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ABSTRACT

Johnson, Alberta A., Bayesian Estimation of Reproduction Numbers from Distributions of Outbreak

Sizes: Branching Processes Approach. Master of Science (MS), May, 2024, 55 pp., 4 tables, 7 fig-

ures, references, 25 titles.

The Generalized Poisson distribution is useful in modeling epidemiological processes as a

branching stochastic processes problem. Our goal is to construct accurate and reliable estimators

for the reproduction number (R0) (i.e., the number of secondary infections), particularly in the

context of disease outbreaks modeled by a Galton-Watson process. Towards this goal, we construct

the classical Bayes estimator, the Maximum Likelihood estimator, and the Empirical Bayes (EB)

estimator under the Square Error Loss function in Chapter II. We prove that the Empirical Bayes

estimator is asymptotically optimal and estimate the rate of convergence. We then proceed to

monotonize the Empirical Bayes estimator in Chapter III using the Van Houwelingen method (Van

Houwelingen 1977) and the Isotonic Regression method (Barlow, Brunk, and Bremner 1972), then

introduced the concept of the risk and regret risk associated with our estimators. For the numerical

study in Chapter IV we assume a Poisson distribution for the reproduction number and that the

initial number of infected individuals follows a Poisson distribution. Simulation results indicate

that the empirical estimator suffers from "jumpiness", hence the need for monotonization. We

then compare the regret risks of each of the estimators and find out that the monotonized estimate

outperforms the others.
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0.0184. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Table B1: References on notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii





LIST OF FIGURES

Page

Figure 1.1: Generalized Poisson pmf with τ “ 3. . . . . . . . . . . . . . . . . . . . . . . . 5

Figure 2.1: This graph illustrates the symmetric nature of the Square Error Loss function. . 9

Figure 3.1: Monotone Likelihood Ratio and Generalized Poisson Distribution. . . . . . . . 23

Figure 3.2: Isotonic Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Figure 4.1: Bayes and MLE Estimators given n“ 80, τ “ 5, and prior Up0.5,0.8q. . . . . . 32

Figure 4.2: Empirical Bayes and MEB estimators given n“ 80, τ “ 5, and prior Up0.5,0.8q. 35

Figure 4.3: Estimators given n“ 80, τ “ 5, and prior Up0.5,0.8q. . . . . . . . . . . . . . . 36

ix





CHAPTER I

INTRODUCTION

1.1 Stochastic Modeling of Epidemic Diseases

Epidemic disease modeling serves as a fundamental building block in global health for

understanding and managing infectious outbreaks. Many of the infections are harmless and even

beneficial (for example, the bacteria we carry in our intestines which assist in the digestion of

food). However, some like the pathogenic infectious agents harm their hosts and cause disease.

The distinction between benign and harmful infections is crucial in epidemic modeling, as it

informs disease management and control strategies. Pathogenic agents, such as viruses, bacteria,

and parasites, often lead to epidemics when they invade a susceptible population and spread

rapidly, overwhelming the host’s defenses and public health systems. The transmission between

human or animal hosts occurs in a variety of ways including, by direct contact (scabies, leprosy),

the respiratory route (whooping cough, influenza, tuberculosis), through sexual contact (HIV,

gonorrhea), etc (Vynnycky, White, and Fine 2010). In recent times, we have witnessed a resurgence

of diseases previously under control, as exemplified by the recent surge in measles cases in the UK.

This resurgence highlights the importance of constant vigilance in infectious disease control and

the impact of vaccination programs on public health. This recent crisis has prompted authorities to

declare a national health incident. As reported by Geneva Abdul in January 2024, the UK Health

Security Agency (UKHSA) has warned of further outbreaks across Britain due to the decrease in

the uptake of the measles, mumps, and rubella (MMR) vaccine. The (MMR) vaccine coverage has

significantly dropped, with the average uptake falling to around 85%, significantly lower than the

desired threshold of 95% for herd immunity. This decrease has led to numerous measles cases,
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particularly in regions like the West Midlands and London, where vaccination rates are alarmingly

low. Data released by the agency showed that, since last October, there were 216 lab-confirmed

cases in the West Midlands, with 103 cases likely. About 80% of the cases were in Birmingham

and 10% were in Coventry, according to the agency, citing low vaccination rates. Most of the

cases were among children aged under 10. The UKHSA emphasizes the need for parents to ensure

their children are vaccinated, highlighting the critical role of vaccination in preventing widespread

outbreaks.

To better understand the spread and control of diseases the concept of the effective repro-

duction number (Ro) is vital. This parameter, which represents the average number of secondary

infections produced by a single infectious case in a population, is crucial in epidemiological

modeling. For diseases like measles, maintaining (Ro) below unity is essential for achieving elimi-

nations (De Serres, Nigel J. Gay, and C. Paddy Farrington 2000). However, as the UK’s situation

illustrates, this is a dynamic threshold, heavily dependent on vaccination coverage and public health

intervention. It has been observed that large outbreaks become increasingly likely as the reproduc-

tive number approaches one, a situation termed as being at ‘criticality’. This reproductive number

is influenced by the fraction of the population that is not immunized. In scenarios where vaccine

uptake declines, the population witnesses larger and more frequent outbreaks, potentially leading

to the re-establishment of measles as an endemic disease (Jansen et al. 2003). Another significant

threat in the landscape of epidemic diseases is avian influenza, particularly the H5N1 strain. This

strain, while primarily affecting birds, has shown the capability to infect humans. The public health

risk associated with avian H5N1 influenza is a subject of extensive study. The reproduction number

Ro of human infections with avian H5N1 virus is assumed to be below unity in the absence of

viral reassortment. This means that while individual cases may lead to small human-to-human

transmission clusters, the transmission rate is not high enough to sustain an outbreak. Understanding

the dynamics of these ‘subcritical’ outbreaks is crucial for predicting and managing potential public

health risks associated with avian influenza. It involves modeling the outbreak size distributions and

using maximum-likelihood methods to estimate Ro. This kind of modeling helps in identifying any
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significant changes in the transmission dynamics of the virus, which could indicate an increase in 

its ability to spread among humans (Ferguson et al. 2004a; Ferguson et al. 2004b).

In addressing epidemic diseases, mathematical models play a critical role. They provide 

frameworks for analyzing surveillance data, especially concerning diseases post-elimination of 

sustained endemic transmission. Branching process models have been utilized for the surveillance 

of infectious diseases controlled by mass vaccination programs (see (Christine 2010)). These 

models help in understanding the threshold behavior of epidemics and in calculating the critical 

vaccination threshold. They are particularly relevant in the context of estimating the effective 

reproduction number, which is a key indicator of whether an infectious disease will continue to 

spread or die out in a population. The effective reproduction number being below one is indicative 

of the disease not persisting but presenting itself in varying outbreak sizes, triggered by external 

factors such as importations (C. P. Farrington, Kanaan, and N. J. Gay 2003). To better describe 

transmission in a small population, we need to develop a stochastic model that incorporates the 

effects of chance on the possible outcome. There are several kinds of stochastic models which 

include discrete-time compartmental models. It keeps track of the total number of susceptible and 

infectious persons at each time step. Random numbers are used to determine the total number of 

susceptible infected by the infectious persons in each generation, assuming that this number follows 

some distribution (Vynnycky, White, and Fine 2010).

In the event of a potential pandemic, understanding the dynamics of the disease spread 

is critical. This is where the offspring mean θ comes into play. It represents the Ro in a disease 

outbreak modeled by a Galton-Watson process. The primary goal in such a scenario is to construct 

a reliable and accurate estimator, for θ denoted as θ̂ . The significance of θ̂  lies in its ability to 

guide public health responses. When θ̂ is close to 0, it indicates that public intervention may not be 

necessary as the outbreak will eventually go to extinction. This scenario leads to a sigh of relief 

among public health officials and the public as there is a decline in the outbreak and things start to 

move to normal. However, the situation when θ̂ is close to 1, leads to a sustained level of disease 
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transmission. Here health measures must be taken to curb the spread of a disease. For this reason, 

we shall construct a series of quality estimates to make reliable inferences about the population.

1.2 Generalized Poisson Distribution

Out of all the power series distributions, the Poisson distribution is uniquely characterized as 

having equal mean and variance (P. Consul C. 1989); however, in populations that are supposed to 

be Poisson, researchers have observed that this is not always the case. In addressing these particular 

issues, Consul and Jain, in 1970 (P.C. Consul and Jain 1970), introduced a Generalized Poisson 

distribution (GPD). This distribution extends the classic Poisson model, accommodating a greater 

variability.

