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ABSTRACT 

Gonzalez Salinas, Rodrigo J., Personalized Driving Using Inverse Reinforcement Learning. 

Master of Science in Engineering (MSE), May 2024, 63 pp., 5 tables, 29 figures, 35 titles. 

This thesis introduces an autonomous driving controller designed to replicate individual 

driving behaviors based on a provided demonstration. The controller employs Inverse 

Reinforcement Learning (IRL) to formulate the reward function associated with the provided 

demonstration. IRL is implemented through a dual-feedback loop system. The inner loop utilizes 

Q-learning, a model-free reinforcement learning technique, to optimize the Hamilton-Jacobi-

Bellman (HJB) equation and derive an appropriate control solution. The outer loop leverages 

this derived control solution to generate parameters for the reward function, which are 

subsequently integrated into the HJB equation. The ultimate control policy is deduced from the 

final reward function obtained through IRL. To facilitate the recording of expert demonstrations 

and the evaluation of the final control policy, the CARLA autonomous driving simulator is 

utilized. 
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CHAPTER I 

 BACKGROUND AND INTRODUCTION 

1.1 Optimal Control  

Optimal control is a specialized field of control engineering that focuses on analyzing 

systems and determining optimal control signals to maximize or minimize aspects of a 

dynamical system. The process of deriving such control systems is known as optimal control. 

The objective of optimal control theory is to determine a set of control signals that will cause a 

system to behave optimally within physical constraints. The control signals that allow such 

behavior are obtained by optimizing a function delineated by performance criteria (Kirk, 2004). 

Those control signals are referred to as an optimal policy and are obtained with the use of 

Bellman’s principle of optimality. The principle states that an optimal policy must act optimally 

on the states leading to the desired final state. The optimal policy needs to act optimally without 

regard to the initial decision made (Bellman, 1957).  

Optimal control begins with the modeling of a dynamic system. The goal of defining a model 

for any system is to have the simplest mathematical representation that can predict a sensical 

response to inputs. A common method to achieve this is through a system of differential 

equations in state-space form (Kirk, 2004). Constraints are enacted on the inputs of the model 

and may impact both the state space and the control space. In terms of the state space, constraints 

include the designation of starting and final values. This deliberate boundary assignment details a 

trajectory’s beginning and ending. For the control space, constraints typically relate to the 

physical system's operational limits. For instance, a control action such as the rotation of
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the steering wheel is limited by the displacement of the tie rod, which pivots the wheels. 

Consequently, the control constraints would be defined by the range of angles that maximize the 

displacement of the tie rod in either direction. 

The aspects of dynamical systems that are optimized in control systems are commonly 

referred to as performance metrics. According to Kirk (2004), performance metrics can describe 

anything depending on the problem type that needs optimization. For instance, minimum-time 

problems are a type of problem where the metric to be optimized is the time required to get from 

the beginning state to a defined final state. Terminal control problems aim to minimize the 

deviation between the final state of the controlled system and the desired final state. Minimum-

control-effort problems are problems where the control effort, such as fuel expenditure, is to be 

minimized. The formulations of the performance metrics can be seen in Table 1.

Table 1. Performance metrics formulation. 

Performance Metrics Formulation 

Minimum time 𝐽 =  𝑡𝑓 − 𝑡0 

𝐽 = ∫ 𝑑𝑡
𝑡𝑓

𝑡𝑜

 

Terminal control 𝐽 = ‖𝑥(𝑡𝑓) − 𝑟(𝑡𝑓)‖
2
 

Minimum control energy 
𝐽 = ∫ [𝑢𝑇𝑅𝑢]

𝑡𝑓

𝑡0

𝑑𝑡 

Tracking 
𝐽 = ∫ [(𝑥(𝑡) − 𝑟(𝑡))

𝑇
𝑄(𝑥(𝑡) − 𝑟(𝑡))]

𝑡𝑓

𝑡0

𝑑𝑡 

1.2 Reinforcement Learning 

Reinforcement Learning (RL) is a machine learning method that empowers an agent to 

formulate the optimal behavioral pattern to achieve a designated goal through dynamic 

interactions with its environment. The essence of RL lies in constructing a policy that adeptly 

maps the agent's actions to the state of the environment, with the aim of maximizing rewards or 
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minimizing costs. At the foundational level, RL presents the agent with a limited selection of 

actionable choices at any given moment, enabling it to learn the most rewarding actions in 

response to various environmental states. In scenarios of increased complexity, the choices made 

by the agent not only influence immediate rewards but also have ramifications on future rewards, 

culminating in the successful completion of the task. This detail transforms the learning process 

into a deliberate exploration for a sequence of actions that optimizes cumulative rewards. As 

described by Richard Sutton and Andrew Barto (2018), the defining characteristics of 

reinforcement learning are the strategic navigation through trial and error and the management of 

delayed rewards. 

In RL, the interaction between the agent and the environment is the focal point in 

mastering a desired task. RL encompasses four fundamental elements: a policy, a reward signal, 

a value function, and, optionally, a model of the environment (Sutton, 2018). The policy 

functions as a mapping from observed states to potential actions the agent might take, essentially 

transcribing the agent's behavior either as a function or a trajectory. The reward signal defines the 

objectives of the RL problem by issuing numerical rewards to the agent following each action, 

thus playing a crucial role in shaping and refining the agent's policy by indicating the desirability 

of actions. While the reward signal focuses on immediate rewards, the value function predicts the 

total achievable reward from a given state, considering both the immediate and potential future 

states. This approach enables an assessment of long-term benefits of states and actions taken. 

Lastly, the environment model, when used, predicts the consequences of the agent's actions on 

the environment. Methods to solve RL problems can be differentiated within RL: model-based 

methods, which utilize this predictive model, and model-free methods, which operate without 

explicit knowledge of the environmental dynamics, relying solely on trial and error. The choice 
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between model-based and model-free approaches depends on the specific requirements and 

constraints of the learning task. 

An approach to properly formulate an RL problem is through the application of a Markov 

Decision Process (MDP). MDP offers a mathematical framework that models the decision-

making process of an agent in a stochastic environment, presented as a sequence of discrete time 

steps. This can be observed in Figure 1, which depicts a flowchart of agent-environment 

interactions in an MDP. At each discrete timestep, 𝑡, the agent senses the current state, 𝑆𝑡, of the 

environment, and executes an action, 𝐴𝑡, to advance to the next time step. In the following time 

step, 𝑡 + 1, the agent receives a numerical value as a reward, 𝑅𝑡+1, influenced by the preceding 

action, then the agent transitions to a new state, 𝑆𝑡+1. 

 

Figure 1: MDP loop of agent and environment interaction (Sutton, 2018). 

1.2.1 Reinforcement Learning and Supervised Learning  

RL is often mistakenly equated with a different but just as recognized machine learning 

model that is Supervised Learning. Supervised Learning revolves around the development of 

algorithms capable of generating functions that map inputs to their corresponding outputs 

(Nasteski, 2017). This mapping is refined through iterative comparisons between the algorithm's 

predicted outputs and the actual desired outputs. Supervised Learning algorithms are favored for 
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tasks like multi-class object classification, where they employ the use of labeled data for training. 

In this context, each data label acts as a target value compared to the predicted label for a given 

input. Within a Markov Decision Process (MDP), a Supervised Learning model would learn by 

acquiring a function that maps a set of inputs to a policy, essentially being instructed on the 

optimal next action for any given state. The primary goal in Supervised Learning is to minimize 

the discrepancy between the predicted and target values. 

However, the fundamental distinction between Supervised Learning and RL lies in their 

approach to training data and decision-making. Unlike Supervised Learning, RL does not operate 

on predefined input-output pairs for training. Instead, the agent independently determines the 

optimal course of action without explicit guidance on long-term benefits. Instead, upon taking an 

action, the agent receives a reward and progresses to the state that follows. This process is 

essential for the agent to accumulate experiences across states, actions, and rewards to formulate 

an optimal policy (Kaelbling, 1996). Due to the ample knowledge collected from experiences, 

the optimal policy increases in robustness, becoming more applicable to an agent navigating 

unforeseen scenarios. 

1.2.2 Offline and Online Training 

The training methodologies for algorithms fall into two primary categories: online and 

offline. Online training involves the actor engaging directly with the environment, learning, and 

adapting in real-time. The computational intensity of this method varies with the complexity of 

the simulation and tends to be slower than offline training due to processing individual 

observations sequentially. Online training shines in scenarios characterized by environmental 

unpredictability or when the simulation cannot be neatly encapsulated by a set of equations. 
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Conversely, offline training eliminates real-time interaction between the actor and the 

environment. Rather than accumulating data through live interaction, this approach relies on pre-

gathered datasets comprising states, actions, and rewards. For offline training to effectively 

develop robust optimal behaviors, the data must be expansive and accurately reflect the target 

environment. A lack of representative data might lead the actor to develop sub-optimal 

behaviors, particularly in response to unexpected circumstances. 

