
University of Texas Rio Grande Valley University of Texas Rio Grande Valley

ScholarWorks @ UTRGV ScholarWorks @ UTRGV

Theses and Dissertations

8-1-2024

Intrinsic Universality in Tile Automata and Related Results Intrinsic Universality in Tile Automata and Related Results

Elise C. Grizzell
The University of Texas Rio Grande Valley

Follow this and additional works at: https://scholarworks.utrgv.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Grizzell, Elise C., "Intrinsic Universality in Tile Automata and Related Results" (2024). Theses and
Dissertations. 1555.
https://scholarworks.utrgv.edu/etd/1555

This Thesis is brought to you for free and open access by ScholarWorks @ UTRGV. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks @ UTRGV. For more
information, please contact justin.white@utrgv.edu, william.flores01@utrgv.edu.

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/etd
https://scholarworks.utrgv.edu/etd?utm_source=scholarworks.utrgv.edu%2Fetd%2F1555&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.utrgv.edu%2Fetd%2F1555&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.utrgv.edu/etd/1555?utm_source=scholarworks.utrgv.edu%2Fetd%2F1555&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu

INTRINSIC UNIVERSALITY IN TILE AUTOMATA

AND RELATED RESULTS

A Thesis

by

ELISE GRIZZELL

Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

Major Subject: Computer Science

The University of Texas Rio Grande Valley

August 2024

INTRINSIC UNIVERSALITY IN TILE AUTOMATA

AND RELATED RESULTS

A Thesis
by

ELISE GRIZZELL

COMMITTEE MEMBERS

Dr. Tim Wylie
Chair of Committee

Dr. Robert Schweller
Committee Member

Dr. Bin Fu
Committee Member

Dr. Qi Lu
Committee Member

August 2024

Copyright 2024 Elise Grizzell

All Rights Reserved

ABSTRACT

Grizzell, Elise, Intrinsic Universality in Tile Automata and Related Results. Master of Science (MS),

August, 2024, 235 pp., 1 table, 37 figures, 30 references.

The Tile Automata (TA) model describes self-assembly systems in which monomers can

build structures and transition with an adjacent monomer to change their states. This paper shows

that seeded TA is a non-committal intrinsically universal model of self-assembly. We present a

single universal Tile Automata system containing approximately 4600 states that can simulate (a)

the output assemblies created by any other Tile Automata system Γ, (b) the dynamics involved in

building Γ’s assemblies, and (c) Γ’s internal state transitions. It does so in a non-committal way:

it preserves the full non-deterministic dynamics of a tile’s potential attachment or transition by

selecting its state in a single step, considering all possible outcomes until the moment of selection.

The system uses supertiles, each encoding the complete system being simulated. The

universal system builds supertiles from its seed, each representing a single tile in Γ, transferring the

information to simulate Γ to each new tile. Supertiles may also asynchronously transition states

according to the rules of Γ. This result directly transfers to a restricted version of asynchronous

Cellular Automata: pairwise Cellular Automata.

iii

DEDICATION

To my mother for seeing me through the darkest times and supporting my successes today.

iv

ACKNOWLEDGMENTS

First and most importantly, I want to thank my parents for all their love and support.

Especially my mother, Dr. Saara Grizzell. Without her, I never would have come to UTRGV and

had the chance to pursue research.

None of this would have been possible without my advisors Tim Wylie, Robert Schweller,

and Bin Fu. Wylie, I will always be grateful that you recruited me into research and have been

such an incredible advisor. Schweller your guidance and assistance have been invaluable. Dr. Fu,

not only have you been an asset to my research, but you also awarded me the G.A.A.N.N. Grant,

enabling me to do research full-time. I could not be more grateful.

There were incredible fellow students along the way. Tim, you were everything I could have

asked for in a colleague and friend and more. Thank you for sharing your brilliance, mentorship, and

support. Micheal, not only were you a significant support and friend in the lab you also spearheaded

the creation of the tool that made this thesis possible. This wouldn’t have been possible without

either of you. Andrew, your calm rationalism, great ideas, and solid friendship were one of the high

points of my time at ASARG. Ryan, you’ve been a fantastic co-author and rubiks cube competitor.

Tom, you’re the best cheerleader a woman could have. I will always be grateful for your

love, support, and substantial rewrite of the attachment section.

I have been lucky to work with the following other wonderful co-authors: Rachel Anderson,

Alberto Avila, Josh Brunner, David Caballero, Sonya C. Cirlos, Michael Coulombe, Erik D.

Demaine, Jenny Diomidova, Markus Hecher, Austin Luchsinger, Jayson Lynch, Aiden Massie,

Gourab Mukhopadhyay, Adrian Salinas, Ahmed Shalaby, Armando Tenorio, Evan Tomai, and

Damien Woods.

I am so grateful for every member of the Algorithmic Self-Assembly Research group and

Computer Science department for creating a supportive and friendly environment.

v

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . iv

ACKNOWLEDGMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER I: INTRODUCTION . 1

1.1 Overview . 1

CHAPTER II: INTRINSIC UNIVERSALITY IN ACTIVE TILE SELF-ASSEMBLY 3

2.1 Introduction . 5

2.1.1 Previous Work . 7

2.1.2 Our Contributions . 8

2.2 Preliminaries . 10

2.2.1 The Seeded Tile Automata Model . 11

2.2.2 Simulation . 13

2.3 Impossibility for Passive or Bounded State Change Systems 16

2.4 Overview of Intrinsic Universality in TA . 20

2.4.1 Temperature-1 Seeded TA is Intrinsically Universal 20

2.4.2 Temperature Simulation at Scale-1 . 23

2.4.3 Seeded TA is Intrinsically Universal . 23

2.5 Temperature Simulation . 24

2.5.1 Alternate Upper Bound . 25

2.6 Supertiles . 27

2.6.1 Agents & Gadgets . 27

2.6.2 Table & Wiring . 30

2.6.3 Outer Shell . 31

2.7 Attachment . 33

2.7.1 Initiation . 33

vi

2.7.2 Checking Attachment . 33

2.7.3 Preparing for Copying . 34

2.7.4 Copying Supertile Outline . 35

2.7.5 Construction Wires . 39

2.7.6 Copying Table . 39

2.7.7 Activating Tile and Determining State . 41

2.8 Transitioning Tiles . 44

2.8.1 Finding Intersection . 44

2.8.2 Transmitting Intention to Transition . 44

2.8.3 Transitioning States . 47

2.9 Metrics . 49

2.9.1 Agents . 49

2.9.2 Copying States . 50

2.9.3 Final Count . 52

2.10 Correctness of Construction . 53

2.11 IU TA Simulates 2D Asynchronous CA N = 2 . 57

2.12 Conclusion . 59

CHAPTER III: OTHER TILE AUTOMATA RESULTS . 78

3.1 Building squares with optimal state complexity in restricted active self-assembly . 78

3.2 Simulation of Multiple Stages in Single Bin Active Tile Self-Assembly 79

CHAPTER IV: COVERT COMPUTATION IN THE ABSTRACT TILE-ASSEMBLY MODEL. 80

CHAPTER V: CHEMICAL REACTION NETWORKS . 81

5.1 Reachability in Restricted Chemical Reaction Networks 81

5.2 Computing Threshold Circuits with Void Reactions in Step Chemical Reaction
Networks. 82

CHAPTER VI: SURFACE CHEMICAL REACTION NETWORKS 83

6.1 Complexity of Reconfiguration in Surface Chemical Reaction Networks 83

6.2 Reconfiguration of Linear Surface Chemical Reaction Networks with Bounded
State Change . 84

APPENDICES . 85

REFERENCES . 232

VITA . 235

vii

LIST OF TABLES

Page

Table 2.1: Intrinsic Universality Across Models . 10

viii

LIST OF FIGURES

Page

Figure 2.1: Example Temperature 4 Tile Automata System 11

Figure 2.2: An Overview of a Supertile . 60

Figure 2.3: The temperature-1 system that simulates the system in Figure 2.1. 61

Figure 2.4: The construction process that the Tile Automata in Figure 2.3 builds, represent-
ing the same attachments and transitions as in Figure 2.1 62

Figure 2.5: Operation of a Door Gadget . 62

Figure 2.6: Standard Crossover Gadget . 62

Figure 2.7: The Punchdown Gadget Process . 63

Figure 2.8: The Transition Selection Gadget . 63

Figure 2.9: An overview of a datacell. 63

Figure 2.10: The supertile discovers it has no neighbor. 64

Figure 2.11: The lookup agent reaches table and locks the table 64

Figure 2.12: Lookup agent checks for potential attachment 65

Figure 2.13: The lookup agent finds no attachment and unlocks the table, deleting itself when
it reaches the edge of the supertile. 65

Figure 2.14: Copy Checkpoint (West) begins construction by locking then resetting/wiping
the supertiles interior. 66

Figure 2.15: Copy Checkpoint sends agents to claim and place mirror edge. 66

Figure 2.16: The general copy process. 66

Figure 2.17: Placement of a border tile. 67

Figure 2.18: The copy director copies each adjacent edge. 67

Figure 2.19: The copy director and placement directors copy the far side edge. 67

Figure 2.20: Copying the horizontal table outline. 68

Figure 2.21: Copying the vertical table outline. 68

Figure 2.22: Copying the table row wires. 69

Figure 2.23: Constructing Datacell outlines. 69

Figure 2.24: Filling datacells with transition rules. 70

Figure 2.25: Constructing vertical table wires. 70

ix

Figure 2.26: Constructing state transmission wires. 71

Figure 2.27: Locking construction wires and reactivating neighboring supertile. 71

Figure 2.28: Receiving states from neighboring supertiles. 72

Figure 2.29: Selecting the state of the supertile. 73

Figure 2.30: Testing for neighbors and unlocking supertiles. 74

Figure 2.31: Sending out new state to neighbors. 75

Figure 2.32: An agent discovers the existence of a transition with its neighbor. 75

Figure 2.33: The agent checks whether the neighboring supertile is still in the same state and
locks the neighbor’s table. 76

Figure 2.34: The transitions are sent to the transition selection gadget. 76

Figure 2.35: Filling and Using the Transition Selection Gadget 76

Figure 2.36: The supertiles independently transition by first deselecting the old column and
then selecting the new one. 77

Figure 2.37: Simulating Asynchronous Cellular Automata 77

x

CHAPTER I

INTRODUCTION

The molecular programming field is a new frontier of research in which we explore the

possibilities of using molecules to compute. In particular the area of the field known as self-assembly

studies how individual monomers may come together to form larger structures.

My thesis primarily focuses on the topic of Intrinsic Universality in the self-assembly model

Tile Automata but also covers other work in the aTAM, Chemical Reaction Networks, and surface

Chemical Reaction Networks models. The majority of results are in the design of an intrinsically

universal tile set.

Shared Work. All of this work was done in conjunction with Dr. Robert Schweller and

Dr. Timothy Wylie. Additionally, I have worked with other authors in these papers such as Micheal

Alaniz, Rachel Anderson, Alberto Avila, Josh Brunner, David Caballero, Sonya C. Cirlos, Michael

Coulombe, Erik D. Demaine, Jenny Diomidova, Bin Fu, Tim Gomez, Markus Hecher, Ryan Knobel,

Jayson Lynch, Aiden Massie, Gourab Mukhopadhyay, Tom Peters, Andrew Rodriguez, Adrian

Salinas, Armando Tenorio, and Evan Tomai.

1.1 Overview

Chapter II includes the current manuscript of the Intrinsic Universality in Active Tile Self-

Assembly paper which is set to be submitted to a conference within the next month, as such it is

currently incomplete and a final version will be uploaded with the final manuscript of this thesis.

Here, we build an intrinsically universal tile set for the seeded Tile Automata model. Chapter III

covers other work in the Tile Automata model. Chapter IV covers the construction of covert tile

1

assembly computers using the abstract Tile Assembly Model (aTAM). Next, Chapter V covers

Chemical Reaction Networks (CRNs) particularly. Finally, VI covers my work in the surface

Chemical Reaction Networks model.

2

CHAPTER II

INTRINSIC UNIVERSALITY IN ACTIVE TILE SELF-ASSEMBLY

The concept of intrinsic universality is that we not only want to simulate computation to

receive the output of another system but also do what the system we are simulating does in the

way that it does it. In the case of tile self-assembly this means having a single universal tile set

that can not only build anything any other tile set can build but also with the same construction

process. To do so we use supertiles, built from the universal tile set and programmed with the

necessary information to simulate another tile set or itself. We store that information, the affinities

and transitions of the other system, inside of a lookup table within the supertile.

My Contributions. I worked on this project alone for two years. During my first year

on this project, I created an initial overview of a supertile and attempted to program those gadgets

into AutoTile, spending a substantial number of hours doing so; however, I had to return to the

drawing board on many of the gadgets later when I began to actually write the paper. In terms of the

initial design, outside of the state transmission wire configuration, I did all of the work including

macrocells, active state column, table door edge, doors, the exact function of the lookup table,

how affinities are stored and transmitted, etc. I wrote the rough drafts of the abstract, introduction,

temperature simulation, attachment, transition, metrics, and conclusion sections. I did assist in the

writing of the seeded results and asynchronous cellular automata sections. I also wrote overviews

for several sections in preliminaries as well as compiled and merged them from the [5] and [20]

papers. I made the original versions of all of the figures and counted states. I also did the previous

work reading and large portions of the original version of the table. I also coordinated the later work

3

with my co-authors and conducted meetings.

Abstract. The Tile Automata (TA) model describes self-assembly systems in which

monomers can build structures and transition with an adjacent monomer to change their states. This

paper shows that seeded TA is a non-committal intrinsically universal model of self-assembly. We

present a single universal Tile Automata system containing approximately 4600 states that can

simulate (a) the output assemblies created by any other Tile Automata system Γ, (b) the dynamics

involved in building Γ’s assemblies, and (c) Γ’s internal state transitions. It does so in a non-

committal way: it preserves the full non-deterministic dynamics of a tile’s potential attachment or

transition by selecting its state in a single step, considering all possible outcomes until the moment

of selection.

The system uses supertiles, each encoding the complete system being simulated. The

universal system builds supertiles from its seed, each representing a single tile in Γ, transferring the

information to simulate Γ to each new tile. Supertiles may also asynchronously transition states

according to the rules of Γ. This result directly transfers to a restricted version of asynchronous

Cellular Automata: pairwise Cellular Automata.

4

2.1 Introduction

Tile self-assembly is a model that attempts to exploit the computational capabilities of

nucleic acids. DNA molecules can form complex structures, and in controlling the growth of those

structures, we can utilize their powers to perform computations. In recent years, a diverse set

of new abstractions and models have been conceived, the most prominent of which has been the

(two-dimensional) abstract Tile Assembly Model (aTAM) [28]. In this model, a tile is a non-rotatable

unit square with specified glues on each side, modeling a single monomer. Two tiles can attach if

their glues match. A tile assembly system is a set of these tile types and a temperature τ . Research

into these models usually revolves around the types of assemblies that can be created with specific

sets of tile types.

In this paper, we work in a related model, derived by combining elements of tile self-

assembly and the local state changes of asynchronous Cellular Automata: seeded Tile Automata

(TA) [5]. A Tile Automata system Γ has a set of states Σ. These states contain no glues, contrary to

the aTAMs tile types. Instead, tiles with an initial state σ ∈ Λ (Λ ⊆ Σ) can attach to the seed s if the

system contains an affinity rule for their respective tile types that has an equal or higher strength

than the system temperature τ . Should a single pair of tiles lack sufficient strength to bind to the

assembly, they may bind cooperatively by adding the strengths of affinities of neighboring tiles to

reach τ . Contrary to the passive aTAM, tiles in the active TA system can change their state. More

restricted than most Cellular Automata systems, only two tiles directly adjacent to one another can

transition their states if the system contains the corresponding transition rule.

Here, we study the creation of an intrinsically universal (IU) Tile Automata system ΓU ,

a system with a finite s tate s et c apable o f c reating n ot o nly t he fi nal as semblies of any other

arbitrary Tile Automata system Γ but also replicating the exact assembly process and any additional

computations achieved via transitions. Our universal tile assembly system can simulate systems

that contain more states than ΣU does and even simulate itself. To do this, we sacrifice scale. We

5

use many tiles to create a supertile, that simulates a single tile in Γ.

In this paper, we show that non-committal intrinsic universality is impossible in any passive

system, such as the aTAM. This means that the dynamics of attachment and transitions of a tile

assembly system cannot be faithfully simulated by achieving the final determinations of each in

a single step. Instead, they are committal intrinsically universal, meaning that they need multiple

attachment and or transition steps to replicate the decision process of a single step in the target

system. On first sight, this appears to contradict previous work showing the aTAM is intrinsically

universal [8]. However, that paper contained a subtle error which was later addressed by making the

definition of intrinsic universality (IU) slightly weaker [20]. We will refer to this weakened version

as committal IU. Besides our negative result, we show that the seeded Tile Automata model with its

infinite state changes is, in fact, non-committal intrinsically universal, using approximately 4600

states.

Intrinsic universality is motivated by creating a universal tile set small enough to be stored

in a lab refrigerator for real-world experimentation. Although 4600 tiles is still a large number

of states and is not optimal, 4600 tiles is about ten million tile types less than the previously

stated committal intrinsic universality result for two-dimensional aTAM [8]. Importantly, our

initial state set Λ is only a single tile type. While current laboratory capabilities lag the ability to

implement this universal tile set as of today, there have been recent advancements in for example

the ability to replace tiles experimentally [26, 27] and in the aTAM a tile set capable of universal

6-bit computation was created [29]. The aTAM has also been proven to be intrinsically universal in

3D [13], and synchronous Cellular Automata have been shown to be intrinsically universal in 1D,

2D, and 3D [2, 11, 19].

The question of whether 2D asynchronous Cellular Automata is intrinsically universal is

currently open, though work towards a 1D version has been done [30]. Tile Automata can be viewed

as a restricted version of asynchronous Cellular Automata in which the neighborhood size is 2, the

radius is 1, the system is non-deterministic, and the updating is asynchronous. Therefore, our results

6

directly carry over to this restricted version of Cellular Automata.

2.1.1 Previous Work

Cellular Automata. The study of self-simulation, and new types of universalities is as

old as the field of Cellular Automata itself, with von Neumann introducing the model to build a

self-replicating machine [21]. Though it was Banks in 1970 who explicitly coined the term intrinsic

universality [2], von Neumann’s initial construction was later proven to be intrinsically universal.

Conway’s famous Game of Life cellular automaton was proven to be intrinsically universal [10].

Intrinsic universality in CA has been extensively studied [3, 11, 12, 15, 22–25, 30]. Specifically, four

different updating schemes for Asynchronous CA were shown to be IU in [30]. These updating

schemes restrict which cells can be updated at each time step. The closest related updating scheme

to Tile Assembly is “fully asynchronous” where only one cell may update at a time.1

Passive Self-Assembly. Intrinsic universality first crossed into the self-assembly world

in [9], where a universal tile set was introduced for systems with tiles that bond with exactly strength

2. Two years later, the first properly intrinsically universal tile set, one that can simulate the full

aTAM at any temperature, was presented in [8]. These papers both used the definition of intrinsic

universality that we call non-committal. However, these definitions were later corrected to the

version that we call committal [20]. It was also shown that a single polygon tile type with the

ability to flip, translate, and rotate can simulate any aTAM system through several intermediate

simulations [6]. The aTAM was found not to be committal intrinsically universal at Temperature-

1 [20], and in directed and non-directed planar systems [13]. Directed 3D and Spatial aTAM

were proven to be IU [13]. The 2-handed self-assembly model is, in general, not intrinsically

universal; however, there are intrinsically universal tile sets for each temperature [7]. Work towards

a universal tile set in Wang Tiles, which studies whether a given tile set can infinitely, and potentially

periodically, tile a plane, has also been investigated [16–18].

1For the case of Tile Automata and Surface Chemical Reaction Networks it better stated as “one rule” can be applied
at a time because two cells can be updated in one update.

7

Simulation between Tile Assembly and CA. The aTAM can simulate some versions of

CA. In particular, it was found that the aTAM can simulate only finite CA [14]. The TA model

does not have this restriction, as we can infinitely tile the plane with our seed assembly and use

transitions to simulate infinite CA. Where the aTAM is asynchronous, nondeterministic, and finite,

Cellular Automata is potentially generally synchronous, deterministic or nondeterministic, and

infinite. Tile Automata is asynchronous, deterministic or nondeterministic, and finite. Additionally,

Tile Automata is restricted to a neighborhood size of two.

Notable, IU in CA is usually possible with systems that contain a very limited number

of states. However, in self-assembly, the simulating system does not only need to simulate the

local interactions between existing states, but importantly also build new tiles in valid locations.

Therefore, IU systems in tile self-assembly tend to use a lot more states.

