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ABSTRACT

Nurbek, Gaukhar, Exploring Graph Neural Networks in Reinforcement Learning: A Comparative

Study on Architectures for Locomotion Tasks. Master of Science (MS), May, 2024, 29 pp., 2 tables,

9 figures, 54 references.

Deep Reinforcement learning (DRL) has gained importance in optimizing control policies,

while Graph Neural Networks (GNNs) offer a robust approach for modeling complex relationships

within systems represented as graphs. This thesis investigates the integration of DRL and GNNs

to optimize control policies for robotic tasks, with a focus on locomotion. It compares static and

dynamic GNN architectures for control policy predictions, revealing their strengths and limitations

in adapting to locomotion predictions. The study assesses the impact of model structure complexity

on GNNs’ predictive capabilities, showcasing how intricate model structure can maximize GNNs’

potential in capturing spatial and relational dependencies when learning control policies. Through

comprehensive experiments and analysis, this research contributes insights into the optimal integra-

tion of GNNs in DRL, particularly in continuous locomotion tasks, addressing a gap in the literature.

It also introduces a new implementation for conducting RL-GNN experiments with a 3-D simula-

tion physics engine by employing PyTorch, PyTorch Geometric, and PyTorch Geometric Temporal,

enhancing the methodological repertoire and promoting reproducibility in research. This study ad-

vances the understanding and application of DRL-GNN frameworks in robotics, facilitating the

development of more intelligent and adaptive robotic systems.
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CHAPTER I

INTRODUCTION

Artificial intelligence (AI) stands at the forefront of technological innovation, reshaping

the landscape of numerous industries and domains. At its core, AI seeks to enable machines to per-

form tasks that traditionally require human intelligence, ranging from simple pattern recognition

to complex decision-making processes. Various AI subfields contribute to this mission. Natural

language processing (NLP), for instance, focuses on enabling machines to understand and generate

human language [1], facilitating applications such as machine translation[42], sentiment analysis

[19], and chatbots, like ChatGPT [21]. Computer vision is another crucial area, where AI algo-

rithms are trained to interpret and analyze visual data, enabling tasks like object recognition[38],

image classification [17], and scene understanding [14]. The field of robotics integrates AI tech-

niques to create intelligent, autonomous systems capable of interacting with and operating in the

physical world [26]. Additionally, reinforcement learning, a subfield of machine learning, has

emerged as a powerful paradigm within the realm of AI, drawing inspiration from behavioral psy-

chology to teach agents to make sequential decisions by interacting with their environment. Unlike

other machine learning techniques that rely heavily on labeled data, reinforcement learning enables

autonomous agents to learn optimal behaviors through trial and error, guided by feedback in the

form of rewards or penalties [37]. These subfields, working in harmony, are driving the advance-

ments in AI, making it a significant tool in addressing complex problems and enhancing human

capabilities across various domains.

In recent years, deep reinforcement learning (DRL) has gained significant attention due to

its ability to handle high-dimensional and continuous state and action spaces [2]. DRL leverages

deep neural networks to approximate complex functions that map states to actions, enabling agents
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to learn intricate strategies and policies. The fusion of deep learning with reinforcement learning

has led to remarkable breakthroughs in various domains, frommastering complex board games like

Go and Atari to controlling autonomous vehicles and robotics [35], [24], [16]. The success of DRL

can be attributed to its capacity to automatically learn hierarchical representations of raw sensory

inputs, facilitating the extraction of meaningful features and patterns essential for decision-making.

In the realm of robotics, DRL has revolutionized the way robots learn to perform tasks

in simulated environments and physical settings[41], [40]. Utilizing physics engines and realistic

simulations, DRL allows robots to learn complex skills and behaviors without the need for extensive

manual programming. From grasping objects to navigating dynamic environments, robots trained

with DRL techniques demonstrate robustness and adaptability in various scenarios [18], [52].