1.3 Dynamic Programming 

Reinforcement Learning (RL) incorporates principles akin to those of Dynamic 

Programming (DP) (Bertsekas, 2019). DP is a recursive approach for solving multistage 

decision-making processes based on the principle of optimality (Bellman, 1966). It operates in a 

backward-in-time fashion, calculating the optimal policy starting from the trajectory's end and 

proceeding to the initial point. This method is particularly suited to problems utilizing discrete 

action and state spaces due to the tabular nature of the solution. For continuous spaces, the 

system must be discretized in time, and both the spaces for actions and states must be quantized. 

Within a given system, DP computes the immediate cost-to-go for each action at a 

specific state to transition to the next state (Kirk, 2004). Important details—current state, action 

taken, subsequent state, cost-to-go, and total cost—are stored in a table. This table effectively 

maps out the route with the least total cost, denoting the optimal policy. The optimal policy, or 

optimal control law, minimizes the total cost, which is the sum of the immediate costs-to-go from 

one state to the next, considering a specific control action, plus the total minimal cost from all 

subsequent steps to the end state. DP iteratively resolves the decision-making process to achieve 

minimum cost, utilizing table values and, if necessary, interpolating for intermediate steps. The 

resultant policy is a robust, closed-loop control strategy for the system. An illustration of DP's 
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tabular approach is provided in Table 2. It is important to note that the table reflects the final step 

of a policy, excluding future costs. 

Table 2. Dynamic programming table (Kirk, 2004). 

Current 

State 

Control Next state Cost-to-go Minimum 

cost 

Optimal 

Control 

𝑥1 𝑢 𝑥2 = 𝑥1 + 𝑢 𝐽 = 𝑥2
2 + 2𝑢2 𝐽∗(𝑥1) 𝑢∗(𝑥1, 1) 

1.5  0.0 

-0.5 

-1.0 

1.5 

1.0 

0.5 

2.25 

1.50 

2.25 

1.5 -0.5 

1.0  0.5 

 0.0 

-0.5 

-1.0 

1.5 

1.0 

0.5 

0.0 

2.75 

1.00 

0.75 

2.00 

0.75 -0.5 

0.5  1.0 

 0.5 

 0.0 

-0.5 

1.5 

1.0 

0.5 

0.0 

4.25 

1.50 

0.25 

0.50 

0.25  0.0 

0.0  1.0 

 0.5 

 0.0 

1.0 

0.5 

0.0 

3.00 

0.75 

0.00 

0.00  0.0 

While previously mentioned that Table 2 reflects only the final step of a policy, it can be 

used to show a simplified example of DP. To derive an optimal policy starting from an initial 

state of 1.0  and aiming for a final state of 0.0, DP evaluates the total cost for various strategies. 

One potential policy, 𝑢1 = [−1.0], carries a cost of 2.0. Another policy, 𝑢2 = [0.5, −1.0, −0.5], 

incurs a cost of 5.5, calculated by summing the costs-to-go between the sequential states. A third 

policy, 𝑢3 = [−0.5, −0.5], has a cost of 1.25, determined by the cumulative cost-to-go from 

state 1.0 to 0.0 through intermediate steps. Among these, the optimal policy is 𝑢∗ = 𝑢3, chosen 

for its lowest total cost. This example highlights the tabular methodology of DP, which, while 

offering a straightforward recursive solution, may face challenges with scalability in terms of 

state and action space size, as well as the incorporation of additional states and controls. 
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1.3.1 Twin Curses 

Dynamic Programming (DP) excels at producing optimal solutions through its tabular 

approach, making it a robust method for solving control problems of low complexity. However, 

as the complexity of a problem escalates—caused by an increase in variables such as the number 

of controls, states, or the expansion of control and action spaces—the method faces significant 

problems. Specifically, the computational demands and memory requirements increase 

exponentially, a phenomenon known as the curse of dimensionality. This issue complicates, and 

in some cases, may even render many Markov Decision Processes (MDPs) unsolvable (Powell, 

2011; Bethke, 2010). Gosavi, A. (2015) provides an example, analyzing an MDP with 1,000 

states and two actions. The resulting transition probability matrix for each state would 

encompass one million elements, posing formidable computational hurdles due to the limitations 

of current computing resources. Figure 2 offers a graphical representation of the curse of 

dimensionality, illustrating the exponential growth of the state-action space with the addition of 

more states and actions. 
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Figure 2. Curse of dimensionality. 

The construction of a theoretical model for a system often involves defining elements 

such as time, rewards, and either transition probabilities or system dynamics. When focusing on 

transition probabilities, the task can become particularly difficult; evaluating these probabilities 

may require the computation of multiple integrals that involve both probability mass functions 

and distribution functions of numerous random variables. The presence of a significant number 

of random variables substantially complicates the creation of accurate transition probabilities for 

the system (Gosavi, 2015). Alternatively, when the model is based on system dynamics, it 

necessitates deriving a set of governing equations through the resolution of differential equations. 

This approach faces its own set of challenges, especially with highly complex or partially 

understood systems, where only fragments of the dynamics are known. Such scenarios make 

deriving comprehensive governing equations a challenging task. This difficulty in accurately 
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modeling a system's theoretical framework is termed the curse of modeling (Gosavi, 2015). It 

represents a major obstacle in dynamic programming, alongside the well-documented curse of 

dimensionality. To navigate these twin challenges, practitioners often resort to Approximate 

Dynamic Programming (ADP), a method that offers a viable pathway for addressing the 

complexities associated with detailed system modeling. 

1.  Approximate Dynamic Programming 

Approximate Dynamic Programming (ADP) emerged as an innovative solution to the 

curse of dimensionality, by introducing a different approach to solving complex decision-making 

problems. Unlike DP which relies on storing detailed tables to map out the action-space, ADP is 

able to ignore this requirement through the use of function approximators. By employing 

approximation tools such as neural networks, ADP can formulate policies that, while not 

perfectly optimal, are sufficiently close to optimal, near optimal. This trade-off in accuracy 

significantly decreases computational demands, making it feasible to tackle problems that were 

previously unsolvable to DP. ADP encompasses two primary algorithmic strategies: value 

iteration ADP and policy iteration ADP. These methods embody principles of RL, drawing on 

Bellman’s optimality condition to guide the search for near-optimal solutions (Li, 2023). 

ADP frequently employs an architecture known as the adaptive-critic or actor-critic (AC) 

to facilitate learning. This architecture synergizes two neural networks, the actor and the critic, to 

iteratively learn an optimal policy (Konda, 1999). The process hinges on optimizing the 

Hamilton-Jacobi-Bellman (HJB) equation, a non-linear partial differential equation that 

encapsulates the value function. Given the complexity of directly solving the HJB equation, due 

to its inability to be analytically solved, ADP resorts to numerical solutions that approximate 

Bellman’s equation, a discrete version of the HJB equation (Kirk, 2004). Within the AC 
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architecture, the actor neural network is tasked with approximating the optimal policy, while the 

critic network focuses on estimating the value function, effectively embodying the optimal value 

function. This setup is similar to the interaction in Markov Decision Processes (MDPs), where 

the actor represents the agent making decisions based on control actions, and the critic parallels 

the environment, evaluating those actions to estimate the value of the states and controls utilized. 

Through this iterative process, both networks concurrently refine their approximations until they 

converge, signaling the derivation of a near-optimal solution to the HJB equation. 

Werbos (1992) introduces four methods of ADP methods: heuristic dynamic 

programming (HDP), dual heuristic programming (DHP), action-dependent heuristic dynamic 

programming (ADHDP), and action-dependent dual heuristic programming (ADDHP). Each 

method serves a unique role in the ADP landscape. For HDP it is necessary to have a 

comprehensive understanding of the system's model, employing a function approximator to 

encapsulate the value function, essentially Bellman’s equation. Similarly, DHP also demands full 

model knowledge but changes its focus towards learning the derivative of the Bellman equation, 

known as the costate, through approximation. 

Diverging from the requirement of complete system dynamics knowledge, ADHDP can 

operate with no or partial knowledge of the system, applying an approximator to resolve the 

quality function variant of Bellman’s equation. Similarly, ADDHP, does not require detailed 

model insight but aims instead to approximate the action-dependent costate, the derivative of the 

quality function version of Bellman’s equation. Notably, ADHDP is synonymous with Q-

learning, a widely recognized approach within the domain of reinforcement learning for deriving 

optimal policies. It is this method, Q-learning, that this thesis employs to approximate an optimal 

policy. 
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1. .1 Q-Learning 

In HDP, also known as value function learning, a detailed understanding of the dynamic 

model that represents the system is essential to approximate a solution to the HJB equation. This 

requirement stems from the algorithm's minimization process, which relies on elements from the 

dynamic model. However, to overcome the necessity for such detailed system knowledge, 

ADHDP, widely recognized as Q-learning, is employed (Lewis, 2009). Q-learning, a valuable 

model-free RL technique, empowers an agent to learn optimally without the prerequisite of 

mapping the relationship between controls and states (Watkins, 1992). Unlike traditional 

methods where the critic aims to approximate the optimal value function, in Q-learning, the 

focus becomes the approximation of a quality function. This function, a variation of the Bellman 

equation, evaluates the value of actions within specific states, incorporating both state and 

control action, unlike HDP where the focus is solely on states. The naming convention behind 

ADHDP is derived from the critic neural network’s dependency on actions, emphasizing the 

critical role actions play in determining the quality of state transitions. 