2.1.2 Our Contributions

In this paper, we push forward the study of IU systems in a few ways. First, we prove

that any passive self-assembly model (such as the aTAM) and variants of active self-assembly

with bounded state changes cannot adhere to the stronger non-committal definition of intrinsic

universality for self-assembly initially presented in [8]. However, this was later corrected and since

then, a slightly more permissive definition for the simulation of dynamics for intrinsically universal

systems has been used within self-assembly [20]. Although this is indication that the problem with

modeling dynamics within passive models is known, to our knowledge, this has not been formally

proven before.

Then, we show that in 2D, the seeded Tile Automata model, with unbounded state changes,

does indeed adhere to this stronger non-committal definition of intrinsic universality. We do this by

presenting a temperature-1 seeded TA system, and configuration of an initialized seed assembly,

that is IU for all seeded temperature-1 systems in approximately 4600 states. We then show that any

temperature TA system can be simulated by a temperature-1 TA system. We also prove that the

8

effect of temperature simulation on the scale of the system’s supertiles is bounded. No additional

states in the IU system’s state set are required to simulate systems greater than temperature-1,

extending our result to all seeded TA systems. Following this, we show that, due to the mechanics

of TA, our construction can be adapted to prove that 2D Asynchronous Cellular Automata, with

a cardinal radius of 1 and neighborhood size of 2, is also IU in approximately 2600 states, which

although inefficient, is the first 2D ACA IU result. These positive results are summarized in Table 2.1

together with other known IU results.

Section 2.2 starts by giving precise definitions of the model. Then, we show that bounded

state change systems can never be IU in Section 2.3. Opposing this negative result, we continue to

show that Tile Automata systems with their unlimited state changes are IU. Due to the volume of

necessary details, the paper first gives a high-level overview in Section 2.4, that discusses the main

gadgets and the framework of how the pieces work together. We reference the more detailed later

sections that follow the overview.

Section 2.5 then covers the temperature simulation part of the IU framework in depth. Next,

sections 2.6, 2.7, and 2.8 detail the supertiles, their construction and how they transition respectively

in full detail. We analyse the number of states in Section 2.9 and proof the correctness of the

simulation in Section 2.10. We continue to show how our result transfers over to Cellular Automata

in Section 2.11. We then summarize the conclusion with Section 2.12.

9

Intrinsic Universality Across Models
Model D N |T | / |Σ| Scale (S) Reference
aTAM 2D 5 > 10M O(n4 log(n)) [8]
aTAM 3D 7 152 000 O(n2 log(nτ)) [13]

Seeded TA Temp-1 2D 5 4600 O(n3) Theorem 2.4.1
Seeded TA 2D 5 4600 O(min((τn)3,n9)) Theorem 2.4.4

Async. Cellular Automata 1D 3 O(1) unknown [30]
Block-Pairwise ACA 2D 2 2600 O(n3) Theorem 2.11.1

Pairwise ACA 2D 2 O(1) O(n3) Theorem 2.11.3

Table 2.1: An overview of known and new simulation results for types of asynchronous cellular
automata including tile assembly models. D is the dimension, N is neighborhood size of the input
system, |T | and |Σ| are, respectively, the number of tile or state types in the universal system, S is
the scale factor, n is the number of states in the input system, and τ is the system’s temperature.

2.2 Preliminaries

In this section, we cover the basics of the Tile Automata model. We use many of the same

definitions as in [1, 5]. An example of a Tile Automata system can be seen in Figure 2.1.

Tiles. Let Σ be a set of states. A tile t = (σ , p) is a non-rotatable unit square placed at point

p ∈ Z2 and has a state of σ ∈ Σ. Let σ(t) be the state of t. Let φ denote a special state called the

empty state.

Affinity Function. An affinity function Π over a set of states Σ takes an ordered pair of

states (σ1,σ2) ∈ Σ×Σ and an orientation d ∈D, where D = {⊥,⊢}, and outputs an element of Z0+.

The orientation d is the relative position of σ1 to σ2, with ⊢ meaning horizontal and ⊥ meaning

vertical. State σ1 is the west or north state, respectively. We refer to the output as the Affinity

Strength between these two states.

Transition Rules. A Transition Rule consists of two ordered pairs of states (σ1,σ2),(σ3,σ4)

and an orientation d ∈ D, where D = {⊥,⊢}. The rule denotes that if the tiles with states (σ1,σ2)

are next to each other in orientation d (σ1 as the west/north state) they may be replaced by the states

(σ3,σ4).

Assembly. An assembly A is a set of tiles (with states in Σ), such that no two tiles occupy

10

Transitions

E

C

A B

D

F

Strength = 1 Strength = 2 Strength = 3

Affinities States/Initial StatesTemperature

4
CB A C

B

D

D

C

B

D F

F

E A

D E

C

D

A

B

C

A

B

D

C F

Seed
Assembly

A

B

C

F

B

C

AD E
2

1

0

1 F

F

Terminal
Assembly

A CA

C F

E A

A

D

F

AEF

CF

B C

A C

F

F

E A

A CA

C F

BAAA

C F

B

DC

AE

B

F

FA

E

F

F

B

E

A C

A

C F

Figure 2.1: Example of a Tile Automata system with 6 states, a system temperature of 4, affinities
of strengths 1, 2, and 3 vertical and horizontal transitions, and a seed assembly. The assembly
sequence to a terminal assembly is also shown with the changes highlighted. Due to the affinity
strengthening restriction, there is no detachment.

the same position, i.e., for every pair of tiles t1 = (σ1, p1), t2 = (σ2, p2), it holds that p1 ̸= p2. For

an assembly A, let A(x,y) denote the state of the tile with location (x,y) ∈ Z2 in A if such a tile

exists and φ (the empty state) otherwise. For a set of states Σ, let AΣ denote the set of all assemblies

over state set Σ.

Let the bond graph BG(A) be formed by taking a node for each tile in A and adding an

edge between neighboring tiles t1 = (σ1, p1) and t2 = (σ2, p2) in orientation d with a weight equal

to Π(σ1,σ2,d). We say an assembly A is τ-stable for some τ ∈ Z0+ if the minimum cut through

BG(A) is greater than or equal to τ .

2.2.1 The Seeded Tile Automata Model

In this paper, we investigate the Seeded Tile Automata model, which differs from the non-

seeded Tile Automata model defined above, by only allowing single tile attachments to a growing

seed, similar to the aTAM. Here we use many of the same definitions as in [1].

Seeded Tile Automata. A Seeded Tile Automata system Γ is a 6-tuple {Σ,Λ,Π,∆,s,τ}

11

where Σ is a set of states, Λ⊆ Σ a set of initial states, Π is an affinity function, ∆ is a set of transition

rules, s is a stable assembly called the seed assembly consisting of tiles in states contained in Σ, and

τ ∈ Z+ is the temperature (or threshold). When we refer to a tile set (or equivalently rule set) we

mean the four parameters (Σ,Π,∆,τ), that is, the states, the affinity function, the transition rules,

and the temperature. A system Γ = {Σ,Λ,Π,∆,s,τ} is said to use rule/tile set (Σ,Π,∆,τ).

Attachment Step. A tile t = (σ , p) may attach to an assembly A at temperature τ to build

an assembly A′ = A
⋃

t if A′ is τ-stable and σ ∈ Λ. We denote this as A→Λ,τ A′.

Transition Step. An assembly A can transition to an assembly A′ if there exist two neighbor-

ing tiles t1 = (σ1, p1), t2 = (σ2, p2)∈A (where t1 is the west or north tile) such that there exists a tran-

sition rule in ∆ with the first pair being (σ1,σ2) and A′ = (A\{t1, t2})
⋃{t3 = (σ3, p1), t4 = (σ4, p2)}.

We denote this as A→∆ A′.

Affinity Strengthening. We only consider transition rules that are affinity strengthening,

meaning for each transition rule ((σ1,σ2),(σ3,σ4),d), the bond between (σ3,σ4) must be at

least the affinity strength of (σ1,σ2) and it must also maintain or increase any other neighbor

affinities. Formally, Π(σ3,σ4,d)≥Π(σ1,σ2,d) and Π(σ3,σi,d)≥Π(σ1,σi,d) and Π(σ4,σ j,d)≥

Π(σ2,σ j,d) ∀i, j ∈ Σ. This ensures that transitions may not induce cuts in the bond graph.

Producibles. We refer to both attachment and transition steps as production steps and say

that A→Γ
1 A′ if either A→Λ,τ A′ or A→∆ A′. For any sequence of assemblies {A1,A2, . . .Ak} such

that Ai→Γ
1 Ai+1 for all 1≤ i< k, we say that Ak is producible from A1, and write A1→Γ Ak. Note

that for any assembly A, A→Γ A. We say A→Γ
≥1 B if A→Γ B and A ̸= B. For a Tile Automata

system Γ = {Σ,Λ,Π,∆,s,τ} we refer to the set PROD(Γ) = {s}⋃{A|s→Γ A} as the producible

assemblies of Γ.

Terminal Assemblies. The set of terminal assemblies for a Tile Automata system Γ =

{Σ,Λ,Π,∆,s,τ} is written as T ERM(Γ). This is the set of assemblies that cannot grow or transition

any further. Formally, an assembly A ∈ T ERM(Γ) if A ∈ PROD(Γ) and there does not exists any

assembly A′ ∈ PROD(Γ) such that A→Γ
1 A′.

12

Unique Assembly. A Tile Automata system Γ = {Σ,Λ,Π,∆,s,τ} uniquely assembles an

assembly A if A ∈ T ERM(Γ), and for all A′ ∈ PROD(Γ),A′→Γ A.

2.2.2 Simulation

In this section, we formally define the concept of one tile automata system non-committally

simulating another. We use a standard m-block simulation in which each tile of an assembly is

simulated by a larger m×m block of tiles in the simulating system. The definition presented here is

the same as that originally presented in [8], which we call non-committal IU. However, as stated

before, that paper contained a subtle error that was later corrected to become committal IU.

The difference lies in the models concept, see Definition 2.2.3. In non-committal IU,

this definition contains a universal quantifier, whereas the committal version contains a weaker

statement. From here on, we focus on two tile Automata systems ΓT and ΓS, where ΓS denotes a

system that purports to simulate system ΓT . Let ΣT and ΣS denote the set of states used in ΓT and

ΓS, respectively.

m-block Supertiles. An m-block supertile over a set of states Σ is a partial function λ : Zm×Zm→ Σ,

where Zm = {0,1, . . . ,m− 1}. Let BΣ
m be the set of all m-block supertiles over Σ. The m-block

with no domain is said to be empty. For any assembly A over state space Σ, define A m
x,y to be the

m-block defined by A m
x,y(i, j) = A (mx+ i,my+ j) for 0≤ i, j < m.

Supertile representation and mapping. We refer to a function R : BΣS
m → ΣT

⋃{φ} as

an m-block representation function. We require R(B) = φ for the empty m-block, and for any

non-empty m-block B for which R(B) = φ , we say B maps to a ghost tile. For a given m-block

representation function R, define the partial function R∗ : AΣS → AΣT such that R∗(A) = A ′ if and

only if A′(x,y) = R(Am
x,y) for all (x,y) ∈ Z2.

c-Fuzz. The concept of c-fuzz is basically that a macroblock may have a bounded number

of “extra” tiles attached to it without altering its mapping. This allows a simulating system to make

minor intermediate attachments while enacting the simulation. Another way to think of c-fuzz is as

13

a reasonable allowance for limited-size non-empty macro-blocks (that map to an empty tile in the

simulated system) to be used in the simulation process. Formally, a mapping R∗(A) = A′ is said

to map to A with at most c-fuzz, for some c ∈ Z+, if and only if for all non-empty blocks Am
x,y it

is the case that R(Am
x+u,y+v) ̸= φ for some integers u,v such that |u|+ |v| ≤ c. In other words, any

non-empty macroblocks that map to φ (i.e., ghost tiles) are only at most c macroblocks away from a

macroblock that maps to a real (non-empty) tile. We say a Tile Automata system achieves c-fuzz

under mapping R∗ if each producible assembly of the system achieves at most c-fuzz when mapped

by R∗.

Definition 2.2.1 (Equivalent Productions). We say ΓS has equivalent productions to ΓT (under R)

with up to c-fuzz, and write ΓS⇔c ΓT , if the following hold:

1. {R∗(A′)|A′ ∈ PROD(ΓS)}= PROD(ΓT).

2. ΓS achieves c-fuzz under R∗.

Definition 2.2.2 (Follows). We say that ΓT follows ΓS (under R), and write ΓT ⊣R ΓS, if A′→ΓS B′,

for some A′,B′ ∈ PROD(ΓS), implies that R∗(A′)→ΓT R∗(B′).

Definition 2.2.3 (Non-Committally Models). We say that ΓS (non-committally) models ΓT , and

write ΓS |=R ΓT , if A→ΓT B for some A,B∈ PROD(ΓT), implies that for all A′ such that R∗(A′) = A,

A′→ΓS B′ for some B′ ∈ PROD(ΓS) with R∗(B′) = B.

Definition 2.2.4 (Non-Committal Simulation). We say ΓS (non-committally) simulates ΓT if for

some c ∈ Z+, ΓS⇔c ΓT (equivalent productions), ΓT ⊣R ΓS and ΓS |=R ΓT (equivalent dynamics).

We say the simulation is clean if it holds for c = 1, and we say the simulation achieves c-fuzz more

generally.

Definition 2.2.5 (Non-committal Intrinsic Universality.). A rule (tile) set I = {Σ,Π,∆,τ} is said

to be intrinsically universal for a set of systems U if for all ΓT ∈U, there exists a system ΓS =

14

{Σ,ΛT ,Π,∆,sT ,τ} that non-committally simulates ΓT . The set U itself is said to be intrinsically

universal if there exists a rule set I used by some system within U such that I is intrinsically universal

for U. A model is said to be intrinsically universal if the set of all systems within that model is

intrinsically universal.

We use the term non-committal simulation to emphasize that the simulation definition we

use is stronger than what is used in prior work, which we call committal. For the remainder of this

paper, we deal exclusively with non-committal simulation and will just use the term simulation

when not directly comparing with previous versions of simulation.

15

2.3 Impossibility for Passive or Bounded State Change Systems

In this section, we show that systems lacking the full state changing capability of the seeded

Tile Automata model cannot achieve intrinsic universality under non-committal simulation. This

includes well-studied models such as the Abstract Tile Assembly Model (aTAM) [28] and freezing

variants of the seeded Tile Automata Model [5]. The key aspect of non-committal simulation that is

impossible for these models is the non-committal modeling requirement of our simulation definition.

In this section we show the impossibility of simulating a specific passive system, with the key use

of the non-committal modeling requirement being used to prove Lemma 2.3.4.

Definition 2.3.1 (k-burnout, bounded, unbounded, passive, f reezing). For a non-negative integer k,

a system is a k-burnout system if each tile in an assembly is restricted to only changing state at

most k times. A system is called bounded if it is k-burnout for some k, and unbounded otherwise.

0-burnout systems are termed as passive. A freezing system [5] is one in which state change rules

are such that a tile can never return to a previous held state.

Observation 2.3.2. Any aTAM system is a passive (0-burnout) system, and any freezing seeded TA

system that uses |Σ| states is bounded and a |Σ|-burnout system.

Definition 2.3.3. Define Xn to be the passive seeded Tile Automata system consisting of states Σ = {S,a1,a2, . . . ,an}

with seed tile in state S, and east-west affinity between S and each ai of strength equal to the system

temperature τ . Let s ·ai denote the producible assembly of this system obtained by attaching a tile

of state ai to the east of the seed tile.

For the remainder of this section, let R denote a proposed m-block mapping function from

macro blocks from a proposed simulator system to tiles from the system Xn.

Lemma 2.3.4. For any system Y that simulates Xn under mapping R, and for any valid assembly

sequence ⟨Aπ1, . . . ,Aπm⟩ of Y such that for all 1≤ i≤ m, R∗(Aπi) = s, either:

1. For all 1≤ i≤ n there exists an assembly Ai such that Aπm →Y
1 Ai and R∗(Ai) = s · xi, or

16

2. there exists an assembly Aπm+1 such that Aπm →Y
1 Aπm+1 and R∗(Aπm+1) = s.

Proof. Suppose constraint (1) does not hold for such a sequence ⟨Aπ1, . . .Aπm⟩ of Y , i.e. suppose

that for some 1≤ i≤ n there does not exists an assembly Ai such that Aπm →Y
1 Ai and R∗(Ai) = s ·ai.

Since Y |=R Xn (Y non-committally models Xn), and s→Xn s ·ai, it must be that there exists some

assembly Ai such that Aπm →Y Ai and R∗(Ai) = s · ai, which by definition means there exists an

assembly sequence ⟨Aπm ,B, . . . ,Ai⟩. Therefore, Aπm →Y
1 B, and since Xn ⊣R Y (Xn follows Y), we

know that R∗(B) = s, which means the sequence ⟨Aπ1, . . . ,Aπm⟩ can be extend with assembly B to

satisfy constraint (2).

Lemma 2.3.5. For any bounded system Y that simulates Xn under mapping R there must exist

A,A1, . . . ,An ∈ PRODY such that R∗(A) = s, and for all 1≤ i≤ n, R∗(Ai) = s ·ai and A→Y
1 Ai.

Proof. Suppose a bounded system Y simulates Xn. Since Y is bounded, there must exist M ∈ Z+

such that for all assembly sequences ⟨Aπ1, . . . ,Aπm⟩ of Y where R∗(Aπi) = s, it is the case that m≤M.

This is the case since each assembly Aπi maps to a single tile under R∗, thereby limiting the size of

each Aπi to a finite integer based on the (finite) scale-factor of the simulation and the (finite) fuzz

factor c of the simulation. The number of state changes and tile attachments for each assembly Aπi

therefore has a finite bound in a system with a finite burnout number.

Since the length of such sequences cannot be extended infinitely, there must exist a sequence

⟨Aπ1, . . .Aπm⟩ for which no additional Aπm+1 exists for which Aπm →Y
1 Aπm+1 and R∗(Aπm+1) = s. For

this sequence that must exist, Lemma 2.3.4 implies that for all 1≤ i≤ n there exists an assembly Ai

such that Aπm →Y
1 Ai and R∗(Ai) = s · xi. Therefore, there must exist A = Aπm ,A1, . . . ,An ∈ PRODY

that satisfy the requirements of the lemma.

Lemma 2.3.6. A bounded seeded TA system with fewer than n
1
5 states cannot simulate Xn.

Proof. If a bounded system Y simulates Xn, then by Lemma 2.3.5 it must be the case that there

exists A,A1, . . . ,An ∈ PRODY such that R∗(A) = s, and for all 1≤ i≤ n it holds that R∗(Ai) = s ·ai

17

and A→Y
1 Ai. Since A→Y

1 Ai for each Ai, we know that each pair of assemblies Ai and A j differ at

either a single point or two adjacent points (corresponding to a tile attachment or a pairwise state

change). We now consider two cases:

Case 1: Suppose there exists an i and j such that Ai and A j differ at non-overlapping points.

In this case, we know that the rule or attachment applied to A to attain Ai is also applicable to

A j, and vice versa. This implies there exists a common assembly Ai⊕ j such that Ai→Y Ai⊕ j and

A j→Y Ai⊕ j. But since Xn ⊣R Y (Xn follows Y), it must then be the case that R∗(Ai)→Xn R∗(Ai⊕ j)

and R∗(A j)→Xn R∗(Ai⊕ j). This implies that R∗(Ai⊕ j) = s · ai and R∗(Ai⊕ j) = s · a j, which is a

contradiction.

Case 2: Suppose the points of difference for all assemblies Ai overlap each other in at least

one of their points. Since each assembly’s pair of points are adjacent (in the case that there are

two), this implies that the union of all such points of difference is at most 5 points. If Y has |ΣY |

states, then there are at most |ΣY |5 distinct state assignments possible for this 5-tile region. Thus, if

|ΣY |< n
1
5 , then there are fewer than n distinct 5-tile regions, implying that Ai = A j for some i ̸= j,

which is a contradiction since R(Ai) ̸= R(A j).

Lemma 2.3.7. A passive seeded TA system with fewer than n states cannot simulate Xn.

Proof. Suppose a proposed system Y with fewer than n states simulates Xn with representation

function R∗. By Lemma 2.3.5 there exists A,A1, . . . ,An ∈ PRODY such that R∗(A) = s, and for all

1 ≤ i ≤ n, R∗(Ai) = s · ai and A→Y
1 Ai. As each Ai is attained by attaching a single tile to A, let

point pi denote the point of this attached tile in assembly Ai. Now consider two cases:

Case 1: Suppose there exist 1≤ i, j ≤ n such that pi ̸= p j. In this case the tile attached to

form A j from A can also be attached to Ai, and vice versa, implying that the assembly consisting of

attaching both such tiles, call it Ai⊕ j, is such that Ai→Y Ai⊕ j and A j→Y Ai⊕ j. But since Xn ⊣R Y

(Xn follows Y), it must be that R∗(Ai)→Xn R∗(Ai⊕ j) and R∗(A j)→Xn R∗(Ai⊕ j), which implies that

R∗(Ai⊕ j) = s ·ai and R∗(Ai⊕ j) = s ·a j, which is a contradiction.