Control policies play a pivotal role in DRL applications in robotics, serving as the backbone

for decision-making and action execution by robotic agents. These policies dictate how robots in-

teract with their environment, specifying the actions to be taken in response to observed states to

maximize cumulative rewards. In the context of DRL, control policies are often represented by

neural networks, which map environmental observations to corresponding actions. Through itera-

tive exploration and exploitation, DRL algorithms train these policies to learn effective strategies

for accomplishing tasks ranging from manipulation and locomotion to navigation and perception.

The challenge lies in designing control policies that balance exploration and exploitation, ensuring

robustness, adaptability, and efficiency in varying environmental conditions [34], [2].

The integration of graph neural networks (GNNs) with DRL has shown promise in enhanc-

ing the learning capabilities of agents, particularly in scenarios where the environment can be nat-

urally represented as a graph. GNNs excel in capturing the structural dependencies and relational

information inherent in graph-structured data, making them well-suited for tasks such as modeling

complex relationships in social networks, biological systems, and physical environments [48]. In

the context of robotics, where spatial relationships and connectivity play a crucial role, GNNs of-

fer a powerful framework for learning representations that can effectively capture the underlying

structure of the environment. By leveraging GNNs in addition to DRL, robots can acquire robust
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and adaptive policies that exploit the rich spatial and relational information available in their sur-

roundings. One of the pioneers in utilizing GNNs in DRL for locomotion is [44], where the agent

is provided structural information from 3-D model simulation in physics engine [40].

This thesis contributes to the field of robotics by investigating the synergies between DRL

and GNNs to enhance control policies for diverse robotic tasks, including locomotion such as walk-

ing. Firstly it compares static and temporal GNN architectures for control policy predictions, shed-

ding light on their respective strengths and weaknesses in adapting to locomotion predictions. After

that, it explores the potential of integrating DRL and GNNs, leveraging the structural and relational

information encoded within GNNs to optimize control policies. It delves into the impact of agent

structure complexity on the predictive capabilities of GNNs, demonstrating how complex agent

architectures can maximize the potential of GNNs in capturing and utilizing spatial and relational

dependencies. Moreover, this study provides a new implementation to DRL-GNN experiments,

which utilizes PyTorch, PyTorch Geometric, PyTorch Geometric Temporal libraries, previously

not used for similar robotic DRL-GNN experiments. Through these contributions, this research

aims to advance the understanding and application of DRL-GNN frameworks in robotics, paving

the way for more intelligent and adaptive robotic systems.
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CHAPTER II

LITERATURE REVIEW

2.1 Graph Neural Networks

Early studies on Graph Neural Networks (GNNs) were motivated by [36], where neural

networks were applied to directed graphs for the first time. The [9] initially outlined the notion of

graph neural networks. This notion was further used and elaborated for the idea of the GNN model

that was proposed by authors in [33]. The proposed GNN model extends existing neural network

methods to operate on data represented in graph domains. They derived a supervised learning

algorithm that estimates the parameters of the GNN model.

The breakthrough came with the introduction of Graph Convolutional Networks (GCNs)

by Thomas Kipf and Max Welling [15]. GCNs utilized a localized first-order approximation of

spectral graph convolutions, enabling information propagation across neighboring nodes. This

allowed neural networks to be applied to graphs in a scalable manner. GCNs are the foundation for

later GNN architectures.

Researchers were able to refine the concept of information aggregation, allowing nodes to

selectively attend to their neighbors. Authors in [10] introduced a GraphSAGE, framework for

inductive learning on large graphs, where node embeddings are learned considering neighboring

sampling strategies. While authors of [43] proposed a novel attention mechanism that enables

nodes to weigh neighbors differently during message aggregation, improving the expressive power

of GNNs. Graph Isomorphism Networks (GINs) were introduced in [49] where they address the

graph isomorphism problem, providing insights into learning structural representations of graphs

that are invariant to their topological differences.
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GNNs found applications in various fields, including social network analysis[5, 6], recom-

mendation systems[51, 20], drug discovery[53, 11], reinforcement learning[44, 22] and other areas.

Researchers continue to develop GNN architectures tailored for specific tasks, leading to the cre-

ation of different versions of GNN and improvements.