The GPD has parameters 0 ď θ ă 1 and τ ą 0, and probability mass function (pmf)

Ppx;θ ,τq “
τ

x!
pτ`θxqx´1e´pτ`θxq, x“ 0,1, . . . (1.1)

The distribution has mean τ

1´θ
and variance τ

p1´θq3
. Note that the GPD is a member of the family of

Abel series distributions (see (Charalambides 1990)) and it reduces to Poison distribution for θ “ 0.

Since its introduction the GPD has been a versatile tool in many fields. In epidemiology, 

the GPD is instrumental in modeling the spread of diseases, accounting for the variable infection 

rates where θ is particularly significant as it quantifies the average number of secondary infections 

generated by one case, reflecting the potential of the disease transmission. Meanwhile, τ  represents 

the scale of the initial outbreak which we need to understand the early stages of the disease spread. 

This is often observed in real-world scenarios, focusing on statistical modeling of epidemic diseases 

through branching processes and Bayesian inference (Yanev 2001; Albertsen, Steffensen, and 

Kirstensen 1992). The GPD has also been essential in understanding and predicting the spread of 

cyber threats like viruses and worms (Sellke, Shroff, and Bagchi 2008), by modeling the variable 

rates of virus spread. The GPD aids in developing more effective security measures to protect 

against these digital threats. Additionally, the traffic flow analysis also benefits from the application 

of the GPD. Understanding and managing traffic congestion and flow patterns is crucial in urban 
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planning and road safety (Koorey 2007). The distribution’s capacity to model variable traffic 

density and flow rate helps in designing better traffic management systems and infrastructure. 

(for other applications, see (Gipps 1976; Nirei, Stamatiou, and Sushko 2012; Iešmantas and 

Alzbutas 2014; Aldous 1999)). The motivation for this paper stems from the role of GPD 

distribution in modeling epidemics.

Figure 1.1: Generalized Poisson pmf with τ “ 3.

1.3 Total Progeny of Branching Processes

In the 19th century, Victorian England’s aristocratic families posed a question to mathemati-

cian Sir Francis Galton:

How many male children (on average) must each generation of a family have in order 

for the family name to continue in perpetuity? (Albertsen, Steffensen, and Kirstensen 

1992)

5



The answer to this question became the oldest, and simplest branching process known as the

Galton–Watson (GW) process. Also, it is known as the Bienayme–Galton–Watson process dating

as far back as 1845 to the work of statistician Bienayme. By definition, a branching process is

a system in which individuals (or entities) live for a random time, producing a random number

of progenies (offspring). These processes are applicable in many areas such as gene propagation,

neutron chain reactions in nuclear fusion, cell biology, and epidemiology (Yanev 2001). In this

paper, we apply this concept to epidemiology by emphasizing how the progeny, or total number of

infected individuals of a communicable disease, can be modeled as a variable of a GPD.

The Galton-Watson branching process (GWP) is defined by the recurrence formula:

Zn`1 “

Zn
ÿ

i“1

ξi,n, n“ 0,1,2, . . . , (1.2)

where ξi,n, n “ 0,1,2, . . . are independent and identically distributed (iid) non-negative integer

random variables (rv). The process follows two fundamental assumptions

(i) The number of offspring ξi,n produced by a single parent particle is independent of the history

of the process, and of other individuals existing at the present.

(ii) The offspring distribution is consistent across all individuals in all process generations.

The total progeny distribution in a GWP is a member of the family of Lagrange Distributions

with pmf (see Pakes paper).

lpx; f ,gq “
x
ÿ

r“0

r
x

f x˚
px´ rqgprq, x“ 1,2, . . . (1.3)

where f and g are discrete probability distribution. Setting in 1.3

f pxq “
θ x

x!
e´θ and gprq “

τr

r!
e´τ , r,x“ 0,1, . . . (1.4)

We obtain the GPD’s pmf 1.1.
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Consider Z0,Z1, . . . ,Zn to be the sizes of the first n generations in a GWP and let Xn :“ Z0`

Z1` . . .` Zn. Assume X “ limnÑ8Xn is the total progeny of the process if the initial number

of individuals is r then the distribution of X is known as Borel-Tanner distribution given by

PpX “ x |Z0 “ rq “ rxx´r´1

px´rq! θ x´re´θx. Since 0ď r ď x we obtain

PpX “ xq “
x
ÿ

r“0

PpX “ x | Z0 “ rqPpZ0 “ rq (1.5)

“

x
ÿ

r“0

rxx´r´1

px´ rq!
θ

x´re´θx τre´τ

r!

“
e´pτ`θxq

x!

x
ÿ

r“1

px´1q!
px´ rq!pr´1q!

pθxqx´r
τ

r
pset k “ r´1q

“
τe´pτ`θx

x!

x´1
ÿ

k“0

px´1q!
px´1´ kq!k!

pθxqx´1´k
τ

k

“
τpτ`θxqx´1

x!
e´pτ`θxq.

Hence the total progeny of this GWP follows the Generalized Poisson distribution. More importantly,

the parameters θ and τ are crucial. With θ representing the reproduction number or number of

secondary infections caused by a parent (infected individual) and τ indicating the initial number

of infections. The rest of the thesis is organized as follows: In Chapter II we discuss the Bayes

estimators for θ when Z0 has an arbitrary discrete distribution. In Chapter III we monotonize the

empirical Bayes estimator discussed in Chapter II Chapter IV presents a numerical study when the

outbreak size follows the GPD.
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CHAPTER II

BAYES ESTIMATORS FOR θ WHEN Z0 HAS ARBITRARY DISCRETE DISTRIBUTION

Bayesian statistical methods play an important role in estimating the parameters, especially

in the context of the Generalized Poisson Distribution (GPD). The core of this method lies in

formulating a prior distribution Gpθ q which represents the initial belief or knowledge about the

parameter θ . This prior distribution captures the variability of θ . After experimenting, we observe

data x which is indicative of θ and taken from the population. This form the sample distribution

ppx | θ q. This distribution illustrates our belief in the likelihood of observing x given θ . Using the

experimental data, we then update the prior and create a posterior distribution Gpθ | xq. This is then

derived using the Bayes Rule:

Gpθ | xq “
ppx | θ qGpθ q

mpxq
θ PΩ, (2.1)

In the equation, mpxq denotes the marginal distribution of X that is, mpxq “
ż

Ω

ppx,θ qdθ and

ppx,θ q is the joint probability mass function which is integral in understanding the joint probability

mass function. This posterior distribution is then used to make further inferences about θ .

2.1 Loss Functions–Square Error Loss

Within the Bayesian framework, accurately estimating the unknown parameter θ , repre-

sented as a random variable (r.v.) with posterior distribution G is essential. The parameter value

drawn from Gpθ | xq, the posterior distribution, serves as a possible realization of the true parameter.

It is therefore important to consider how accurate and precise the estimation is by computing the

expected loss of the given estimate. To do this, we use a loss function.
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A loss function Lpθ , θ̂ q, is defined as the difference between a parameter’s estimated and

true value. This function represents the "cost" or "loss" associated with some random event. In

contrast to the frequentist theory, errors are minimized but usually do not consider the loss associated

with the error. And so there is a level of ignorance in one’s sureness of the parameter. Bayesian

estimation aims to minimize posterior loss, and so if one is to be unsure or wrong in their estimation,

then it is best to be on the side of least wrong. In this paper, we introduce the following Square

Error Loss function defined as follows:

Lpθ , θ̂ q “ pθ̂ ´θ q
2 (2.2)

The Square Error Loss function (2.2 is a symmetric loss function that equally penalizes overestima-

tion and underestimation. The symmetry comes from the fact that the loss is squared, so then, it

does not matter whether the predicted value θ̂ is above or below the true value θ ; this loss is the

same for an equal magnitude of error in either direction. It is crucial in Bayesian estimation for its

ability to provide a clear and quantifiable measure of the estimation accuracy. A visual depiction of

this symmetry is given below:

Figure 2.1: This graph illustrates the symmetric nature of the Square Error Loss function.
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We chose the Square Error Loss function, particularly for its capacity to provide a clear

measure of the estimation accuracy. This is particularly important in fields such as epidemiology,

where precise and accurate estimates of the reproduction number are often used to advise public

health officials on the possible severity of an outbreak.