18

Case 2: Suppose instead that pi = p j for all 1≤ i, j≤ n. Since Y has less than n states, there

must exist some 1≤ i, j ≤ n such that Ai and A j use the same state at point pi = p j. This implies

that Ai = A j, which is a contradiction since R∗(Ai) ̸= R∗(A j).

Lemmas 2.3.6 and 2.3.7 show that without the unbounded state change capability of the

full seeded Tile Automata model, there exists a simple class of passive systems that cannot be

simulated under non-committal simulation without arbitrarily larger state spaces. This gives us

the following negative results for two established models in regards to non-committal simulation,

directly following from Lemma 2.3.7 and 2.3.6:

Theorem 2.3.8. The Abstract Tile Assembly Model (aTAM) is not intrinsically universal under

non-committal simulation.

Theorem 2.3.9. The Freezing Seeded Tile Automata model is not intrinsically universal under

non-committal simulation.

19

2.4 Overview of Intrinsic Universality in TA

Now that we have shown that any bounded system cannot be intrinsically universal under

non-committal simulation, we will show that Tile Automata (TA), with its unbounded state changes,

is non-committal intrinsically universal. We do so by characterizing a TA system that can simulate

any other TA system. For ease of presentation, we first give a high-level overview of the framework

and some of the main techniques used to achieve the simulation of any TA system with the one

presented. Both a detailed exposition of the techniques, as well as any proofs omitted in this section

can be found in the later sections covering the details.

We show that seeded TA is IU by first showing that temperature-1 seeded TA is IU at

scale O(|Σ|3) with constant states. We then show how we can simulate a seeded TA system at any

temperature with a temperature-1 system at scale-1 with O(min(|Σ|3,τ|Σ|)) states. These combine

to create a general IU result for any seeded TA system by bounding the number of states to a

constant for any temperature, or by scaling based on the temperature.

2.4.1 Temperature-1 Seeded TA is Intrinsically Universal

Section 2.5 gives the full details for the IU results with temperature-1. We show that there

exists an intrinsically universal temperature-1 system with a constant number of states if we increase

the scale factor to O(|Σ|3). Here, we give an overview of the framework used to prove the following.

Theorem 2.4.1. There exists a tile set (ΣU ,ΛU ,ΠU ,∆U) such that, for all systems Γ=(Σ,Λ,Π,∆,s,1),

there exists a Γ′ = (ΣU ,ΛU ,ΠU ,∆U ,sU ,1) that simulates Γ at scale O(|Σ|3).

Supertiles. Supertiles are m×m blocks that map to a specific tile in some state from the

original system that is being simulated. Each supertile contains all information necessary for the

simulation. For specifics, please refer to the detailed walk-through of the operations in Section 2.6.

Figure 2.2 shows a simplified diagram of a single supertile. Every supertile has binding sites

on each of the four sides, and wires on each side that lead to a central lookup table corresponding

to valid affinities and transitions for the system being simulated. Within the table each column

20

represents a state in the system being simulated and each row a state and direction of a neighboring

supertile. There are datacells at each intersection.

The supertile makes use of several small gadgets for effective and correct communication

and information transmission, as well as ensuring non-committal simulation. The most important

gadgets are listed here. For a complete explanation of their workings and purpose, see Section 2.6.

• Lookup Table. Each supertile contains a lookup table that contains all the affinity and

transition information of the system to be simulated. Thus, every tile has all information

necessary to update itself from its neighbors.

• Transition Storage Area. All of the transitions for a pair of states are stored within a storage

area in ordered data strings. For each transition rule, only the halves of pairs pertaining to the

current supertile are stored.

• Datacells. For each directed pair of states in the system, a datacell stores the possible

transitions and affinity status between them. The datacell is a compound gadget comprised of

a transition storage area, and a single tile containing the affinity and current state status. For

non-committal IU, the affinity must be chosen in one step, which is why the affinity is stored

in a single tile.

• Transition Selection. For non-committal IU, any change to the mapping of a supertile

must occur with a single tile placement or transition. This requires careful collaboration

and ordering around the tiles that can change this mapping. Most of the information must

be obtained from the lookup table and brought to the edge. The transition selection gadget

contains this reversible process of getting the supertile (or supertiles) ready to change the

mapping (or mappings) irreversibly in such a way that it could be reversed at any point up

until the single mapping transition. Once the state mapping has changed, it must communicate

this information to the rest of the supertile.

21

Attachments. The attachment process for a new supertile works approximately as follows,

the details of which can be found in Section 2.7. Attachment is triggered by a supertile, when it

discovers that no neighbor exists adjacent to it. The builder supertile finds that an affinity in that

direction exists, it prepares itself for construction, by locking its outer edge, wiping its wires, and

deactivating its gadgets.

Next, it starts building the new supertile. Should the supertile find a competitor trying to

build in this spot, one of the two nondeterministically prevails. The builder supertile then copies

over each part of the supertile one by one.

Once built, the new supertile requests the states of all its neighbors to select its own state.

From the valid states, one is chosen nondeterministically, and the representative state column is

activated. Finally, the new supertile’s state is sent to its neighbors.

Transitions. The process of transitioning happens in seven general phases. The full details

can be found in Section 2.8.

1. The existence of one or more transitions between two neighboring supertiles is confirmed,

and each supertile’s table is locked for the duration of the transition process.

2. The data strings within the transition storage area of the datacell at each supertile’s respective

intersections are copied and transmitted to the transition selection gadget.

3. Agents within the transition selection gadget nondeterministically select the new states

associated with a transition rule or abort the transition altoghether.

4. Once a transition has been chosen, the new states are copied and transmitted to each supertile’s

respective tables for updating.

5. In the table, the old state is deselected, and the new state is activated.

6. The transition selection gadget is wiped.

22

7. The tables are unlocked, and new states are transmitted to neighboring supertiles.

2.4.2 Temperature Simulation at Scale-1

Using these techniques we will show that seeded TA at temperature-1 is intrinsically

universal. We also show that at scale-1, we can simulate a seeded TA system at any temperature

if we scale the number of states in the system. We provide two bounds on the scale factor:

O(min(τ|Σ|, |Σ|3). Resulting in the following two Lemmata.

Lemma 2.4.2. For all Tile Automata systems Γτ = (Σ,Λ,Π,∆,s,τ) there exists a system Γ1 =

(Σ1,Λ1,Π1,∆1,s1,1) that simulates it with 1-fuzz at scale-1 such that |Σ1|= O(τ|Σ|).

Lemma 2.4.3. For all Tile Automata systems Γτ = (Σ,Λ,Π,∆,s,τ) there exists a system Γ1 =

(Σ1,Λ1,Π1,∆1,s1,1) that simulates it with 1-fuzz at scale-1 such that |Σ1|= O(|Σ|3).

2.4.3 Seeded TA is Intrinsically Universal

By taking Theorem 2.4.1 in conjunction with Lemmas 2.4.2 and 2.4.3, we achieve the

desired result that seeded Tile Automata is non-committal intrinsically universal. This follows by

directly plugging in the state-scaling into the temperature-1 construction.

Theorem 2.4.4. There exists a tile set (ΣU ,ΠU ,∆U ,1) such that, for all systems Γ= (Σ,Λ,Π,∆,s,τ),

there exists a Γ′=(ΣU ,ΛU ,ΠU ,∆U ,s′,1) that simulates Γ with 1-fuzz at scale factor O(min((τ|Σ|)3, |Σ|9).

23

2.5 Temperature Simulation

We now give a detailed construction of our universal Tile Automata system. We show

how any Tile Automata system Γ = (Σ,Λ,Π,∆,s,τ) of any temperature τ can be simulated by

temperature 1 with 1-fuzz by using ghost tiles and adding intermediary states.

In order to attach tiles that require cooperative binding, the necessity of needing multiple

neighbors to attach a single tile in order to reach necessary affinity strength, we use intermediary

states to add together the affinity s trengths of surrounding t iles to the interim s tate t ile that is

attempting to be placed at that location, see Figure 2.3 for an example, and Figure 2.4 for the

assemblies it produces.

Lemma 2.4.2. For all Tile Automata systems Γτ = (Σ,Λ,Π,∆,s,τ) there exists a system Γ1 =

(Σ1,Λ1,Π1,∆1,s1,1) that simulates it with 1-fuzz at scale-1 such that |Σ1| = O(τ|Σ|).

Proof. The set of states Σ1 contains τ states for each σ ∈ Σ. We simulate the system in Figure 2.1

with the one in Figure 2.3, which contains the following states:

• An unlocked state σ for every σ ∈ Σ.

• Locked states σLd for d ∈ {N,S,E,W} for the directions. The lock L is represented by a lock

icon in Figure 2.3.

• Counting states σi,Q numbered from 1 to τ−1, where Q is all subsets of {N,S,E,W}.

• Success unlocking neighbor states σQ,✓.

• Failure unlocking neighbor states σQ,×.

• An empty state g, which we call a ghost tile.

Empty States. The state g has affinity with all non-ghost tiles σ , the states which map to

something. This ghost state transitions with unlocked tiles adjacent to it to enter a counting state

24

representing a tile which may attach. This process is outlined in Figure 2.4. If the strength of the

affinity is greater than or equal to the input system temperature, then the counting tile immediately

transitions to a success state and starts unlocking its neighbors. If the sum is not yet τ the neighbor

state is transitioned to locked and the counting tile increased based on the new binding strength.

Additionally, the attachment may nondeterministically choose to fail and begin the unlocking

process of all locked surrounding states at any time. This has two functions. First, if the tile does

not have 4 neighbors and it cannot reach the affinity strength, then it would be unable to detect the

lack of neighbor on its own. The second reason is to ensure that the strict definition of simulation

can be met.

Simulation. A ghost tile may not attach to another ghost tile or to a tile with a temporary

state, nor can a temporary state affect its own affinity strength count. This ensures the system has

1-fuzz. A tile can only transition from a ghost tile to simulate attachment if there exists enough

locked neighbors which reach τ so we know every assembly in PROD(Γ1) maps to something in

PROD(Γ). This shows equivalent production.

For following and strongly modeling we note that transitions are simulated in one step so

the rules in ∆⊂ ∆1. For every attachment that could take place in Γ we simulate this via the adding

states. The failure states serve two purposes, first if we select a tile that does not have enough affinity

it will eventually be abandoned and another will be selected. Second it allows us to satisfy the

Strongly Models definition as when an assembly A′ ∈ PROD(Γ1), which represents A ∈ PROD(Γ),

can abandon any attachment step to circle back and reach an assembly which represents any B such

that A→Γ B.

2.5.1 Alternate Upper Bound

The dominating factor of the tile set is the adding tiles. We may replace these by instead of

storing the temperature we may store the current neighbors. This is a better bound in the case that

τ ≥ O(Σ2).

25

Lemma 2.4.3. For all Tile Automata systems Γτ = (Σ,Λ,Π,∆,s,τ) there exists a system Γ1 =

(Σ1,Λ1,Π1,∆1,s1,1) that simulates it with 1-fuzz at scale-1 such that |Σ1|= O(|Σ|3).

Proof. Consider an alternate set of adding states, which store the current neighbors of the ghost tile

instead of adding the strength. This encodes Π into ∆ directly without adding up τ . We only need

to store up to 3 neighbors as the fourth neighbor will be read in the final transition.

26

2.6 Supertiles

A supertile is a block of m by m tiles that maps to a single tile in the system it is simulating

via the m-block representation function. Each supertile contains the complete rules of the system it is

simulating and, hence, can perform attachment and transition operations locally with its neighboring

supertiles. To do this, the supertile contains a lookup table that stores the possible transition rules

and affinities for each combination of states and neighbor directions.

Each state of the system to simulate is first mapped to a unary encoding. The table contains

four smaller subtables, one for each neighboring direction. Each of these subtables is constructed as

a matrix. The column indicates the state this supertile represents, and the row the states the neighbor

can represent. We call an entry in this matrix a datacell. A datacell that is part of the East subtable

stores at position (i, j) the affinities and transition rules that apply if this supertile represents state

j and the East supertile would represent state i. Lastly, each supertile has an active column. This

column indicates which state the supertile currently represents.

Besides the lookup table, a supertile contains wires that connect the table to the edges of the

supertile and gadgets for reading, writing, and locking the table.

2.6.1 Agents & Gadgets

A supertile is comprised of several gadgets, groups of tiles that together perform a specific

function, such as facilitating data traversal or table lookup queries. Agents are small packets of

information encoded by tile states that traverse a supertile and can transport information from one

part of the system to another. Figure 2.2 shows a single agent that has traversed from the supertile

neighboring to the south to perform a lookup in the table. Other tasks specific agents can perform

include locking the edges of a supertile or its table, clearing wires, or coordinating construction

functions.

Gadgets are groups of tiles that together serve a specific purpose. They are reset after each

use and are, therefore, reusable. Whereas agents move through the system, gadgets are largely

27

stationary. Agents can interact with gadgets, and each gadget serves a specific purpose.

Wire. The simplest gadget is the wire. The only purpose of a wire is to allow the one-way

traversal of an agent from one part of the system to another. A wire is a one-wide string of tiles.

The states of the wire tiles not only indicate it is a wire tile, but also indicate which direction the

wire is going. An agent can traverse a wire by swapping states with a neighboring wire tile if the

direction of that wire tile allows it.

Wires connect supertiles and allow them to communicate. Since a supertile has a wire

connected to its neighbor for each state it can be in, the specific wire on which a supertile S

communicates with its neighbor is an implicit communication of the state of S, see Figure 2.2.

Data Strings. Data strings are a series of tiles carrying data capable of traveling down

wires. Transition related data string consist of a start data string tile, a string of unary 1 tiles, an end

data string and on occasion a prepended instruction.

Door. Doors are tiles placed along wires to control the flow of data and construction. They

consist of two parts. The first part is the actual door, placed on the wire in question. The other is its

handle. When an agent or data string reaches a door, it can pass if the door allows it.

Each door has a specific direction dependent on the wire it is on. If the wire the door is on

switches directions, then the door’s direction will also flip. An agent trying to pass an open door

swaps states with the door as if it were a normal wire. The door then enters a reset state, indicating it

recently let an agent through and is currently not connected to its handle. No other agent is allowed

to pass in this state. Once the agent has moved on, the door can swap states with the new wire tile

on its original spot, resetting the door. This prevents doors from getting lost or mis-matched to the

wrong handle, see Figure 2.5.

When a door swaps with a wire tile, the wire tile will be transitioned to a blank wire tile and

take on the wire state of the next wire tile it encounters. Agents may swap with blank wire tiles but,

due to the lack of direction, may also swap back if a normal wire tile state has not been selected.

28

The copy director may also copy into blank wire tiles. This blank wire tile method ensures that

wires will not become inappropriately shuffled during traversal.

Additionally, agents or data strings may occasionally swap with the wire tile a door needs

to return to its normal position, blocking it from doing so. In this case the door sends a repelling

signal to the offending tile making it traverse with a wire tile backward once, if there is not a wire

tile behind it and instead another agent or data string tile the repel state will be passed from tile to

tile until one is able to swap. Then, all of the previous tiles still in the repelling state may return to

normal by swapping with this wire tile until it reaches the door in need of resetting.

Crossover Gadget. When wires crossover within the table, at the edge of the supertile, and

within construction wires, we require a gadget to control the flow of information across these wires,

see Figure 2.6. The crossover gadget has 3-4 doors arranged with crossover gadget handles at each

corner, all around a center wire tile. In most cases, a locking/unlocking agent or the agent’s own

transition rules ensure it passes through a crossover gadget in the appropriate direction; however, in

a few rare instances, the agent will need to signal through the crossover gadget to lock other doors

within the crossover before traversing, unlocking them upon exit.

Punchdown Gadget. The punchdown mechanism allows the distance between datacells

to be calculated by decrementing a data string representing the necessary number of columns to

traverse in the table. See Figure 2.7 for how decrementing works with the punchdown gadget. When

a data string comes along a wire, the punchdown gadget will “delete” one of the unary digits by

transitioning it into a normal wire tile. The rest of the data string is allowed through the door as

normal. The end-of-string tile resets the punchdown gadget.

Transition Selection Gadget. On each of the four edges of the supertile, directly next to

the wires, lies a Transition Selection Gadget, see Figure 2.8. Upon initiation of a transition with a

neighboring supertile, this gadget and its mirror on the neighboring side together determine which

transition to take. The gadget is filled with the transition rules when a transition is initiated. Once

29

this is done, each supertile initiates a nondeterministic selection agent to walk up and down the

border between the two selection gadgets. When they meet at a rule, they may or may not transition

with one another to select that transition rule to be executed on the two supertiles. The newly

selected states are then returned to the tables of the two supertiles to update their respective active

columns. The complete workings of supertile state transitions are explained in Section 2.8.

2.6.2 Table & Wiring

Table. The table is the primary gadget of the supertile. It stores the affinities and transitions

of all possible pairs of states in the system and the functional state of the supertile.

The rows are ordered to prevent the crossing of wires at the border of supertiles. Hence, the

rows are ordered in reverse for the North and West subtable, as shown in Figure 2.2. The columns

are ordered normally.

A datacell is a single cell in a subtable and stores both the affinity and transition information

for a specific neighbor direction, see Figure 2.9. It is a compound gadget comprised of an incoming

wire, an outgoing wire, wire traversal doors, a punchdown gadget, an affinity door, and the transition

storage area. It can interact with data strings, and agents can use it to get information about the state

of the supertile.

Since we use temperature 1, affinities stored in a datacell are simply a Boolean; a combina-

tion of two states either has an affinity in this orientation or not. Each column in the table has a

vertical wire next to each datacell. On this wire, for each datacell, this door indicates if this specific

datacell has an affinity or not. If there is no affinity, the door is a normal door. Otherwise, the door

is a special affinity door, indicating the affinity.

Transition rules are stored in a transition rule storage compartment at the bottom of each

datacell. They are stored as follows. If the combination of the supertile state and the neighboring

supertile state corresponding to this datacell has a transition rule, the storage contains only the new

state this supertile would become if this transition is taken. If the system we are simulating allows

30

for multiple transitions for this pair of states, we define a fixed order for these transitions prior

to the simulation. The resulting states are then stored in the transition storage area according to

this order. The rules always match up because we predefined this order and because the supertile

template is copied every time. The storage is templated to be the size that is necessary to store

the maximum number of transition rules of any state pair in the system, such that all transition

storage compartments have the exact same size. If a compartment contains fewer transitions than

the maximum, it is filled with blank transitions.

Table Locking. The wires enter the table from the left. Each wire has a special table

locking door and corresponding handle, that is situated at the edge of the table. If an agent tries to

act on the table, it first must pass its corresponding door. If that door is open, two locking agents

move up and down along the left edge of the table. These signals lock all other doors corresponding

to incoming wires, allowing for only one operation on the table at a time. If two of these locking

agents meet, only one is allowed to continue on while the other disappears. Once the locking agent

reaches either the top or bottom of the left edge, it transforms into a successful locking agent and

moves back toward its door. A door that sent out locking agents and that sees another locking agent

coming by, knows that its own locking agent was the one that failed, and the door will lock itself.

Even if multiple doors try to lock the table at the same time, only a single door will receive its

corresponding successful locking agents coming back from both the top as well as the bottom. This

door then allows the waiting agent to enter the table. An agent trying to enter a locked table will

simply wait. This does not lead to deadlocks, since the origin table of this agent was not locked

when this agent left it.

2.6.3 Outer Shell

The outer frame of both the table and the supertile are comprised of outer frame tiles, with

the appropriate doors along wires to access the supertile or table, see Figure 2.2. Inside, they contain

an inner wire for traversing the boundary, and then inner frame tiles, again with the appropriate

31

doors. Initially, supertiles are built with doors that indicate that no neighbor is present. Once a

neighbor is found, they transition to their regular counterparts.

32

2.7 Attachment

The attachment process consists of several phases. First, if the supertile detects it has a spot

next to it without a supertile build, it checks if there is an affinity in that direction. Next, the supertile

is copied piece by piece into the neighboring spot. Lastly, when the construction is completed, this

newly built ghost tile sends a signal to all neighboring tiles to select an actual state for itself.

2.7.1 Initiation

Whenever a supertile changes state, either via transition or via attachment, it sends out state

transmission agents to all four directions. When such an agent reaches an edge of its supertile

and finds no neighbor, the process of determining whether to attach a new supertile s tarts, see

Figure 2.10. The state transmission agent is not able to reach the true edge of the supertile if there

is no neighbor present. Instead, it reaches the inner row of doors on the edge of the supertile that

controls access to the outline wire. Since there is no neighbor, the agent changes state to a lookup

state, enters the outline wire, and goes to the affinity selection wire, see Figure 2.10. Initially, all

outline wires on the edges are directed such that if no neighbor is found the state transmission agent

will be directed to the affinity selection wire.

The affinity selection wire wraps around the outside of the entire subtable for i ts given

direction (E/N/W/S) allowing for the agent to drop into the active state column wire and search

every possible state in the system for an attachment. For example, if the missing tile is to the West

of the supertile then the wire runs above West and its outgoing wire is below West 1.