1.   Inverse Reinforcement Learning 

In traditional RL, the goal is for an actor to develop a policy that maximizes cumulative 

rewards across a given trajectory. This is facilitated by a pre-defined reward signal or reward 

function to promote specific behaviors. In the context of ADP, the reward function is often 

modeled after the Bellman equation, with the reward component tailored to direct the actor 

towards an intended objective. While defining a reward function might seem straightforward, the 

complexity of certain problems can make this challenging and severely time-consuming. 

Specifically, accurately encapsulating desired behaviors through a parameterized equation 

becomes difficult as complexities increase, and incorrect assumptions about these behaviors can 
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introduce biases, potentially leading to the formulation of an inappropriate reward function 

(Russel, 1998). 

Inverse Reinforcement Learning (IRL) emerges as a solution to this predicament. IRL 

seeks to deduce the behavior underlying an external actor's “expert” optimal policy, thereby 

circumventing the need for manually crafting a reward function (Ng, 2000). This approach not 

only addresses the challenge of defining precise reward functions in complex scenarios but also 

opens avenues for learning from observed behaviors without explicit reward notation. 

One of the most compelling attributes of IRL is its ability to use recorded task data for 

training autonomous agents, thereby enabling them to achieve specific objectives without a 

decline in performance. As the complexity of a system increases, manually specifying a reward 

function becomes an obstacle within RL frameworks, limiting their applicability to a broader 

range of problems. IRL addresses this limitation by integrating with an RL algorithm that 

operates on a parameterized but initially undefined reward function (Arora, 2021). 

In practice, an IRL neural network is given expert demonstrations as input and generates 

parameter values corresponding to those in the RL's reward function. These parameters are then 

utilized by the RL algorithm to simulate and refine an optimal control policy. The effectiveness 

of this policy is assessed by comparing it with the expert's policy, which was originally the input 

to the IRL model. Discrepancies between these policies guide the iterative updates to the IRL 

model, progressively aligning the RL-predicted policy with the expert demonstration. This 

iterative process continues until the RL-derived policy closely resembles, if not exactly matches, 

the expert's policy. A graphical representation of this iterative mechanism is illustrated in Figure 

3. 
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Figure 3. Iterative loop of IRL. 

IRL not only streamlines the development of reward functions but also enhances their 

versatility. A key advantage of IRL is that it produces reward functions, which reward functions 

serve as concise and robust descriptors of behavior, independent of any specific agent (Ng, 2000; 

Abbeel, 2004; Arora, 2021). This versatility allows the same reward function to be effectively 

applied to diverse actors, facilitating the replication of desired behaviors or tasks across actors of 

different forms. Even when transitioning a reward function to a new actor encounters challenges 

in reaching optimality, it still offers a better starting point than a reward function initialized with 

arbitrary parameters. The inherent flexibility and robustness of reward functions significantly 

contribute to the appeal of IRL. 

1. .1 Met ods of IRL 

IRL can be implemented through several methods, each with its unique approach to 

deducing or optimizing reward functions. Margin Optimization IRL focuses on generating 

reward function parameters that yield an optimal policy that optimizes a specific margin (Abbeel, 

2004; Arora, 2021; Imani, 2022). A common margin that is maximized is the difference between 

the total value of the optimal policy and the total value of the second-best policy. Another margin 

that is used, this time it is minimized, is the difference in feature expectations between expert 
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demonstrations and predictions. This optimization aims to align the behavior of the agent closely 

with that of the expert by minimizing this marginal loss. 

Maximum Entropy IRL applies the principle of maximum entropy to predict distributions 

or trajectories, ensuring the chosen distribution accounts for all possibilities equally, ignoring any 

bias aside from the constraints imposed (Arora, 2021; Wulfmeier, 2015; Ziebart, 2008; Guiasu, 

1985). This method seeks to replicate the expert policy accurately without overly relying on 

potentially misleading assumptions. 

Bayesian IRL introduces prior knowledge into the learning process, using it alongside a 

likelihood distribution of possible rewards to generate a posterior distribution of reward 

functions (Arora, 2021; Imani, 2022). This approach blends historical knowledge with new data 

to craft a reward function to interpret the intended task. Popular distributions used include Gibbs, 

Gaussian, and Laplacian. 

Gradient Based IRL, meanwhile, optimizes a loss function that evaluates the difference 

between the expert and predicted policies. It employs an approximator, commonly a neural 

network, to turn the expert policy into reward function parameters, subsequently the 

parameterized reward function is used through RL to approximate an optimal policy. The loss 

function's gradient with respect to the approximator’s trainable parameters, typically some sort of 

weights, is then optimized using algorithms like Adam, gradient descent, or RMSprop. It is an 

iterative process that updates the reward function to better describe the behavior displayed by the 

expert policy. 

1.  Applications 

Adams (2022) categorizes the applications of IRL into three areas, each highlighting its 

versatile potential in artificial intelligence, machine learning, and robotics. The first category 
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focuses on replicating the behavior of expert demonstrators. This is useful for replicating 

complex tasks that are challenging to describe directly through reward functions. Early 

implementations of IRL, as demonstrated by Abbeel and Ng (2004), successfully mimicked 

diverse driving styles using a 2-D car simulation and controlled aerobatic helicopter to replicate 

demonstrated maneuvers (Abbeel, 2007). Similarly, Kuderer et al. (2015) applied IRL to 

replicate driving preferences termed as “relaxed” and “accelerated,” while Mombaur et al. (2011) 

replicated human path planning. 

The second application area involves enhancing interactions between systems through 

learned reward functions. For instance, Kolter et al. (2008) extracted reward functions for a 

quadruped robot for navigating rough terrain through an initial simplified path, Chung et al. 

(2010) enabled a robot to predict human pathing to avoid collisions, and Shkurti et al. (2018) 

applied IRL for tracking and predicting the location of a target through an aerial view. The final 

category, as outlined by Adams (2022), employs IRL to gain deeper insights into agent behavior. 

This analytical application of IRL was used by Asoh et al. (2018), who analyzed medical 

treatment decisions for diabetes, to better understand the “mental reward function” a doctor uses 

to prescribe treatments. Kin et al. (2022) utilized IRL to understand and combat interference in 

drone swarms. 

1.7  Contribution 

This research aims to develop an inverse control strategy to enhance the autonomous 

driving experience tailored to individual drivers and their preferences. At the core of this thesis is 

the application of a specialized form of Inverse Reinforcement Learning (IRL), specifically 

Gradient-Based Inverse Reinforcement Learning. This approach integrates Q-learning, a model-

free Reinforcement Learning (RL) technique, employing value iteration to approximate solutions 
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to the Hamilton-Jacobi-Bellman equation to derive near-optimal policies. Initial algorithmic tests 

were conducted using the Van der Pol Oscillator, yielding positive outcomes. Subsequently, data 

from a ground vehicle simulator, Carla, was incorporated. The aim was to use this data within the 

Q-learning algorithm and, by extension, the IRL algorithm, to create a personalized reward 

function that resonates with the preferences of any user of the simulator. This project represents a 

step towards creating highly personalized autonomous driving experiences by refining reward 

functions to match individual driving styles and preferences. 
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CHAPTER II 

 APPROXIMATE DYNAMIC PROGRAMMING ALGORITHMS 

2.1 Heuristic Dynamic Programming 

The primary RL methodology employed in this project is ADHDP, commonly referred to 

as Q-learning. However, HDP was initially explored to gain a deeper understanding of ADP and 

to make apparent the advantages of Q-learning. HDP is an ADP method that focuses on the 

optimization of a value function, representing the worth of being in a particular state. This 

approach requires full knowledge of the system dynamics, usually described within a continuous 

space with continuous inputs. For ease of integration into the learning process, these dynamics 

required conversion into a discrete-time framework in an affine state space form (Lewis, 2009). 

This conversion was accomplished through Euler integration with a small timestep. The resultant 

system description is presented in Equation 1, 

𝑥𝑘+1 = 𝐹(𝑥𝑘) + 𝐺(𝑥𝑘) ∗ 𝑢𝑘 (1)

where the state at the current time step, 𝑥𝑘 ∈ ℝ𝑛, and the control input, 𝑢𝑘 ∈ ℝ𝑚, are utilized to

as inputs to the dynamics leading to the subsequent state, 𝑥𝑘+1. Here, 𝑛 represents the number of 

distinct states defining the system, while 𝑚 indicates the number of control inputs that can be 

applied to influence the behavior of the system. 

