2𝑃

𝑚𝐿
∑[𝑓𝑛(𝑡, 𝑣, 𝐿) + 𝑓𝑛(𝑡 − 𝑡𝑐, 𝑣, 𝐿)]

𝑁

𝑗=1

 (4.22) 

 

If only the effects of moving loads are considered, the equation of motion in terms of 

generalized coordinate qn 

𝑞𝑛̈ + 2𝜉𝑛𝜔𝑛𝑞𝑛̇ + 𝜔𝑛
2𝑞𝑛 = 𝐹𝑛(𝑡) (4.23) 

𝑞𝑛(𝑡) =
1

𝑚𝜔𝑑𝑛
∫ 𝐹𝑛(𝜏)𝑒

−𝜉𝑛𝜔𝑛(𝑡−𝜏) × 𝑠𝑖𝑛 𝜔𝑑𝑛(𝑡 − 𝜏)𝑑𝜏
𝑡

0

 (4.24) 

=
2𝑃𝐿3

𝐸𝐼𝜋4
[𝑃𝑛(𝑣, 𝑡) + 𝑃𝑛(𝑣, 𝑡 − 𝑡𝑐)] (4.25) 

 

where ωdn is the damped frequency of vibration of the beam given by  

𝜔𝑑𝑛 = 𝜔𝑛√1 − 𝜉𝑛
2
  (4.26) 

 

The function Pn(v, t) can be expressed as 

Pn(v, t) =
1

n4
∑

1

(1 − Sn
2)2 + 4(ξnSn)2

N

j=1

× [A × H(t − tj) + (−1)
n+1 × B × H(t − tj −

L

v
)] 

(4.27) 

Here the value of A and B are found as, 
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A = (1 − Sn
2) sinΩn(t − tj) − 2ξnSn cos Ωn(t − tj)

+ e−ξnωn(t−tj)

×

[
 
 
 

2ξnSn cosωdn(t − tj) +
Sn

√1 − ξn
2

(2ξn
2 + Sn

2

− 1) sinωdn(t − tj)

]
 
 
 

 

(4.28) 

B = (1 − Sn
2) sinΩn (t − tj −

L

v
) − 2ξnSn cosΩn (t − tj −

L

v
)

+ e−ξnωn(t−tj−
L
v
)

×

[
 
 
 

2ξnSn cosωdn (t − tj −
L

v
) +

Sn

√1 − ξn
2

(2ξn
2 + Sn

2

− 1) sinωdn (t − tj −
L

v
)

]
 
 
 

 

(4.29) 

 

Where, Ωn denotes the exciting frequencies of the moving loads, Ωn = nπv/L, and the 

speed parameter, Sn = nπv/(ωnL). 

 

The terms Pn(v, t) and Pn(v, t − tc) in Equation (3.20) represent the dynamic responses 

excited by the two sets of wheel loads, and the second set has a time lag tc after the front set of 

loads. Neglecting the effect of damping and considering only the first mode of vibration, the 

dynamic response of the beam can be derived as 

u(x, t) =
2pL3

EIπ4
×

1

1 − Sn
2 sin

πx

L
[P1(v, t) + P1(v, t − tc)] (4.30) 

 

where the response function P1(v, t) for the first set of wheel loads is given by. 
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P1(v, t) =∑{[sinΩ1(t − tj) − S1 sinω1(t − tj)] × H(t − tj) + sinΩ1 (t − tj −
L

v
)

N

k=1

− S1 sinω1 (t − tj −
L

v
) × H(t − tj −

L

v
)} 

(4.31) 

 

The terms P1(v, t) and P1(v, t − tc) denote the contribution of the front and rear wheel 

loads, respectively. Depending on the bridge/car length ratio L/d, there may be different number 

of wheel loads or no loads acting on the railroad bridge during the passage of the train. So, The 

most severe case occurs when the front wheel load of the (N − 1)th car has left the bridge, and the 

front wheel load of the Nth car has entered the bridge, namely, when the rear wheel load of the (N 

− 1)th car and the front wheel load of the Nth car are simultaneously acting on the bridge. 

 

The dynamic response of the beam has been excited to the maximum by the former N − 1 

cars that have passed the bridge. For this case, tN < t < (tN + L/v) and the Equation (4.32) 

becomes 

P1(v, t) = [sinΩ1(t − tN) − S1 sinω1(t − tN)] × H(t − tN)

− 2S1 cos
ω1L

2v
× sinω1 (t −

L

2v
)

+ sinω1 (t −
L

2v
−
tN
2
) ×

sinω1 (
tN
2 −

d
2v)

sin
ω1d
2v

× H(t − tN−1 −
L

v
) 

(4.32) 

 

The term containing H(t − tN) represents the dynamic response of the beam induced by 

the motion of the Nth front wheel load of the train, and the term containing H(t − tN −1− L/v) is 

the free vibration caused by the former N−1 front wheel loads that have passed the bridge. Since 

the two response functions P1(v, t) and P1(v, t − tc) are similar in nature, only the function P1(v, t) 

for the first set of wheel loads is considered in the above Equation (4.32) 
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4.2. Devon Railroad Bridge and Dynamic Analysis 

 

4.2.1. Overview of Devon Railroad Bridge 

 

The bridge analyzed is in Milford, Connecticut, and forms part of the Northeast Rail 

Corridor that connects Washington, D.C., and Boston, Massachusetts. This open-deck steel truss 

railroad bridge, constructed around 1900, is designed for high-speed trains and stretches 325.2 

meters across the Housatonic River. It features a seven-span, double-track through truss structure 

(Malla et al. 2017). 