2.7.2 Checking Attachment

Each datacell has an affinity door in the vertical active column wire next to it, indicating that

there is an affinity between these two states in this direction. If there is no affinity, there is a door

with a no affinity state. The initially selected possible state may not be the final state of the supertile

so as not to preclude every possible state that the supertile may end up in. This initial lookup is just

to ensure we do not begin construction of a neighboring supertile if no tile can attach there in the

33

system we are simulating.

Lookup in Table Section. Once the signal reaches the edge of the table it will initiate the

standard table locking process described in Section 2.6.2, and visible in Figure 2.11. The signal will

then traverse the table until reaching the active state column and begins its descent down the active

state column wire with the affinity doors; see figure 2.12.

The lookup agent may nondeterministically transition with any affinity door to a found state

so that the construction process can begin. It will traverse down to the state lookup exit wire and

to the edge of the supertile. The table stays locked. Upon reaching the edge of the supertile, the

agent transitions into the Copy Checkpoint. The Copy Checkpoint is a stationary tile on the edge of

the supertile, orchestrating the copy process. See Figure 2.12 for the state lookup process at a high

level. If there are no affinities in that direction or the lookup agent never transitions with an affinity

door, the agent will not change to the found state and simply unlocks the table after exiting from the

bottom of the state lookup wire. No attachment is started in that case; see Figure 2.13.

We only begin construction if there is a possible attachment in that particular direction. This

does give a slight fuzz advantage over previous builds. A ghost tile (if simulating a system that

requires or includes them) will not begin growing if the state has no affinities in that direction.

2.7.3 Preparing for Copying

In order to properly copy the tile, we need to clear the interior wires, lock any further outside

communication from coming in, and activate a number of processes.

Locking the Supertiles Outer Frame for Construction. First, the Copy Checkpoint

sends a locking agent around the outer supertile wire, which locks every outer door on the edges of

the supertile, preventing any further agents from entering the supertile.

Clearing Table and Wires. Once the locking agent returns to the Copy Checkpoint, it

will turn into a wiping agent. The main wiping agent will traverse the edge wire and spawn minor

wiping agents to sweep every wire. They delete any waiting agents outside of the table. Moreover,

34

the interior and edge of the table are reset to be entirely inactive. This process is shown in figure

2.14. Should an agent trigger a locking process before it is wiped, the locking agents spawned will

transition into wire tiles upon contact with an inactive door. The active state of the current supertile

is stored within a containment area at the top of the active column to ensure it is spared from wiping.

2.7.4 Copying Supertile Outline

Now, the supertile is ready to start the copy process. We will copy the supertile in several

steps, piece by piece. We start with the outline, then the table, and then the wires. It could be that

multiple adjacent supertiles are trying to build in the same location. In this case, it is necessary to

ensure that only a single supertile gains construction jurisdiction over this spot.

Claiming Mirror Side. The mirror edge is the edge of the tile under construction that is

immediately adjacent to the supertile initiating construction. Once the wiping agent reaches the

Copy Checkpoint, the Copy Checkpoint will spawn 2 claiming agents sent along the outer wire

to the adjacent corners. If building to the West, these claiming agents go to the North and South.

The purpose of these agents is to place and claim the mirror edge corners. These are important

to prevent construction conflicts. Once the agents reach the corners, the northwest and southwest

corners in our example, as seen in Figure 2.15, they open the supertile corner doors and try to build

the corner of the neighboring tile.

They build the corner of the neighboring tile as follows. The agent first goes through the

door in the direction it wants to build. Then, it attaches the first empty construction tile and then

a second, transitioning the first into a door as it swaps into the second. Whenever we say that a

certain tile is attached or built, we mean that an empty construction tile is attached, which is then

transitioned into the correct state. After the wire tile is built, the agent swaps with the wire tile, and

tries to build the crossover gadget. It marks the crossover gadget as claimed by the East side where

it came from.

It could also be the case that there already exists a corner crossover gadget. This gadget can

35

then either be claimed, or unclaimed. If it is unclaimed, it is claimed, otherwise, the agent goes

back to the Copy Checkpoint to report a failure. If the crossover corner is successfully claimed, the

agent also goes back, but this time to report a success. If the Copy Checkpoint receives at least one

failure, it relinquishes its claim to any successful corners (via agent) and aborts construction.

To abort a construction at this point, the only thing necessary is to unlock the doors on the

outline wire, set the active state column in the table, and finally unlock the table. These processes

are the same as their counterparts at the start of construction.

When the Copy Checkpoint receives two successes, it knows that from the three other

supertiles that could potentially try to build in this spot, only one might still be trying. In this case,

we initiate construction of the full mirror edge. This is done as follows. One mirror edge agent is

sent to one of the corners that has just been claimed. This agent will then build the outline wire of

the mirror edge. At the same time, it will attach (via a blank construction tile) mirror tiles. These

tiles then transition with the tiles in the original supertile to mirror their state. Should the corner it is

attempting to mirror be a crossover gadget door, the mirror tile will spawn a crossover copy agent,

which when the subordinate copy agent recognizes this will instead back up, transitioning the tiles

it traverses back from into blank construction tiles. When the crossover is activated, it will continue.

In this way, the doors get placed in the correct positions. Moreover, the mirror edge agent ensures

intersections are properly constructed and construction doors are activated, see Figure 2.15. Once it

has reached the other corner, it goes back to the Copy Checkpoint, which can then initiate the next

phase.

Copying Placement General Notes. Before explaining the next phase, we will first detail

the standard copy procedure. This procedure is used to copy the rest of the supertile. It uses a Copy

Director, which acts in the original supertile and sends copies of tiles to the Placement Director,

which is located in the newly constructed tile, and places the copies on the correct locations. The

copies are send over the outline wires and/or construction wires of the tiles. For this to work, the

route from the Copy Director to the Placement Director needs to be clear and doors along this path

36

need to be set correctly to ensure copies of tiles end up in the correct spot.

The setup is done by a copy agent send out from the Copy Checkpoint. It first places the

Placement Director in the appropriate spot. Then, it goes to place the Copy Director. It takes the

same path as the copied tiles will take. While going over this wire, it ensures all wire tiles are

pointing in the correct direction and doors that lead in the wrong direction are closed.

Once at the correct spot, it transitions into the Copy Director and starts copying tiles and

send them to the Placement director via the path it just created. As soon as all tiles of this part are

copied, it goes to the Placement Director, deletes it, and finally returns back to the Copy Checkpoint,

which can then start the next phase of copying.

The Copy Process. For each tile that needs copying, the Copy Director follows the

following scheme, visualized in Figure 2.16. First, the Copy Director sends a direction to the

Placement Director (North/South/East/West). Then, it swaps with the tile that needs copying. This

tile then spawns a copy of itself on the wire that also goes to the Placement Director. Lastly, the

Copy Director swaps back with the tile that now has copied itself.

The Placement Director ensures it is always at the end of the part that is built. It first receives

a direction. It then swaps with that direction tile which attaches an empty construction tile. Then,

when the copy arrives, the Placement Director swaps with the copy, and the copy can transfer its

state to the newly attached empty construction tile. Then, the Placement Director swaps back with

the now copied tile and deletes it in the process. This process is shown in Figure 2.17.

Not every tile is copied over individually, to reduce the number of states, we copy the

crossover gadget in one go. Instead of sending a copy of every tile in the crossover gadget, we

send a single tile containing a template of full information of the crossover gadget. To stop the

directionality from being an issue our copy director will send a second special direction tile before

a crossover gadget. This way the agent may be in the middle of the gadget attaching blank tiles

and transitioning the surrounding doors into them without knowing the direction from which the

crossover came. Each door remain in waiting state until it has attached its handle. The placement

37

director will lock any necessary doors when construction is complete.

Constructing Adjacent Supertile Outline Wires. This copy process is used to build the

other edges of the supertile, see Figure 2.18. At this point, only the mirror edge has been constructed.

We use the copy process to build one edge at a time. For horizontal attachments, we first build the

top edge, then the bottom edge. For vertical attachments, we first build the left edge, then the right

edge. This is to ensure that if there is still another supertile that is trying to build in the same spot,

we recognize this situation and deal with it accordingly.

To build these edges of the supertile, the Copy Checkpoint spawns a new copy agent. This

agent will put a Placement Director at the corner that was already built, then moves over the outline

wire of the original supertile to the other side, where it will transfer into a Copy Director.

If there is still another supertile building in this spot, the two Placement Directors will

eventually meet. Nondeterministically, one of the two continues, while the other is removed. The

losing Placement Director sends a signal to its respective Copy Checkpoint, which then starts the

abortion process similar as before. The Placement Director that is left over will ignore and remove

any copied tiles intended for the now removed Placement Director.

Along with the outline wire the transmission selection gadgets are added.

For a tile to start internal construction it must verify it has claimed all 4 corners. Only doors

on its side are active all others are blocked.

Building the Far Side of the Outline. Once we have confirmed claim of all four corners

we then can build the opposing edge starting at the designated corner. This again uses the normal

copy process. The Copy Checkpoint sends out a copy agent, which places a Placement Director.

Then, this copy agent traverses the outline wire to the appropriate place, locking doors on the way

if necessary. Lastly, it will transition into the Copy Director and start copying the last edge of the

supertile, see Figure 2.19.

38

2.7.5 Construction Wires

Once construction of the outline of the new supertile is complete and confirmed by an agent

at the Copy Checkpoint, we start copying the table. Each table has eight construction wires. These

wires extend from the corners of the table, and mark the width and height of the table, plus its

position within the supertile.

To copy the table, we first copy the construction wires. For horizontal copying, we start by

copying the horizontal construction wires, then the vertical ones. For vertical copying, we do the

opposite. These wires are not only used to indicate the placement of the table within the supertile,

but they will also be used to copy the contents of the table.

To copy them, we first open the doors connecting the respective wires to the outline wire.

We then copy the wires using the normal copy process, starting at the far end. The horizontal and

vertical process can be seen in figure 2.20 and figure 2.21.

2.7.6 Copying Table

The construction wires already contain the outer edges of the table, including the table

control edge on the eastern side of the table. Once these are in, we build the rest of the table.

Importantly, the only variable aspects of a datacell are the width and the height of the transition

storage. These depend on the system we are simulating.

Copying Horizontal Table Wires. To transfer this information over to the new supertile,

we first copy all the horizontal wires in the table. These already contain the transition, affinity,

and state lookup chute crossover doors. We copy these over using the normal copy procedure, see

Figure 2.22. Both the Copy and Placement Directors start this procedure on the East side of the

table, and the route that the copies take is via the construction wires.

Every time the Copy Director has finished a horizontal wire, it moves down to the next

horizontal wire. For every step that it takes, it sends a token to the Placement Director.

For every one of these tokens that the Placement Director receives, it goes one step forward.

39

The height of a datacell is implicitly transmitted by the distance between the transition storage door

on one wire and the end of transitions tile along the wire just below.

Constructing Datacells. Next, the placement director will send subordinates down each

table input row to construct datacells, reporting back as each is completed until it reaches the end of

the table. Within the row, when the placement subordinate meets the datacell punchdown door it will

traverse through the transition storage door adding doors to the west, wires to the south, and border

tiles to the east, until it reaches the end of transitions tile below it. It will add the transition exit door

to its east before returning to the top of the datacell, traversing through the affinity crossover to

begin constructing the next datacell. This can be seen at a high level in Figure 2.23.

Copying Transition Rules. The process of copying datacell transition rules works as

follows: Our agent transitions the transition row door into a copy activation state, which will swap

with every unary tile, the end of data string state, and border tile state behind to transition each into a

copy yourself state. Each will copy themselves onto the wire and then flip backwards until reaching

the door and transitioning back into a normal state. The door will stay at the back of the row until

the border tile returns, signifying it has copied itself. At this point, the door will traverse to the front

of the row and activate the door below it to begin the same process. The door will also copy buffer

tiles and includes rows that have no transitions in them and are comprised of filler blocks.

When this is complete the fill marker is moved to the next datacell. When the row is

completed the copy agent will confirm its completion to the copy director indicating that the next

row can be started.

On the opposite side the data strings are activated for placement, and due to special placement

states this allows them to attach their own blank construction tiles to the east.

Copying Vertical Table Wires. As all of the necessary information has already been

copied into the table, what is left is to copy the vertical wires, see Figure 2.25. The placement

director simply sends filling agents down the top of each column that will traverse south and place

40

south wires and protective border tiles to their side as they go. When these agents reach the bottom

of the table they reverse walk north until it reaches the top of the table where the placement director

will absorb and check it off. As the placement director was at the final vertical wire when it finished

sending the agents down it will wait there until the agent returns with confirmation that it has

completed filling the southern wires. The placement director will then wait to proceed at each

intersection until it has reached the control edge of the table. Once this occurs, the placement

director will send a signal to the Copy Checkpoint that the copying of state transmission wires may

begin. When a placement subordinate is traversing northward on the state lookup chute wires it

will lock the appropriate doors to shut down the construction wires connecting chutes of different

directions.

Copying State Transmission Wires. After the table is complete the state transmission

wires are copied, see Figure 2.26. After the appropriate wires are set and locked, we begin with the

wires entering from the east of the tile. The Copy Directors for any direction will skip copying any

vertical/horizontal construction wire and tile/table edge crossovers.

2.7.7 Activating Tile and Determining State

Once the supertiles construction has finished the process of activating the supertile for use

begins. First, the construction wires must be deactivated.

Construction Wire Deactivation. After construction phase 10, phase 11 is started. To

begin, phase 11 locking unlocking agents are dispersed throughout both tiles with the copy and

placement directors, checking off their respective tiles intersections after each phase 11 locking

unlocking agent reports back from the construction wire it was sent down until it returns to where it

started. The copy and placement directors will not unlock the outer edges of their respective tiles

yet.

Reporting Construction Completion to Neighboring Construction Tile. After the tile

is confirmed to be complete, construction wires are deactivated, and table is activated, a signal is

41

sent to the neighboring tile that was in charge of construction that it may reactivate most of its

non-construction functions and its active state column, see Figure 2.27.

Activating Table. When it is confirmed that the construction wires have been locked,

state transmission wires appropriately unlocked, and neighboring wires reactivated, the placement

director will move into phase 12 where it activates the table edge and punchdown gadgets.

Requesting Tile State From Neighbors. After the supertiles construction is complete it

will send out a Requesting State Agent to its neighbors along its state lookup output wire for each

direction. Upon reaching the edge of the supertile it will meet doors that indicate the supertile has

no neighbor but it may traverse through them anyway. After the supertiles state has been selected

and activated the has “no neighbor doors" will be transitioned to standard tile edge crossover doors.

If a transition request reaches these has no neighbor doors it will be dissolved on contact. Only the

newly constructed supertile can transition its has no-neighbor doors and that of the tile next to it.

Transmitting Neighboring Supertile States. Once a New State Requesting Agent has

entered the lookup chute in the active column in a neighboring supertile it will traverse to each row

until it reaches a self-intersection with the active state for that direction. It will report the state of

the neighboring tile back to the new tile table.

Selecting (and Deselecting) Possible States. After one of the New State Request - Neigh-

bor Reporting Agents have won the table locking race it will enter the table and traverse each

column. At the end of each datacell, in the southern slot of the vertical wire/datacell crossover

gadget, there is an affinity (or no affinity) door that the agent may transition nondeterministically

with to select the state of the new tile. This agent may traverse the row backward or forward at any

time and may even completely exit the table and restart the locking race so that another directions

New State Request - Neighbor Reporting Agent may enter the table and potentially select the state,

see Figure 2.28.

42

Activating Column and Regular Table. Once a state is selected state column activation

agents are sent to the north and south of the initial selection door, turning each incoming datacell

punchdown door/vertical intersection crossover into an active superstate mode and storing the state

in the state storage box at the top of the column, see Figure 2.29.

Only after a state is selected and column confirmed to be activated in both directions does

the New State Request - Neighbor Reporting Agent Eraser Door Agent Activator spawn and traverse

to the top of the table and over to the left edge where it changes each of the table control edges

inner doors to its normal active state. This causes New State Request - Neighbor Reporting Agents

to dissolve upon contact (leaving an omni-directional wire tile behind) and triggers the table outer

doors to unlock.

Unlocking Neighboring Supertile and Testing for Neighbors. When the New State

Request - Neighbor Reporting Agent Eraser Door Agent Activator has reached the table’s south

marker tile it will send an Unlock Neighbor Outline and Test for Neighbors Agent. This agent

will also unclaim corners of the new supertile. The agent will traverse around the edges of both

supertiles unlocking them or testing for neighbors if the doors say they have none.

Sending Out New Supertile State. When the Unlock Neighbor Outline and Test for

Neighbors Agent returns through the southern construction wire door (which it may traverse due to

its special state) it will change to a State Transmission Trigger Agent that will traverse the active

state column and send out State Transmission Agents at each self-intersection. The first State

Transmission Agent to reach the inside edge of the table will unlock it, see Figure 2.31.

43

2.8 Transitioning Tiles

The transition process starts once a state notification agent from a neighboring supertile

reaches another supertiles table. The table is locked by standard procedure, and if the lock is

successful, the agent is admitted into the table.

2.8.1 Finding Intersection

The wire this agent is entering on implicitly encodes the state of the neighboring supertile.

To determine whether there is a transition, it needs to find the active state column. The active state

column has special door states, so when the agent reaches the active state door, it is no longer able

to traverse further into the table. Reaching this door ensures that the agent will have the chance to

transition with the transition storage door below, which is only unlocked (if a transition exists) in

the active state column. If there are no transitions then the transition storage area door will be in a

no transitions available state, see Figure 2.32.

If there are transitions and the state notification agent does not choose to back out of the

transition process and table altogether, then the process to prepare both supertiles for transitioning

begins.

2.8.2 Transmitting Intention to Transition

First, it must be confirmed that the neighboring supertile that sent the state notification agent

is still in the state it was when it sent the agent. The agent confirming the state locks the tile into its

current state.

This process starts with the State Notification Agent transitioning into a Transition Prepara-

tion Agent—Confirm Neighbor when swapping with the unlocked transition storage area door in

the active column. During the swap, the transition storage area door has “awaiting confirmation”

appended to its state.

The Transition Preparation Agent—Confirm Neighbor traverses down the storage area wire

and out the transition storage exit door. As it cannot swap with the south door of the datacell’s

44

bottom crossover door, thus we can ensure it exits out of the output wire in the same state and in the

same direction it came from.

The Transition Preparation Agent—Confirm Neighbor will leave the table locked as it exits.

If we find the neighboring table locked, the transition is rejected, and an agent is sent to reset the

transition storage area door and unlock the table afterward.

Rejection of Neighbor Tile State Once the Transition Preparation Agent has locked the

neighboring supertiles table and traversed the columns to the active state, it will enter through the

transition storage door as within the other datacell. As the Transition Preparation Agent - Confirm

Neighbor became Transition Preparation Agent - Confirm Self-Intersection when swap-transitioning

with the current datacells transition storage door, it will then traverse to the bottom of the transition

storage area where the self-intersection marker tile sits. If the self-intersection marker tile is instead

a not self-intersection tile, the Transition Preparation Agent will reject the transition, traversing

back to the transition storage entrance door and deselecting it, then walking out of the datacell

and unlocking the table upon exit. Once it reaches the initial supertile, it will enter the table (still

unlocked at that particular door) and remove the “awaiting confirmation” designation from the

active states transition storage area entrance door, finally locking the table on its way out.

Confirmation Neighbor Tile State However, if the lookup is confirmed to be at the

“self-intersection,” we know the neighbor’s state has not changed. Thus we instead send a Transition

Preparation Agent - Neighbor Confirmed back to the originating supertile. In addition, we send a

wire setting agent to open the way from our datacell down to the state lookup chute exit wire for

the respective direction and an agent to follow that to trigger the transition selection gadget, see

Figure 2.33.

Copying Transition Rules Each supertile begins copying its transitions largely using

the same method as during attachment. First, the door is activated, which activates the unary (or

filler) tile behind it, which then transition-swaps with the door into a spawn copy state, which will

45

spawn into the wire outside the door. Once the number has successfully copied onto the wire it will

flip through its row until it hits the end of data row tile where it will return to its normal inactive

state. Once the door has cycled through all of the data string tiles, it will shift to a finish buffer

cycling state and stop opening, simply transitioning with buffer tiles so that they flip behind the data

string as before until the beginning of the data string reaches the door again. Once this occurs, the

current door will trigger the door below it to begin its copying process. This is continued until all

data strings have been copied into the wire and are heading to the transition selection gadget, as in

Figure 2.34.

Filling the Transition Selection Gadget. For supertiles transitioning with a neighbor

to their east or north, a wire setting/locking agent must be sent by the Transition Director upon

reaching the edge of the tile, as the transition selection gadget is on the opposite side of their lookup

chute exit.