2.2 Reinforcement Learning

[45] is one of the foundational works in Reinforcement Learning (RL), introducing the

Q-learning algorithm for model-free reinforcement learning. Q-learning is a way for agents to

learn how to optimally act in controlled Markovian domains. TD-Gammon introduced in [39]

demonstrated the application of temporal difference learning, a core concept in RL, in training

neural networks to play backgammon at a high level.

In [24] Deep Q-Networks (DQN) algorithm was introduced, where Q-learning was com-

bined with deep neural networks, achieving human-level performance on multiple Atari 2600

games. Authors of [25] demonstrated how Deep Reinforcement Learning (DRL) algorithms can

learn directly from high-dimensional sensory inputs, demonstrating the possibility of usage of RL

in complex environments.

Further work in RL was introduced in Policy Gradient Methods and Actor-Critic Architec-

tures. [23] introduced asynchronous advantage actor-critic (A3C), an algorithm that allows agents

to learn frommultiple parallel instances of the environment, significantly speeding up training. [34]

presented the Proximal Policy Optimization (PPO) algorithm, a policy optimization technique that

demonstrated stable and efficient learning in complex environments.

There are works on real-world and robotics applications, such as [27] demonstrated RL

algorithms applied to robotics, showcasing how DRL methods allow robots to learn complex ma-

nipulation tasks.

In recent years, RL has continued to advance, with research focusing on improving sam-

ple efficiency, stability, and safety of algorithms. Applications of reinforcement learning have

expanded into various fields, including robotics, autonomous vehicles, finance, healthcare, and

more.
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2.3 Graph Neural Networks in Reinforcement Learning

There have been few works developed in applying Graph Neural Networks (GNNs) to Re-

inforcement Learning (RL) continuous control tasks. One of them focuses on applying GNNs in

RL policy is NerveNet [44]. It addresses the problem of learning structured policies for continuous

control. Author of [44] proposes a model NerveNet that utilizes the structure of an agent. The

NerveNet model serves as an agent’s policy network that propagates information over the structure

of the agent and then predicts the action. The model was compared with the state-of-the-art models

in Mujoco environments. They proposed two types of environments to benchmark two types of

transfer learning which are: 1) size and disability transfer, and 2) multi-tasking learning.

Another method was suggested by the authors of [3]. They propose a method for high-

dimensional continuous control that freezes parameters in selected parts of the network that are

based on NerveNet [44]. The paper claims to find a solution to the network’s overfitting problem.

Authors of the most recent paper [22] propose a new approach called Feudal Graph RL,

where they adopt Feudal RL that develops control actions based on a hierarchical message-passing

process. In the architecture, they propose high-level decisions at the top level of the hierarchy

that are propagated through a layered graph representing the hierarchy of policies. The authors

formalized the proposed framework and provided Proof Of Concept experiments on MuJoCo [40]

locomotion tasks.

While these studies have provided valuable insights into applications of GNNs in RL in

locomotion tasks, there remains a gap in the literature regarding a comprehensive comparative

analysis of different GNN architectures specifically tailored for locomotion tasks in RL.
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CHAPTER III

BACKGROUND

This section introduces notations and definitions used in Deep Learning, various types of

GNNs, and RL to provide a background.

3.1 Multi-Layer Perceptron

Feedforward neural networks (FNNs) or multi-layer perceptrons (MLPs) aim to approxi-

mate a function f ∗, where, for example, for a classifier, y = f ∗(x) maps x to a category y. MLP

defines a mapping y = f (x,θ) where θ is a learnable parameter that provides an optimal approxi-

mation of the function f .

FNNs are called ”networks” because they are constructed by combining various functions

in a directed acyclic graph. These functions, represented by f (1), f (2), f (3), and so on, are connected

in a chain-like structure, denoted as f (x) = f (3)( f (2)( f (1)(x))). In this structure, f (1) is the first

layer, f (2) is the second layer, and so forth. The depth of the model is determined by the overall

length of this chain, and this terminology led to the term ”deep learning.”