As outlined in Chapter I, a policy is a mapping of the state space of the system to the 

control space utilized by the system to achieve a desired task. In the context of DP, a policy is 

depicted as a vector of control inputs, showing directions across a table. However, in ADP, 

policies are expressed as a function of the states, as illustrated in Equation 2. 
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 𝑢𝑘 = ℎ(𝑥𝑘) (2) 

In this representation, ℎ(. ), ℝ𝑛 → ℝ𝑚, captures the functional relationship from the state 

space to the control space, transitioning from the number of states, 𝑛, as inputs, to the number of 

control actions, 𝑚, as outputs. 

2.1.1 T e Bellman Equation 

A reward function serves as a robust and succinct descriptor of a task, guiding RL 

algorithms in training the actor towards desired outcomes (Abbeel, 2004). The objective is to 

refine a policy via the reward function, which maximizes the cumulative reward received. In this 

instance, the function deployed to optimize the policy is referred to as a cost function, being 

similar to a reward function in that it specifies desired behaviors. However, it is objectively 

different since rather than maximizing cumulative rewards, the focus shifts to minimizing the 

cumulative cost.  

The cost function is described using a performance metric, which the learning algorithm 

aims to minimize. To regularize a system, the performance metric employed is represented in 

Equation 3, 

 
𝐽 =

1

2
∑(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘)

∞

𝑘=1

 
(3) 

where 𝑄 ∈ ℝ𝑛×𝑛 is defined as a real symmetric positive semi-definite matrix that penalizes 

states, while 𝑅 ∈ ℝ𝑚×𝑚 is a real symmetric positive definite matrix that penalizes controls (Kirk, 

2004). The cost is influenced by the magnitude of both states and controls, with 𝑄 and 𝑅 

dictating the focus of the algorithm by penalizing the inputs to various extents based on the 

desired task. These matrices ensure that both states and controls are behaving within expectations 

and serve as parameters to the cost function. 



 

20 

 

Equation 3 can be adapted to express the cost-to-go, which is the cost to transition 

between time steps. This formulation, Equation 4, illustrates that the cost described by the cost 

function encompasses the immediate cost of being in a state and a discounted cost of advancing 

to the next state. 

 
𝐽(𝑥𝑘) =  

1

2
(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘) + 𝛾𝐽(𝑥𝑘+1) 

(4) 

 
𝐽∗(𝑥𝑘) =  min

𝑢𝑘

(
1

2
(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘)

+ 𝛾𝐽∗(𝑥𝑘+1)) 

(5) 

The discount factor, 𝛾, has a role in determining the weight of future costs on the value of 

being in the current state. By applying the principle of optimality, we can transform Equation 4 

into Equation 5. This formulation is referred to as the Bellman equation of optimality, 

representing a discrete-time adaptation of the HJB equation. Utilizing Equation 5, the optimal 

policy is obtained by selecting the policy that minimizes the Bellman equation, shown in 

Equation 6. 

 
𝑢∗ =  argmin

𝑢𝑘

(
1

2
(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘) + 𝛾𝐽∗(𝑥𝑘+1)) 

(6) 

2.1.2 HDP: Defining an Optimal Policy 

The optimal policy is one to minimize the total cumulative cost incurred throughout the 

execution of a desired task. This optimization process aims to minimize the cost function defined 

by the Bellman equation of optimality. To identify a policy that meets the desired criteria, one 

approach involves taking the derivative of Bellman’s equation with respect to the control 

variable and then solving for this control variable where the derivative equals zero. This 
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establishes the condition for optimality, the partial derivative of the cost function with respect to 

the control variable must equal zero, as in Equations 7 – 8. 

 
0 =

𝜕

𝜕𝑢𝑘
(

1

2
(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘) + 𝛾𝐽∗(𝑥𝑘+1)) 

(7) 

 
0 = 𝑅𝑢𝑘 + (

𝜕𝑥𝑘+1

𝜕𝑢𝑘
)

𝑇

∇𝜙𝑇(𝑥𝑘+1)𝛾𝑊∗ 
(8) 

In the process of computing the derivative, a cost function approximator substitutes the 

traditional cost function, where J(𝑥𝑘) = 𝑊𝑇𝜙(𝑥𝑘), as highlighted in Equation 8. This equation 

utilizes ∇𝜙𝑇(𝑥𝑘+1), representing the gradient of the basis functions of the approximator, 

𝜙𝑇(𝑥𝑘+1). The weights, 𝑊∗, are employed by the approximator along with the basis functions to 

generate an approximation of the cost. 

Further in the derivation, the relationship 
𝜕𝑥𝑘+1

𝜕𝑢𝑘
= 𝐺(𝑥𝑘), derived from Equation 1, shows 

how the optimal policy is dependent on the dynamics of the model. This dependency is used in 

formulating the optimal policy, shown in Equation 9. 

 𝑢∗ = −𝑅−1𝐺(𝑥𝑘)∇𝜙𝑇(𝑥𝑘+1)𝛾𝑊∗ (9) 

2.2 Action Dependent Heuristic Dynamic Programming 

Action-dependency marks a significant differentiation between HDP and ADHDP, as 

implied by their names. In HDP, while the control action directly impacts the cost function, as 

shown by Equation 3, the approximator for the cost is exclusively a function of the states, 

𝐽(𝑥𝑘+1). This is caused by the basis functions, 𝜙(𝑥𝑘), which are formulated as monomials of 

unique state combinations of growing degree. 

In contrast, Q-learning introduces action-dependency within these basis functions, 

𝜙(𝑥𝑘) → 𝜙(𝑥𝑘, 𝑢𝑘). This inclusion allows control variables, alongside state variables, to create 

unique monomials of differing degrees. Consequently, the value function in HDP, depicted in 
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Equation 4, evolves into a more descriptive 'quality' function in ADHDP, transitioning from 

𝐽(𝑥𝑘+1) → 𝐽(𝑥𝑘, 𝑢𝑘), as illustrated in Equation 10. 

 
𝐽(𝑥𝑘, 𝑢𝑘) =  

1

2
(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘) + 𝛾𝐽(𝑥𝑘+1, 𝑢𝑘+1) 

(10) 

Subsequently, the Bellman equation of optimality is adapted to incorporate the quality 

term, morphing into Equation 11. 

 
𝐽∗(𝑥𝑘, 𝑢𝑘) =  min

𝑢𝑘

(
1

2
(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘) + 𝛾𝐽∗(𝑥𝑘+1, 𝑢𝑘+1)) 

(11) 

Equation 11 shows the objective of Q-learning, serving as the cornerstone of the 

algorithm's reward function. Employing a linear-in-parameter neural network as a function 

approximator, Q-learning strives to find a policy that minimizes the cost function. The 

introduction of action-dependency allows Q-learning to encapsulate more information, thereby 

eliminating the need to fully know the system dynamics.  

2.2.1 ADHDP: Defining t e Optimal Policy 

The process of identifying an optimal policy in Q-learning initiates with a method similar 

to the one shown for HDP. However, to incorporate action-dependency, Equation 6 is modified. 

This adjustment incorporates an action-dependent cost approximator, shown in Equation 12. 

 
𝑢∗ =  argmin

𝑢𝑘

(
1

2
(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘) + 𝛾𝐽∗(𝑥𝑘+1, 𝑢𝑘+1)) 

(12) 

In ADHDP, the setup for the derivative process mirrors that outlined in Equation 7, now 

incorporating the action-dependent approximator. However, proceeding with the derivation 

presents a challenge. As illustrated in Equation 8, the derivative contains a term intrinsically 

linked to the system dynamics. This connection requires a modification to Equation 12, turning it 

into a simpler version depicted in Equation 13. 
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 𝑢∗ =  argmin
𝑢𝑘

(𝐽∗(𝑥𝑘, 𝑢𝑘)) (13) 

Equation 13 shifts from utilizing the derivative of the Bellman equation to derive the 

optimal policy. Instead, it utilizes a function approximator. As previously mentioned, this 

approximator is a linear-in-parameter neural network, 𝐽(𝑥𝑘, 𝑢𝑘) = 𝑊𝑇𝜙(𝑥𝑘, 𝑢𝑘). The process of 

defining an optimal policy proceeds through substitution. 

 
0 =

𝜕

𝜕𝑢𝑘

(𝐽∗(𝑥𝑘, 𝑢𝑘)) 
(14) 

 
0 =

𝜕

𝜕𝑢𝑘
(𝑊∗𝑇𝜙(𝑥𝑘, 𝑢𝑘)) = 𝑊∗𝑇 𝜕

𝜕𝑢𝑘
𝜙(𝑥𝑘, 𝑢𝑘) 

(15) 

To obtain an explicit equation for the policy, like in Equation 9, one must solve for the 

control variables from Equation 15. This method is restricted by the resolution of the basis 

functions. Some errors may be encountered when the basis functions include the control 

variables of high degrees, due to the possible introduction of complex or imaginary numbers. 

Another source of error is observed when there is more than one unique control variable in a 

basis function term. When finding the derivative and solving for the individual control policies, 

having control variables together in basis functions will cause control interdependence. 