Once the Transition Director reaches the transition selection gadget, the entrance door and

the first row will be activated to begin overwriting the blank filler tiles within the gadget rows. The

fill door will allow one data string to go through before it needs to be unlocked by the Transition

Director again. After each row is filled, the wire tile next to the door below it is unfrozen. As we

are filling top to bottom, this ensures data strings do not fill improperly to doors below.

Selecting the Transition. Once all of the data strings are properly in their rows the

transition director will activate the selection agent for its half of the transition selection. The agent

will traverse on the transition border wire parallel to (and touching) the other supertiles transition

border wire. The agents randomly walk up and down the transition selection wire.

Once both have been activated, it is possible for them to align next to one another at one of

the transition rules and have the chance to select, see Figure 2.35. When a transition is selected, the

two agents must double transition, instantly choosing the new state of their respective supertiles

simultaneously. When determining the supertile of a state, the highest priority is if a row/column

46

has been selected in the transition selection gadget, and then if there is none, the active state column

of the supertile.

The agents may also choose an abort transition row/column double transition option at any

time.

Once a transition is selected, the data string is copied out of the appropriate row/column it

was being held in and led by a transition director to the top state lookup chute wire. The transition

director has special override authority at the table border to open this top wire and allow the data

string to traverse through the table.

2.8.3 Transitioning States

Each supertile is in charge of completing its respective half of the transition rule.

Punch Down Mechanism and Data String Traversal. The data string will traverse

the input wire however many columns are specified by the data string. The punchdown tile will

transition with a 1 tile turning the 1 tile into an east wire tile, thus decrementing the data string, and

the punchdown tile will tell the door handle to unlock the door. Once the door swaps and transitions

with the end-of-data string tile, it will reset fully with its door handle, return to its locked state, and

tell the punchdown gadget to reactivate through its handle.

Deselecting the Previous State. The data string ends in an end-of-data string tile that,

when it is punched down, updates that column as the new state. Before this can occur, the old

column must be deactivated. Thus 2 agents are sent, one to the east and one to the west to search for

and deselect the old active column.

When one reaches the old active column, it will spawn agents to traverse north and south,

deactivating active state doors. When they reach the bottom of the table, they report back to the

Deselection Agent, who reports back to the state update pending door, waiting for confirmation of

deselection (and no column from the other direction).

47

Activating New State Column. The activation of the column looks much the same as the

deselection of the state column; see Figure 2.36. The state update pending agent (waiting next to

the affinity door) sends agents north and south to activate each column door as the active state and

fill the state storage tile at the top with the new active state.

If the column selected is the current active state column, then only the wipe transition

selection gadget agent is sent.

Wiping Transition Selection Gadget. Once this has been reported to be complete, the

door will spawn a wipe transition gadget agent, which will traverse through the new active state

column to the bottom of the state lookup chute wire for its direction and travel to the transition

selection gadget. Upon arrival, the agent will enter the transition selection gadget and trigger the

rows/columns to cycle wipe each of the tiles in its slot. This works much like copying for the filler

tile cycling; except instead, it is erasing values. After the wiping agent has checked off all slots

to be complete, a recapture of the agent will be triggered. When recapturing the agent has been

confirmed it can then exit the transition selection gadget, resetting the gadget door and any wires

set/doors locked by the transition process at the edge of the tile.

Sending Out New State. Once the wiping agent has returned to the active state column,

the column is triggered to send out the new active state at each self-intersection. The table is

unlocked by the first state transmission agent that reaches it.

48

2.9 Metrics

As the vast majority of states are dedicated to the operation and copying of crossover doors

we cover this aspect first. Next is agents and finally other gadgets states.

The number of states was calculated as follows:

Nearly all crossover gadgets have four doors, each of these four doors may have been set

to one of two directions (standard and reversed) each one of these doors has the following states:

active, waiting, open, reset, pushback, and locked. Thus, there are 7 states for standard operation

over 8 possible doors making 56 per crossover gadget type as standard. All doors use the same

handle set adding only 12 states to the total calculation. In total 42 crossover gadgets are necessary

coming to 2352 states for standard operation.

Additionally, during the copying process the majority of crossover gadgets have a copy

yourself state for each door (though the doors enter a state reset when complete unlike other copy

processes) and a copy agent for 9 additional states per type. For placement we transition with the

first blank tile it swaps with to a wire tile, then we overwrite the leftover second placement tile,

and lastly each of the four doors are put into their respective blank tiles, adding 5 additional states

(other agents will set them to standard or reverse as necessary). As such the copying process of each

crossover door requires 15 states and thus 630 for the entire construction.

There are 16 non-crossover doors in the system that each have the above standard operations

(and half have independent handles) adding to 120 states. Crossover doors have special states to

indicate that there is no neighboring door, adding 96 states to the incoming and outgoing state

transmission crossovers for each direction. Corner crossover doors can be claimed by a neighboring

supertile, adding 64 states.

2.9.1 Agents

Agents locking and unlocking the table requires 30 agent states and 5 additional door states.

Initiating transitioning, copying the data strings, and ensuring they reach the appropriate locations

49

requires an additional 31 agent states, and 24 door states. Selecting the new state within the gadget,

copying out the data string for the new state, and wiping or aborting the transition requires 34 states.

2.9.2 Copying States

General Copy States and Agents. Each direction of placement tiles requires an inactive,

active, complete, and special crossover double state, adding to 16 states.

Copying Crossovers. Each of the crossover doors (regular and reversed) must have a

state indicating they should copy themselves, a state indicating to spawn the same agent, an agent

which must traverse 2 steps to the center of the crossover gadget then check off that the doors (not

reversed) have been attached at each side. As this requires 15 states and there are 42 crossovers, this

adds 630 states.

Locking Agents. Each step that requires a locking agent needs a spawn/waiting state

for the copy director and the locking agent itself needs an active, lock door 1, lock door 2, exit

crossover, and locking complete state. Nearly every locking agent also needs the copy director and

an unlocking agent with the same states for a total of 14 states. There are a total of 10 phases that

require locking agents, but the state transmission wire construction needs these for each side. In

addition, there are 30 other miscellaneous states that are used across various phases. This brings the

total of these to 212 states associated with copy locking.

Placement Director. The placement director has an awaiting direction tile, an overwrite

completed direction tile, a waiting state tile, an overwrite state tile, a waiting crossover agent

completion, overwrite crossover agent, lock door 1, lock door 2, exit crossover, and complete states,

making 10 states over 4 construction directions for 40 states. This standard version applies to 4

phases, but cycling is done 11 times due to subphases for a total of 462 states.

Additionally, the copy director and/or placement director will spawn placement directors or

subordinate placement directors and wait for their completion 22 times. Doing this for 4 directions

for 44 states per directions makes for 176 states added.

50

Aborting Process. The abort construction process (not including reactivation) takes 10

states to overwrite, wipe, and inform the copy checkpoint/director for each direction, adding a total

of 40 states.

Traversing Opposite. In 13 phases and subphases the copy director must traverse to the

opposite side of the tile. Adding 52 states.

Datacell Outlines. The subordinate prime placement director must be spawned, place a

wire to the south, door to the west and a border tile to the east before moving on, when it runs into a

no state tile to its south it will instead place an exit door and mark itself complete. As this doesn’t

depend on the direction, it only adds 6 states.

Filling Datacell. Copying each transition rule requires the copy director to activate each

tile for copying, flipping through them without sending direction tiles at this phase; they will mark

themselves complete in addition to the copy director, the placement director and tiles do in this in

reverse on the opposite side. With the necessary checkpoints included this adds 22 states.

Vertical Table Wires. In addition to the check off states (counted above) the south traversal

agents need to skip crossovers and the final one needs to lock on the way up adding 6 states.

State Transmission Wires. As each copy and placement director needs to check off first

and last for each direction and crossovers need to be skipped there are 32 states added.

Reactivating Neighboring Supertile. The agent must delete the checkpoint, traverse to

the top of the table to spawn a generic sub-agent that doesn’t depend on construction direction,

unlock the table, check for where the active state column is, spawn an activation agent, and let the

newly finished tile know this process is complete adding 12 new states.

Activating New Table. In the new supertile the table doors must be moved into special

door states added to the east and west of each table edge state transmission wire crossover. This

adds 14 new states.

51

Requesting, Receiving, and Selecting States. Requesting and receiving states requires

and agent to send them from each direction in the active state column, the state requesting agents

themselves, and special state transmission agents. Selecting the state requires abort and select, if

the state is not a full state then an additional special agent is required, adding 9 states.

Activation, Unlocking, and Transmitting. The activation of the new column, doing a

special unlock of the table the self and neighboring tiles outlines and transmission of the new state

adds 11 new states.

2.9.3 Final Count

There are an additional 40 miscellaneous states used in the construction bringing the total

number of states to 4600, including 2600 non-copy states for our final ACA state count.

52

2.10 Correctness of Construction

Here we give proofs of correctness. We first (re)state our main lemma.

Theorem 2.4.1. There exists a tile set (ΣU ,ΛU ,ΠU ,∆U) such that, for all systems Γ=(Σ,Λ,Π,∆,s,1),

there exists a Γ′ = (ΣU ,ΛU ,ΠU ,∆U ,sU ,1) that simulates Γ at scale O(|Σ|3).

We prove this via the following lemmas which each satisfy a condition of simulation. We

start with a helper Lemma.

Lemma 2.10.1. For any assemblies A ∈ PROD(Γ) and AU ∈ PROD(ΓU) such that A = R∗(AU),

any assembly BU such that AU →1 BU satisfies either R∗(AU) = R∗(BU) or R∗(AU)→Γ
1 R∗(BU).

Proof. An attachment can never change a mapping because if a supertile is incomplete it maps to

the empty state. Once the datacell has been built it sends a signal to it’s neighbors. Its neighbors

will respond by sending an agent which walks into the table. If it reaches an intersection in the table

where there is an affinity rule it immediately changes the mapping to the new state simulating an

attachment. The next available transitions mark the remaining tiles in the active state column.

Until a superstate transition is selected none of the changes that can be made in the supertile

change the mapping since they do not change the active state column.

Equivalent Production.

Lemma 2.10.2. For any assembly AU ∈ PROD(ΓU), the assembly R∗(AU) ∈ PROD(Γ).

Proof. Any producible supertile either (1) maps to a empty state, (2) has only an active column

which signifies the state in Σ it represents, or (3) has an active column and a selected transition in

which case it maps to the state after the transition.

We will use induction along with Lemma 2.10.1 to prove that all assemblies are producible.

For our base case we consider the seed in both systems. We replace each tile in the seed s by

supertiles representing that tile to get seed assembly sU . Then by Lemma 2.10.1 every move we

53

make on assemblies AU in PROD(ΓU) creates an assembly BU which represents an assembly B

that is reachable by A in Γ.

Lemma 2.10.3. For all AU ∈ PROD(ΓU), AU maps cleanly to R∗(AU) with 1-fuzz.

Proof. The seed sU we create maps cleanly to the original seed s as we only place supertiles in

locations where tiles take place.

Each ghost tile is built from a neighbor boundary first. Once the boundaries are built, the

ghost tile copies the contents of the supertile. It is not until the supertile is complete and has selected

a state that it begins to attempt to build neighboring ghost tiles. Therefore each ghost tile is adjacent

to at least one properly mapped tile.

Equivalent Dynamics.

Lemma 2.10.4. For all A,B ∈ PROD(Γ) such that A→Γ B, it holds that for all AU such that

R∗(AU) = A, we have AU →ΓU BU for some BU ∈ PROD(ΓU) with R∗(BU) = B.

Proof. Consider any pair of assemblies A,B ∈ PROD(Γ) such that A→Γ
1 B. Pick an arbitrary

AU such that R∗(AU) = A. If this transition was achieved via an attachment the agent selects the

active tile column by traversing the datacells at an intersection. It may also chose to not stop at the

intersection and continue on or go backwards to select another tile. This allows AU to achieve any

attachment performed by A.

For transitions, all available rules will be loaded up into the transition selection gadget. If

the two agents meet they may select the transition and instantly change the mapping of both tiles,

transitioning from AU to BU based on our mapping. However, the non-deterministic process may

not select a transition at all and will allow the agents to keep walking to select any transition, or

abort.

Lemma 2.10.5. If AU →ΓU BU for some AU ,BU ∈ PROD(ΓU), then R∗(AU) →Γ R∗(BU) or

R∗(AU) = R∗(BU).

54

Proof. If a attachment or transition does not change its mapping then we satisfy R∗(AU) = R∗(BU).

For a ghost tile to transition to a valid mapped tile, it must have an active state column. This active

state column is only build and actually activated if there was a neighboring supertile that had the

appropriate affinity.

For a transition the agents must both match and find the same transition in order to change

the mapping of the tile. Only proper legal transition may be placed in the table so all of these must

be valid transitions from R∗ (A′) to R∗(B).

Transitivity of Simulation. Here we show the definition of simulation is transitive, and

hence we may chain many simulations together. It is possible that chaining 1-fuzz simulations

results in an increase in fuzz by a constant factor. However, in our case we preserve 1-fuzz which

we prove in Theorem 2.10.7.

Lemma 2.10.6. The definition of simulation is transitive. If each simulation is 1-fuzz and has scale

factor larger than 1 then the resulting simulation has at most 3-fuzz.

Proof. First consider a chain of k simulating systems where Γi simulates Γi+1 for 0≤ i< k.

Condition 1 from equivalent productions, and both the follows and models conditions of

equivalent dynamics are all preserved by the fact we may compose the representation functions.

The second condition of equivalent productions, namely the c-fuzz bound, requires more

care as the fuzz of a simulation is not immediately preserved. However, we can ensure that the fuzz

will be bounded by at most 3. At each simulation step, the size of a supertile is getting smaller

by a fraction α ≤ 1
2 . Since each simulation has at most one ghost tile next to its valid parts of the

assembly, every simulation can add at most one ghost tile neighboring the previous one, which is a

fraction α smaller than the previous. Since α ≤ 1
2 , this geometric series in the plane can reach a

distance of at most 3 from the original supertile.

Even though chaining 1-fuzz simulations can lead to a simulation using 3-fuzz, chaining our

specific construction would never lead to more than 1-fuzz.

55

Theorem 2.10.7. Chaining our simulations results in a 1-fuzz simulation.

Proof. The individual tiles of a supertile S would never go outside the boundingbox of S. Take

an individual tile t on the edge of S. If we would chain simulations, t would be simulated using

a supertile S′. Supertile S′ would only build a new ghosttile outside of S if t would want to build

outside of S. Since this never happens, chaining our simulation only results in 1-fuzz.

Universality Results.

Theorem 2.4.4. There exists a tile set (ΣU ,ΠU ,∆U ,1) such that, for all systems Γ= (Σ,Λ,Π,∆,s,τ),

there exists a Γ′=(ΣU ,ΛU ,ΠU ,∆U ,s′,1) that simulates Γ with 1-fuzz at scale factor O(min((τ|Σ|)3, |Σ|9).

Proof. Lemma 2.4.1 states that temp-1 is IU for itself.

Chaining these two simulations will still result in a 1-fuzz simulation as ghost tiles are only

built where a new tile may attach. Our construction in Theorem 2.4.2 has 1-fuzz and the ghost tiles

that attach do not have any other affinities with neighboring tiles. Thus the supertile simulating

them in Lemma 2.4.1 will not place any additional ghost tiles. For the same reason any assembly

which has no attachments will not build any ghost tiles and thus have no fuzz.

56

2.11 IU TA Simulates 2D Asynchronous CA N = 2

Previously, a partial proof of 1D asynchronous cellular automata (ACA) being intrinsically

universal was shown in [30]. Here, we apply techniques used throughout this paper to show two

subsets of asynchronous cellular automata are intrinsically universal. We start by defining pairwise

and block-pairwise ACA.

Asynchronous Cellular Automata An Asynchronous Cellular Automata (ACA) system

is a 4-tuple Γ = {Σ,N,∆,C}, where Σ is a set of states, N ∈ N is the neighborhood of Γ, ∆ is a

mapping ∆ : ΣN → Σ and C is a configuration that is a mapping C : N2 → Σ. We refer to each

mapping in ∆ as a transition rule.

Pairwise ACA. A pairwise ACA is an ACA with one extra consideration. More formally,

it is defined as a 4-tuple Γ = {Σ,S,∆,C}, where S consists of all possible subsets of size 2 between

a cell c and adjacent cells in each cardinal direction, and ∆ is a mapping ∆ : Σs→ Σ, where s ∈ S. If

∆ is a mapping ∆ : Σs→ Σs, we consider Γ a block-pairwise ACA.

Note that these automaton are a subset of radius-1 ACAs since we can transform each

transition rule in ∆ into larger mappings that ignore the neighbors not included in the rule. However,

this increases the number of rules by a factor of |Σ|3 since we need to account for all possible

configurations of the neighborhood.

Lemma 2.11.1. Block-pairwise ACA is strongly intrinsically universal.

Proof. Let R be a representation function for a given block-pairwise ACA system Γ = (Σ,S,∆,C).

Map each cell c ∈C to c′ such that R(c′) =C(c), including a mapping for empty cells, in the same

manner as a seeded TA system. As with the techniques described in earlier sections, each new cell

c′ stores state information about each of its 4 neighboring cells and the transitional information

from Γ, ensuring cells are only able to change from some R(c′) = σ to R(c′) = σ ′ if there exists a

valid transition rule from ∆ to allow it.

57

Lemma 2.11.2. Dual transitions in Tile Automata can be simulated by single-sided transitions at

constant scale with O(∆2) additional states where ∆2 is the number of dual-transition rules in the

system.

Proof. This was previously addressed in [4] in relation to the signal tile model. Figure 2.37 gives a

general overview of how to do this simulation at scale-3 with an additional 53 states. Basically, all

tiles around the two 3×3 macroblocks change before changing the states. This locks them into the

transitions, and is reversible until state b8 changes to x17. The x’s then change to y’s after the A→C

and B→ D change. The y’s then turn to c’s and d’s.

Theorem 2.11.3. The Asynchronous Cellular Automata model with a cardinal-direction neighbor-

hood of size-2 and radius-1 (pairwise ACA) is strongly intrinsically universal.

Proof. Pairwise ACA is a special case of block-pairwise ACA. However, any cell transitions based

on its neighbors. Thus, all transitions are single-sided in terms of Tile Automata. Thus, we modify

the block-pairwise IU result from Theorem 2.11.1 to only use single-sided transitions through

scaling as shown in Lemma 2.37. This means that there is a constant-size set of states that is

intrinsically universal.

58

2.12 Conclusion

We showed that no passive or freezing tile assembly model can be non-committal intrinsi-

cally universal. However, we showed that the seeded Tile Automata model, with its unbounded

state changes, is non-committal intrinsically universal. This is done by showing TA is intrinsically

universal even under temperature 1 using 1-fuzz. Moreover, a Tile Automata system using tem-

perature τ > 1 can be simulated using a system that uses temperature at most 1. Chaining these

two simulations shows that there exists a tile set that can simulate any Tile Automata system. This

intrinsic universality result has direct implications for certain Cellular Automata. Moreover, the

result directly implies that the original aTAM model can be simulated using Tile Automata.

There is significant room to optimize and minimize the tile set. For example, the number of

tile states necessary to copy a supertile is large, whereas big sections of the supertile will always be

the same, independent of what system we are simulating. Furthermore, the temperature simulation,

and consequently the universal simulation, uses a lot of states. It might be possible to combine both

simulations into one, by storing the affinity strength in the datacell. A ghost tile would then need to

check all neighboring supertiles for their affinity strengths and add them up, before deciding which

state it will become.

Another obvious open problem is that of dimensions other than two. It is still unknown

whether the Tile Automata model is intrinsically universal if you extend the model to one, or to three

or higher dimensions. Even though our simulation could technically simulate a one dimensional tile

set, the supertiles would still use two dimensions themselves.

Finally, as in the aTAM model, our construction heavily relies on the fact that (locally) only

a single tile can attach at a time. Because of this, our current construction only shows the seeded

Tile Automata model to be intrinsically universal. Hence, the question arises whether or not the

non-seeded Tile Automata model is intrinsically universal.

59

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

1

2

9

4

8

3

5

7

6

Figure 2.2: An overview of a supertile. (1) An agent inside of the supertile. (2) Wires connecting
supertiles from each edge to the lookup table. West wires are drawn individually. (3) The lookup
table storing the information about the system being simulated. (4) A row containing the information
about the state of the east neighbor of the supertile. (5) The active column, representing the current
state of the supertile. (6) A group of datacells storing all information for the north side. (7) A single
datacell, in this case, storing the affinities and transitions for when both this supertile and the East
supertile are in state 1. (8) The table control edge, with an agent waiting to enter. (9) Transition
selection gadget at each edge, dictating the transition of this supertile with its east neighbor.

60

B

Temperature

Initial State

Ghost

1

States

g C

A

B

D

F

E

g

Ghost

Input
System

ENE

ENE
t-1

ESW
t-1

EN
1 1

EN
t-1

ENSW

ENSW
t-1

EWSE
t-1

...
...

...

...

...