The final layer in a FNN is called the ”output layer.” During training, the network is trained

to approximate a function f ∗(x). The training data provides noisy, approximate examples of f ∗(x)

at different points x, accompanied by labels y = f ∗(x). The training examples specify what the

output layer should do at each point x by producing a value close to y. However, the behavior of

the other layers is not directly specified by the training data. These unspecified layers are known as

”hidden layers.” The learning algorithm must determine how to use these hidden layers effectively

to implement an approximation of f ∗ since the training data do not provide specific instructions for

each layer. [8]
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3.2 Reinforcement Learning

Reinforcement learning involves acquiring the knowledge of determining appropriate ac-

tions, to maximize a numerical reward signal. The problem in reinforcement learning is formalized

using concepts from dynamical system theories, such as optimal control of partially knownMarkov

decision processes [37]. A Markov Decision Process (MDP) is used as a mathematical framework

in reinforcement learning to represent decision-making scenarios occurring in stochastic environ-

ments. It offers a structured approach to define and explore sequential decision-making processes

where an agent engages with its surroundings. In MDP there exists an agent that interacts with the

environment. They interact at a discrete time step, t = 0,1,2,3, .... At each time step t agent re-

ceives state St ∈ S, which is the environment’s representation, and based on the state agent selects

an action, At ∈ A(s). In the next time step after action was taken t + 1 agent receives a reward,

Rt+1 ∈ R, and transitions into a new state, St+1. The sequence of MDP looks like below [37]:

S0,A0,R1,S1,A1,R2,S2,R3, ... (3.1)

Policy π is a function that maps states to a probability distribution over actions: π : S →

p(A = a|S). Finding optimal policy π∗, that provides maximum reward for all states is a goal of

reinforcement learning [2].

π∗ = argmax
π

E[R|π] (3.2)

3.3 Proximal Policy Optimization

Proximal policy optimization (PPO) is introduced in [34]. Unlike traditional policy gradient

methods, the PPO iteratively interacts with the environment to collect data and then optimizes an

objective function through stochastic gradient ascent. While standard policy gradient methods

perform a single gradient update for each data sample, the suggested method applies a distinctive

objective function that allows for multiple epochs of mini-batch updates.
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A suggested objective function is as follows:

LcLIP+V F+S
t (θ) = Êt [LcLIP

t (θ)− c1LV F
t (θ)+ c2S[πθ ](st)] (3.3)

where c1,c2 are coefficients, S is an entropy bonus, LV F
t = (Vθ (st)−V targ

t )2 is a squared-error loss.

In order to run the policy for T timesteps, where T is less than the episode length, and use the

collected samples for an update, an advantage estimator needs to be calculated that does not look

beyond timestep T. PPO algorithm uses the following estimator:

Ât = δt +(γλ )δt+1 + · · ·+ · · ·+(γλ )T−t+1δT−1 (3.4)

where δt = rt + γV (st+1)−V (st) and r denotes the probability ratio and V (s) denotes state value

function.

3.4 Graph Neural Network

Graph neural networks (GNNs) are neural networks operating on graph-structured data.

Many examples in the real world can be represented as graph-structured data. For instance, in social

networks users can be represented as nodes, and connections between users can be represented as

edges. These nodes can have multiple features, it could be a user’s age, number of followers,

number of posts, number of likes, etc. Given connections between nodes and their features GNNs

can utilize them to make predictions.

A graph G consists of a non-empty finite set of vertices or nodes and a finite set of edges,

that are pairs of connected nodes [46]. G = (V,E), where V is a set of nodes and E is the set of

edges between nodes. Each node can be denoted as vi ∈ V and edge between vi,v j is denoted as

ei = (vi,v j) ∈ E. The adjacency matrix A is a n× n matrix, where Ai j = 1 if ei j ∈ E else Ai j = 0

[48]. There are directed and undirected graphs. In GNNs, graphs are treated as directed, and even

in the case of undirected graphs, they are typically converted into directed graphs by considering

edges that connect nodes in both directions.
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The goal of GNNs is to iteratively update the node representations by aggregating the rep-

resentations of node neighbors and their representations in the previous iteration.[47] This can be

done using message passing. Message passing refers to the process by which information between

nodes is exchanged. This process consists of three steps [32]:

• For each node v ∈ G collect messages as neighboring node embedding.