2.3 T e Value Iteration Algorit m 

Within ADP, a common algorithm used is known as “value iteration”. The algorithm is an 

iterative training process, value iteration operates as a closed-loop algorithm through two stages, 

the q-value update step and the policy improvement step (Lewis, 2009). The steps of the 

algorithm are delineated in Equations 16 – 17, respectively, establishing a structured approach 

that refines policies towards optimality. 

 
𝑊𝑗+1

𝑇 𝜙(𝑥𝑘, 𝑢𝑘) =
1

2
(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘) + 𝛾𝑊𝑗

𝑇𝜙(𝑥𝑘+1, 𝑢𝑘+1) 
(16) 
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 ℎ𝑗+1(𝑥𝑘) =  argmin
𝑢𝑘

(𝑊𝑗+1
𝑇 𝜙(𝑥𝑘, 𝑢𝑘)) (17) 

The variable 𝑗 functions as an iterative counter throughout the training process, indicating 

the current values of the iteration. These values transition to 𝑗 + 1 upon the completion of the 

current iteration's update steps. Training commences with the initialization of the approximator 

weights, typically utilizing random values. Subsequently, policy functions, as derived from 

Equation 17 using these randomized weights, are employed to formulate a preliminary policy. 

This initial policy is then applied in Equation 16 to compute a q-value. The calculated q-value is 

important in adjusting the weights. Due to the weights being employed in q-value prediction, 

Equation 16, and in evaluating the policy, Equation 17, changes to the weights are linked to 

changes in both the policy and the Q-function. 

The weights are updated using the least-squares method. This update mechanism is 

formalized in Equation 18, which shows the relationship between the basis functions, the q-

value, and the adjustment of weights. 

 

𝑊𝑗+1 = (𝜙(𝑥𝑘, 𝑢𝑘)𝑇𝜙(𝑥𝑘, 𝑢𝑘))
−1

((
1

2
(𝑥𝑘

𝑇𝑄𝑥𝑘 + 𝑢𝑘
𝑇𝑅𝑢𝑘)

+ 𝛾𝑊𝑗
𝑇𝜙(𝑥𝑘+1, 𝑢𝑘+1))

𝑇

𝜙(𝑥𝑘, 𝑢𝑘)) 

(18) 

In Q-learning, updating the weights serves to refine the Q-Value function approximator 

directly. Given that the policy is linked to the function approximator, any modification to the 

weights concurrently updates the policy as well. This iterative training cycle proceeds until either 

of two conditions is met: the process reaches the maximum allotted number of iterations, or the 

discrepancy between the weights across successive iterations falls beneath a predetermined 

threshold. 
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The concise Q-value iteration algorithm is: 

1. Randomly generate 𝑥𝑘 ∈ Ω, and 𝑢𝑘 ∈ Ψ.  

2. Generate the initial weights, 𝑊0. 

3. Obtain 𝑥𝑘+1 from simulation or neural network trained using gathered data. 

4. Use 𝑥𝑘+1 into the policy functions derived from Equation 17 to get 𝑢𝑘+1. 

5. Calculate Q-value of 𝑥𝑘 and 𝑢𝑘, using 𝑥𝑘+1 and 𝑢𝑘+1 in Equation 16. 

6. Update 𝑊𝑗 → 𝑊𝑗+1 using Equation 18. 

7. Repeat steps 4-6 until the difference in magnitude of 𝑊𝑗 and 𝑊𝑗−1 is smaller than 𝐸.  

Table 3. Value iteration table of variables. 

Variable Description 

𝑘 Time step index 

𝑗 Loop iteration index 

𝑥𝑘 Random states 

𝑢𝑘 Random controls 

Ω State domain of training 

Ψ Control domain of training 

𝑥𝑘+1 Future states 

𝑢𝑘+1 Future controls 

𝑊𝑗 Weights for neural network 

𝑊𝑗+1 Update to the weights 

𝑊𝑗−1 Weights of the previous iteration 

𝐸 Error threshold 
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CHAPTER III 

 INVERSE REINFORCEMENT LEARNING ALGORITHM 

3.1 Inverse Reinforcement Learning 

Elaborating further on the Inverse Reinforcement Learning (IRL) description discussed in 

Chapter 1, IRL can be succinctly described as an algorithm within an algorithm. It encompasses 

a Reinforcement Learning (RL) algorithm that trains to find an optimal policy, nested within the 

IRL algorithm that modifies the reward function used by the inner RL. Figure 4 illustrates the 

feedback loop created by the IRL algorithm.

 

Figure 4. Basic flowchart of inverse reinforcement learning. 

An expert demonstration serves as the input for the algorithm, represented as a sequence 

of state and control pairs: (𝑠1, 𝑢1), (𝑠2, 𝑢2), … (𝑠𝑝, 𝑢𝑝) → [𝑆, 𝑈]. This demonstration comprises a 

list of states and controls recorded from an 'expert'—someone proficient in performing the 

desired task. The states in the expert demonstration are descriptive characteristics of an agent, 

captured by sensors. For example, in the context of a vehicle, states could include position, 

velocity, and acceleration, which directly describe the dynamics of the vehicle. Other states may 

encompass environmental data, such as that obtained from LIDAR and cameras. The controls 
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used in the algorithm are straightforward: they are the recorded actions of devices used to 

influence the system. In the case of a vehicle, these controls would include the steering wheel, 

brake pedal, and throttle pedal, among others.

An approximator utilizes the expert demonstration to predict a set of parameters, denoted 

as 𝜏. This approximator is a deep neural network, designed such that its input layer corresponds 

to the number of samples in the demonstration. The architecture of the hidden layers is 

determined experimentally to optimize learning. Furthermore, the output layer of the 

approximator is configured to match the number of parameters required for the reward function 

in the RL algorithm. 

 𝐽(𝑥, 𝑢) = 𝜏1𝜙1(𝑥, 𝑢) + 𝜏2𝜙2(𝑥, 𝑢) … 𝜏𝑏𝜙𝑏(𝑥, 𝑢) (19) 

 𝑒𝜋 = 𝑢∗ − 𝑢𝑒  (20) 

The reward function for the RL algorithm is parameterized as outlined in Equation 19. 

This parameterization helps IRL identify suitable parameters that accurately reflect the behavior 

of the expert. In Equation 19, 𝜙 represents combinations of states and controls that form the 

basis of the reward function. The parameters employed in ADP would be 𝑄 and 𝑅, as detailed in 

Equation 13. Utilizing this adjusted reward function, the RL algorithm seeks to approximate an 

optimal policy in the form described in Equation 2. The final step in this loop involves 

comparing the policy predicted by RL, denoted as 𝑢∗, with the policy recorded from the expert, 

𝑢𝑒. The discrepancy between these policies, 𝑒𝜋 (referring to the error, 𝑒, between the policies, 𝜋, 

not to Euler’s constant), is used to update the parameter neural network, enhancing its 

predictions for subsequent iterations. This iterative process continues until the error between the 

policies falls below a predetermined threshold, or the specified number of iterations is reached. 

A basic IRL algorithm involves the following steps: 
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1. Randomly generate the trainable parameters for the IRL parameter neural

network, 𝑁𝑁(𝑥, 𝑢).

2. Input the expert demonstration into the neural network, 𝑁𝑁(𝑆, 𝑈), to obtain

parameters, 𝜏.

3. Use 𝜏 to update the reward function in the RL algorithm.

4. Obtain 𝑢∗ from the RL algorithm.

5. Calculate 𝑒𝜋  by comparing 𝑢∗ and 𝑢𝑒 (the policy recorded from the expert).

6. Update 𝑁𝑁(𝑥, 𝑢) based on the error.

7. Repeat steps 2—6 until the error 𝑒𝜋 falls below a predetermined threshold.

3.1.1 Gradient Based Learning 

Gradient Based Inverse Reinforcement Learning (GBIRL) is an IRL method that derives 

a reward function by utilizing the gradients of a cost function. Unlike in RL or ADP, where a cost 

function explicitly describes a behavior or task, in GBIRL, the cost function calculates the 

discrepancy between a target value and a predicted value. Within the context of IRL, the target 

value corresponds to the expert demonstration, while the predicted value refers to the trajectory 

and policy generated using RL. Examples of cost functions used in gradient-based learning are 

detailed in Equations 21 and 22. 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝐷𝑖 − 𝑃𝑖)2

𝑛

𝑖=1

(21) 

𝑀𝐴𝐸 =  
1

𝑛
∑|𝐷𝑖 − 𝑃𝑖|

𝑛

𝑖=1

(22) 

Equation 21 illustrates a loss function known as mean squared error, which calculates the 

average of the squared differences between the demonstration, 𝐷, and the prediction, 𝑃. This 
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function is particularly useful when there is a need to heavily penalize larger errors. The squaring 

operation causes larger errors to have a disproportionately greater impact, biasing the algorithm 

towards minimizing errors of larger magnitude. Distinctly, Equation 22 introduces the mean 

absolute error equation. As the name suggests, this function calculates the mean of the absolute 

differences between 𝐷 and 𝑃. This cost function is advantageous when all errors should be 

considered equally, avoiding any bias that might amplify the effect of outliers. This attribute is 

especially valuable in scenarios where outliers are present, and where the mean squared error 

might otherwise lean the learning process towards these outliers. 