...

...

...

...

EW
t-1

......

1

EN

EWSE...

Failure

EN

EWSE...

Success

Unlock Neighbors States

AE

...

AW

FW

AN

AS

Locked by
Neighbor

States

Strength = 1

Affinities

Transitions

ACB C

B

D

D

C

���

���

���

���

��� AAENSW
3

ENSW

���

���

���

F

g

FN

ES
1

E

g

EN

BS
2

B

g

BS

EN
2

Ag AWEE
1

BW
3A g AE

EW
1D DEg

C FW

¹
CEg

B g BE CW
3

F F

ENEW
3

ENEWB

D F

F

C

A

C

g A

g

F

gF

FA

D D

gA

g F

A

F

g

E

B B g

Eg

C

D

ED Eg

A

E

D D g

E A E g

EF

CF gF

g BBA

A g gA A A

B C gB

C F gC g F

C gA C

Adding States

Figure 2.3: The temperature-1 system that simulates the system in Figure 2.1.

61

Simulated Attachment of E Success

BS

EN
2 ENW

3 ENSW
3 ENSW

3

A

B

C

A

B

D

C F

Counting StrengthGhost Tile Attaches

A

B

C

A

B

D

C F

g

BSA

B

C

A

F

DE

CN

Transition Blocked

Strength Met Unlock Surrounding Tiles

AD

C

CA

B F

A

B

C

A

B

D

C F

E

DE

BS

A

C

CA

B F CN

DE

BS

A

CA

B F

CN

BS

ADE

CA

B F

D

CN

BS

A

CA

B F

EN

C

D

BS

A

CA

B F

B

C

D AE

CA

B F

ENSW

ENS

Simulated Attachment Failure

Affinity Strengthening Restriction

ENSW
1

CN

DE

AS

A

CA

B F

AS

CN

DE A

CA

B F

gD

C

A

A CA

B F

ENSW

g AD

B

C

CA

B FCN

D AW

B CA

B F

D AW

B

C

CA

B F

ESE
1

EE

F

F

B

E

A C

A

C F

F

F

E A

A CA

C F

F

F

E A

A CA

C F

D

C

B

E

A C

A

C F
1

1

0

0

0

0

2

2 2

2 3

3

Figure 2.4: The construction process that the Tile Automata in Figure 2.3 builds, representing the
same attachments and transitions as in Figure 2.1

🡺 سي��
~

🡺 سي
~

🡺 🡺 🡺 سي
~~

سي
~

🡺🡺 سي 🡺🡺
~

🡺 🡺

~

 سي 🡺 🡺 سي
~

Figure 2.5: The door in action. Once an agent asks to pass the door, the door first confirms with
its handle, after which it goes into an open state. The agent can then pass the door. The door goes
into an orange warning state, after which it is only allowed to swap with a wire tile to go back to its
original position.

🡺🡺 سي
~سي~

🡺
🡺

سي ~

سي
~ ~

🡺
سي

سي

🡺
🡺

سي

~ ~

~

سي

Figure 2.6: Left: Standard crossover gadget. Right: Agent traverses a crossover gadget horizontally.
The red doors are locked, and the green door is open.

62

~

🡺[1 1

سي
1سي

V

🡺🡺

~

سي
~

~

🡺
🡺

سي

سي
 🡺

~

🡺[1 1

سي
سي

V

🡺🡺

~

سي
~

~

🡺
🡺

سي

سي

سي~

V ~ ~

~

🡺
🡺

سي

سي
🡺 🡺 🡺 [1 1 سيسي��

Figure 2.7: The punchdown gadget first decrements a data string by turning the 1 into a wire tile
(Left). Then, the associated door is unlocked, after the north and south crossover doors are locked
(Middle). Lastly, the punchdown door resets after the end-of-data string tile swaps with the door
(Right).

[

[

1

[1 11

11

[

[

1

[1

1

1

1 1

سي
سي

سي سي

سي

سي

سي
سي

سي

سي

🡺

🡺🡺 🡺

🡺 🡺🡺 🡺🡺 🡺

🡺 🡺🡺
🡺 🡺

🡺 🡺
🡺 🡺

🡺 🡺

🡺
🡺

🡺🡺

🡺

🡺
🡺

🡺
🡺

سيسي


~~~~

~ ~

🡺 🡺
🡺 🡺



Figure 2.8: The transition selection gadgets of two neighboring supertiles. The border between
supertiles is depicted in red. The agents non-deterministically walk up and down and can eventually
select a transition or abort by transitioning with each other.

سي

Transition 
Storage

Affinity 
Door

Self-Intersection
Door

→سي

←

↓ ↓



سي
~

~

سي

سي


~

سي
~

~

~

~

~

~

سي

*سي

*سي
*

🡺

سي
سي

[

[

1*
*

🡺
🡺

🡺

]سي 1 11

11

سي

*

🡺

سي
سي

V
V

🡺🡺 🡺🡺🡺🡺 🡺🡺 🡺

~

سي
~

~

🡺🡺 🡺🡺🡺 🡺 🡺 🡺 🡺🡺

سي


سي
~

~

~

🡺
🡺

🡺
🡺

🡺

سي

🡺

سي

سي





*سي
*سي

سي*

سي

Figure 2.9: An overview of a datacell.

63



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

Figure 2.10: Left: The tile transmits its state to neighboring tiles and discovers it has no neighbors.
Right: The west agent has moved over to the affinity selection wire (in yellow).

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111
N

S

N

S

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

 N,S

1

11

111

1

11

111

1

11

111

1

11

111

1
N

S

 N,S

N


S

N


 S

S

1

11

111

1

11

111

1

11

111

1

11

111

1
N


 S

N

S


S

S

N

Figure 2.11: The lookup agent reaches table and locks the table

64



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

N

 F

S

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111
N

SS

N

F

Figure 2.12: The lookup agent reaches the intersection with the active state and confirms there is an
attachment possible for that direction.

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111
N

SS

N
E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

N


S S

N

Figure 2.13: The lookup agent finds no attachment and unlocks the table, deleting itself when it
reaches the edge of the supertile.

65



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111



 w

SS

N

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111




























 w

N

S

 w



Figure 2.14: Copy Checkpoint (West) begins construction by locking then resetting/wiping the
supertiles interior.



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

w1

SE

NE

W

W

w1*



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

S

SEW

 

MwS*

wM

wM* wM*

w1*

MwS*

SEW

wM w1

Figure 2.15: The Copy Checkpoint sends 2 claiming agents to claim the mirror edge. The Copy
Checkpoint then sends a mirror edge agent to place the mirror edge.

🡺 🡺🡺
سي

سي
~سي

~

 N

سي

سي
N  N

*🡺 🡺 سي
~

~ سي

سي
N 🡺🡺 سي

~

~

 N
*

سي

سي
N 🡺 سي

~

~

 N
*

*
سي

سي
سي
~

~

 E🡺🡺 

(A) (B) (C) (D) (E)

Figure 2.16: The general copy process.

66



w
6*🡺 N w

6*🡺🡺   w
6* E🡺🡺 Nw

6*🡺🡺 N w
6*

Figure 2.17: The placement process of a border tile up to the arrival of a crossover construction
agent just before the previous border tile is deleted.



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

w2

NE

W

W

w2

N 

2wS*

W
NW

SE


w2w2

w2w2
2wS*

Figure 2.18: The copy director copies each adjacent edge. It first does the north, then the south
edge.

w3



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

NE

W

WW

NW

SE
W
SW

w3*

 w3

w3
w3*

Figure 2.19: The copy director and placement directors copy the far side edge.

67



1 11 111N

W
NW

W
SW

NE

SE

W



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

w4

w4S w4 w4*

w2w4

w2w4



Figure 2.20: Copying the horizontal table outline.

W

1 11 111N

W
NW

W
SW SE

W



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

w5

w5
S

NE

w5

w5*

w2w5

w2w5



Figure 2.21: Copying the vertical table outline.

68



W

1 11 111N

W
NW

W
SW SE

W



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

w6

NE

S

w
6*

w
6

w6*





w6**

w6*

w2w6

w2w6
 w6**

Figure 2.22: Copying the table row wires.

W

1 11 111N

W
NW

W
SW SE

W



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

w7

NE

S



w
7*w

7 w7*  w7** 7w��

w2w7

w2w7 w2w
7* w2w7*

Figure 2.23: Constructing Datacell outlines.

69



 w
8*

W

1 11 111N

W
NW

W
SW SE

W



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

w8

NE

S

w8 w8*

w8**
 w

8*

w8**



Figure 2.24: Filling datacells with transition rules.

W

1 11 111N

W
NW

W
SW SE

W



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

 w9

NE

S

w9*

w
9*

w
9*

w
9*

w9 w2w9

w2w
9*

w2w
9* w2w9*



Figure 2.25: Constructing vertical table wires.

70



 

1

11

111

1

11

111

w
10*

1

11

111

1

11

111

1 11 111N

S

w10  




w10  



W
NW

W
SW



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

 






w10*

w10

NE

SE

W

w10*

w2w
10*



Figure 2.26: Constructing state transmission wires.



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S


E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

W
SW

W
NW

W
NE

SE

W





 



 

w
11w11 w

11w11

w11 w11w11

Figure 2.27: Locking construction wires and reactivating neighboring supertile.

71



W



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S


E
as
t

1

11

111
N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

W

W



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

W

R

R

Figure 2.28: Receiving states from neighboring supertiles.

72





W



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

W

WW





R

R

Figure 2.29: Selecting the state of the supertile.

73





E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S


E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

W



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

W

*

*

Figure 2.30: Testing for neighbors and unlocking supertiles.

74





E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S


E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

W



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111N

S

W

Figure 2.31: Sending out new state to neighbors.

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111



Figure 2.32: An agent discovers the existence of a transition with its neighbor.

75



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111



 ?



w
2

w
2?

Figure 2.33: The agent checks whether the neighboring supertile is still in the same state and locks
the neighbor’s table.

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111





Figure 2.34: The transitions are sent to the transition selection gadget.

[11 [

1

سي

سي
سي

سي
سي
سي
سي

🡺🡺 🡺

🡺 🡺🡺 🡺🡺 🡺

🡺 🡺🡺

🡺 🡺

🡺 🡺

🡺 🡺

🡺 🡺

🡺 🡺

🡺 🡺

🡺
🡺🡺

🡺🡺🡺🡺

🡺 🡺 🡺

🡺

سيسي