2.2 Classical Bayes Estimators

A more detailed Bayes mathematical framework consists of the following elements (e.g.

Stijnen (Stijnen 1980)). We observe a random variable or vector X , with distribution θ which is

unknown. The problem is what decision to take concerning the true value of θ .

(i) Sample Space We define a sample space S of observations, complete with a σ´algebra on S .

(ii) Probability Measures The collection of probability measures on the space pS,Sq denoted by

P is usually parameterized by some set suitable parameters P “ tPθ ,θ PΩu.

(iii) Action Space The action space A represents a set A of possible actions that a statistician

might take upon observing some x P S. The set A is equipped with a σ´algebra on A.

(iv) Decision Rules A collection D of decision rules. Decision rules in this context are defined as

S-A measurable maps from S into A. Upon observing x P S, the statistician will take action

dpxq P A based on the decision rule d P D.

(v) Loss Function The loss function L : ΩˆAÝÑR is critical for measuring the cost of decisions.

For each θ P Ω, the function Lpθ , ¨q must be A measurable and bounded from below on A.

The incurred loss when taking action dpxq P A, if θ is the true parameter value is represented

by Lpθ ,dpxqq.

(vi) Prior Distribution The prior distribution G, a probability measure on Ω equipped with the

σ´ algebra W reflects the initial belief about the parameter space.

Adopting the Bayesian model, we will define the following Bayes estimator θG for θ . Suppose

θ PΩ is a realization of a random variable (r.v) Θ. Under the squared error loss function and with a

10



prior distribution G it is well known that the Bayes estimator θG for θ is θGpxq “ ErΘ|X “ xs that

is the posterior expectation of Θ given X “ x.

Proposition 1. Consider the Galton-Watson process (1.2) with Poisson offspring f in (1.4). The

Bayes estimator θGpxq for θ is given by

8
ÿ

r“0

PpZ0 “ rqcrpxq
ˆ
ż 1

0
θ

x´r`1e´θxdGpθ q
˙

8
ÿ

r“0

PpZ0 “ rqcrpxq
ˆ
ż 1

0
θ

x´re´θx dGpθ q
˙

“:
ψGpxq
qGpxq

,

where for r “ 0,1, . . .

crpxq :“
r
x

xx´r

px´ rq!
, x“ r,r`1, . . . . (2.3)

Proof. We have

θGpxq “ ErΘ|X “ xs

“

ż 1

0
θPpθ |X “ xqd Gpθ q

“
1

PpX “ xq

ż 1

0
θPpΘ“ θ ,X “ xqdGpθ q

“

8
ÿ

r“0

PpZ0 “ rq
ż 1

0
θPpX “ x|Z0 “ rqd Gpθ q

8
ÿ

r“0

PpZ0 “ rq
ż 1

0
PpX “ x|Z0 “ rqd Gpθ q

“

8
ÿ

r“0

PpZ0 “ rqcrpxq
ˆ
ż 1

0
θ

x´r`1e´θxdGpθ q
˙

8
ÿ

r“0

PpZ0 “ rqcrpxq
ˆ
ż 1

0
θ

x´re´θx dGpθ q
˙

.

Remarks. Recall that if Z0 follows Poipτq, then (1.5) is the Generalized Poisson distribution. In the
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case of GPD, the Bayes estimator simplifies to

θGpxq “

ş1
0 θ pτ`θxqx´1e´pτ`θxq dGpθ q
ş1

0pτ`θxqx´1e´pτ`θxq dGpθ q
.

Furthermore, if G is Unipa1,a2q then

θGpxq “

ż a2

a1

θ pτ`θxqx´1e´pτ`θxq dθ

ż a2

a1

pτ`θxqx´1e´pτ`θxq dθ

. (2.4)

2.3 Empirical Bayes Estimators: Construction and Properties

To make accurate inferences about the population parameter, it is often important to specify

a prior distribution for it. However, sometimes this prior distribution is assumed to exist but is

unknown. The empirical Bayes approach addresses this by leveraging a series of comparable past

experiments to inform about the prior distribution. This method is particularly applicable when

an experiment is part of a sequence of similar investigations, where past data can shed light on

the unknown prior distribution. Consider a series of n independent copies of the random triple

pX ,Z0,Θq denoted as pX1,Z01,Θ1q, pX2,Z02,Θ2q, . . . pXn,Z0n,Θnq where Θ has a (prior) distribution

G.

Assuming τ is known, pXi,Z0iq, i“ 1,2, . . . are observable, but Θi, i“ 1,2, . . . are not. The

empirical Bayes method then raises the question: it is possible or not to infer the approximate form

of the unknown G or directly of the Bayes estimator θGpxq, from the set of values pX1,Z01q,pX2,Z02q

(Robbins 1964)? And the answer is yes.

In what follows, we will adopt the empirical Bayes method of estimation (Carlin 2000),

which relies on the assumption of the existence of a prior, which however is unspecified except that

it is also i.i.d. from an unknown distribution, with cumulative distribution function G. Our goal

is to construct a point estimate for θ given the sequence of past data. Such an estimator is called

empirical Bayes (EB) estimator. We will seek a direct (independent of G) estimate of the Bayes

12



estimator θG.

Following Robbins, we consider the case where pX1,Z01q,pX2,Z02q . . . ,pXn,Z0nq is a se-

quence of independent random vectors, independent from pX ,Z0,Θq and with the same BT marginal

distribution as X |Z0. Consider past observed data px,z0qpnq :“ tpx1,z01q,px2,z02q, . . . ,pxn,z0nqu

generated by an unobserved set of parameter values tθ1,θ2, . . . ,θnu according to the GPD p.m.f.

ppx;θ ,τq given in (P.C. Consul and Jain 1970).

Let x be the present observation and θ be the present parameter value of Θ. An EB estimator

θnppx,z0qpnq;xq “: θnpxq for the parameter θ is a function of the currently observed x and the past

data px,z0qpnq. Define

ψn jpxq “
cZ jpxqc1pX j´ xq

cZ jpX jq
ItZ j ď xă X ju, j “ 1,2, . . . ,n

and

qnipxq “
cZipxq
cZipXiq

ItZi ď x“ Xiu, i“ 1,2, . . . ,n.

Now, consider

ψnpxq :“

¨

˝

1
n

n
ÿ

j“1

ψn jpxq

˛

‚ and qnpxq :“
1
n

n
ÿ

j“1

qn jpxq. (2.5)

In the next lemma, we show that statistics (2.5) are unbiased and consistent estimators for the

numerator and denominator of θGpxq, respectively.

Lemma 2. Let Enr¨s and Varnr¨s denote the expectation and variance with respect to pX1,Z1q,pX2,Z2q, . . . ,pXn,Znq.

Then

piq En

»

–

1
n

n
ÿ

j“1

ψn jpxq

fi

fl“ ψGpxq and Enrqnpxqs “ qGpxq.

piiq Varnrψnpxqs ď
ψGpxq

n
and Varnrqnpxqs ď

qGpxq
n

.
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Proof. (i) By the Law of Total Expectation, we have

Enrψn jpxqs “

x
ÿ

r“0

Enrψn jpxq|Z j “ rsPpZ j “ rq

“

x
ÿ

r“0

PpZ j “ rqcrpxqEn

„

c1pX j´ xq
crpX jq

ItX j ě x`1u
ˇ

ˇZ j “ r


“

x
ÿ

r“0

8
ÿ

t“x`1

PpZ j “ rqcrpxq
c1pt´ xq

crptq

ż 1

0
crptqθ t´re´θ t dGpθ q.

Setting y“ t´ x, we obtain

Enrψn jpxqs “

x
ÿ

r“0

8
ÿ

y“1

PpZ j “ rqcrpxq
ż 1

0
c1pyqθ y`x´re´θpy`xq dGpθ q

“

x
ÿ

r“0

PpZ j “ rqcrpxq
ż 1

0
θ

x´r`1e´θx

¨

˝

8
ÿ

y“1

c1pyqθ y´1e´θy

˛

‚dGpθ q

“

x
ÿ

r“0

PpZ “ rqcrpxq
ż 1

0
θ

x´r`1e´θx dGpθ q

“ ψGpxq.