 

The study focuses on a 66.15-meter-long span near the bridge's east abutment. This 

bridge has two tracks spaced 3.86 meters apart, with wooden ties and stringers that are 1.98 

meters apart laterally. The selected truss span includes seven panels, where stringers are linked to 

floor beams set 9.45 meters apart along its length. The bridge utilizes a lateral wind bracing 

system, with built-up members forming the truss end-bracings, verticals, and top chords, while 

eye bars of varying counts make up the midspan diagonals and bottom chords. The lower lateral 

braces are single-angle sections, and the upper ones are channel sections. 

 

Figures 6 to 9 illustrate the detailed elevation and plan views of the truss span under 

study. The stringers, organized into 14 panels, support floor beams placed 4.725 meters apart 

longitudinally. These beams are constructed from web plates, flanges, angles, and cover plates, 

with varying numbers and thicknesses. Rolled W 36×150 I-beams form the stringers, as 

described by Malla et al. (2017) (Malla et al. 2017). 
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Figure 6: Photograph of Devon railroad bridge, Milford, Connecticut. (Malla et al., 2017) 

 
Figure 7: Arrangement of principle members of Devon bridge (Baniya et al., 2015) 
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Figure 8: Top Chord plan (Baniya et al., 2015) 

 

Figure 9: Bottom chord plan (Baniya et al., 2015)  

 

4.2.2. Dynamics of Train Loading and FE Model in SAP2000 

 

In modeling train loads, a methodology akin to vehicle systems was employed, focusing 

on the contact between the train's wheels and the track and overlooking the impact of mass 

inertia. The SAP2000 software was used, given its limitation to model only moving constant 

forces instead of a moving mass system. The chosen model for this study, depicted in Figure 10, 

is the Amtrak Acela train, which represents a critical load configuration on the infrastructure. 

 

A detailed 3D FE model of the Devon railroad bridge's superstructure was developed 

within SAP2000, highlighting the direct transfer of loads from the train to the rail, and then to 
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stringers and cross girders. The model, which is displayed in Figure 11, simplifies the support 

conditions by defining the west end as a hinge and the east end as a roller. It is assumed that the 

intersection of all primary members' centerlines at the centroids of their cross-sections preserves 

the integrity of the bridge's complex steel truss structure without compromising the accuracy of 

the results. The categorization of bridge components into axial and bending members informs the 

analysis, as shown in Table 1, and plays a crucial role in understanding the bridge's behavior 

under train loading. 

 

 

Figure 10: Configuration of loading from Amtrak Acela Train (Pokhrel 2023) 

 

Amtrak Acela train and axle loads have been simulated in SAP2000 for FE modeling. 

 

Figure 11: 3D model of Amtrak Acela train and axle loads in SAP2000 (Pokhrel 2023) 
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4.2.3. Mode Shapes and Model Validation 

 

The model's validation was grounded in field test data, with measurements from 

accelerometers and Linear Variable Differential Transformers (LVDT) taken during train 

passages (Malla et al. 2017). The correlation between the natural frequencies from the FE model 

and the field data, presented in Table 1, demonstrates the model’s validity. Moreover, a 

comprehensive modal analysis yielded 50 mode shapes and frequencies, substantially aligning 

with field data, underscoring the model's ability to capture the bridge's dynamic response. The 

key mode shapes are presented in Figure 12, with the first lateral and vertical modes being 

particularly significant for understanding the bridge's behavior. 

Table 1: Natural frequencies of different modes from FE model and field study (Pokhrel 2023) 

Mode Number (Global) 
Natural Frequency (Hz) 

FE model Field data (Malla et al., 2017) 

First lateral mode (Mode 1) 1.6 1.6 

Second lateral mode (Mode 2) 2.5 3.3 

First vertical mode (Mode 4) 4.4 4.6 

 

 

 

 

 

 

 

 

(b) 
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(a) Mode 1 (First lateral mode)                      (b) Mode 2 (Second lateral mode) 

 
(c) Mode 4 (First vertical mode) 

Figure 12: Mode shapes of the bridge resulted from the FE model (Pokhrel 2023) 

 

4.2.4. Transient Time History Analysis 

 

The transient time history analysis, integral for assessing dynamic responses, was 

performed on the FE model to capture the acceleration response at various train speeds. This 

analysis examines how higher speeds affect the bridge's vibrational frequencies and identifies 

damage through anomalies in acceleration signals, particularly in the vertical acceleration, which 

is more sensitive to damage and stiffness loss in the bridge's deck members. 
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4.3. Comparative Study with Other Finite Element Software 

 

 

The research starts with creating a model of a SSB based on the numerical validations 

provided by Yang et al (Yang et al. 2004). To confirm the accuracy of the results and to compile 

the datasets, the model is checked against various methods and sources. This beam model is then 

analyzed for deflection and acceleration when a moving point load is applied, using software like 

SAP2000 and OpenSEESPy. This detailed process helps validate the beam model, ensuring that 

the data collected for structural analysis is reliable. 