~~~~

~ ~

🡺 🡺

🡺 🡺

🡺 🡺

🡺 🡺

🡺 🡺 🡺 🡺🡺
🡺

🡺

🡺
🡺🡺 🡺 🡺 🡺🡺🡺🡺🡺

🡺🡺🡺🡺

🡺🡺🡺🡺

سيسي

سي
[

1

[1 11

11

[

[

1

[1

1

1

1 1

سي
سي

سي سي

سي

سي

سي
سي

سي

سي

🡺

🡺🡺 🡺

🡺 🡺🡺 🡺🡺 🡺

🡺 🡺🡺

🡺 🡺

🡺 🡺

🡺 🡺

🡺 🡺

🡺
🡺

🡺🡺

🡺

🡺
🡺

🡺
🡺

سيسي


~~~~

~ ~

🡺 🡺

🡺 🡺


[

Figure 2.35: Left: The transition selection gadget is filled row by row. Right: Transition Selection
gadget selects a transition to take.

76



E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

E
as
t

1

11

111

N
o
rt
h

1

11

111

So
u
th

1

11

111

W
es
t

1

11

111

1 11 111

Figure 2.36: The supertiles independently transition by first deselecting the old column and then
selecting the new one.

A CB D

BA

b1 b2 b3

b4

b5b6b7

b8

a1 a2 a3

a4

a5a6a7

a8 C

c1 c2 c3

c4

c5c6c7

c8 D

d1 d2 d3

d4

d5d6d7

d8

bk xixi xi+1

ak xixi xi+1

x1x14 x14 x15

x2 x16x15 x15

b1a3 b1x1

b1 x1x1 x2

A Cx18 x18 B Dx17 x17

CC x18 y18 DDx17 t

y18 y18 y17t

yi yixi-1 yi-1

yi ckCC

cj cjyi ck

yi dkD D

yi dkdj dj

Rules to Convert yi to cj or dj:

x1

x10x11

x12

x13 x14

x9 x8 x7 x6

x5

x4x3x2

BA b8a4

x10x11

x12

x13 x14

x9 x8 x7 x6

x5

x4x3

BA

x16x15

x18 x17

Figure 2.37: Simulating a dual-transition rule with only single-sided transitions. We scale the
simulation by 3 and any transition occurs by “locking” the two tiles, transitioning the two tiles, and
then unlocking them. The rules shown are a general idea, but it requires an additional 53 states.

77



CHAPTER III

1
4

1
3

1
2

OTHER TILE AUTOMATA RESULTS

3.1 Building squares with optimal state complexity in restricted active self-assembly

My Contributions In this paper I originally produced a lines result showing that of length 

O(2n) lines could be built using O(n) states which was later pulled from the paper. Additionally, I 

helped program AutoTile, our Python simulator, especially the Universal Classes file. I also helped 

create figure 1.

Abstract Tile Automata is a recently defined model of self-assembly that borrows many 

concepts from cellular automata to create active self-assembling systems where changes may be 

occurring within an assembly without requiring attachment. This model has been shown to be 

powerful, but many fundamental questions have yet to be explored. Here, we study the state

complexity of assembling n × n squares in seeded Tile Automata systems where growth starts from 

a seed and tiles may attach one at a time, similar to the abstract Tile Assembly Model. We provide

optimal bounds for three classes of seeded Tile Automata systems (all without detachment), which 

vary in the amount of complexity allowed in the transition rules. We show that, in general, seeded 

Tile Automata systems require Θ(log n) states. For Single-Transition systems, where only one 

state may change in a transition rule, we show a bound of Θ(log n), and for deterministic systems, 

where each pair of states may only have one associated transition rule, a bound of Θ(( log
log

log
n 

n ) ).

See Appendix A for full paper.

78



3.2 Simulation of Multiple Stages in Single Bin Active Tile Self-Assembly

My Contributions I primarily worked on editing, wrote the abstract and made the first 

figure of this paper.

Abstract Two significant and often competing goals within the field of self-assembly are 

minimizing tile types and minimizing human-mediated experimental operations. The introduction 

of the Staged Assembly and Single Staged Assembly models, while successful in the former aim, 

necessitate an increase in mixing operations later. In this paper, we investigate building optimal lines 

as a standard benchmark shape and building primitive. We show that a restricted version of the 1D 

Staged Assembly Model can be simulated by the 1D Freezing Tile Automata model with the added 

benefits of the complete automation of stages and completion in a single bin while maintaining bin 

parallelism and a competitive number of states for lines, patterned lines, and context-free grammars.

See Appendix B for full paper.

79



CHAPTER IV

COVERT COMPUTATION IN THE ABSTRACT TILE-ASSEMBLY MODEL

My Contributions In this paper, my primary contribution to the results was in the "Ex-

ponential Assembly Covert Computer in 2D" section where I worked out the details of how to 

properly propagate the result and stop the construction from growing infinitely. I was given an 

initial construction for this section that was incomplete and then made figures 9, 10, and 11 from it. 

I also wrote the Theorem 2 proof and large portions of this section.

Additionally, I wrote much of the introduction and motivation section. I recolored and edited 

all of the 2D figures for figures 1-6 and I created figures 7 and 8.

I presented the paper at SAND 2023 in Pisa, Italy.

Abstract. There have been many advances in molecular computation that offer benefits 

such as targeted drug delivery, nanoscale mapping, and improved classification o f nanoscale 

organisms. This power led to recent work exploring privacy in the computation, specifically, covert 

computation in self-assembling circuits. Here, we prove several important results related to the 

concept of a hidden computation in the most well-known model of self-assembly, the Abstract 

Tile-Assembly Model (aTAM). We show that in 2D, surprisingly, the model is capable of covert 

computation, but only with an exponential-sized assembly. We also show that the model is capable 

of covert computation with polynomial-sized assemblies with only one step in the third dimension 

(just-barely 3D). Finally, we investigate types of functions that can be covertly computed as members 

of P/Poly.

See Appendix C for the full paper.

80



CHAPTER V

CHEMICAL REACTION NETWORKS

5.1 Reachability in Restricted Chemical Reaction Networks

My Contributions In this paper, I wrote the overview of section 5 Void and Autogenesis 

Rules as well as the (3, 0) void rules / (0, 3) autogenesis rules are NP-Complete. I also created the 

first figure of the paper and designed the example.

Additionally, I assisted in editing the paper.

Abstract In this work, we fully characterize monotone reachability problems based on 

various restrictions such as the allowed rule size, the number of rules that may create a species 

(k-source), the number of rules that may consume a species (k-consuming), the volume, and whether 

the rules have an acyclic production order (feed-forward). We show PSPACE-completeness of 

reachability with only bimolecular reactions in two-source and two-consuming rules. This proves 

hardness of reachability in a restricted form of Population Protocols. This is accomplished using 

new techniques within the motion planning framework.

We give several important results for feed-forward CRNs, where rules are single-source or 

single-consuming. We show that reachability is solvable in polynomial time as long as the system 

does not contain special void or autogenesis rules. We then fully characterize all systems of this 

type and show that with void/autogenesis rules, or more than one source and one consuming, the 

problems become NP-complete. Finally, we show several interesting special cases of CRNs based 

on these restrictions or slight relaxations and note future significant open questions related to this 

taxonomy.

81



See Appendix D for full paper.

5.2 Computing Threshold Circuits with Void Reactions in Step Chemical Reaction Networks

My Contributions. In this paper I did the previous work research. Reading and evaluating 

two dozen publications as well as writing the introduction and general editing. In addition, I worked 

on the development of several of the results and fine-tuning, including fanout and AND gates in 

(3,0).

While unsuccessful, I also attempted fanout and assisted in the later fanout constructions in 

(2,0) and (3,0).

Abstract We introduce a new model of step Chemical Reaction Networks (step CRNs), 

motivated by the step-wise addition of materials in standard lab procedures. Step CRNs have 

ordered reactants that transform into products via reaction rules over a series of steps. We study 

an important subset of weak reaction rules, void rules, in which chemical species may only be 

deleted but never changed. We demonstrate the capabilities of these simple limited systems to 

simulate threshold circuits and compute functions using various configurations of rule sizes and 

step constructions, and prove that without steps, void rules are incapable of these computations, 

which further motivates the step model. Additionally, we prove the coNP-completeness of verifying 

if a given step CRN computes a function, holding even for O(1) step systems.

See Appendix E for full paper.

82



CHAPTER VI

SURFACE CHEMICAL REACTION NETWORKS

For both of these papers I attended the associated meetings and participated in discussion.

6.1 Complexity of Reconfiguration in Surface Chemical Reaction Networks

In this paper I made the example figures for the example as well as created the figures for 

the burnout section, working out many of the details. I made figures 1, 2, 7, 8, 9, and 10. In addition, 

I edited the paper.

Abstract We analyze the computational complexity of basic reconfiguration problems 

for the recently introduced surface Chemical Reaction Networks (sCRNs), where ordered pairs of 

adjacent species nondeterministically transform into a different ordered pair of species according to 

a predefined set of allowed transition rules (chemical reactions). In particular, two questions that 

are fundamental to the simulation of sCRNs are whether a given configuration of molecules can 

ever transform into another given configuration, and whether a given cell can ever contain a given 

species, given a set of transition rules. We show that these problems can be solved in polynomial 

time, are NP-complete, or are PSPACE-complete in a variety of different settings, including when 

adjacent species just swap instead of arbitrary transformation (swap sCRNs), and when cells can 

change species a limited number of times (k-burnout). Most problems turn out to be at least NP-hard 

except with very few distinct species (2 or 3).

83



6.2 Reconfiguration of Linear Surface Chemical Reaction Networks 

with Bounded State Change

In this paper I edited, had discussions with Ryan over naming and refining his algorithm 

and I created all 3 figures in the paper.

Abstract We present results on the complexity of reconfiguration of surface Chemical 

Reaction Networks (sCRNs) in a model where surface vertices can change state a bounded number

of times based on a given burnout parameter k. We primarily focus on linear 1×n surfaces. Without 

a burnout bound, or even with an exponentially high bound on burnout, reconfiguration on linear

surfaces is known to be PSPACE-complete. In contrast, we show that the problem becomes 

NP-complete when the burnout k is polynomially bounded in n. For smaller k = O(1), we show 

the problem is polynomial-time solvable, and in the special case of k = 1 burnout, reconfiguration 

can

be solved in linear O(n + |R|) time, where |R| denotes the number of system rules. We additionally 

explore some extensions of this problem to more general graphs, including a fixed-parameter

tractable algorithm in the height m of an m× n rectangle in 1-burnout, a polynomial-time solution 

for 1-burnout in general graphs if reactions are non-catalytic, and an NP-complete result for

1-burnout in general graphs.

84



APPENDIX A

85



APPENDIX A

BUILDING SQUARES WITH OPTIMAL STATE COMPLEXITY IN RESTRICTED 

ACTIVE SELF-ASSEMBLY

86



Building Squares with Optimal State Complexity in1

Restricted Active Self-Assembly2

Robert M. Alaniz !3

Department of Computer Science, University of Texas Rio Grande Valley4

David Caballero !5

Department of Computer Science, University of Texas Rio Grande Valley6

Sonya C. Cirlos !7

Department of Computer Science, University of Texas Rio Grande Valley8

Timothy Gomez !9

Department of Computer Science, University of Texas Rio Grande Valley10

Elise Grizzell !11

Department of Computer Science, University of Texas Rio Grande Valley12

Andrew Rodriguez !13

Department of Computer Science, University of Texas Rio Grande Valley14

Robert Schweller !15

Department of Computer Science, University of Texas Rio Grande Valley16

Armando Tenorio !17

Department of Computer Science, University of Texas Rio Grande Valley18

Tim Wylie !19

Department of Computer Science, University of Texas Rio Grande Valley20

Abstract21

Tile Automata is a recently defined model of self-assembly that borrows many concepts from cellular22

automata to create active self-assembling systems where changes may be occurring within an assembly23

without requiring attachment. This model has been shown to be powerful, but many fundamental24

questions have yet to be explored. Here, we study the state complexity of assembling n× n squares25

in seeded Tile Automata systems where growth starts from a seed and tiles may attach one at a26

time, similar to the abstract Tile Assembly Model. We provide optimal bounds for three classes of27

seeded Tile Automata systems (all without detachment), which vary in the amount of complexity28

allowed in the transition rules. We show that, in general, seeded Tile Automata systems require29

Θ(log 1
4 n) states. For Single-Transition systems, where only one state may change in a transition30

rule, we show a bound of Θ(log 1
3 n), and for deterministic systems, where each pair of states may31

only have one associated transition rule, a bound of Θ(( log n
log log n

) 1
2 ).32

2012 ACM Subject Classification Theory of computation → Self-organization; Theory of computa-33

tion → Computational geometry; Applied computing → Computational biology34

Keywords and phrases Active Self-Assembly, State Complexity, Tile Automata35

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2336

Funding This research was supported in part by National Science Foundation Grant CCF-1817602.37

Acknowledgements We would like to thank the reviewers for their comments, specifically for pointing38

us toward relevant Cellular Automata Literature.39

© Robert M. Alaniz, David Caballero, Sonya C. Cirlos, Timothy Gomez, Elise Grizzell, Andrew
Rodriguez, Robert Schweller, Armando Tenorio, Tim Wylie;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

87



23:2 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

1 Introduction40

Self-assembly is the process by which simple elements in a system organize themselves into41

more complex structures based on a set of rules that govern their interactions. These types42

of systems occur naturally and can be easily constructed artificially to offer many advantages43

when building micro or nanoscale objects. One abstraction of these systems that has yielded44

interesting results is Tile Self-Assembly.45

In the abstract Tile Assembly Model (aTAM) [35], the elements of a system are represented46

using labeled unit squares called tiles. A system is initialized with a seed (a tile or assembly)47

that grows as other single tiles attach until there are no more valid attachments. The behavior48

of a system can then be programmed, using the interactions of tiles, and is known to be49

capable of Turing Computation [35], is Intrinsically Universal [14], and can assemble general50

scaled shapes [33]. However, many of these results utilize a concept called cooperative binding,51

where a tile must attach to an assembly using the interaction from two other tiles. Unlike52

with cooperative binding, the non-cooperative aTAM is not Intrinsically Universal [25,27]53

and more recent work has shown that it is not capable of Turing Computation [26]. Many54

extensions of this model increase the power of non-cooperative systems [4, 16,18,22,23,30].55

One recent model of self-assembly is Tile Automata [8]. This model marries the concept56

of state changes from Cellular Automata [19, 28, 37] and the assembly process from the57

2-Handed Assembly model (2HAM) [6]. Previous work [3,7,8] has explored Tile Automata58

as a unifying model for comparing the relative powers of the many different Tile Assembly59

models. The complexity of verifying the behavior of systems along with their computational60

power was studied in [5]. Many of these works impose additional experimentally motivated61

limitations on the Tile Automata model that help connect the model and its capabilities to62

potential molecular implementations, such as using DNA assemblies with sensors to assemble63

larger structures [21], building spacial localized circuits on DNA origami [10], or DNA walkers64

that sort cargo [34].65

In this paper, we explore the aTAM generalized with state changes; we define our66

producible assemblies as what can be grown by attaching tiles one at a time to a seed67

tile or performing transition rules, which we refer to as seeded Tile Automata. This is a68

bounded version of Asynchronous Cellular Automata [15]. Reachability problems, which are69

similar to verification problems in self-assembly, have been studied with many completeness70

results [13]. Further, the freezing property used in this and previous work also exists in71

Cellular Automata [20,29].1 Freezing is defined differently in Cellular Automata by requiring72

that there exists an ordering to the states.73

While Tile Automata has many possible metrics, we focus on the number of states needed74

to uniquely assemble n× n squares at the smallest constant temperature, τ = 1. We achieve75

optimal bounds in three versions of the model with varying restrictions on the transition76

rules. Our results, along with previous results in the aTAM, are outlined in Table 1.77

1.1 Previous Work78

In the aTAM, the number of tile types needed, for nearly all n, to construct an n× n square79

is Θ( logn
logn logn ) [1, 31] with temperature τ = 2 (row 2 of Table 1). The same lower bounds80

hold for τ = 1 (row 1 of Table 1). The run time of this system was also shown to be optimal81

Θ(n) [1]. Other bounds for building rectangles were shown in [2]. While no tighter bounds282

1 We would like to thank a reviewer for bringing these works to our attention.
2 Other than trivial O(n) bounds.

88



R. M. Alaniz et al 23:3

Model τ
n× n Squares

Lower Upper Theorem
aTAM 1 Ω( log n

log log n
) O(n) [31], [1]

aTAM 2 Θ( log n
log log n

) [31], [1]

Flexible Glue aTAM 2 Θ(log 1
2 n) [2]

Seeded TA Det. 1 Θ(( log n
log log n

) 1
2 ) Thm. 2, 12

Seeded TA ST 1 Θ(log 1
3 n) Thm. 4, 12

Seeded TA 1 Θ(log 1
4 n) Thm. 3, 12

Table 1 Bounds on the number of states for n× n squares in the Abstract Tile Assembly model,
with and without cooperative binding, and the seeded Tile Automata model with our transition
rules. ST stands for Single-Transition.

have been shown for n × n squares at τ = 1 in the aTAM, generalizations to the model83

that allow (just-barely) 3D growth have shown an upper bound of O(logn) for tile types84

needed [11]. Recent work in [17] shows improved upper and lower bounds on building thin85

rectangles in the case of τ = 1 and in (just-barely) 3D.86

Other models of self-assembly have also been shown to have a smaller tile complexity,87

such as the staged assembly model [9, 12] and temperature programming [24]. Investigation88

into different active self-assembly models have also explored the run time of systems [32,36].89

1.2 Our Contributions90

In this work, we explore building an important benchmark shape, squares, in non-cooperative91

seeded Tile Automata. We also consider only affinity-strengthening transition rules that92

remove the ability for an assembly to break apart. Our results are shown in Table 1.93

We start in Section 3 by proving lower bounds for building n× n squares based on three94

different transition rule restrictions. The first is nondeterministic or general seeded Tile95

Automata, where there are no restrictions and a pair of states may have multiple transition96

rules. The second is Single-Transition rules where only one tile may change states in a97

transition rule, but we still allow multiple rules for each pair of states. The last restriction,98

Deterministic, is the most restrictive where each pair of states may only have one transition99

rule (for each direction).100

In Section 4, we use Transition Rules to optimally encode strings in the various versions101

of the model. We use these encodings as gadgets to seed the future constructions. We show102

how to build optimal state complexity rectangles in Section 5, and finally optimal state103

complexity squares in Section 6. Future work is discussed in Section 7.104

AutoTile. To test our constructions, we developed AutoTile, a seeded Tile Automata105

simulator. Each system discussed in the paper is currently available for simulation. AutoTile106

is available at https://github.com/asarg/AutoTile.107

2 Definitions108

The Tile Automata model differs quite a bit from normal self-assembly models since a tile109

may change state, which draws inspiration from Cellular Automata. Thus, there are two110

aspects of a TA system being: the self-assembling that may occur with tiles in a state and111

the changes to the states once they have attached to each other. To address these aspects,112

we define the building blocks and interactions, and then the definitions around the model113

CVIT 2016
89



23:4 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

and what it may assemble or output. Finally, since we are looking at a limited TA system,114

we also define specific limitations and variations of the model. For reference, an example115

system is shown in Figure 1.116

2.1 Building Blocks117

The basic definitions of all self-assembly models include the concepts of tiles, some method118

of attachment, and the concept of aggregation into larger assemblies. The Cellular Automata119

aspect also brings in the concept of transitions.120

Tiles. Let Σ be a set of states or symbols. A tile t = (σ, p) is a non-rotatable unit square121

placed at point p ∈ Z2 and has a state of σ ∈ Σ.122

Affinity Function. An affinity function Π over a set of states Σ takes an ordered pair of123

states (σ1, σ2) ∈ Σ×Σ and an orientation d ∈ D, where D = {⊥,`}, and outputs an element124

of Z0. The orientation d is the relative position to each other with ` meaning horizontal and125

⊥ meaning vertical, with the σ1 being the west or north state respectively. We refer to the126

output as the Affinity Strength between these two states.127

Transition Rules. A Transition Rule consists of two ordered pairs of states (σ1, σ2), (σ3, σ4)128

and an orientation d ∈ D, where D = {⊥,`}. This denotes that if the states (σ1, σ2) are129

next to each other in orientation d (σ1 as the west/north state) they may be replaced by the130

states (σ3, σ4).131

Assembly. An assembly A is a set of tiles with states in Σ such that for every pair of132

tiles t1 = (σ1, p1), t2 = (σ2, p2), p1 6= p2. Informally, each position contains at most one tile.133

Further, we say assemblies are equal in regards to translation. Two assemblies A1 and A2134

are equal if there exists a vector ~v such that A1 = A2 + ~v.135

Let BG(A) be the bond graph formed by taking a node for each tile in A and adding136

an edge between neighboring tiles t1 = (σ1, p1) and t2 = (σ2, p2) with a weight equal to137

Π(σ1, σ2). We say an assembly A is τ -stable for some τ ∈ Z0 if the minimum cut through138

BG(A) is greater than or equal to τ .139

2.2 The Tile Automata Model140

Here, we define and investigate the Seeded Tile Automata model, which differs by only141

allowing single tile attachments to a growing seed similar to the aTAM.142

Seeded Tile Automata. A Seeded Tile Automata system is a 6-tuple Γ = {Σ,Λ,Π,∆, s, τ}143

where Σ is a set of states, Λ ⊆ Σ a set of initial states, Π is an affinity function, ∆ is a set of144

transition rules, s is a stable assembly called the seed assembly, and τ is the temperature (or145

threshold). Our results use the most restrictive version of this model where s is a single tile.146

Attachment Step. A tile t = (σ, p) may attach to an assembly A at temperature τ to147

build an assembly A′ = A
⋃
t if A′ is τ -stable and σ ∈ Λ. We denote this as A→Λ,τ A

′.148

Transition Step. An assembly A is transitionable to an assembly A′ if there exists149

two neighboring tiles t1 = (σ1, p1), t2 = (σ2, p2) ∈ A (where t1 is the west or north tile)150

such that there exists a transition rule in ∆ with the first pair being (σ1, σ2) and A′ =151

(A \ {t1, t2})
⋃{t3 = (σ3, p1), t4 = (σ4, p2)}. We denote this as A→∆ A′.152

Producibles. We refer to both attachment steps and transition steps as production153

steps, we define A →∗ A′ as the transitive closure of A →Λ,τ A
′ and A →∆ A′. The set154

of producible assemblies for a Tile Automata system Γ = {Σ,Λ,Π,∆, s, τ} is written as155

PROD(Γ). We define PROD(Γ) recursively as follows,156

s ∈ PROD(Γ)157

A′ ∈ PROD(Γ) if ∃A ∈ PROD(Γ) such that A→Λ,τ A
′.158

90



R. M. Alaniz et al 23:5

S X1 X2

Y1 Y2 0

X1'

SX1 X2 Y1

Y2 0S Y1
X1

X1 X2

Y1 Y2

0

X1Y1

Y2 0 X1'

0

Y2

Y1

States Transitions

Affinity Initial States

0

X1Y1 0S S

(a)

S X2

Y1

Y2

S X1

Y1

Y2

S X1 X2

Y1

Y2
0X1 X2

S X1 X2

Y1

Y2
0X1 X2

0
X1'

S X1 X2

Y1

Y2
0X1 X2

X20

0

(b)

Figure 1 (a) Example of a Tile Automata system, it should be noted that τ = 1 and state S
is our seed. (b) A walkthrough of our example Tile Automata system building the 3× 3 square it
uniquely produces. We use dotted lines throughout our paper to represent tiles attaching to one
another.

A′ ∈ PROD(Γ) if ∃A ∈ PROD(Γ) such that A→∆ A′.159

Terminal Assemblies. The set of terminal assemblies for a Tile Automata system160

Γ = {Σ,Λ,Π,∆, τ} is written as TERM(Γ). This is the set of assemblies that cannot grow161

or transition any further. Formally, an assembly A ∈ TERM(Γ) if A ∈ PROD(Γ) and there162

does not exists any assembly A′ ∈ PROD(Γ) such that A →Λ,τ A
′ or A →∆ A′. A Tile163

Automata system Γ = {Σ,Λ,Π,∆, s, τ} uniquely assembles an assembly A if A ∈ TERM(Γ),164

and for all A′ ∈ PROD(Γ), A′ →∗ A.165

2.3 Limited Model Reference166

We explore an extremely limited version of seeded TA that is affinity-strengthening, freez-167

ing, and may be a single-transition system. We investigate both deterministic and non-168

deterministic versions of this model.169

Affinity Strengthening. We only consider transitions rules that are affinity strengthen-170

ing, meaning for each transition rule ((σ1, σ2), (σ3, σ4), d), the bond between (σ3, σ4) must171

be at least the strength of (σ1, σ2). Formally, Π(σ3, σ4, d) ≥ Π(σ1, σ2, d). This ensures that172

transitions may not induce cuts in the bond graph.173

In the case of non-cooperative systems (τ = 1), the affinity strength between states is174

always 1 so we may refer to the affinity function as an affinity set Λs, where each affinity is a175

3-pule (σ1, σ2, d).176

Freezing. Freezing systems were introduced with Tile Automata. A freezing system177

simply means that a tile may transition to any state only once. Thus, if a tile is in state A178

and transitions to another state, it is not allowed to ever transition back to A.179

Deterministic vs. Nondeterministic. For clarification, a deterministic system in TA180

has only one possible production step at a time, whether that be an attachment or a state181

transition. A nondeterministic system may have many possible production steps and any182