Similarly, we obtain

Enrqn jpxqs “

x
ÿ

r“0

Enrqn jpxq|Z j “ rsPpZ j “ rq

“

x
ÿ

r“0

PpZ j “ rqEn

„

crpxq
crpX jq

ItX j “ xu
ˇ

ˇZ j “ r


“

x
ÿ

r“0

PpZ j “ rq
crpxq
crptq

ż 1

0
crptqθ x´re´θx dGpθ q

“ qGpxq.

(ii) We will find upper bounds for the variances of qn jpxq and ψn jpxq. First, for Varrqn jpxqs
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we have

Varrqn jpxqs “ Var
„

cZ jpxq
cZ jpxq

ItZ j ď x“ X ju



“ PpZ j ď x“ X jqp1´PpZ j ď x“ X jqq

“

x
ÿ

r“0

PpZ j “ rqPpX j “ x | Z j “ rqp1´PpX j “ x | Z j “ rqq

ď

x
ÿ

r“0

PpZ j “ rqPpX j “ x | Z j “ rq

ď qGpxq. (2.6)

Therefore,

Varrqnpxqs “Var

»

–

1
n

n
ÿ

j“1

qn jpxq

fi

flď
qGpxq

n
Ñ 0 as nÑ8.

Now, consider Varrψn jpxqs. We will prove that for j “ 1,2, . . . ,n and xě 0

0ď ψn jpxq “
cZ jpxqc1pX j´ xq

cZ jpX jq
ItZ j ď xă X ju ď 1.

Set z :“ z j “ x j´ x. We have for any 1ď r ď x

c1px j´ xq
crpx jq

“
c1pzq

crpz` xq

“
z` x

rz
zz´1

pz´1q!
pz` x´ rq!
pz` xqz`x´r

“
z` x

rz
zz´1 pz` x´ rqpz` x´ r´1q . . .z

pz` xqz`x´r`1´1

“
z` x

rz
zz´1

pz` xqz´1
pz` x´ rqpz` x´ r´1q . . .z

pz` xqx´r`1

“
1
r

ˆ

z
z` x

˙z´2
pz` x´ rqpz` x´ r´1q . . .z

pz` xqx´r`1 . (2.7)
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Hence,

crpxq
c1pzq

crpz` xq
“

r
x

xx´r

px´ rq!
1
r

ˆ

z
z` x

˙z´2
pz` x´ rqpz` x´ r´1q . . .z

pz` xqx´r`1 ă 1.

Therefore, for any j “ 1,2, . . . ,n

Varnrψn jpxqs “ Enrψ
2
n jpxqs´pEnrψn jsq

2
ď Enrψ

2
n jpxqs ď Enrψn jpxqs “ ψGpxq.

Thus,

Varrψnpxqs “Var

»

–

1
n

n
ÿ

j“1

ψn jpxq

fi

flď
ψGpxq

n
Ñ 0 as nÑ8.

˝

The lemma is proved.

Let us construct the EB estimator θn for θ given by (see also Liang (Liang 2009))

θnpxq :“min
"

ψnpxq
qnpxq

,1
*

x“ r,r`1, . . . (2.8)

Theorem 3. For each prior distribution G, the EB estimator θn is asymptotically optimal.

Proof. We have

Spθn,θGq “

8
ÿ

x“0

Enrθnpxq´θGpxqs2 pGpxq,

where
8
ř

x“0
pGpxq “ 1. It is sufficient to show that

lim
nÑ8

Enrθnpxq´θGpxqs2 “ 0. (2.9)

Recall that the second moment of a non-negative r.v. Z is given by

ErZ2
s “

ż 8

0
2tp1´PpZ ď tqqdt.
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It follows then

Enrθnpxq´θGpxqs2 “
ż 8

0
2tP

ˆ
ˇ

ˇ

ˇ

ˇ

θnpxq´θGpxq
ˇ

ˇ

ˇ

ˇ

ą t
˙

dt,

“

ż

θGpxq

0
2tPpθnpxq´θGpxq ă ´tqdt`

ż 1´θGpxq

0
2tPpθnpxq´θGpxq ą tqdt.

It suffices then, in order to prove (2.9), to show that @ t ą 0 both

lim
nÑ8

Ppθnpxq´θGpxq ă ´tq “ 0 and lim
nÑ8

Ppθnpxq´θGpxq ą tq “ 0.

Without loss of generality, let’s consider the limit of the right tail probability. For t ą 0, we rearrange

the terms to get

Ppθnpxq´θGpxq ą tq “ P
´

ψnpxq
qnpxq

^1´
ψGpxq
qGpxq

ą t
˘

ď P
´

ψnpxq
qnpxq

´
ψGpxq
qGpxq

ą t
¯

“ P
´

ψnpxq´
´

t`
ψGpxq
qGpxq

¯

qnpxq ą 0
¯

“ P

˜

rψnpxq´ψGpxqs´
´

t`
ψGpxq
qGpxq

¯

rqnpxq´qGpxqs ą tqGpxq

¸

. (2.10)

Next, we use the following inequality. For any r.v. V and W , and cą 0

PpV ´W ą cq ď P
´

V ą
c
2

¯

`P
´

W ă´
c
2

¯

. (2.11)

Indeed, for cą 0

PpV ´W ą cq “ P
´

V ´W ą c,V ą
c
2

¯

`P
´

V ´W ą c,V ď
c
2

¯

ď P
´

V ą
c
2

¯

`P
´

V ´W ą c,V ď
c
2
,W ă´

c
2

¯

`P
´

V ´W ą c,V ď
c
2
,W ě´

c
2

¯

.

But P
´

V ´W ą c,V ď c
2 ,W ě´ c

2

¯

“ 0, which implies

PpV ´W ą cq ď P
´

V ą
c
2

¯

`P
´

W ă´
c
2

¯

,

17



i.e., (2.11) holds. Applying equation (2.11) to equation (2.10), we obtain

Ppθnpxq´θGpxq ą tq ďP
´

ψnpxq´ψGpxq ą
tqGpxq

2

¯

`P

˜

qnpxq´qGpxq ă
´tqGpxq

2pt` ψGpxq
qGpxq

q

¸

. (2.12)

Now by Lemma 2(i), we have Erψnpxqs “ ψGpxq and Erqnpxq “ qGpxqs; applying Chebysher

inequality and Lemma 2(ii), we have for t ą 0

Ppψnpxq´ψGpxqq ą
tqGpxq

2
ď

Varrψnpxqs
tqGpxq{2

2

ď
4

t2q2
Gpxq

ψGpxq
n

Ñ 0 as nÑ8. (2.13)

Similarly,

Ppqnpxq´qGpxqq ď
´tqGpxq

2
´

t` ψGpxq
qGpxq

¯ ď

4
´

t` ψGpxq
qGpxq

¯2

t2q2
Gpxq

Var
”

qnpxq
ı

ď

4
´

t` ψGpxq
qGpxq

¯2

t2q2
Gpxq

qGpxq
n

Ñ 0 as nÑ8. (2.14)

Therefore by (2.10)-(2.14), for any t ą 0 we conclude

lim
nÑ8

Ppθnpxq´θGpxq ą tq “ 0.

Following a similar process, one can show that for any t ą 0

lim
nÑ8

Ppθnpxq´θGpxq ă ´tq “ 0,

the details of which are left to the reader. Hence the proof is complete.
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2.4 Bayes Risk and Regret Risk

The Bayes risk of an estimator θ̂ under Squared Error Loss LpΘ, θ̂ q “ pθ̂ ´Θq2 is defined

as

Rpθ , θ̂ q “ Epθ̂ ´Θq
2 (2.15)

where the expectation is taken with respect to both X and Θ. Then it follows by definition of θGpxq

that the minimum Bayes Risk is given by

Rpθ ,θGq “ EpθGpxq´Θq
2

Therefore,

riskpθ̂Gpxqq “ Rpθ ,θGq “

ż 1

0

8
ÿ

x“0

pθ̂Gpxq´θ q
2 fGPpx;θ ,τqdGpθ q,

where θ̂Gpxq is an estimator and τ is fixed and known.

Let us turn to the EB estimator θn defined in (2.8). When we have fixed values for

pX1,Z1q,pX2,Z2q . . . ,pXn,Znq, the risk of θnppX1,Z1q, . . . ,pXn,Znq;Xn`1q “: θnpXn`1q, denoted by

R̃pG,θnq, is expressed under the square error loss and given by

R̃pθ ,θnq “ EpX1,Z1q,...,pXn,Znq

”

EXn`1,θn`1 pθnpXn`1q´Θq
2
| pX1,Z1q, . . . ,pXn,Znq

ı

The formulation, R̃pθ ,θnq, is known as the conditional Bayes risk of θn and is treated as a random

variable due to its dependency on the random observed data X1, . . . ,Xn.