 

4.3.1. Formulation of Moving Load Scenario using OpenSEESPy 

 

This study introduces a computational framework developed in the OpenSEESPy 

interface, part of the OpenSEES open-source software project, for simulating the dynamic 

response of SSBs subjected to moving point loads. The methodology involves discretizing the 

beam into finite elements and setting up nodes at uniform intervals along its length. It then 

applies boundary conditions that prevent horizontal and vertical movements at the beam's ends 

but permit rotation. The approach proceeds by applying a point load along the Y-axis to each 

node, paced according to the timestep intervals. This process is designed to simulate dynamic 

loading conditions by transferring the applied load from node to node and then removing it in 

accordance with the timestep intervals, ensuring that static loads do not accumulate. 

Consequently, larger timesteps may lead to a response resembling that of a static system, 

whereas smaller timesteps are utilized to ensure a behavior that closely approximates dynamic 

conditions. It defines elastic beam column elements with attributes such as cross-sectional area, 

Young's modulus, and moment of inertia, incorporating geometric transformations for realism. 
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Utilizing the transient analysis method with Newmark integration, the framework employs a 

BandGeneral system solver, Transformation constraints, and a Modified Newton algorithm for 

energy increment convergence testing. A key feature of the study is the dynamic application of 

moving loads, simulating the effect of load traversal over time. This enables a detailed analysis 

of displacement responses at critical beam points, enhancing our understanding of structural 

dynamics under such loading conditions. The chosen simulation parameters, including load 

speed, duration, and timestep, are carefully selected to capture the intricate behavior of beams 

under dynamic loads, offering valuable insights into structural performance and resilience. 

 

4.3.2. Model Validation for the Single Point Load Case 

 

The study examines a SSB characterized by specific parameters shown in Figure 13: 

Young's modulus E is set at 2.87 GPa, Poisson's ratio ν at 0.2, the moment of inertia I at 2.90 m4, 

mass per unit length m at 2303 kg/m, with a suspended mass Mv of 5750 kg, moving at a speed v 

of 100 km/h (Yang et al. 2004).  

 

 

Figure 13: Diagram of a SSB with a single moving point load 

 

To confirm the findings, a numerical simulation is carried out, supplemented by the 

analytical solution provided by c This is then paralleled with results from SAP2000 and 
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OpenSEESPy software. The central focus is on calculating the vertical displacement at the 

beam's mid-span. These calculations are then normalized against the maximum static 

displacement. The resulting graph delineates the impact of the moving load on both the 

displacement and acceleration at the mid-span of the beam. 

 



 

42 

 

 

 

 

Figure 14: Comparative analysis of beam deflections (a) analytical solution (b) OpenSEESPy (c) 

SAP2000 
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Figure 15: Comparative Analysis of Beam acceleration responses with time step, dt = 0.005 (a) 

analytical solution (b) OpenSEESPy (c) SAP2000 
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This analysis underscores the influence of timestep size on the acceleration responses 

observed in FE simulations. Utilizing smaller timesteps increases data point density, thereby 

unveiling notable variances across outcomes from various FE software. To more closely mirror 

analytical solutions and ensure uniformity among FE models, it is advisable to select timesteps 

ranging from 0.001 to 0.005. The Figure 15 presented was generated using a timestep (dt) of 

0.005. Nonetheless, dt=0.005 was selected as it most closely approximated the graph presented 

in the analytical solution by Yang et al (Yang et al. 2004) as shown in Figure 15 (a). Across all 

scenarios, a discretization length of 0.01 m was employed, a decision arrived at through trial and 

error, to enhance the accuracy of the simulation outcomes. 

 

4.3.3. Model Validation for the Double Point Load Case 

 

Adopting a timestep of dt = 0.005 and a discretized beam length of 0.01 m, the study 

extended the algorithm to model scenarios with a double point load by setting the distance 

between the two loads at 8m, each with a force of 56,384 KN. Results from both SAP2000 and 

OpenSEESPy showed matching deflections around 4 mm and similar patterns in acceleration 

responses. As shown in Figure 16 and 17. These parallel findings for simulations with single and 

double point loads affirm the moving load algorithm's accuracy, suggesting its suitability for 

further analytical exploration. 
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Figure 16: Comparative analysis of beam midpoint deflections with double point load (a) 

SAP2000 & (b) OpenSEESPy 

 

 

Figure 17: Comparative Analysis of Beam midpoint acceleration with double point load (a) 

SAP2000 & (b) OpenSEESPy 

 

  



 

46 

 

 

 

 

CHAPTER V 

 

PARAMETRIC STUDY 

 

 

In this chapter discussing the parametric study, the selection of a validated simply 

supported beam model served as the initial step, chosen for its simplicity and the robust 

capabilities of OpenSEESPy to execute iterative parameter loops, enabling the extraction of 

datasets across a broad spectrum of values. Subsequently, a finite element (FE) bridge model was 

utilized to gather datasets within a constrained range from the SAP2000 model. The optimal 

values identified from the LSTM model analysis will then be applied to assess its predictive 

performance, taking into account the optimal hyperparameters. This structured approach 

facilitates a comprehensive evaluation of model efficacy across varying structural scenarios. 