3.1.2 Algorit m Optimizers 

Gradient-based learning updates the weights of a neural network by using the gradient of 

the selected cost function with respect to the weights. The process of optimizing and updating 

these weights is governed by gradient optimizers. These optimizers are algorithms designed to 

minimize the cost function by adjusting the weights of the neural network. There are several such 

algorithms, each with varying degrees of effectiveness depending on the context. The simplest 

among them is gradient descent (GD) , which is considered the foundational method of gradient-

based optimization. GD straightforwardly employs the gradients of the loss function, as 

illustrated in Equation 23. 

𝑊𝑗+1 = 𝑊𝑗 − 𝛼
𝜕𝐿

𝜕𝑊𝑗

(23) 

Here, 𝑊𝑗 represents the set of weights used in the current training iteration, while 𝑊𝑗+1 

depicts the set of weights to be used in the next iteration. The derivative of the loss function 

indicates how the loss changes in response to adjustments in the weights of the neural network. 

These derivatives form a Jacobian vector, containing the partial derivatives of the loss function 
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with respect to each individual weight. It is multiplied by the learning rate, a variable that 

dictates the extent to which the gradient influences the current weights. A higher learning rate 

accelerates the learning process but may compromise accuracy. On the other hand, a lower 

learning rate enhances accuracy at the cost of increased learning time. Variables like the learning 

rate that define specifics of the learning process are known as hyperparameters. 

A variant of gradient descent, known as momentum or gradient descent with momentum, 

was developed to accelerate the optimization process. As suggested by its name, gradient descent 

with momentum enhances the standard gradient descent technique by incorporating a momentum 

term. This term involves using exponentially weighted averages of past gradients to update the 

weights, which helps in smoothing out the updates and potentially speeding up convergence. The 

equations governing this optimization technique can be found in Equations 24 and 25. 

 
𝑣𝑑𝑊𝑗

= 𝛽𝑣𝑑𝑊𝑗−1
+ (1 − 𝛽)

𝜕𝐽

𝜕𝑊𝑗
 

(24) 

 𝑊𝑗+1 = 𝑊𝑗 − 𝛼𝑣𝑑𝑊𝑗
 (25) 

In this context, 𝑣𝑑𝑊𝑗
 represents the exponentially weighted average of the gradients, 

which is used for updates instead of the raw gradient typically employed in standard gradient 

descent. An additional hyperparameter, 𝛽, is introduced to control the extent of averaging. This 

parameter determines the number of past gradient values to average, effectively setting the scope 

of iterations considered. A 𝛽 close to 1.0 increases the number of iterations factored into the 

average, thereby reducing the influence of the most recent iteration. This method generally 

accelerates the optimization process compared to traditional gradient descent. 

Another widely used GD method is called Root Mean Square Propagation, or RMSProp. 

Like momentum, RMSProp is designed to expedite the optimization process of GD. This 

gradient-based method employs a similar formula to that found in Equation 24 to calculate the 
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exponentially weighted average of the gradients. However, RMSProp distinguishes itself by 

utilizing the square of the gradient, as detailed in Equation 26. 

 
𝑠𝑑𝑊𝑗

= 𝛽𝑠𝑑𝑊𝑗−1
+ (1 − 𝛽) (

𝜕𝐽

𝜕𝑊𝑗
)

2

 
(26) 

 

𝑊𝑗+1 = 𝑊𝑗 − 𝛼

𝜕𝐿
𝜕𝑊𝑗

⁄

√𝑠𝑑𝑊𝑗
+ 𝜀

 

(27) 

RMSProp modifies the weight update mechanism distinct from that used in momentum. 

Instead of directly multiplying the gradient by the learning rate, as is done in standard GD, or 

combining the weighted averages with the learning rate as in momentum, RMSProp updates the 

weights by multiplying the learning rate with the gradient divided by the square root of the 

exponentially weighted average of the squared gradients. This is depicted in Equation 27. To 

ensure numerical stability and prevent division by zero, a small constant, 𝜀, is added to the 

denominator. 

The method selected for this research combines features of both gradient descent with 

momentum and RMSProp in an algorithm known as Adaptive Moment Estimation, or Adam. 

Adam integrates the principles from Equations 24, 26, and 27 but introduces a unique 

modification to the weight update process. This key difference includes a bias correction step, 

which adjusts the updates to account for the initial bias toward zero in the moment estimates 

when the moving averages are being initialized, ensuring more accurate calculations as training 

begins (John, 2021). 

 
𝑣𝑑𝑊𝑗

= 𝛽1𝑣𝑑𝑊𝑗−1
+ (1 − 𝛽1)

𝜕𝐽

𝜕𝑊𝑗
 

(28) 

 
𝑠𝑑𝑊𝑗

= 𝛽2𝑠𝑑𝑊𝑗−1
+ (1 − 𝛽2) (

𝜕𝐽

𝜕𝑊𝑗
)

2

 
(29) 
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𝑣𝑑𝑊𝑗

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑣𝑑𝑊𝑗

1 − (𝛽1)𝑡
 

(30) 

 
𝑠𝑑𝑊𝑗

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =
𝑠𝑑𝑊𝑗

1 − (𝛽2)𝑡
 

(31) 

 
𝑊𝑗+1 = 𝑊𝑗 − 𝛼

𝑣𝑑𝑊𝑗

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

√𝑠𝑑𝑊𝑗

𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 + 𝜀

 
(32) 

Equations 28 and 29 incorporate different 𝛽 parameters, each representing a distinct 

hyperparameter of the Adam algorithm. Each 𝛽 is specifically used for bias correction of the 

corresponding weighted averages. To update the weights, Equation 32 is employed, where the 

adjusted term involves the learning rate. This term is the corrected exponentially weighted 

averages divided by the square root of the exponentially weighted squared averages, with a small 

constant, 𝜀, added for numerical stability. Equation 28 represents the first moment, and Equation 

29 the second moment, which justifies the 'adaptive moment' aspect of the algorithm's name. 

3.2 Gradient Based Inverse Reinforcement Learning 

To fully grasp the gradient descent inverse reinforcement learning algorithm, it is 

essential to comprehend the role of each equation. The initial and pivotal step in this algorithm 

involves defining a parameterized reward function. For instance, in Equation 10, the parameters 

would be the values used in the Q and R matrices. The algorithm then utilizes two distinct sets of 

recorded values. The expert demonstration, represented as (𝑥𝑒 , 𝑢𝑒), serves as the primary input 

of the algorithm and illustrates the behavior that the reward function aims to encapsulate. The 

second set of data, (𝑥, 𝑢), is employed within the reinforcement learning algorithm to understand 

how control actions influence the states of the system. This dataset is typically much larger to 

ensure it is comprehensive enough for the algorithm to learn the behavior of the system under 

various conditions. 
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Figure 5. GBIRL Flowchart. 

To initiate the process, the expert demonstration is input into a neural network to generate 

a set of parameters for the reward function, denoted as 𝑄𝑝 and 𝑅𝑝. These parameters are critical 

for the RL segment of the algorithm, which is highlighted within the dotted square in the 

diagram. 

Within this RL segment, the weights of the approximator network are initially set to 

small random values. These weights play a crucial role in the optimal control equation. The 

training data employed here helps the agent learn by distinguishing between current and future 

states. The future states, represented as 𝑥𝑘+1, are utilized in the control equation to predict future 
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controls, 𝑢𝑘+1, or the set of controls that would be applied if the system were in that future state. 

These future state-control pairs, along with the current state-control pairs, (𝑥𝑘, 𝑢𝑘), are integrated 

into the cost function to calculate a Q-value. 

The Q-values, combined with the basis functions of the approximator evaluated at the 

current state-control pairs, are employed in a least squares regression to update the weights of the 

RL function approximator. This forms an iterative process that continues until a predefined 

number of training iterations are completed. By the end of the training loop, the optimal control 

function utilizes the trained weights, concluding the RL portion of the algorithm. 

At this time, the optimal control function is applied together with the expert states to 

derive an optimal control policy, 𝑢∗. Alternatively, a trajectory, 𝑍∗, originating from an initial 

state and guided by the optimal policy function, illustrates how the agent would operate 

autonomously, diverging from a predetermined set of states. This trajectory is compared against 

the expert demonstration using a loss function that needs minimization. This minimization is 

achieved through an optimization algorithm like Adam, which adjusts the neural network’s 

performance by leveraging the gradients of the loss function to reduce its output values. This 

closed-loop method continues until either a set number of iterations have been completed or a 

performance criterion, typically a loss function magnitude threshold, has been met. This entire 

process is depicted in Figure 5. Upon completion of this learning phase, the optimal control 

should effectively replicate the behavior demonstrated by the expert.
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CHAPTER IV 

 SIMULATIONS AND RESULTS 

 .1 Simulation Overview 

The RL and IRL algorithms were evaluated using a benchmark known as the Van der Pol 

oscillator before being applied to a more complex simulated environment, CARLA (Car 

Learning to Act). The testing of these algorithms was conducted in stages. Initially, the RL 

algorithm was tested independently to verify that it performs according to certain expectations. 