• Aggregate collected messages.

• Pass aggregated messages through an update function, which is a learned neural network.

There are 3 levels of prediction tasks performed using GNNs. First is graph level prediction,

second is node level prediction and third is edge level prediction, where all of the levels include

both regression and classification tasks.

3.5 Graph Convolutional Network

The authors in [15] propose an efficient semi-supervised learningmethod for graph-structured

data, utilizing a variant of convolutional neural networks designed to work directly on graphs. Their

approach is motivated by a localized first-order approximation of spectral graph convolutions. This

model scales linearly with the number of graph edges and captures both local graph structures and

node features in its hidden layer representations.

Authors of [15] introduced multi-layer Graph Convolutional Network (GCN) with the fol-

lowing layer-wise propagation rule:

H(l+1) = σ(D̃− 1
2 ÃD̃− 1

2 H(l)W (l))

Here, Ã=A+IN is the adjacencymatrix of the undirected graphGwith added self-connections.

IN is the identity matrix, D̃ii = ∑ j Ãi j and W (l) is a layer-specific trainable weight matrix. σ(x) de-

notes an activation function, for example the ReLU(x) = max(0,x). H(l) ∈ RND is the matrix of

activations in the lth layer; H(0) = X .
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Assuming Â = D̃− 1
2 ÃD̃− 1

2 , example of 2-layer GCN architecture used for semi-supervised

node classification is shown below:

Z = f (X ,A) = softmax(Â ReLU(ÂXW (0))W (1))

3.6 Graph Attention Networks

The authors of [43] introduce Graph Attention Networks (GATs). GATs utilize masked

self-attentional layers to overcome limitations in prior methods based on graph convolutions or

their approximations. By enabling nodes to attend over their neighborhoods’ features and specify

different weights to different nodes without costly matrix operations or prior knowledge of the

graph structure, GATs simultaneously address multiple challenges in spectral-based graph neural

networks. The model applies to both inductive and transductive problems.

The graph attention layer is the sole layer in GAT architectures. The input to the layer is a set

of node features, h = {h⃗1, h⃗2, ..., h⃗N}, h⃗i ∈ RF , where N is the number of nodes, and F is the number

of features per node. The output of the layer is the new set of node features h′ = {h⃗′1, h⃗
′
2, ..., h⃗

′
N}, h⃗′i ∈

RF ′ .

To obtain expressive power we need to apply weight matrixW ∈ RF ′×F for every node and

then perform self-attention on each node a that computes attention coefficients ei j = a(Wh⃗i,Wh⃗ j)

which shows the importance of node j’s features to node i. Using masked attention allows to

utilization of structural information, which means computing ei j only for nodes j ∈ Ni, where Ni

is the neighborhood of the node i in the graph. After that normalization is applied to all choices

of j, to make coefficients easily comparable. αi j = softmax j(ei j) =
exp(ei j)

∑k∈Ni(eik)
Attention mechanism

a used in a paper is a single-layer FNN or MLP, with a weight vector a⃗ ∈ R2F ′ and LeakyReLU

activation function.

αi j =
exp(LeakyReLU(⃗aT [Wh⃗i||Wh⃗ j]))

∑k∈Ni exp(LeakyReLU(⃗aT [Wh⃗i||Wh⃗k]))

where T is a transposition and || is the concatenation.
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Onceαi j is computed the results are used to get the output features of nodes, which is a linear

combination of features h⃗′i = σ(∑ j∈Ni αi jWh⃗ j). For the multi-head attention mechanism depending

on the number of attention heads K, the output features will be equal to the concatenation of all

features for K heads. For the last output layer average along K heads will be taken.