 

5.1. LSTM for Simply Supported Beam under a Double Axles Moving Load 

 

 

 

5.1.1. Dataset Preparation 

 

The analysis began with a validated SSB, selected for its simplicity and the robustness of 

OpenSEESPy, which allows for efficient iteration over a range of parameters to gather extensive 

datasets. Initially, the dataset comprised responses from the simply supported beam under the 

influence of two-point loads, as detailed in section 4.3.3. Data points were collected from three 

designated points on the beam L/3, L/2, and 2L/3. For the initial dataset, speed values ranged 

from 20 m/s to 30 m/s in increments of 0.5 m/s, load values from 50 KN to 100 KN in 
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increments of 10 KN, and axle distances from 5 m to 10 m in 1m increments. This 

parameterization yielded a total of 720 data sets. The datasets were compiled into comma-

separated values (CSV) files, with all response data both displacements and accelerations 

sequentially arranged in the same columns. 

 

In this research, the assembly and integration of datasets into a singular comma-separated 

file was a deliberate process undertaken to explicate the usage of LSTM models for analyzing 

sequential data. These models are adept at handling time series where data points xt are 

documented across a series of time steps t = t0…tN, with N symbolizing the sequence's extent. 

For data encompassing D dimensions, a sequence or "dataset" is characterized by the shape 

N×D. 

 

When sequences are of uniform length N, with B sequences available, they can be 

arrayed into a tensor shaped B×N×D, encapsulating the dataset for model utilization. In this 

tensor, B signifies the batch axis, marking the dimension for stacking independent sequences. 

Should the entire dataset be utilized for training simultaneously, it would be introduced into the 

model as a tensor of size B×N×D, defining the batch size as B. 

 

If, however, sequences display differing lengths, the training approach must be adapted. 

One must ascertain whether the entirety of each sequence is crucial for training. If segments of 

the sequence, n<N, are sufficient for prediction, one could select b sequences of this length n, 

hereby defining a new discretionary batch size b. 
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In instances where only the full sequence length can facilitate accurate predictions, it is 

advised to process each sequence independently, effectively designating each sequence as an 

individual batch (b=1). This requires the model to be provided with tensors of dimension b×n×D, 

which takes into account the challenge of aligning sequences of diverse lengths. 

 

 

Figure 18: Types of RNN architectures: one-to-one, one-to-many, many-to-one, many-to-

many, and many-to-many (Anon n.d.) 

 

 

Turning to LSTM architectures and specifically addressing the many-to-one and many-

to-many configurations, these are particularly relevant for their application in time series 

analysis. Within the Keras framework, "time steps" correspond to the number of LSTM cells and 

define one dimension in the shape of the 3D tensor [batch_size, timesteps, input_dim]. 

 

Illustrating this concept, a dataset comprising 2 features across 6 time steps serves as a 

reference. The many-to-one architecture necessitates the data to be reshaped such that 

predictions at a given time step t rely on a determined number of preceding time step features. 

The "input_dim" in the 3D tensor mirrors the number of features in the initial 2D dataset; in this 
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example, "input_dim" is 2. A specific function will be crafted to transform the 2D data into the 

desired 3D "sliding window" form. 

 

Figure 19: Many-to-one sequence prediction example using RNNs (Bikmukhametov 2020) 

 

Addressing a many-to-many LSTM challenge, the Python code in our study adeptly 

preprocesses data by reformatting sensor measurements into a configuration suitable for LSTM 

training. This involves three sensors providing acceleration or displacement data, identified as 

features X1, X2, and X3, which are then associated with the corresponding targets Speed, Load, 

and Axle distance, labeled as Y1, Y2, and Y3, respectively. The processed datasets are structured 

with the batch size B and sequence length N, both discernible from the data's tensor shapes 720 

batches each containing 200 sequential readings represented by 3 features. To enhance the 

model’s ability to perform, a StandardScaler transformation is employed, standardizing both the 

input features and target outcomes to have a mean value of zero and a standard deviation of one. 