Definition 1. The overall Bayes risk of the EB estimator θn is then defined by

Rpθ ,θnq :“ En
“

R̃pθ ,θnq
‰

Here, Enr¨s denotes the expectation taken with respect to ppX1,Z1q, . . . ,pXn,Znqq.
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In practice, the selection of the estimators often involves various criteria to determine their

optimality. One such criterion is called the regret risk associated with an EB estimator θn, defined

as the non-negative difference between the Bayes risk of the EB estimator and the Bayes risk of the

Bayes estimator θGpxq

Spθnq :“ Rpθ ,θnq´Rpθ ,θGq ě 0,

This regret risk is a standard measure of the quality (optimality) of an EB estimator. A se-

quence of EB estimators tθnu
8
n“1 is defined as asymptotically optimal for a given distribution

G if limnÑ8 Spθnq “ 0. Under certain conditions, it is shown that θn is asymptotically optimal with

a rate of convergence characterized by O
´

n´θ{2
¯

for some θ P p0,2q (Liang 2009). We will use

this measure of estimator quality to determine the best estimator for θ .
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CHAPTER III

MONOTONE EB ESTIMATORS FOR θ IN CASE OF GPD

3.1 Monotone Likelihood Ratio Property

The EB estimator is not monotone with respect to x. We provide an illustration of θn

in Chapter IV. This is unwanted behavior for this estimator because the GPD has a monotone

likelihood ratio as it is given in the proposition below.

Proposition 4. The GPD distribution has a monotone likelihood ratio, i.e.,

qpxq “
fGPpx;θ2,τq

fGPpx;θ1,τq
(3.1)

which is increasing with respect to x whenever 0ă θ1 ă θ2 ă 1 and xą τ{p1´θ q.

Proof. Since for x“ 0,1, . . .

fGPpx;θ ,τq “
τ

x!
pτ`θxqx´1e´pτ`θxq

“
τxx´1

x!
pτ{x`θ q

x´1e´xpτ{x`θq,

we have

qpxq “
fGPpx;θ2,τq

fGPpx;θ1,τq
“

„

τ{x`θ2

τ{x`θ1

x´1

e´xpθ2´θ1q.

Taking a natural logarithm, we obtain

lnqpxq “ px´1q ln
ˆ

τ{x`θ2

τ{x`θ1

˙

´ xpθ2´θ1q.

21



Differentiating with respect to x, we get

B lnqpxq
Bx

“ ln
ˆ

τ{x`θ2

τ{x`θ1

˙

`px´1q
τ

x

ˆ

´
1

τ`θ2x
`

1
τ`θ1x

˙

`θ1´θ2

“ lnpτ{x`θ2q´ lnpτ{x`θ1q`θ1`
τ

x
´θ2´

τ

x
`px´1q

τ

x

ˆ

1
τ`θ1x

´
1

τ`θ2x

˙

“ ln
”

pτ{x`θ2qe´pτ{x`θ2q
ı

´ ln
”

pτ{x`θ1qe´pτ{x`θ1q
ı

`px´1q
τ

x

ˆ

1
τ`θ1x

´
1

τ`θ2x

˙

:“ A1pxq´A2pxq`Bpxq, say.

Since 0 ă θ1 ă θ2 ă 1 and τ ą 0, we have that Bpxq is positive for any positive x. It remains to

show that A1pxq ą A2pxq for any xě 1. We will prove that the function f pyq “ ye´y is increasing

for 0ă yă 1. Indeed, we have for 0ă yă 1

f 1pyq “ pye´y
q
1
“ e´y

´ ye´y
“ p1´ yqe´y

ą 0.

Since both terms of the derivative are positive for all xą τ{p1´θ q, we conclude that:

d
dx

lnqpxq ą 0.

This proves that lnqpxq, and hence qpxq, is increasing with respect to x under the given conditions,

confirming the monotone likelihood ratio property of the GPD.

The MLR property reveals a relationship between the magnitude of the observed variable

and the distribution it draws from. If a distribution f px;θ q obeys the MLR property, then the higher

the observed value x the more likely it was drawn from the distribution f px;θ2 then from f px;θ1q

for θ2 ą θ1.
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Figure 3.1: Monotone Likelihood Ratio and Generalized Poisson Distribution.

3.2 Van-Houwilengen’s Monotonization Procedure

Seeing as how the monotonicity property of the Generalized Poisson Distribution (GPD) is

desirable, our estimates need to have this quality as well. However, as highlighted by Van Houwalin-

gen (Van Houwelingen 1977), the Empirical Bayes (EB) estimator θn, does not naturally exhibit

this monotonic behavior in the context of GPD. To address this issue, Van Houwalingen outlined a

method for monotonizing the EB estimator. Moreover, he demonstrated that the monotonized EB

estimator, θ˚n , not only aligns with the monotonicity of the GPD but also possesses a smaller Regret

Risk than the original EB estimator θn, making θ˚n a "better" estimator. In our study, we adopt this

approach to monotonize θn for the GPD, enhancing its accuracy and reliability. In Chapter IV, we

discuss yet another example of this classical construction by monotonizing the EB estimator for

GPD distribution.

Estimators for discrete distributions with MLR can be made monotone by applying a

procedure developed in (Van Houwelingen 1977) (see also (Yanev and Colson 2017)). Consider a

simple randomized version of the estimator θ̂npxq represented by the following function Dpa | xq for

a P p0,1q:

Dpa | xq “

$

’

’

&

’

’

%

0 if θnpxq ą a,

1 if θnpxq ď a.
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The number Dpa | xq is the probability that an estimate θnpxq less than or equal to a is

selected given X “ x. In other words, Dpa | xq is a cdf on the action space p0,1q for every X “ x.

Then define for a P p0,1q

αpaq :“ ErDpa | Xqs “
ÿ

tx:θnpxqďau

Ppx | aq “
ÿ τ

x!
pτ`θxqx´1e´pτ`θxq (3.2)

Denote Fpx | θ q “
řx

k“r
τ

x!pτ `θxqx´1e´pτ`θxq for x ě r and assume Fpr´ 1 | θ q “ 0. Now, we

can construct a randomized estimator with D˚pa | xq as follows

D˚pa | xq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 if αpaq ă Fpx´1 | aq,

αpaq´Fpx´1|aq
Fpx|aq´Fpx´1|aq if Fpx´1 | aq ď αpaq ď Fpx | aq,

1 if Fpx | aq ă αpaq,

(3.3)

D˚p1 | xq “ 1, and D˚p0 | xq “ limaÑ0 D˚pa | xq. Let a P pθ0,θ1q be fixed. It follows from the

construction of D˚, that ErD˚pa | Xqs “ ErDpa | Xqs.

The next proposition shows that using the monotone estimator D˚, one can construct another

(non-random) monotone estimator θ˚n , say, with risk less than or equal to the risk of the θn.

Proposition 5. Let D˚pa | xq be the monotone estimator constructed in (3.3).We introduce a non-

random monotone estimator θ˚n pxq:

θ
˚
n pxq :“

ż 1

0
adD˚pa | xq. (3.4)

The monotone non-random estimator θ˚n pxq dominates D˚pa | xq, which in turn dominates the initial

estimator Dpa | xq in terms of the Bayes risk under Square Error Loss:

Rpθ ,θ˚n q ď Rpθ ,D˚q ď Rpθ ,Dq. (3.5)
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Proof. The proof is based on the properties of the GPD, particularly its monotone likelihood ratio.

Following the theorem in (Van Houwelingen 1977) and ensuring that all assumptions are satisfied

for the GPD, we can proceed with the proof: For the second inequality in (3.5), it is established that

D˚pa | xq, as a monotone estimator, dominates the initial estimator Dpa | xq for all θ in the interval

[0,1]. Under the Square Error Loss, we focus on showing that D˚pa | xq is dominated by θ˚n . The

overall Bayes risk for θ˚n is given by the expected square error. Applying Jensen’s inequality we

obtained

Rpθ ,θ˚n q “ E
”

pΘ´θ
˚
n q

2
ı

“ E

«

ˆ

Θ´

ż 1

0
adD˚pa | Xq

˙2ff

“ E

«

ˆ

Θ´

ż 1

0
adD˚pa | Xq

˙2ff

ď E
„
ż 1

0
pΘ´aq2 dD˚pa | Xq



“ E
„
ż 1

0
pΘ´aq2dD˚pa | Xq



“ Rpθ ,D˚pa,Xqq (3.6)

3.3 Isotonic Regression Monotonization Procedure

As an alternative to the monotone estimator in Section 3.2, we monotonize the EB estimator

using the Isotonic Regression method. The isotonic regression provides a non-decreasing sequence

that best fits the data under the given constraints.