3.7 Spatio-Temporal Graph Neural Networks

Spatio-temporal graph neural networks (STGNNs) are extensions of GNNs that learn tem-

poral representations of the graph structure to take the spatial and temporal dimensions of data into

consideration. [31]

There are static and dynamic spatio-temporal graphs [12]. In static spatio-temporal graphs,

only features of nodes change, but connections stay the same, while in dynamic spatio-temporal

graphs edges as well as node features can change.

The basic framework of STGNNs for predictive learning contains 3 main parts: Data Pro-

cessing Module, Spatio Temporal Graph Learning Module (STGLM), and Task Aware Prediction

Module (TPM). STGLM serves as the main component of STGNNs that combines spatial learning

networks and temporal learning networks using the spatial-temporal fusion method. Spatial learn-

ing networks might be GCNs, GATs, etc. While the temporal learning networks may use RNNs,

temporal convolutional networks (TCNs), or temporal self-attention networks (TSANs). [12]

3.8 Temporal Graph Networks

One of the STGNN algorithms to deal with dynamic graphs is Temporal Graph Networks

(TGN) introduced in [29]. TGNs were developed for deep learning on dynamic graphs, where

graphs are represented as a sequence of time events. TGNs utilize memory modules and graph-

based operators which makes them computationally efficient.

A neural model for dynamic graphs can be regarded as an encoder-decoder pair. The en-

coder is a function that maps dynamic graphs to node embedding, while the decoder uses node

embedding as input to make a task-specific prediction, for example, node classification [13].

A TGN encoder is applied on a continuous-time dynamic graph represented as a sequence

12



of time-stamped events and it produces the embedding for each time t, the embedding of the graph

nodes Z(t) = (z1(t), ...,zn(t)(t)).

3.9 Temporal Graph Convolution Networks

The Temporal Graph Convolution Network (TGCN) was introduced in [54] for traffic fore-

casting since it has both spatial and temporal dependencies. In TGCN model first historical n time

series data is used as input, while GCN is used to capture topological structure. After obtaining

time series and spatial features, those are used as input to GRU model[4] where dynamic change is

obtained by information transmission between the units that capture temporal feature, after which

results are calculated using a fully connected layer.
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CHAPTER IV

METHODOLOGY

This chapter describes methods and tools that were created to perform experiments and

collect data. Three main components had to be developed to achieve this. Firstly, a custom rein-

forcement learning environment had to be implemented to simulate locomotion walking tasks and

return observations in a structured way and it is described in section 4.1. Secondly, the proximal

policy optimization (PPO) algorithm had to be implemented and the process is described in the

section 4.2. Additionally, various types of policy network architectures, such as multi-layer per-

ception, and multiple graph neural networks were developed, the details of which are provided in

section 4.3. Details of the information flow connecting three components can be seen in Fig.4.1.

Figure 4.1: The figure shows the flow of information between the custom reinforcement learning
environment, the proximal policy optimization, and the policy network.
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4.1 Custom Reinforcement Learning Environments

A custom reinforcement learning (RL) environment was implemented using open source

physics engine MuJoCo[40] and RL API Gymnasium[41]. There are two parts of the custom envi-

ronment that was implemented. First is creating a customized 3-D model simulation to run in Mu-

JoCo. Second part is defining actions, observations and reward of environment using Gymnasium

and setting up exchange of information between MuJoCo model simulation and RL environment.

For developed models, velocities and positions of joints of the models are passed as observations,

and actions represent torque values applied at each joint.

Two types of custom environments were developed for this project. The first type feeds

observations as concatenation from all joints. While, second type is constructed to model joint

connections and returns structured observations in a matrix representing each joint’s velocities and

positions, as well as an array of edges between connected joints. This type of environment receives

predictions from a GNN-based policy. The reward in both environments depends on the model

moving forward at high speed. One of the implemented 18-model

4.2 PPO Implementation

The Proximal Policy Optimization (PPO) algorithm was chosen as the primary reinforce-

ment learning technique for this thesis due to its effectiveness in policy optimization tasks. The

main body of PPO implementation was referenced from [50]. However, the implementation needed

customization to accommodate the characteristics of graph-structured observations. Graphs inher-

ently possess complex relational information that traditional reinforcement learning algorithm im-

plementations are not equipped to handle. To address this challenge, changes were made to enable

graph-batch training, where multiple graphs are merged into one large graph and then passed into

graph neural network policies.