Such standardization is crucial for the neural network's learning algorithm, as it helps ensure 

efficient and reliable convergence during training. 
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5.1.2. Hyperparameters of the LSTM Network 

 

Regularization 

 

Regularization is a technique used to prevent overfitting, a common problem in ML 

where a model learns the training data so well that it performs poorly on new, unseen data 

(Merity, Keskar, and Socher 2017). It works by adding a penalty for complexity to the loss 

function, encouraging the model to keep the weights small, thereby simplifying the model. This 

is essential because in the context of time series and inverse problems like predicting 

acceleration responses, we aim for a model that captures the true underlying patterns, not the 

noise or anomalies in the training set. In LSTMs, regularization can be particularly effective 

because these models have the potential to be highly complex due to their recurrent nature, 

which can lead to overfitting if not controlled. 

 

Early Stopping 

 

Early stopping is a regularization technique that mitigates overfitting by ceasing the 

training of a ML model at the moment when performance on a validation set starts to degrade 

(Reimers and Gurevych 2017a). The essence of early stopping is to track the error on a 

validation dataset during the training process and to stop the training when this error begins to 

increase, indicating that the model is no longer learning generalizable patterns. In the context of 

LSTMs, which are prone to overfitting due to their ability to capture long-term dependencies in 

time series data, early stopping is crucial for maintaining the ability to generalize from historical 

data to future data points.  

The provided figure shows the trajectory of training and validation errors over successive 

epochs. As training progresses, the model's error on the training set typically decreases, 
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demonstrating that it is learning. However, if the validation error stops declining and starts to 

ascend, as depicted by the divergence of the two curves in the image, the model is likely 

beginning to overfit to the training set. Early stopping would be employed at the juncture just 

before the validation error rises, ensuring that the model retains its generalization capabilities and 

thus can predict future events with greater accuracy. 

 

Figure 20: Optimal bias-variance tradeoff in model training illustrated by validation and 

training error curves (Tyagi, Rane, and Manry 2022) 

 

The provided figure shows the trajectory of training and validation errors over successive 

epochs. As training progresses, the model's error on the training set typically decreases, 

demonstrating that it is learning. However, if the validation error stops declining and starts to 

ascend, as depicted by the divergence of the two curves in the image, the model is likely 

beginning to overfit to the training set. Early stopping would be employed at the juncture just 

before the validation error rises, ensuring that the model retains its generalization capabilities and 

thus can predict future events with greater accuracy. 

Units 

 

Units in an LSTM refer to the number of neurons in each cell's hidden layer, which 

directly affects the model's capacity to capture information. If there are too few units, the model 
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may not be able to learn complex patterns (underfitting), whereas too many units can lead to 

overfitting. The choice of units is thus a balancing act: sufficient to capture the intricacies of the 

data, such as the various factors affecting acceleration in a time series, but not so many that the 

model becomes excessively complex and tailored to the training set (Reimers and Gurevych 

2017b). 

Batch Size 

 

Batch Size impacts the learning process by determining how many samples the network 

is exposed to before the weights are updated. A smaller batch size provides a more noisy 

gradient, which can be beneficial for finding global minima but may also make the training 

process less stable. Conversely, a larger batch size provides a more accurate estimate of the 

gradient, but can also lead to local minima and requires more memory. In the context of LSTMs 

used for time series analysis, the right batch size can significantly influence the speed and quality 

of the learning, balancing the need for efficient computation with the model's ability to 

generalize from the training data. 

Learning Rate 

 

Learning Rate is a critical hyperparameter in the training of neural networks, controlling 

the size of the weight updates during training. An optimal learning rate is one that is large 

enough to enable fast convergence to a good solution but small enough to prevent the weights 

from diverging. With LSTMs that are dealing with time series data, such as predicting 

acceleration responses, the right learning rate is especially crucial, as it needs to be set so that the 

network can navigate through complex temporal dynamics without overshooting important 

subtleties in the data.  
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5.1.3. Hyperparameters Optimization  

Influence of Units, Batch Sizes, and Learning Rate 

Figure 21 provides a succinct visualization of the effects of hyperparameter tuning on 

LSTM training efficacy, with kernel regularization applied. The top graph indicates that 

increasing the number of units decreases the validation loss but incurs longer training times, with 

diminishing returns on loss reduction beyond 128 units. The middle graph reveals that smaller 

batch sizes lead to faster convergence but longer training times, with batch size 16 striking an 

optimal balance between validation loss reduction and training efficiency. The bottom graph 

illustrates that a learning rate of 0.001 offers the most favorable balance, achieving low 

validation loss without the training time penalties observed at lower rates or the convergence 

issues present at higher rates. This composite analysis underscores the importance of careful 

hyperparameter selection to optimize LSTM performance, ensuring robustness and efficiency in 

predictive modeling of time series data. 