Definition. (Barlow, Brunk, and Bremner 1972) Let X be the finite set tx1, . . . ,xku with the

sample order x1 ă x2 ă . . .ă xk. A real-valued function f on X is isotonic if x,y P X and xă y, then

f pxq ď f pyq. (The term "non-decreasing" would serve equally well here). Let g be a function on X

and w a given positive function on X. An isotonic function g˚ on X is an isotonic regression of g

with weights w with respect to the simple ordering x1 ă x2 ă . . .ă xk if it minimizes in the class of
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isotonic functions f on X the sum

ÿ

xPX

rgpxq´ f pxqs2 ¨wpxq

When the weight function and the simple ordering are understood, we call g˚ simply an isotonic

regression of g.

Isotonic Regression by way of an example.

Example: Sample Isotonic Regression (Barlow, Brunk, and Bremner 1972)

Let X “tx1,x2, . . . ,xkuwhere x1ă x2ă . . .ă xk. For i“ 1,2, . . . ,k, let yipxiq, j“ 1,2, . . . ,mpxq

be a set of measurements of some quality. That is, for x P X , y1pxq, . . . ,ympxqpxq are observations on

a distribution. Let µpxq denote the mean of the distribution. If µ is known or assumed to be linear

in x, it may be desired to estimate µpxq by the sample linear regression. This is the solution of the

problem of linear regression: to fit the data in the sense of least squares by a linear function of x,

i.e., to minimize

ÿ

xPX

mpxq
ÿ

j“1

ry jpxq´ f pxqs2

in the class of linear functions f . Let

ȳpxq “
1

mpxq

mpxq
ÿ

j“1

y jpxq, x P X .

.

Since

mpxq
ÿ

j“1

ry jpxq´ f pxqs2 “
mpxq
ÿ

j“1

ry jpxq´ ȳpxqs2`mpxqrȳpxq´ f pxqs2,

an equivalent problem is to minimize

ÿ

xPX

rȳpxq´ f pxqs2mpxq (3.7)
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in the class of linear functions f on X .

If no restriction were to be placed on µpxq, its least squares estimate would be obtained

by minimizing 3.7 in the case of arbitrary functions f on X . The solution is clearly the function

ȳ : tȳpxq,x P Xu. In another situation, it might be known or assumed that µ is nondecreasing in x;

that is, isotonic with respect to the simple order on X . A least squares estimate of µpxq would be

obtained by minimizing the weighted sum if squares 3.7 in the class of nondecreasing functions f

on X , the class of functions isotonic with respect to the simple order on X : functions f such that

xi ď x j implies f pxiq ď f px jq. The solution may be called the Sample Isotonic Regression.

Suppose for example that X “ t1,2u, i.e, x1 “ 1, x2 “ 2. Suppose one measurement

ȳ1 “ ȳp1q “ 5 is made on a first quantity, and one measurement, ȳ2 “ ȳp2q “ 3 on a second (see

Figure). Then mp1q “mp2q “ 1. Set fi “ f piq, µi “ µpiq, i“ 1,2. Suppose it is known that µ1 ď µ2.

Here ȳ1 and ȳ2 do not satisfy ȳ1 ď ȳ2 and so will not serve as estimates for µ1 and µ2

Figure 3.2: Isotonic Regression
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subject to µ1 ď µ2. In Figure 3.2 on the right figure, (ȳ1, ȳ2) is plotted as a point in the Cartesian

plane. It follows from the Pythagorean theorem that the foot (ȳ˚1, ȳ
˚
2)of the perpendicular onto the

region t f1 ď f2u minimizes

2
ÿ

i“1

pȳi´ fiq
2
“

ÿ

xPX

rȳpxq´ f pxqs2mpxq (3.8)

subject to t f1 ď f2u.
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CHAPTER IV

NUMERICAL STUDY: THE CASE OF GPD

In this section, we employ simulations to assess the performance of various estimators

within the Generalized Poisson distribution (GPD) framework, notably focusing on the impact of the

Square Error Loss. The estimators under comparison are the Bayes estimator θGpxq, the initial EB

estimator θn, the Van Houwelingen monotone EB estimator θ˚n , the Isotonic Regression monotone

estimator θ˚˚n , and the maximum likelihood estimator θmle. The algorithm for the simulations is

provided in Appendix A. Given the application context, particularly in epidemiological modeling

where the GPD is also used, there is a compelling argument as noted in (Liang 2009) for the

parameter θ to take on values in a sub-interval of p0,1q. This restriction is relevant as θ typically

represents a rate, which naturally falls within this range. Additionally, we consider the parameter

r representing a real-world quantity such as the initial number of infected individuals entering a

country with a communicable disease. Lastly, we prioritize the importance of accurate estimations

in our epidemiological framework by focusing on the Square Error Loss function. This function is

particularly critical as it penalizes errors in estimation, with a heightened focus on underestimations.

In the context of public health, underestimating parameters like the initial number of infected

individuals can have serious repercussions, potentially leading to insufficient preparedness for

outbreaks. Thus, our simulations are designed to critically assess the performance of estimators in

minimizing such underestimations within the GPD framework.
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4.1 Bayes Estimator

In our simulation study, we adopt a Uniform prior distribution Unip0.5,0.8q for the parameter

θ . This range is selected for its epidemiological significance: at the lower end, a reproductive number

of θ “ 0.5 suggests a dwindling epidemic, likely to extinguish without intervention. Conversely, at

the higher end, a reproductive number of θ “ 0.8 indicates a potentially escalating viral outbreak

that could become an epidemic. Setting τ “ 5 which represents the scenario such as the initial count

of infected individuals in an outbreak, we evaluate θGpxq. Under these assumptions we have for

x“ 5,6, . . . ,25, the Bayes estimator θGpxq is evaluated using:

θGpxq “

ż 0.8

0.5
θ p5`θxqx´1e´p5`θxq dθ

ż 0.8

0.5
p5`θxqx´1e´p5`θxq dθ

.

For example if x“ 0 then

θGp0q “

ż 0.8

0.5
θ dθ

ż 0.8

0.5
dθ

“
0.8`0.5

2
“ 0.65.

Thus under our settings, the minimum Bayes risk is given by

Rpθ ,θGq “
1

0.8´0.5

25
ÿ

x“5

5
x!

ˆ
ż 0.8

0.5
pθGpxq´θ q

2
p5`θxqx´1e´p5`θxq dθ

˙

« 0.0051.

where c5pxq is from (2.3).
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4.2 Maximum Likelihood Estimator

Next, we will find the maximum likelihood estimator (MLE) for θ .

Proposition. The MLE for θ is given as

θ̂MLEpxq “max
"

0,
x´ τ´1

x

*

, x‰ 0.

Proof. The log-likelihood of (1.1) is

ln fGPpxq “ lnτ`px´1q lnpτ`θxq´pτ`θxq´ lnpx!q

and its partial derivative with respect to θ equals

B ln fGPpxq
Bθ

“
xpx´1q
τ`θx

´ x.

Finally, setting the above derivative equals 0 and solving for θ we obtain for the MLE θ̂MLEpxq, say

θ̂MLEpxq “max
"

0,
x´ τ´1

x

*

, x‰ 0. (4.1)

The maximum likelihood estimator with τ “ 5 is given by

θMLEpxq “max
"

0,
x´6

x

*

, x“ 5,6, . . . ,25.

The θ̂MLEpxq has a risk of approximately 0.0235 and a regret risk Rpθ ,θMLEq´Rpθ ,θGq “ 0.0184.