4.3 Policy Network Implementation

In the PPO algorithm neural network is used as an actor and critic. The actor policy network

takes observations as input and predicts the mean values of actions of the agent. The critic policy
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network takes observations as an input and outputs the value of the function, which decides how

good the actions were predicted. In this project multiple network architectures were implemented

using PyTorch [28] for feed-forward neural network (FNN) and PyTorch Geometric [7] for static

graph convolution network (GCN), PyTorch Geometric Temporal [30] for dynamic recurrent graph

convolution network (RecGCN). FNN inputs are provided as concatenated observations from each

of the joints of the model, in the case of GCN and RecGCN observations were provided in a 2-

dimensional array, along with edges, that lists connected joints as a separate matrix. In Fig.4.2

layers of the RecGCN are shown.

Figure 4.2: The figure shows general architecture of dynamic RecGCN used as PPO actor and critic
networks
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CHAPTER V

RESULTS

Experiment results are presented in this chapter. Experiments were done on a computer with

an Intel Core i9-11900 processor running at 2.5 GHz using 32 GB RAM, running Linux Ubuntu

20.01. Training parameters used for the PPO algorithm are included in Tab. 5.1. Overall 3 parts

of the results were produced. The first part explores different graph neural network (GNN) ar-

chitectures most suitable for predicting control policies in a proximal policy optimization(PPO)

algorithm for the task of walking given graph-structured observations. The second and third parts

explore how the complex structure of the model affects the training of the graph-based and non-

graph-based control policies.

Table 5.1: Training parameters used in PPO algorithm

Parameters Value

Value discount factor γ 0.99
Starting learning rate 3e-4
PPO Clip value 0.2
GAE λ 0.95
Target KL 0.01
Timesteps per batch 2048
Max timesteps per episode 200
Total timesteps 10e6

5.1 Exploring GNN Architectures

There were explored static graph convolution network (GCN) and dynamic recurrent graph

convolution network (RecGCN) networks as control policies in PPO. The hyperparameters used

for this part of the experiments are shown in Tab. 5.2. Fig. 5.1 shows the reward curve obtained
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from training a 6-legged creature for the task of walking forward. The training curve for GCN and

RecGCN shows that dynamic RecGCN is better at predicting action mean values for locomotion

control policy for custom 6-legged creatures.

Table 5.2: Hyperparameter settings for multi-legged creature training

FNN, GCN, RecGCN Value

Network Shape [64, 64]
Number of iterations per update 10
Number of hidden nodes 64
RecGCN Value

K Chebyshev filter size 3

Figure 5.1: The figure shows a comparison between reward curves that were obtained by training
static (GCN) and dynamic (RecGCN) GNNs for the 6-legged creature model. It appears that the
dynamic GNN is better at predicting action mean values compared to the static GCN model.

5.2 Multi-legged MuJoCo Models

After discovering working GNN architecture, next step was to explore if complicating the

structure of the model by adding additional legs to the creature, will allow us to fully utilize GNN’s

power and compare it with default FNN network used in PPO training. For this purpose, multiple

MuJoCo models were created and trained to walk forward. 6, 10, and 18-legged creatures were

made. 18 leg-creature is shown in Fig.5.2.
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Figure 5.2: The figure shows an 18-legged creature model made in MuJoCo and its graph structure
used for training GNN policy.

Hyperparameters used in training FNN and RecGCN as policies are shown in 5.2. However,

in the case of training an 18-legged creature, K Chebyshev filter size was changed to 6. The training

curve for 6, 10, and 18-legged models can be seen in Fig. 5.3, 5.4, 5.5.

Figure 5.3: The figure shows reward curves
trained using FNN and RecGCN for a 6-
legged creature.

Figure 5.4: The figure shows reward curves
trained using FNN and RecGCN for a 10-
legged creature.

19



Figure 5.5: The figure shows reward curves
trained using FNN and RecGCN for an 18-
legged creature.