Influence of Regularization and Early Stopping 

In Figure 22, the LSTM model's performance is analyzed in the absence of kernel 

regularization, employing only early stopping to prevent overfitting. This strategy's effectiveness 

is evident across varying hyperparameters, as seen in the convergence of validation loss over 

epochs. A meticulous assessment reveals that a batch size of 128, despite its longer training time, 

yields a stable and satisfactory reduction in validation loss. Similarly, a model with 16 units is 

optimal, minimizing validation loss effectively while keeping training time manageable. The 

learning rate of 0.001 proves advantageous, striking a balance between the extremes of 

underfitting and volatile convergence. The superior performance of these settings validates their 

selection for more in-depth exploration and fine-tuning in future work, emphasizing their 

contribution to achieving an efficient yet robust LSTM model for time series forecasting tasks. 
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Figure 21: Impact of hyperparameters on model performance: units, batch sizes, and learning 

rates with kernel regularization 
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Figure 22: Model training dynamics: effects of unit count, batch size, and learning rate on 

validation loss without kernel regularization 

 

 

(a)

(b)

(c)

(c)
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5.1.4. Influence of the SSB’s Parameters 

 

Influence of the Number of Acceleration Sensors 

 

Figure 23, shows the impact of sensor count on the validation loss of an LSTM model 

throughout 50 epochs. The dataset collected from a single sensor concludes with a loss of 

0.0411, suggesting a less accurate model. With the addition of a second sensor, the loss is 

notably reduced to 0.0042, indicating a substantial improvement in model performance. The 

introduction of a third sensor further diminishes the validation loss to 0.0038, showcasing the 

lowest error and the best model performance among the configurations tested. This trend 

evidences the positive correlation between the number of sensors and the predictive accuracy of 

the model, with a higher quantity of sensors providing more comprehensive data for the model to 

learn from, thus optimizing the LSTM's ability to generalize and reducing the validation loss.  

 

Figure 23: Validation loss comparison across different acceleration sensor configurations 

during training 
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Influence of Displacement vs Acceleration Sensors 

 

Figure 24, displays the LSTM model's validation loss when predicting train car features 

such as speed, load, and the number of axles on railroad bridges, using different numbers of 

displacement sensors. A single sensor achieves a loss of 0.0058, while adding a second sensor 

reduces the loss to 0.0010, and employing three sensors further lowers it to 0.0016, indicating 

enhanced model performance with additional sensor data. However, despite the improved results 

with displacement sensors, the research proceeded with acceleration sensors. This decision was 

informed by practical considerations: installing WIM systems for displacement measurement on 

railroad bridges is often unfeasible due to structural and economic constraints. In contrast, 

acceleration sensors are significantly more viable to install and maintain. Consequently, while 

displacement sensors might provide better predictive accuracy for certain train features, the ease 

and feasibility of acceleration sensors offer a more practical solution for continuous monitoring 

and feature prediction on railroad bridges. 

 

Figure 24: Validation loss comparison across different displacement sensor configurations 

during training for simply supported beam 
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Influence of Noise in the Acceleration Sensors 

 

Figure 25 showcases the LSTM model's performance with three acceleration sensors, 

illustrating the model's ability to withstand various levels of noise a key consideration in real-

world scenarios where data from railroad bridge sensors are often muddled with environmental 

and operational interference. As noise levels increase from 0% to 40%, the validation loss 

predictably escalates, reflecting the model's rising challenge to discern signal from noise. At no 

noise, the model achieves an impressively low loss of 0.009, indicating high precision in 

predicting train features such as speed, load, and axle number. With 10% noise, there is only a 

slight uptick in loss to 0.032, demonstrating robustness. However, beyond this point, the model 

experiences greater difficulty maintaining accuracy, with loss reaching 0.062 at 20% noise and 

progressively worsening to 0.113 at 40% noise. These increments illustrate the real-world 

practicality of the model, as it simulates conditions where sensors might encounter vibrations, 

temperature variations, or electrical noise, affirming the selected three-sensor array's 

effectiveness and the necessity for models capable of operating amidst such stochastic 

disturbances. 

 

Figure 25: Effect of data noise levels on model validation loss over training epochs 
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5.1.5. Performance Evaluation of the LSTM Network 

 

Finally, in this section, we evaluate the accuracy of the optimized LSTM network by 

calculating the following performance indices (Chicco, Warrens, and Jurman 2021): 

The Median Absolute Error (MedAE) is a statistical measure used to evaluate the 

accuracy of a prediction model or estimator. It is particularly robust to outliers, as it uses the 

median rather than the mean. The MedAE is calculated by taking the median of all absolute 

errors between the predicted values and the actual values. Absolute error is simply the absolute 

difference between predicted and actual values. MedAE is calculated using the formula: 

 

𝑀𝑒𝑑𝐴𝐸 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑦𝑖 − ŷ𝑖|) (5.1) 

 

Here, 𝑦𝑖 represents the actual values, ŷ𝑖 represents the predicted values and |𝑦𝑖 − ŷ𝑖| is the 

absolute error between the predicted and actual value for each observation 

Mean Absolute Error (MAE) calculates the average of the absolute differences between 

the predicted values and the actual values. Here's how it's typically calculated 

𝑀𝐴𝐸 =
1

𝑛
∑ (|𝑦𝑖 − ŷ𝑖|)

𝑛

𝑖=1
 (5.2) 

 

Mean Squared Error (MSE) is a common metric used to measure the accuracy of 

predictions in statistics and machine learning. It calculates the average of the squared differences 

between predicted values and actual values. Because errors are squared, it tends to give more 

weight to larger errors, making it sensitive to outliers. 