The calculations of the Bayes estimator θGpxq and values of the maximum likelihood

estimator θMLEpxq for each x from 5 to 25 are presented in Table 4.1 and Figure 4.1 to demonstrate

the behavior of the Bayes and MLE estimators.
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Table 4.1: Bayes and MLE estimates

x θGpxq θMLEpxq x θGpxq θMLEpxq x θGpxq θMLEpxq

5 0.63 0 12 0.64 0.50 19 0.66 0.68

6 0.63 0 13 0.64 0.54 20 0.66 0.70

7 0.63 0.14 14 0.64 0.57 21 0.66 0.71

8 0.63 0.25 15 0.65 0.60 22 0.66 0.73

9 0.63 0.33 16 0.65 0.63 23 0.67 0.74

10 0.63 0.40 17 0.65 0.65 24 0.67 0.75

11 0.64 0.45 18 0.65 0.67 25 0.67 0.76

Figure 4.1: Bayes and MLE Estimators given n“ 80, τ “ 5, and prior Up0.5,0.8q.
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4.3 Empirical Bayes Estimator: Simulation

Following the empirical Bayes framework, for the numerical study, we consider n “

20,40,60,80 independent copies

pX1,Z1,Θ1q,pX2,Z2,Θ2q, . . . ,pXn,Zn,Θnq (4.2)

of the random triple pX ,Z,Θq, where Θ is Unip0.5,0,8q variable and, given Θ, X follows the GPD

distribution (1.1) and Z follows a Poip5q . We assume that pXi,Ziq values are observable in our

simulations, but Θi are not. We produce m“ 10 sets of the n triples above. For each set of triples

we calculate the EB estimate θ
p jq
n pxq where j “ 1,2, ...,10 and x“ 5,6, . . . ,25. This way we obtain

for each j “ 1, . . . ,10 the following EB estimates

θ
p jq
n p5q,θ p jq

n p6q, . . . ,θ p jq
n p25q.

Next, we calculate the conditional EB risk for the jth estimate above using the formula

R̃pθ ,θ p jq
n q “

1
0.8´0.5

25
ÿ

x“5

ż 0.8

0.5
pθ
p jq
n pxq´θ q

2GPDpx,θ qd θ , j “ 1,2, . . . ,10.

After computing all 10 conditional EB risks, we estimate the overall Bayes risk Rpθ ,θnq by

R̂pθ ,θnq “
1

10

10
ÿ

j“1

R̃pθ ,θ p jq
n q.

Finally, the estimated regret risk is given by

Ŝpθnq “ R̂pθ ,θnq´Rpθ ,θGq.

We repeat the above simulation procedure for n“ 20,40,60,80.
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4.4 Monotonized Empirical Bayes Estimators

We proceed to monotonise the EB estimator and compute the estimate using the Van-

Houwilengen’s θ˚80pxq and the Isotonic Regression Monotonization Procedure θ˚˚80 pxq. We first

applied Van-Houwilengen’s Procedure to our empirical Bayes estimators and subsequently applied

the Isotonic Regression Procedure.

Subsequently, the values of the empirical Bayes estimator θnpxq, Van-Houwilengen’s θ˚n pxq

estimator and Isotonic Regression monotonized estimator θ˚˚n pxq for each x from 5 to 25 are pre-

sented in Table 4.2. Also, a visual depiction of their trends is provided in Figure 4.2.

Table 4.2: Empirical Bayes, Van Houwilengen, and Isotonic Regression estimates

x θnpxq θ˚n pxq θ˚˚n pxq x θnpxq θ˚n pxq θ˚˚n pxq x θnpxq θ˚n pxq θ˚˚n pxq

5 1.00 0.42 0.70 12 0.21 0.85 0.70 19 1.00 0.90 0.73

6 0.67 0.54 0.70 13 0.83 0.85 0.73 20 0.75 0.90 0.73

7 1.00 0.59 0.70 14 0.90 0.85 0.73 21 0.75 0.90 0.73

8 0.72 0.60 0.70 15 1.00 0.89 0.73 22 0.17 0.90 0.73

9 0.83 0.66 0.70 16 0.26 0.90 0.73 23 1.00 0.91 0.78

10 0.44 0.74 0.70 17 1.00 0.90 0.73 24 1.00 0.95 0.78

11 0.76 0.81 0.70 18 0.63 0.90 0.73 25 0.33 0.95 0.78
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Figure 4.2: Empirical Bayes and MEB estimators given n“ 80, τ “ 5, and prior Up0.5,0.8q.

Similar to Spθ80q, we also estimate the regret risk for the monotonized EB estimator, Spθ˚80q

and Spθ˚˚80 q by the average Ŝpθ˚80q and Ŝpθ˚˚80 q respectively. For the EB estimator monotonized

using the Van-Houwilengen’s Monotonization Procedure, the Spθ˚80q by the average Ŝpθ˚80q was

calculated to be´0.0011. Similarly, for the EB estimator monotonized using the Isotonic Regression

Monotonization Procedure, the Spθ˚˚80 q by the average Ŝpθ˚˚80 q was estimated to be 0.00295. We

repeat the entire procedure for n“ 20, 40, and 60 as well.

We report the numerical results for the regret risks ratios w.r.t that of θmle in Table 4.3 below.

The improvement of θ˚n and θ˚˚n over θn is quite substantial in terms of their regret risk.

Notice that from Table 4.3, the monotone EB estimators θ˚n and θ˚˚n show a substantial

decrease in regret risk over θn, with θ˚˚n showing a slightly higher reduction in regret risk compared

to θ˚n in most cases.
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Table 4.3: Change of Regret Risks of θn, θ˚n , and θ˚˚n in terms of percent from Ŝpθmleq “ 0.0184.

n Ŝpθnq Ŝpθ˚n q Ŝpθ˚˚n q

20 Ĳ 21.52% İ -85.29% İ -102.83%

40 İ -13.01% İ -112.29% İ -113.51%

60 İ -19.31% İ -116.51% İ -115.26%

80 İ -27.21% İ -104.89% İ -113.17%

Note. All standard errors are less than 10´4 and τ “ 5.

Additionally, we present the estimates based on a single set of size n“ 80 triples from (4.2)

along with the maximum likelihood and Bayes estimate in Figure 4.3 to illustrate the estimators’

behavior.

Figure 4.3: Estimators given n“ 80, τ “ 5, and prior Up0.5,0.8q.
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CHAPTER V

CLOSING REMARKS

In this paper, we studied the estimation problem for the reproduction parameter θ of

Generalized Poisson distribution. Our interest stemmed from applying branching processes as

models of epidemic outbreaks where θ equals the average number of secondary infections caused

by a host. Using the Isotonic Regression method (Barlow, Brunk, and Bremner 1972) and Van

Houwelingen method (Van Houwelingen 1977), we constructed a monotone empirical Bayes

estimators θ˚˚n and θ˚n for θ based on the empirical Bayes estimator θn proposed by Liang (Liang

2009). These new monotone estimators are strictly better than the original empirical estimation

supported by having a smaller regret risk than both the empirical and maximum likelihood estimates

with θ˚˚n showing a slightly higher reduction in regret risk compared to θ˚n . The non-monotone

empirical Bayes estimator θn turns out to be quite jumpy (see Figure 4.3) and does not have

good small sample properties (see Table 4.3). Simulation results show that θ˚˚n and θ˚n perform

much better than θn, especially when the number of past observations and/or the epidemic size

are small. This confirms the major positive effect of the monotonization procedure. In addition,

the square error loss function is incredibly powerful for epidemic analysis. Due to its symmetric

nature and the capacity to provide a clear measure of the estimation accuracy both underestimating

and overestimating are penalized equally. When running simulations, we saw that the monotone

estimators θ˚n and θ˚˚n again outperformed the other estimates, indicated by the smaller regret risk.