Figure 5.6: The figure shows reward curves
trained using FNN and RecGCN for a 6-
legged multi-joint creature.

5.3 Multi-Joint MuJoCo Models

In the third part of the results there were trained multi-joint models. Where instead of

increasing the number of legs, the number of joints was increased to complicate the structure of the

model. The figure of the model can be seen in Fig.5.7. Training hyperparameters were the same as

in Section 5.2. Reward curves for training 6-legged multi-joint creature policies are shown in Fig.

5.6.

Figure 5.7: The figure shows an 18-legged creature model made in MuJoCo and its graph structure
used for training GNN policy.
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CHAPTER VI

DISCUSSION

This chapter delves into the interpretation and implications of the experimental results ob-

tained in this study. The performance of various network policies in predicting actions is evaluated,

focusing on the comparison between recurrent graph convolution networks (RecGCN), static graph

convolution networks (GCN) and feedforward neural network (FNN).

From training different types of graph neural networks (GNN) as policy networks for a 6-

legged creature walking forward task Fig.5.1 shows that the recurrent graph convolution networks

(RecGCN) outperforms the static graph convolution network (GCN). This implies the effectiveness

of RecGCN as a dynamic GNNmodel, as it recognizes the dynamic evolution of node values within

a graph over time. Unlike static GNNs, which presume node values to be constant and regard

any alteration as constituting a new, disconnected graph state, RecGCN’s capability to adjust to

fluctuating node values results in enhanced predictions and ultimately yields superior rewards.

In comparing the performance of policy networks across multiple models with 6, 10, and

18 legs clear patterns stand out. One of them is that the performance of FNN for 6 and 10-legged

creatures appears superior to that of RecGCN as seen from Fig.5.3,5.4. However, upon increasing

the number of legs to 18, a shift occurs where the performance of FNN notably declines, whereas

RecGCN maintains a consistent level of performance. This observation suggests that RecGCN,

which inherently considers structural information within the graph, possesses the capability to pre-

serve performance even with increased complexity. The contrast in performance dynamics between

FNN and RecGCN underscores the significance of leveraging structural information in enhancing

the adaptability and robustness of policy networks across varying complexities of creature models.
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For the multi-joint model, it appears that the FNN has effectively leveraged the capabilities

of RecGCN as seen in 5.6. However, future studies may involve investigating the potential benefits

of incorporating additional legs and additional joints into the model. By expanding the complexity

of the model, there is a prospect for GNN-based policy networks to enhance their predictive accu-

racy in controlling policies. This extension could offer valuable insights into the scalability and

adaptability of GNN architectures in addressing increasingly intricate control tasks. Nevertheless,

this area warrants deeper investigation and is thus left for future studies to delve into comprehen-

sively.
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CHAPTER VII

CONCLUSION

This study introduces insights through a comparative analysis between static and temporal

graph neural networks (GNNs) in reinforcement learning (RL) applications, specifically for robotic

locomotion tasks. It has been found that temporal GNNs outperform static ones in predicting con-

trol policy values for locomotion tasks. Additionally, this study explores the impact of the structural

complexity of the model on the training of both structured and non-structured policy networks in

the Proximal Policy Optimization (PPO) algorithm, finding a connection between the model’s struc-

ture and training effectiveness. These findings significantly contribute to the existing literature by

deepening our understanding of the synergy between RL and GNNs in robotic locomotion tasks,

paving the way for further exploration and development in this field.

In addition to the findings presented in this study, an important contribution lies in the

novel implementation of the methodology. Utilizing PyTorch, PyTorch Geometric, and PyTorch

Geometric Temporal for conducting RL-GNN experiments represents a significant advancement

in the field. Notably, these software tools have not been previously utilized in similar experiments,

underscoring the innovative nature of the approach used for this study. By leveraging these frame-

works, not only was the methodological repertoire available to researchers expanded, but also the

rigor and reproducibility of research was enhanced. This methodological innovation represents

a valuable contribution to the ongoing discourse surrounding the synergy between reinforcement

learning and graph neural networks.
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