 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − ŷ𝑖)

2
𝑛

𝑖=1
 

(5.3) 
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Mean Absolute Percentage Error (MAPE) is another widely used metric for evaluating 

the accuracy of predictions, especially in the fields of forecasting and regression analysis. MAPE 

measures the size of the error in percentage terms, providing an easy-to-interpret scale of how 

large the prediction errors are relative to the actual values. 

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑ |

𝑦𝑖 − ŷ𝑖
ŷ𝑖

|
𝑛

𝑖=1
 (5.4) 

 

R-squared (𝑅2), or the coefficient of determination, is a statistical measure used to 

evaluate the goodness-of-fit of a regression model. It indicates the proportion of the variance in 

the dependent variable that is predictable from the independent variables. R-squared values range 

from 0 to 1, where higher values suggest a better fit between the model and the data. 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

 (5.5) 

 

Here, 𝑆𝑆𝑟𝑒𝑠 represents the residual sum of squares (the sum of squared errors between 

predicted and actual values) and 𝑆𝑆𝑡𝑜𝑡 represents the total sum of squares (the sum of squared 

differences between actual values and their mean). 

Table 2: Performance indices for the optimized LSTM network 

Performance Index Value 

MedAE: 0.12594 

MAE:  0.009 

MSE:  0.018 

MAPE:  0.9382 

R-squared (R²):  0.99525 

 

The MedAE (Median Absolute Error) of 0.12594 indicates the typical magnitude of 

errors, while the MAE (Mean Absolute Error) of 0.009 suggests a high level of accuracy with 
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small prediction errors. The MSE (Mean Squared Error) of 0.018 penalizes larger errors more 

heavily, and the MAPE (Mean Absolute Percentage Error) of 0.9382 indicates that, on average, 

predictions are off by about 94%. The high R-squared value of 0.99525 suggests that the model 

explains approximately 99.5% of the variability in the data, indicating an excellent fit overall. 

 

5.1.6. Comparative Analysis of LSTM and RNN 

 

To compare the performance of the LSTM model, the same analysis was done using the 

RNN, and it has been found that the RNN performed significantly poorer, with a validation loss 

of 0.6268, compared to the LSTM's markedly lower validation loss of 0.0038 as illustrated in 

Figure 23 and Figure 26. This discrepancy in performance can be logically attributed to the 

inherent architectural advantages of LSTMs over traditional RNNs. Specifically, LSTMs are 

designed to overcome the vanishing gradient problem that RNNs are prone to, enabling them to 

learn from long-range dependencies within the data more effectively. Moreover, the RNN's 

tendency to overfit to the noise within the training set, as suggested by the fluctuations in 

training loss, could result in a failure to generalize to new, unseen data, as reflected in its higher 

validation loss. Lastly, the hyperparameter settings for the RNN may not have been optimal, or 

its simpler structure could have lacked the necessary capacity to model the complexity of the 

task at hand, further contributing to its inferior performance when compared to the LSTM model. 
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Figure 26: Epoch vs validation loss for RNN using three sensors for simply supported beam 

 

 

5.2. LSTM for Devon Bridge under a Double Axles Moving Load 

 

Upon determining the optimal hyperparameters for the simply supported beam, our 

investigation extended to the empirical validation of these parameters for the prediction of 

velocity and load characteristics pertaining to the acceleration sensors deployed in the Devon 

bridge model. This validation process entailed the meticulous adjustment of bridge parameters, 

including the configuration of acceleration and displacement sensors, as well as the mitigation of 

noise in the acceleration sensors. The ensuing outcomes are delineated herein 

5.2.1. Influence of the Devon Bridge’s Parameters  

 

Influence of the Number of Acceleration Sensors 

 

Figure 27 illustrates the validation loss comparison across different acceleration sensor 

configurations during the training of a Devon Bridge with a double axle load in SAP2000, over 

the course of 50 epochs. The training with data from one sensor results in a validation loss of 

0.2004, indicating a less accurate model. The inclusion of a second sensor substantially reduces 
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the validation loss to 0.0462, signifying an improvement in model accuracy. Upon adding a third 

sensor, the validation loss decreases further to 0.0341, the lowest of the three configurations, 

thereby demonstrating the best model performance. This pattern suggests that the number of 

sensors is positively correlated with the model's predictive accuracy; more sensors provide a 

richer dataset, which enhances the model's learning, improves its ability to generalize, and 

minimizes validation loss. 

 

Figure 27: Validation loss comparison across different displacement sensor configurations 

during training for Devon bridge 

 

Influence of the Number of Displacement Sensors 

 

Figure 28 presents the "Epoch vs Validation Loss for Different Displacement Sensor 

Configurations" during the training process. This graph details how the validation loss changes 

over 30 epochs for three separate sensor setups. The model trained with data from one sensor 

ends with a high validation loss of 0.6149, suggesting it's the least precise. Adding a second 

sensor reduces the validation loss to 0.1765, showing notable improvement. Introducing a third 

sensor further lowers the loss to 0.0066, marking the greatest accuracy and demonstrating the 

most effective model performance out of the configurations tested. This information highlights a 
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clear correlation between the increase in the number of sensors and the enhancement in the 

model's predictive capability, affirming the idea that a greater number of sensors can provide 

more comprehensive data, which is instrumental in refining the model's learning process and in 

turn, reducing the validation loss. 