One such expectation is a behavioral plot demonstrating the ability of the agent to learn from the 

consequences of its actions on itself and the environment. If the agent fails to display a clear 

understanding of the cause and effect of its actions, another significant indicator of performance 

is the convergence of the weights during the learning process. Although weight convergence 

signifies a successful learning process, it does not necessarily confirm that the behavior learned 

was as intended. This is particularly true since the RL algorithm was tested with randomly 

initialized parameters in the reward function, which may not always yield the desired behavior, 

especially in complex systems. Therefore, demonstrating weight convergence remains a crucial 

metric to assess the efficacy of the algorithm. 

 .2 Van der Pol Overview 

The Van der Pol oscillator is commonly used as a benchmark for control algorithms due 

to its inherent system characteristics. It is a harmonic oscillator that includes a nonlinear 

damping component, enabling it to exhibit self-sustained oscillations. The degree of nonlinearity 

in the system is determined by a parameter comparable to a coefficient of friction (Boccara, 
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2007). This oscillator is defined by a nonlinear, second-order differential equation, as shown in 

Equation 33. 

 𝑑2𝑥

𝑑𝑡2
− 𝜇(1 − 𝑥2)

𝑑𝑥

𝑑𝑡
+ 𝑥 = 0 

(33) 

The nonlinear friction term in Equation 33 is represented as 𝜇(1 − 𝑥2), where 𝜇 is 

termed the 'coefficient of friction'. This second-order differential equation is converted into two 

first-order differential equations, as shown: 

 𝑑𝑥1

𝑑𝑡
= 𝑥2 

(34) 

 𝑑𝑥2

𝑑𝑡
= 𝜇(1 − 𝑥1

2)𝑥2 − 𝑥1 
(35) 

The Van der Pol oscillator is employed as a benchmark in control systems testing 

primarily due to its chaotic and nonlinear nature. Even minor variations in initial conditions can 

lead to markedly different system trajectories. Sample demonstrations that depict this behavior 

can be seen in the appendix. For an agent to effectively control such a system and steer it to a 

desired state, it must be capable of accurately predicting its behavior at any given point. The 

inherent chaos and the requisite ability to model nonlinear dynamics underline why the Van der 

Pol oscillator serves as an essential preliminary benchmark to evaluate the effectiveness of a 

control algorithm before advancing to more complex systems. 

 .2.1 Van der Pol Reinforcement Learning Overview 

The phase diagram of a Van der Pol oscillator is illustrated in Figure 6. It depicts the 

system's undisturbed oscillations, highlighting how the velocity is dependent on its position, with 

the motion forming a repetitive spiral over a predetermined duration. The degree of nonlinearity 

intensifies with the increase in the 'friction coefficient.' Additionally, the representation of the 

states as functions of time, rather than of each other, is shown in Figure 7. 
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Figure 6. Phase diagram of undisturbed oscillator. 

 

Figure 7. Undisturbed states as functions of time. 

The controller is tasked with steering the states towards their desired values. In the case 

of the Van der Pol controller, these desired state values are set to zero, as reflected in the selected 
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regularization cost function. Detailed specifications of the parameters and controller settings are 

provided in Table 4. 

Table 4. Q-Learning parameters. 

Q-Learning Controller 

Number of Patterns 1000 

Quantity of Basis Functions/Neurons 17 

Training Iterations 200 

Convergence Threshold 1 × 10−4 

Time Step 0.01 

State Penalizing Matrix [
5000 0

0 2500
] 

Control Penalizing Matrix [100] 

Domain of Training 
State Domain (𝑥, 𝑥̇): [−2   2]  (𝑚,

𝑚

𝑠
) 

Control Domain (𝑢): [−10   10]  

The parameters outlined in Table 4 detail the training process for the controller. The 

'number of parameters' refers to the count of parameters utilized per iteration in the vectorized 

code, which facilitates faster learning by exposing the agent to a greater variety of states per 

iteration. However, this approach also increases computational demands as the number of 

patterns rises. Too high a number of patterns can counterproductively slow down the learning 

process. 

The basis functions consist of unique combinations of the system's variables. In this 

controller, 17 basis functions are obtained from unique combinations of position, velocity, and 

control variables. Due to the significant number of patterns, the algorithm tends to converge 

relatively quickly, enabling the use of a smaller number of training iterations. If the convergence 

threshold is reached prematurely, it indicates that further learning would yield minimal changes 

in weights, suggesting that convergence has effectively occurred. 

The penalizing matrices, square matrices whose dimensions equal the number of controls 

or states, enforce constraints on the system’s behavior. For the Van der Pol oscillator, which has 
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two states, the state penalizing matrix is a 2×2 matrix. Similarly, the control penalizing matrix is 

a 1×1 matrix, reflecting the single control input in this setup. The training domain establishes 

lower and upper bounds for the randomly selected patterns, ensuring the algorithm encounters a 

broad range of states and actionable decisions within those states. 

 .2.2 Van der Pol Reinforcement Learning Results 

The training algorithm successfully derived an optimal control law for regulating the Van 

der Pol oscillator. This law enables the states to converge to zero with minimal control effort, 

ensuring efficiency in terms of control activity. 

 

Figure 8. VDP regularized phase diagram. 
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Figure 9. VDP regularized states. 

 

 

Figure 10. VDP control. 
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Figures 8—10 display plots that illustrate the regularization of the Van der Pol oscillator 

system. Figure 9 is particularly informative, showing both position and velocity starting at 1 

meter and 1 meter per second, respectively. The phase diagram indicates the onset of oscillation, 

which rapidly converges towards the origin. The control is active only when the states deviate 

from their desired positions, but it too converges to zero magnitude once the control objectives 

are met and further activity becomes unnecessary. 

 

Figure 11. Converged weights of RL process. 

Figure 11 illustrates the progression of the weights with each successive iteration, 

demonstrating how convergence is observed within the algorithm. This behavior is particularly 

crucial when the reward function employed in training incorporates random parameters to define 

behavior. Although the states and controls learned may not always reflect the desired behavior 

accurately, convergence plots like Figure 11 are key indicators that the agent has effectively 

learned. 
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 .2.3 Van der Pol Inverse Reinforcement Learning Results 

Incorporating the RL algorithm as a function within the IRL framework requires 

modifications to the penalizing matrices outlined in Table 4. Given that a new neural network's 

predictions can include negative values, which are incompatible with the requirements of the 

penalizing matrices, the network was pretrained to ensure it outputs positive values only. 

Utilizing data from an experiment described in Section 4.2.2, the IRL algorithm successfully 

predicted state-action pairs that aligned closely with the expert demonstration. 

 

Figure 12. State replication. 
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Figure 13. Control replication. 

Figure 12 illustrates how the states—position and velocity—align with the recorded 

expert demonstration. This alignment is a key objective of IRL, as it demonstrates that the 

behavior of the agent is consistent with that of the expert. However, replicating the states 

addresses only one aspect of the challenge, as the trajectory also involves control inputs. Figure 

13 confirms that the controller successfully replicated the expert’s control inputs, effectively 

reproducing the entire expert demonstration. It is important to note that there is no unique set of 

parameters that can regulate the Van der Pol dynamics. As shown in Figure 14, the parameters 

for the reward function varied throughout the training process. 
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Figure 14. History of IRL predictions. 

 .3 CARLA Overview 

CARLA is an open-source simulator, available as a Python library, designed for urban-

driving scenarios. Its primary purpose is to support the training and validation of autonomous 

vehicle controllers, although it also facilitates the training of vehicle perception models. To 

enhance the realism and customizability of urban environments, CARLA offers a diverse array of 

vehicle models, pedestrians, and road signs (Dosovitskiy, 2017). Moreover, it features options for 

manipulating weather conditions and time of day, adding variability and challenging visibility 

scenarios to enrich training sessions. The simulator integrates a wide range of sensors, providing 

critical data such as position, velocity, and acceleration, as well as specific event-related 

information like collisions and lane departures. An illustration of CARLA in operation is 

presented in Figure 15. 
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Figure 15. CARLA application window. 

 .3.1 CARLA Setup 

To streamline the testing and validation of the control algorithm, the CARLA simulation 

was simplified to reduce variability and enable the agent to more effectively learn the dynamics 

of CARLA's vehicle models. The simulation employed a 2020 Dodge Charger vehicle model and 

utilized the Town04 urban-environment map, which features a road layout similar to an 

ampersand. Among the available maps, Town04 offers the longest stretch of straight road, as 

depicted in Figure 16. This characteristic is crucial because a straight road reduces the need for 

steering control inputs. For the simulation, the sensors employed were the Global Navigation 

Satellite System (GNSS) and the Inertial Measurement Unit (IMU). The GNSS was used to track 

the vehicle's longitudinal and latitudinal positions during the drive, while the IMU recorded the 

vehicle's velocity and acceleration. These data points constituted the states recorded for the 

expert demonstration. 
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Figure 16. CARLA Town04 (Dosovitskiy, 2017). 