Generally, the comparison of various estimators—Bayes estimator, EB estimator, monotone

EB estimators, and the maximum likelihood estimator—underlines the superiority of the monotone

EB estimators in minimizing square error loss which is a crucial aspect in epidemiological modeling

where underestimation can have significant public health implications.
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APPENDIX B

Table B1: References on notation

Notation Description

Θ rv parametrizing X ; the reproduction number
θ a realization of the reproduction parameter Θ

θ̂ refers to any estimator
θG Bayes estimator
θmle Maximum likelihood estimator for GPD distribution
θn Empirical Bayes estimator for GPD
θ˚n Monotonized EB estimator for GPD based on Van Houwelingen
θ˚˚n Monotonized EB estimator for GPD based Isotonic Regression
Poipλ q Poisson distribution with parameter λ

RpG, θ̂ q Bayes risk for estimator θ̂ under G´prior
Rpθ̂ q Regret risk for estimator θ̂

Ŝpθ̂ q Average regret risk for estimator θ̂

Unipa,bq Uniform distribution with parameters pa,bq
GPD Generalized Poisson distribution
cdf cummulative distribution function
EB Empirical Bayes
GW Galton–Watson also known as Bienaymé–Galton–Watson
iid independent identically distributed
MLE maximum likelihood estimator
MLR monotone likelihood ratio
pmf probability mass function
rv random variable

MEBE monotone empirical Bayes Estimator
MEB monotone empirical Bayes
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ALGORITHM 1: Bayes Estimate and Minimum Bayes Risk
/* Parameters are set to τ “ 5, max_x“ 25, a“ 0.5, b“ 0.8. */

1 Generate x_values“ 5,6, . . . ,max_x /* Vector of current outbreak sizes */
2 Initialize theta_G_estimates as an empty vector of length x_values /* For storing Bayes estimates */
3 for x in x_values do
4 Compute integral numerator as

şb
a θ ¨ pτ`θ ¨ xqx´1 ¨ e´pτ`θ ¨xqdθ /* Function psi_G for numerator

*/
5 Compute integral denominator as

şb
apτ`θ ¨ xqx´1 ¨ e´pτ`θ ¨xqdθ /* Function q_G for denominator

*/
6 Compute θ_Gpxq as the ratio of integral numerator to integral denominator /* Bayes estimate for

single x */
7 Store θ_Gpxq in theta_G_estimates corresponding to x
8 end
9 Initialize min_riskÐ 0 /* Accumulate minimum Bayes risk */

10 for x in x_values do
11 Compute risk_single_x for each x using the risk_single_x function /* Compute risk for single x

*/
12 min_riskÐ min_risk` risk_single_x /* Accumulate risk */

13 end
14 min_riskÐ min_risk{pb´aq /* Average minimum Bayes risk */
15 Print "Minimum Bayes risk:", min_risk /* Output minimum Bayes risk */

ALGORITHM 2: MLE Estimate and it Minimum Risk
/* Parameters are set to τ “ 5, max_x“ 25, a“ 0.5, b“ 0.8. */

1 Generate x_values“ 5,6, . . . ,max_x /* Vector of current outbreak sizes */
2 Initialize theta_MLE_estimates as an empty vector of length x_values /* For storing MLE estimates */
3 for x in x_values do
4 if xą τ then
5 theta_MLEpxq Ðmaxp0,px´ τ´1q{xq /* MLE estimate for xą τ */
6 end
7 else
8 theta_MLEpxq Ð 0 /* Ensures theta_MLE does not return negative values */
9 end

10 Store theta_MLEpxq in theta_MLE_estimates corresponding to x Print "Theta_MLE for x“", x,
"is", theta_MLEpxq /* Output MLE estimate */

11 end
12 Initialize min_risk_mleÐ 0 /* To accumulate minimum risk for MLE */
13 for x in x_values do
14 Compute risk_single_x for each x using the risk_single_x function /* Compute risk for single x

*/
15 min_risk_mleÐ min_risk_mle` risk_single_x /* Accumulate risk */

16 end
17 Print "Minimum MLE risk:", min_risk_mle /* Output minimum MLE risk */
18 Calculate Regret risk Spθmleq
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ALGORITHM 3: Empirical Bayes Estimator: Simulation Procedure
/* Simulation of EB estimates, conditional EB risks, overall Bayes risk, and estimated regret

risk for different sample sizes. */
1 for sample size n in t20,40,60,80u do
2 Generate n independent copies tXi,Zi,Θiu, where Θ is Unip0.5,0.8q and given Θ, X follows GPD

and Z follows Poip3q /* Setup simulation environment */
3 Produce m“ 10 sets of the n triples /* For each sample size */
4 for j “ 1 to 10 do
5 Calculate EB estimates θ

p jq
n pxq for x“ 5,6, . . . ,25 /* Compute EB estimates for each set */

6 end
7 for j “ 1 to 10 do
8 Calculate conditional EB risk R̃pθ ,θ p jq

n q using the given formula for x“ 5,6, . . . ,25 /* Compute
conditional EB risks */

9 end
10 Estimate overall Bayes risk R̂pθ ,θnq as the average of the 10 conditional EB risks /* Aggregate to

overall Bayes risk */
11 Calculate estimated regret risk Ŝpθnq as R̂pθ ,θnq´Rpθ ,θGq /* Compute regret risk */
12 Print estimated overall Bayes risk and estimated regret risk for current n /* Output results for

current sample size */

13 end

ALGORITHM 4: Empirical Bayes Estimator θn

1 Input: n,τ,xmin,xmax,m,seeds
2 Output: Results matrix results_n with EB estimates for each x and realization j
3 for xÐ xmin to xmax do
4 for jÐ 1 to m do
5 Set seed to seedsr js
6 Zp jqÐ Generate Poisson distributed values with mean τ

7 θ p jqÐ Generate uniform values between 0.5 and 0.8
8 Initialize X p jq as numeric vector of length n
9 for iÐ 1 to n do

10 X p jq
i Ð Sample from distribution with parameters θ

p jq
i and τ

// Assuming rbort is a placeholder for the actual distribution sampling function
11 Define c1, cZx, and cZX functions with appropriate error handling

12 c1px,X p jq
i q Ð Compute based on X p jq

i and x

13 cZxpx,Zp jq
i q Ð Compute based on Zp jq

i and x

14 cZXpX p jq
i ,Zp jq

i q Ð Compute based on X p jq
i and Zp jq

i
15 end

// Compute ψn j and qn j for each x and aggregate
16 ψnpxq Ð Sum of ψn jpx,X p jq,Zp jqq over i divided by n
17 qnpxq Ð Sum of qn jpx,X p jq,Zp jqq over i divided by n

// Calculate θnpxq using aggregated ψn and qn

18 θnpxq Ð Compute EB estimate from ψnpxq and qnpxq
19 Store θnpxq in results matrix results_nr j,as.characterpxqs
20 end
21 end

// Output the results matrix
22 Print results_n
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ALGORITHM 5: Monotonized EB Estimator θ˚n
1 for j in 1:m do
2 for i in 1:na do
3 for x in 1:xmax do
4 if θ

p jq
n pxq ă ai then

5 αp jqpaiq “ αp jqpaiq`
řna

i“1 prpx | aiq /* Construct D and calculate α from (??) */
6 end
7 end
8 end
9 end

10 Initiate Fxmaxˆnapx | aiq as zero matrix /* Construct BT cdf */
11 for i in 1:na do
12 Fpr | aiq “ prpr | aiq

13 for x in r+1:xmax do
14 Fpx | aiq “ Fpx´1 | aiq` prpx | aiqq

15 end
16 end
17 j=1 /* Construct D˚ from (??) */
18 while j<=m do
19 for i in 1:na do
20 if αp jqpaiq ą Fpr | aiqq then

/* case: x“ r */
21 D˚p jqpai | rq “ 1
22 else
23 D˚p jqpai | rq “ αp jqpaiq

Fpr | aiq

24 end
/* case: xą r */

25 for x in r+1:xmax do
26 if Fpx´1 | aiq ą αp jqpaiq then
27 D˚p jqpai | xq “ 0
28 else
29 if Fpx | aiq ă αp jqpaiq then
30 D˚p jqpai | xq “ 1
31 else
32 D˚p jqpai | xq “ αp jqpaiq´Fpx´1 | aiq

Fpx | aiq´Fpx´1 | aiq

33 end
34 end
35 end
36 end
37 x=r /* Construct θ˚n from (3.4) */
38 while x<=xmax do
39 for i in 1:na do
40 tailipxq “ 1´D˚p jqpai | xq

41 θ
˚p jq
n pxq “ 1

na
řna

i“1 tailpxq
42 end
43 x=x+1 /* Update of current outbreak size x */

44 end
45 j=j+1 /* Update of data set j */

46 end
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ALGORITHM 6: Monotonized EB Estimator θ˚˚n
1 Input: Results matrix results_n, vector x
2 Output: Isotonic regression-adjusted results matrix iso_results_n

// Initialize matrix to store isotonic regression results
3 Initialize iso_results_n as a matrix with the same dimensions as results_n

// Loop through each set of estimates
4 for jÐ 1 to m do

// Apply isotonic regression to the j-th set of estimates
5 iso_ f it Ð Apply isotonic regression to x and results_nr j, s

// Store the fitted values
6 iso_results_nr j, s Ð iso_ f it’s fitted values
7 end

// Output the isotonic regression-adjusted results
8 Print iso_results_n
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