 

 

Figure 28: Epoch vs validation loss for different displacement sensor configurations during 

training for Devon bridge 
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Influence of Noise in Acceleration Sensors 

Figure 29 provides a rigorous evaluation of model performance degradation due to 

varying noise levels. The validation loss at zero noise is minimal, indicating high model 

accuracy. As noise increments are introduced, there is a noticeable and consistent increase in 

validation loss, which underscores a direct and detrimental impact on model precision. The slight 

decrease in loss at the highest noise level suggests a non-linear response of the model to noise, 

possibly indicating areas where the model may be overfitting to noise-free data or underfitting 

when noise is present. This could hypothesize that the model may have a threshold of noise level 

up to which it can maintain learning efficacy before the accuracy begins to decline. Such a 

pattern necessitates further investigation into the model's resilience to noise and could inform the 

development of more robust noise-handling mechanisms in ML. 

 

Figure 29: Effect of data noise levels on model validation loss over training epochs for Devon 

bridge 
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CHAPTER VI 

 

CONCLUSIONS 

 

6.1. Summary and Conclusions 

 

This comprehensive thesis undertakes a detailed investigation into the deployment of 

cost-effective sensors for predicting train load and speed by harnessing an extensive dataset from 

structural health monitoring sensors on railroad bridges. The study utilizes LSTM networks to 

analyze time series data, meticulously optimizing hyperparameters such as the number of LSTM 

units, batch size, and learning rate, with the goal of enhancing predictive accuracy. 

 

The methodology is thorough, involving the extraction and cleaning of data from 

simulated beam models in both OpenSEESPy and SAP2000. This data forms the foundation 

upon which the LSTM models are trained, with the aim of ascertaining the most effective sensor 

configurations and hyperparameter settings that result in the lowest validation loss and the most 

robust model performance. The following are the significant findings from the thesis: 

 

1. The research makes significant strides in assessing the impact of sensor quantity 

on prediction accuracy, discovering a direct correlation between an increased 

number of sensors and improved model accuracy. This is evidenced by a 

remarkable decrease in validation loss from 0.6149 with one sensor to a mere 

0.0066 with three sensors for a simply supported beam, and a reduction to 0.0341 
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for a Devon Bridge model, underlining the superior predictive performance 

achievable with enhanced sensor data. 

 

2. The study examines how well the model performs in the presence of noise. It 

found that as the noise levels increased, the error in the model's predictions 

generally rose. However, at very high noise levels, the error unexpectedly 

decreased slightly, suggesting there might be a threshold where the model begins 

to handle noise better. The model's accuracy is confirmed by several key metrics: 

it has a MedAE of 0.12594, a MAE of 0.009, a MSE of 0.018, and an R-squared 

value of 0.99525. These numbers show that the model is highly reliable and 

accurate in its predictions. 

3. The conclusive findings of this work assert that strategic hyperparameter 

optimization, combined with the deliberate scaling of sensor numbers, 

significantly elevates the precision of predictive models in the context of 

structural health monitoring. Additionally, the insights into the model's noise 

resistance are particularly valuable for real-world applications, where data 

disturbances are commonplace. The results advocate for the use of LSTM 

networks in the proactive maintenance and safety management of vital railway 

infrastructures, emphasizing the imperative for continued research to bolster the 

models' defenses against diverse noise interferences, thus ensuring their 

operational reliability in varying conditions. 
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6.2. Future Recommendations 

 

Future work will enhance the scope and accuracy of the structural health monitoring 

models by addressing several key areas: 

 

1. Multi-railcar Dynamics: The models will be extended to simulate the complex 

dynamics of multiple railcars, which is crucial for analyzing the varying load 

distributions that more accurately reflect real-world train compositions. This 

enhancement will allow for the differentiation between train types based on their 

unique signatures in the data. 

 

2. Damage Modeling: Training the models to recognize the altered acceleration 

response due to damage in structural components, such as bridge beams or rails, is 

essential. This involves developing algorithms capable of detecting and quantifying 

structural damage from the patterns in sensor data, significantly improving early 

warning systems. 

 

3. Environmental Variability: Incorporating environmental factors such as wind loads, 

temperature fluctuations, and seismic events into the model will create a more robust 

system. Adjusting for these variables ensures that the monitoring system remains 

accurate under a variety of environmental stressors, reflecting the complexity of real-

world conditions. 
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APPENDIX 

The relevant codes for this thesis can be found at the following link: 

 

https://github.com/masnun11/Masnun-MS-Thesis.git 

  

https://github.com/masnun11/Masnun-MS-Thesis.git
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