The control data was captured using a Logitech G29 Driving Force steering wheel and 

pedals. CARLA facilitates the integration of these controls through the use of the Pygame Python 

library, which converts the inputs from the Logitech controller into data that CARLA can 

process. This setup enables precise recording of the degree to which the steering wheel is turned 

and the intensity of the pedal presses. The ability to capture both control inputs and vehicle 

dynamic states simplifies the process of recording expert demonstrations and gathering learning 

data. Numerous demonstrations were conducted, utilizing various combinations of braking and 

accelerating at differing rates. The physical setup used for data recording is depicted in Figure 

17. 
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Figure 17. Physical data gathering setup. 

The experiment generated several trajectories, accumulating over 100,000 time-steps, 

each lasting 0.001 seconds. These trajectories were utilized by a distinct neural network within a 

supervised learning framework. The objective of this neural network was to enhance the 

excitation in the IRL learning process. It was trained to accept random state-control pairs and 

predict the subsequent state. This approach could potentially reduce the volume of data required 

to adequately train the RL agent by leveraging random inputs for training. To validate the 

effectiveness of this neural network, approximately 10,000 state-action pairs were used, with the 

results depicted in Figures 18 and 19. 
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Figure 18. Velocity validation data for neural network. 

 

Figure 19. Acceleration validation data for neural network. 
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Table 5. CARLA IRL algorithm parameters. 

CARLA Simulation IRL 

Number of Iterations 100 

Number of Network Layers 3 

Learning Rate 0.1 
CARLA Simulation Q-Learning 

Number of Patterns 10,000 

Quantity of Basis Functions/Neurons 88 

Training Iterations 200 

Convergence Threshold 1 × 10−4 

State Penalizing Matrix [
𝑄1 0

0 𝑄2

] 

Control Penalizing Matrix [
𝑅1 0
0 𝑅2

] 

Domain of Training 
Velocity Domain: [𝜇𝑣, 𝜎𝑣] 

Acceleration Domain: [𝜇𝑎, 𝜎𝑎] 

Table 5 provides a detailed description of the parameters used on the algorithm. The 

number of iterations for the IRL model was reduced based on the assumption that further 

learning was unnecessary for acquiring the desired parameters. However, extending the learning 

duration is a straightforward adjustment if needed. The neural network, tasked with 

approximating the parameters of the reward function, consists of three layers in addition to the 

input layer. This network is trained using a gradient-based optimization method with a selected 

learning rate of 0.1 to moderate the impact of the gradients. 

In comparison with the setup used for the Van der Pol oscillator, the number of patterns 

for the RL algorithm was increased tenfold to 10,000 random patterns, enhancing the diversity of 

the learning experience and, consequently, the robustness of the agent. To accommodate the 

complexity of the system and improve adaptability, the number of basis functions was expanded 

to 88. This increase is intended to enable the agent to more accurately capture the vehicle 

dynamics, as reflected by the data obtained from CARLA. Unlike previous implementations, the 
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penalizing matrices were not constants this time, and the control penalizing matrix was enlarged 

to accommodate two controls. 

Additionally, the domain of training for the states and controls was distinctly configured. 

The recorded state data was analyzed to determine the mean and standard deviation of velocity 

and acceleration. These statistics were then used to standardize the data, enhancing training 

effectiveness. Unlike the state data, no normalization was applied to the control values, as they 

were already scaled between 0 and 1 by the simulator’s pedal usage. 

 .3.2 CARLA Results 

 

Figure 20. Weight history of RL for the last iteration of IRL. 

Figure 20 illustrates the convergence of the RL training, indicating that the Q-learning 

algorithm has successfully learned the behavior dictated by the reward function. This snapshot 

captures the final iteration of the IRL algorithm, utilizing a reward function parameterized with 

the most current prediction data. Notably, some weights remain in the zero range, which is 

attributable to their specific roles in the model. In the control aspect, only the basis functions that 
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include control terms significantly influence the outcome due to the derivative process involved. 

For the Q-value function, while all weights are important, the weights most crucial to the control 

aspects of the model tend to have a more pronounced impact. 

 

Figure 21. IRL loss history over training. 

 

Figure 22. Parameter history of CARLA IRL. 
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Figure 21 displays the learning loss over the course of the IRL training. The downward 

trend in loss is a positive indicator of successful training. However, the magnitude of reduction 

per iteration is notably small, suggesting a slow learning process. This gradual change is further 

illustrated in Figure 22, which shows only minor adjustments in the parameter history with each 

iteration. Typically, such slow progress could be addressed by increasing the learning rate. 

However, as indicated in Table 5, the learning rate is already set at 0.1, which is considered quite 

high. This suggests a potential limitation within the IRL algorithm itself. 

 

Figure 23. States prediction comparison. 
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Figure 24. Brake control prediction comparison. 

 

Figure 25. Throttle control prediction comparison. 
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Figures 23—25 depict the predicted trajectory of the agent. In Figure 23, the expert 

demonstration is shown in orange, and the predicted states are shown in blue. Unfortunately, the 

predictions do not align with the desired behavior, which may be indicative of issues with the 

format of the reward function. The assumption that a regularization function is appropriate might 

not hold true in this context. Alternative tracking methods were tested, but they yielded similar 

results. The performance metrics used in this attempt to learn the dynamics of CARLA did not 

accurately capture the desired behavior. There are indications of a regularization effort, as the 

velocity, throttle, and brake stabilize near zero values, seen in Figures 23, 24, and 25. However, 

the velocity not being driven to zero suggests that the parameters of the reward function require 

further tuning.
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CHAPTER V 

 CONCLUSION 

This thesis explores the use of Inverse Reinforcement Learning and Q-Learning to 

develop a personalized model for autonomous driving. The algorithms were initially validated 

offline using data from the simulated environment provided by CARLA and further tested on a 

benchmark system, where they successfully regulated its dynamics. Upon achieving control of 

the Van der Pol oscillator, the algorithms were applied to the recorded CARLA data. 

Unfortunately, in this instance, they failed to produce the desired control behavior. 

By dividing the testing into the main components of IRL, the identification of potential 

weaknesses within the overall algorithm became clearer. The Van der Pol oscillator served as a 

benchmark to demonstrate the RL algorithm’s capability to manage nonlinear chaotic dynamics. 

Subsequently, the full algorithm was employed to estimate the parameters of a reward function 

aimed at generating an optimal control function, which would replicate a trajectory equivalent to 

the expert demonstration. 

The limitations of the proposed IRL algorithm became evident when utilizing CARLA 

simulator data. The data was intended to train the RL algorithm and help the agent understand 

the effects of its actions within the environment. However, it appears that the linear in parameter 

(LIP) neural network was inadequate for capturing the complex behavior of the CARLA vehicle 

model. This issue suggests that the Approximate Dynamic Programming methodology employed 

may not be robust enough for such complex tasks, particularly because it forces the use of a LIP 

neural network for deriving the optimal control function. Attempts to use other types of neural 
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networks were quickly aborted due to difficulties in computing their analytical derivatives 

relative to inputs. 

Another potential factor for the unsuccessful control outcomes could be linked to the 

formulation of the cost or reward function. The performance metrics were designed for 

regularization, as partially evidenced by the stabilization of velocity, throttle, and brake at near-

zero values in the predicted trajectory. Despite testing with other performance metrics, such as 

distinct tracking methods, no significant improvements were observed. Additionally, there may 

have been an underestimation of the data required to adequately train the model. Although about 

110 thousand distinct state-control pairs were used, the complexity of the problem might require 

a larger dataset to achieve more accurate and robust learning outcomes. 

 .1 Future Works 

Once the algorithm performs as desired, the next step is to enhance the complexity of the 

personalized driving controller by incorporating steering as the third control and position as an 

additional state. Steering is an important control component in CARLA, necessary for navigating 

turns, making the inclusion of position data equally as important for recording precise 

maneuvers. Furthermore, integrating additional sensors such as lane departure and collision 

detection sensors will enhance the capability of the system to maintain lane integrity and prevent 

accidents. 

The subsequent stage involves incorporating radar or LIDAR, which will enrich the 

simulation by introducing interactive traffic scenarios. These sensors will be essential in 

measuring proximity and could serve as new state variables. Such data will enhance the ability 

for the controller to be personalized, allowing for more detailed decisions regarding braking 

times and distances between vehicles. Incorporating these sensors not only introduces additional 
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states to the RL problem but also adds complexity to the reward function, ultimately raising the 

level of personalization achievable by the controller. 
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APPENDIX 

 

Figure 26. VDP states with differing initial conditions. 

 

Figure 27. VDP control with differing initial conditions.
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Figure 28.VDP states with differing initial conditions outside domain of training. 

 

Figure 29.VDP states with differing initial conditions outside domain of training.
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