choice may be taken.183

Single-Transition System. We restrict our TA system to only use single-transition184

rules. This means that for each transition rule one of the states may change, but not both.185

It should be noted that we still allow Nondeterminism in this system.186

3 State Space Lower Bounds187

Let p(n) be a function from the positive integers to the set {0, 1}, informally termed a188

proposition, where 0 denotes the proposition being false and 1 denotes the proposition being189

true. We say a proposition p(n) holds for almost all n if limn→∞ 1
n

∑n
i=1 p(i) = 1.190

CVIT 2016
91



23:6 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

I Lemma 1. Let U be a set of TA systems, b be a one-to-one function mapping each element191

of U to a string of bits, and ε a real number from 0 < ε < 1. Then for almost all integers n,192

any TA system Γ ∈ U that uniquely assembles either an n× n square or a 1× n line has a193

bit-string of length |b(Γ)| ≥ (1− ε) logn.194

Proof. For a given i ≥ 1, let Mi ∈ U denote the TA system in U with the minimum195

value |b(Mi)| over all systems in U that uniquely assembly an i × i square or 1 × i line,196

and let Mi be undefined if no such system in U builds such a shape. Let p(i) be the197

proposition that |b(Mi)| ≥ (1 − ε) log i. We show that limn→∞ 1
n

∑n
i=1 p(i) = 1. Let198

Rn = {Mi|1 ≤ i ≤ n, |b(Mi)| < (1 − ε) logn}. Note that n − |Rn| ≤
∑n
i=1 p(i). By the199

pigeon-hole principle, |Rn| ≤ 2(1−ε) logn = n(1−ε). Therefore,200

lim
n→∞

1
n

n∑

i=1
p(i) ≥ lim

n→∞
1
n

(n− |Rn|) ≥ lim
n→∞

1
n

(n− n1−ε) = 1.

J201

I Theorem 2 (Deterministic TA). For almost all n, any Deterministic Tile Automata system202

that uniquely assembles either a 1× n line or an n× n square contains Ω( logn
log logn ) 1

2 states.203

Proof. We can create a one-to-one mapping b(Γ) from any deterministic TA system to204

bit-strings in the following way. Let S denote the set of states in a given system. We encode205

the state set in O(log |S|) bits, we encode the affinity function in a |S|× |S| table of strengths206

in O(|S|2) bits (assuming a constant bound on bonding thresholds), and we encode the rules207

of the system in an |S| × |S| table mapping pairs of rules to their unique new pair of rules208

using O(|S|2 log |S|) bits, for a total of O(|S|2 log |S|) bits to encode any |S| state system.209

Let Γn denote the smallest state system that uniquely assembles an n × n square (or210

similarly a 1×n line), and let Sn denote the state set. By Lemma 1, |b(Γn)| ≥ (1−ε) logn for211

almost all n, and so |Sn|2 log |Sn| = Ω(logn) for almost all n. We know that |Sn| = O(logn),212

so for some constant c, |Sn| ≥ c( logn
log logn ) 1

2 for almost all n. J213

I Theorem 3 (Nondeterministic TA). For almost all n, any Tile Automata system (in214

particular any Nondeterministic system) that uniquely assembles either a 1× n line or an215

n× n square contains Ω(log
1
4 n) states.216

I Theorem 4 (Single-Transition TA). For almost all n, any Single-Transition Tile Automata217

system that uniquely assembles either a 1 × n line or an n × n square contains Ω(log
1
3 n)218

states.219

4 String Unpacking220

A key tool in our constructions is the ability to build strings efficiently. We do so by encoding221

the string in the transition rules.222

I Definition 5 (String Representation). An assembly A over states Σ represent a string S223

over a set of symbols U if there exists a mapping from the elements of U to the elements of Σ224

and a 1× |S| (or |S| × 1) subassembly A′ @ A, such that the state of the ith tile of A′ maps225

to the ith symbol of S for all 0 ≤ i ≤ |S|.226

4.1 Deterministic Transitions227

We start by showing how to encode a binary string of length n in a set of (freezing) transition228

rules that take place on a 2× (n+ 2) rectangle that will print the string on its right side.229

We extend this construction to work for an arbitrary base string.230

92



R. M. Alaniz et al 23:7

a'

a

0B 1B 2B

2'B 2''B

2'A

2A1A

1'A0'A

0A

B StatesA States

SA

SB a'

a0B

1B

2B

Seed

Initial Tiles

NB

NA

SB 1i0iSA

Seed Row

NBNA

Cap Row Symbol States

Figure 2 States to build a length-9 string in deterministic Tile Automata.

4.1.1 Overview231

Consider a system that builds a length n string. First, we create a rectangle of index states232

that is two wide as seen on the left side of Figure 5c. Each row has a unique pair of index233

states so each bit of the string is uniquely indexed. We divide the index states into two234

groups based on which column they are in, and which “digit” they represent. Let r = dn 1
2 e.235

Starting with index states A0 and B0, we build a counter pattern with base r. We use236

O(n 1
2 ) states shown in Figure 2 to build this pattern. We encode each bit of the string in237

a transition rule between the two states that index that bit. A table with these transition238

rules can be seen in Figure 5b.239

The pattern is built in r sections of size 2 × r with the first section growing off of the240

seed. The tile in state SA is the seed. There is also a state SB that has affinity for the right241

side of SA. The building process is defined in the following steps for each section.242

1. The states SB , 0B , 1B , . . . , (r−1B) grow off of SB , forming the right column of the section.243

The last B state allows for a′ to attach on its west side. a tiles attach below a′ and below244

itself. This places a states in a row south toward the state SA, depicted in Figure 3b.245

2. Once a section is built, the states begin to follow their transition rules shown in Figure 4a.246

The a state transitions with seed state SA to begin indexing the A column by changing247

state a to state 0A. For 1 ≤ y ≤ n− 2, state a vertically transitions with the other y′A248

states, incrementing the index by changing from state a to state (y + 1)A.249

3. This new index state zA propagates up by transitioning the a tiles to the state zA as well.250

Once the zA state reaches a′ at the top of the column, it transitions a′ to the state z′A.251

Figure 4b presents this process of indexing the A column.252

4. If z < n − 1, there is a horizontal transition rule from states (z′A, n − 1B) to states253

(z′A, n− 1′B). The state 0B attaches to the north of n− 1B and starts the next section. If254

z = n, there does not exist a transition.255

5. This creates an assembly with a unique state pair in each row as seen in the first column256

of Figure 5c.257

4.1.2 States258

An example system with the states required to print a length-9 string are shown in Figure 2.259

The first states build the seed row of the assembly. The seed tile has the state SA with initial260

tiles in state SB . The index states are divided into two groups. The first set of index states,261

which we call the A index states, are used to build the left column. For each i, 0 ≤ i < r, we262

have the states iA and i′A. There are two states a and a′, which exist as initial tiles and act263

as “blank” states that can transition to the other A states. The second set of index states264

are the B states. Again, we have r B states numbered from 0 to r − 1, however, we do not265

have a prime for each state. Instead, there are two states r − 1′B and r − 1′′B , that are used266

to control the growth of the next column and the printing of the strings. The last states are267

the symbol states 0S and 1S , the states that represent the string.268

CVIT 2016
93



23:8 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

SA SB SB a2Ba'

a'

a

a0B

0B

1B

1B

2B

2'B

0B

(a) Affinity Rules for Initial Tiles

SA SB

0B

1B

2B

2B

a'

0B

1B

SA SB SA SB

0B

2B

a

a SA SB

0Ba

1B

2B

a

a'

1B

(b) Process of Building a section

Figure 3 (a) Affinity rules to build each section. We only show affinity rules that are actually
used in our system for initial tiles to attach, while our system would have more rules in order to
meet the affinity strengthening restriction. (b) The B column attaches above the state SB as shown
by the dotted lines. The a′ attaches to the left of 2B and the other a states may attach below it
until they reach SA.

a

0ASA

a

SA

0A

0A
2B0'A

0A

0A a'

0A

0'A
2'B0'A

(a) Transition Rules to Index the first section

SA SB

0Ba

1B

2B

a

a'

SA SB

0B0A

1B

2B

a

a'

SA SB

0B0A

1B

2B

0A

a'

SA SB

0B0A

1B

2B

0A

0'A

SA SB

0B0A

1B

2'B

0A

0'A

0B

(b) Process of Indexing A column

Figure 4 (a) The first transition rule used is takes place between the seed SA and the a state
changing to 0A. The state 0A changes the states north of it to 0A or 0′

A. Finally, the state 0′
A

transitions with 2B (b) Once the a states reach the seed row they transition with the state SA to go
to 0A. This state propagates upward to the top of the section.

4.1.3 Affinity Rules/Placing Section269

Here, we describe the affinity rules for building the first section. We later describe how this is270

generalized to the other r− 1 sections. We walk through this process in Figure 3b. To begin,271

the B states attach in sequence above the tile SB in the seed row. Assuming r2 = n, n is a272

perfect square, the first state to attach is 0B . 1B attaches above this tile and so on. The last273

B state r − 1B does not have affinity with 0B, so the column stops growing. However, the274

state a′ has affinity on the left of r − 1B and can attach. a has affinity for the south side of275

a′, so it attaches below. The a state also has a vertical affinity with itself. This grows the A276

column southward toward the seed row.277

If n is not a perfect square, we start the index state pattern at a different value. We do278

so by finding the value q = r2 − n. In general, the state iB attaches above SB for i = q%r.279

4.1.4 Transition Rules/Indexing A column280

Once the A column is complete and the last A state is placed above the seed, it transitions281

with SA to 0A (assuming r2 = n). A has a vertical transition rule with iA (0 ≤ i < r)282

changing the state A to state iA. This can be seen in Figure 4a, where the 0A state is283

propagated upward to the A′ state. The A′ state also transitions when 0A is below it, going284

from state A′ to state 0′A. If n is not a perfect square, then A transitions to iA for i = bq/rc.285

Once the transition rules have finished indexing the A column if i < r − 1, the last state286

i′A transitions with r − 1B changing the state r − 1B to r − 1′B. This transition can be287

seen in Figure 4b. The new state r − 1′B has an affinity rule allowing 0B to attach above it288

allowing the next section to be built. When the state A is above a state j′A, 0 ≤ j < r− 1, it289

transitions with that state changing from state A to j + 1A, which increments the A index.290

94



R. M. Alaniz et al 23:9

2B

0B

1B

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

a'

a

a

2B

0B

1B

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2B

0B

1B

a'

a

a

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

NA

2B

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A

NBNA
2''B

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A

NBNA

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A 2B

NBNA
2B

0B

1B

2A

2A

2'B

0B

1B

SA SB

0B0A

1B

2'B

0A

0'A

1A

1A

1'A

2'A

(a) Attaching Cap Row

A B S

2 2 0
2 1 1
2 0 1
1 2 1
1 1 0
1 0 1
0 2 1
0 1 0
0 0 0

(b) Encoding of S

S1S2 S1FS2F

0B0A

1B0A

0'A

0B1A

1B1A

1'A

0B2A

1B2A

2'A 2''B

2''B

2''B

2'A

2A

2A

1'A

1A

1A

0'A

0A

0A

1S

0S

0S

0S

0S

1S

1S

1S

1S

(c) Transition Rules

Figure 5 (a) Once the last section finishes building the state NA attaches above 2′
A. NB then

attaches to the assembly and transitions with 2B changing it directly to 2′′
B so the string may begin

printing. (b) A table indexing the string S = 011101100 using two columns and base |S| 12 . (c)
Transition Rules to print S. We build an assembly where each row has a unique pair of index states
in ascending order.

4.1.5 Look up291

After creating a 2× (n+ 2) rectangle, we can encode a length n string S into the transitions292

rules. Note that each row of our assembly consists of a unique pair of index states, which we293

call a bit gadget. Each bit gadget will look up a specific bit of our string and transition the294

B tile to a state representing the value of that bit.295

Figure 5b shows how to encode a string S in a table with two columns using r digits to296

index each bit. From this encoding, we create our transition rules. Consider the kth bit of S297

(where the 0th bit is the least significant bit) for k = ir+ j. Add transition rules between the298

states iA and jB, changing the state jB to either 0S or 1S based on the kth bit of S. This299

transition rule is slightly different for the northmost row of each section as the state in the300

A column is i′A. Also, we do not want the state in the B column, r − 1B, to prematurely301

transition to a symbol state. Thus, we have the two states r− 1′B and r− 1′′B . As mentioned,302

once the A column finishes indexing, it changes the state r − 1B to state r − 1′B, allowing303

for 0B to attach above it, which starts the next column. Once the state 0B (or a symbol304

state) is above r − 1′B , there are no longer any possible undesired attachments, so the state305

transitions to r − 1′′B , which has the transition to the symbol state.306

The last section has a slightly different process as r− 1B state will never have a 0B attach307

above it, so we have a different transition rule. This alternate process is shown in Figure308

5a. The state r − 1′A has a vertical affinity with the cap state NA. This state allows NB to309

attach on its right side. This state transitions with r − 1B below it, changing it directly to310

r − 1′′B , allowing the symbol state to print.311

I Theorem 6. For any binary string s with length n > 0, there exists a freezing tile automata312

system Γs with deterministic transition rules, that uniquely assembles an 2× (n+ 2) assembly313

AS that represents S with O(n 1
2 ) states.314

4.1.6 Arbitrary Base315

In order to optimally build rectangles, we first print arbitrary base strings. Here, we show316

how to generalize Theorem 6 to print base-b strings.317

CVIT 2016
95



23:10 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

0C0A

0Cu0Au

0Bu

1C0 2C0

1C1 2C1

0C0

0C1

xB

0B

1C 2C

2B1B

1Cu 2Cu

2Bu1Bu

1A

1Au

2A

2Au

Index States

2'Cu

1''Bu0'Bu

0''Bu1'Bu

2'Bu

2'Au

1'Au

0'Au

Look Up States

Symbol States

SBSA SC

Seed Row

B

A

A'

B' 2''Bu

1S 0S

(a) States space for when |S| = 27

2C

2CuB'

B

1C

1Cu

0B

0Bu

2C

2CuB'

1C

1Cu

0B

0Bu

0B 2C

2Cu

1C

1Cu

0B

0Bu

0B

0'Bu

2C

1C

1Cu

0B

0Bu

0B

0'Bu 2'Cu

0C

2C

2Cu

1C

1Cu

B'

B

B

B

(b) Indexing B column

2Cu

2C

1C

1Cu

2B

2Bu

2B

2'BuA'

A

A

A

2C

1C

1Cu

2B

2Bu

2B

2'BuA'

A

0A

0Au

2C

1C

1Cu

2B

2Bu

2B

2'BuA'

0A

0Au

0A 2C

1C

1Cu

2B

2Bu

2B

2'Bu

0A

0Au

0A

0'Au

2C

1C

1Cu

2'Cu

2B

2Bu

2B

0A

0Au

0A

0'An2''Bu

2C

1C

1Cu

2B

2Bu

2B

0A

0Au

0A

0'Au2Cu 2Cu 2Cu 2Cu

0C

2''Bu

(c) Indexing the A column

Figure 6 (a) States needed to construct a length 27 string where r = 3. (b) The index 0
propagates upward by transitioning the tiles in the column to 0B and 0Bu and transitions a′ to 0′

Bu.
The state 0′

Bu transitions with the state 2Cu, changing the state 2Cu to 2′
Cu, which has affinity with

0C to build the next section. These rules also exist for the index 1. (c) When the index state 2B

reaches the top of the section, it transitions b′ to 2′
Bu. This state does not transition with the C

column and instead has affinity with the state a′, which builds the A column downward. The index
propagates up the A column in the same way as the B column. When the index state 0A reaches
the top of the section, it transitions the state 2′

B to 2′′
B . This state transitions with 2Cu changing it

to 2′
Cu allowing the column to grow.

I Corollary 7. For any base-b string S with length n > 0, there exists a freezing tile automata318

system Γ with deterministic transition rules, that uniquely assembles an (n+ 2)× 2 assembly319

which represents S with O(n 1
2 + b) states.320

4.2 Nondeterministic Single-Transition Systems321

For the case of Single-Transition systems, we use the same method from above but instead322

building bit gadgets that are of size 3× 2. Expanding to 3 columns allows for a third index323

digit to be used giving us an upper bound of O(n 1
3 ). The second row will be used for error324

checking which we will describe later in the section. This system utilizes Nondeterministic325

transitions, (two states may have multiple rules with the same orientation) and is non-freezing326

(a tile may repeat states). This system also contains cycles in its production graph, this327

implies the system may run indefinitely. We conjecture this system has a polynomial run328

time. Here, let r = dn 1
3 e.329

4.2.1 Index States and Look Up States330

We generalize the method from above to start from a C column. The B column now behaves331

as the second index of the pattern and is built using B′ and B as the A column was in the332

previous system. Once the B reaches the seed row, it is indexed with its starting value. This333

construction also requires bit gadgets of height 2, so we will use index states iA, iB , iC and334

north index states iAu, iBu, iCu for 0 ≤ i < r. This allows us to separate the two functions335

of the bit gadget into each row. The north row has transition rules to control the building of336

each section. The bottom row has transition rules that encode the represented bit.337

In addition to the index states, we use 2r look up states, 0Ci and 1Ci for 0 ≤ i < r.338

These states are used as intermediate states during the look up. The first number (0 or 1)339

represents the value of the retrieved bit, while the second number represents the C index340

of the bit. The A and B indices of the bit will be represented by the other states in the341

transition rule.342

In the same way as the previous construction, we build the rightmost column first. We343

96



R. M. Alaniz et al 23:11

include the C index states as initial states and allow 0C to attach above SC . We include344

affinity rules to build the column northwards as follows starting with the southmost state345

0C , 0Cu, 1C , 1Cu, . . . , r − 2Cu, r − 1C , r − 1Cu .346

To build the other columns, the state b′ can attach on the left of r − 1Cu. The state b347

is an initial state and attaches below b′ and itself to grow downward toward the seed row.348

The state b transitions with the seed row as in the previous construction to start the column.349

However, we alternate between C states and Cu states. The state b above iC transitions b350

to iCu. If b is above iCu it transitions to iC . The state b′ above state iB transitions to i′Bu.351

If i < r − 1, the state i′B and r − 1Cu transition horizontally changing r − 1′Cu, which allows352

0C to attach above it to repeat the process. This is shown in Figure 6b.353

The state a′ attaches on the left of r − 1Cu. The A column is indexed just like the B354

column. For 0 ≤ i < r − 1, the state i′Au and r − 1′Bu change the state r − 1′Bu to r − 1′′Bu.355

This state transitions with r − 1Cu, changing it to r − 1′Cu. See Figure 6c.356

4.2.2 Bit Gadget Look Up357

The bottom row of each bit gadget has a unique sequence of states, again we use these index358

states to represent the bit indexed by the digits of the states. However, since we can only359

transition between two tiles at a time, we must read all three states in multiple steps. These360

steps are outlined in Figure 7a. The first transition takes place between the states iA and361

jB. We refer to these transition rules as look up rules. We have r look up rules between362

these states for 0 ≤ k < r of these states that changes the state jB to that state kC0 if the363

bit indexed by i, j, and k is 0 or the state kC1 if the bit is 1.364

Our bit gadget has Nondeterministically looked up each bit indexed by it’s A and B365

states, Now, we must compare the bit we just retrieved to the C index via the state in the C366

column. The states kC0 and kC transition changing the state kC to the 0i state only when367

they represent the same k. The same is true for the state kC1 except Ck transitions to 1i.368

If they both represent different k, then the state kC goes to the state Bx. This is the369

error checking of our system. The Bx states transitions with the north state jBu above it370

transitioning Bx to jB once again. This takes the bit gadget back to it’s starting configuration371

and another look up can occur.372

I Theorem 8. For any binary string S with length n > 0, there exists a Single-Transition373

tile automata system Γ, that uniquely assembles an (2n+ 2)× 3 assembly which represents S374

with O(n 1
3 ) states.375

4.3 General Nondeterministic Transitions376

Using a similar method to the previous sections, we build length n strings using O(n 1
4 ) states.377

We start by building a pattern of index states with bit gadgets of height 2 and width 4.378

4.3.1 Overview379

Here, let r = dn 1
4 e. We build index states in the same way as the Single-Transition system380

but instead starting from the D column. We have 4 sets of index states, A, B, C, D. The381

same methods are used to control when the next section builds by transitioning the state382

r − 1D to r − 1′D when the current section is finished building.383

We use a similar look up method as the previous construction where we Nondeterminist-384

ically retrieve a bit. However, since we are not restricting our rules to be a Single-Transition385

system, we may retrieve 2 indices in a single step. We include 2 sets of O(r) look up386

CVIT 2016
97



23:12 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

(u)

(u)

(u)

(v)

(x)

(w)

1C00A

0Au 0Bu 0Cu 0Cu

0Cu

2C10A

0Au 0Bu

0C

0C00A

0Au 0Bu

0s0A

0Au 0Bu

0B 0C

0Cu

S = 001...

0C 0C

0C0 0C0A

0Cu0Au 0Bu 0Cu

xB0A

0Au 0Bu

(a) ST Bit Gadget look up

0'B

0D

0Bu0Cu

0Cu

0Bu

0Bu

0Cu 0Cu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu

0Au 0Bu0Au 0Bu 0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0Du0Cu

0D

0D

0Du0Cu

1D10A1

0D0C0A 0B

0Du0Cu

0D0C0A 0'B 0D00A00A

0D02A0

0A

0A

0D0PA00A

PA1 1D10A

FB 0D00A

PD0PA00A

FCPA10A

PD0FB0A

PA00A 0S PA00A

FB FC0A

0Du0Cu0Au 0Bu 0Du

0D

0Du

0D

0Du

0D

0Du

0Du0Cu

0D

0Au

0Au

0Au

0Au 0Bu

0Au 0Bu

0Au 0Bu 0Du0Cu

0A

0Au 0Bu 0Du0Cu

0DxC

0A

0Au 0Bu 0Du0Cu

0DxC0'B

(a) (b) (c) (c) (d)

(e)

(d)

(f)

0S 0S

(b) Nondeterminstic Bit Gadget look up

Figure 7 (a.u) For a string S, where the first 3 bits are 001, the states 0A and 0B have |S| 13
transition rules changing the state 0B to a state representing one of the first |S| 13 bits. The state is
iC0 if the ith bit is 0 or iC1 if the ith bit is 1 (a.v) The state 0C0 and the state 0C both represent the
same C index so the 0C state transition to the 0s. (a.w) For all states not matching the index of 0C ,
they transition to xB , which can be seen as a blank B state. (a.x) The state 0Bu transitions with the
state xB changing to 0B resetting the bit gadget. (b.a) Once the state A0 appears in the bit gadget
it transitions with 0B changing 0B to 0′

B . (b.b) The states 0′
B and 0C Nondeterminstically look up

bits with matching B and C indices. The state 0′
B transitions to look up state representing the bit

retrieved and the bit’s A index. The state 0C transitions to a look up state representing the D index
of the retrieved bit. (b.c) The look-up states transition with the states 0A and 0D, respectively. As
with the Single-Transition construction these may pass or fail. (b.d) When both tests pass, they
transition the D look up state to a symbol state that propagates out. (b.e) If a test fails, the states
both go to blank states. (b.f) The blank states then reset using the states to their north.

states, the A look up states and the D look up states. We also include Pass and Fail states387

FB , FC , PA0, PD0, PA1, PD1 along with the blank states Bx and Cx. We utilize the same388

method to build the north and south row.389

Let S(α, β, γ, δ) be the ith bit of S where i = αr3+βr2+γr+δ. The states β′B and γC have390

r2 transitions rules. The process of these transitions is outlined in Figure 7b. They transition391

from (β′B , γC) to either (αA0, δD0) if S(α, β, γ, δ) = 0, or (αA1, δD1) if S(α, β, γ, δ) = 1. After392

both transitions have happened, we test if the indices match to the actual A and D indices.393

We include the transition rules (αA, αA0) to (αA, PA0) and (αA, αA1) to (αA, PA1). We refer394

to this as the bit gadget passing a test. The two states (PA0, PD0) horizontally transition to395

(PA0, 0s). The 0s state then transitions the state δD to 0s as well as propagating the state to396

the right side of the assembly. If the compared indices are not equal, then the test fails and397

the look up states will transition to the fail states FB or FC . These fail states will transition398

with the states above them, resetting the bit gadget as in the previous system.399

I Theorem 9. For any binary string S with length n > 0, there exists a tile automata system400

Γ, that uniquely assembles an (2n+ 2)× 4 assembly which represents S with O(n 1
4 ) states.401

5 Rectangles402

In this section, we will show how to use the previous constructions to build O(logn) × n403

rectangles. All of these constructions rely on using the previous results to encode and print404

a string then adding additional states and rules to build a counter.405

5.1 States406

We choose a string and construct a system that will create that string, using the techniques407

shown in the previous section. We then add states to implement a binary counter that408

will count up from the initial string. The states of the system, seen in Figure 8a, have two409

purposes. The north and south states (N and S) are the bounds of the assembly. The plus,410

98



R. M. Alaniz et al 23:13

0

1c

nc

N

S+

Additional States

2'A

N c

0c

c nc

1 0

nc

+

+SB

S +

Affinity Rules

0c

c1 1 0c

0 c 0 1

nc1 1 1

0 nc 0 0

N nc N N

1

+ S

1

0

+

0

S

Transition Rules

0c

1

0

1

0c 0

00

(a) New states and rules for a binary counter

1

S + S +

0

1

S +

c

S +

0 c

1

S +

0c

S +

0 1

1

1 0c

0

1 0c

1 c

1 0c

0 c

1 0c

1 0c

1 0c

0 1

1 0c

Attachment

Transition

1

1
0

1
0

0

1
0

1
0

1 nc

1
0

1
0

0 nc

1
0

1
0

1 1

1
0

1
0

0 0

1
0

1
0

(b) Every case for the half adder.

Figure 8 (b) The 0/1 tile is not present in the system. It is used in the diagram to show that
either a 0 tile or a 1 tile can take that place.

S

1

1

0

0

1

0

0

0

N

S

1

1

0

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

c

S

1

0

0

1

0

0

0

N

+

1 0c

+S

1

1

0

0

1

0

0

0

N

0c

+S

1

0

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

0c

0c

+S

1

1

0

1

0

0

0

N

0c

0c

0 1

+S

1

1

0

0

1

0

0

0

N

0c

0c

1

nc

+S

1

1

0

1

0

0

0

N

0c

0c

1

0 0

+S

1

1

0

0

1

0

0

0

N

0c

0c

1

0

1

0

0

0

+S

1

1

0

0

1

0

0

0

0c

0c

1

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

0c

0

1

0

0

0

N

+S

1

1

0

0

1

0

0

0

N

1

0

1

0

0

0

N

S

1

1

0

0

1

0

0

0

N

1

0

1

0

0

0

0

0

SS

1

0

0

1

0

0

0

N

S

0

0

1

0

0

0

N

0

0

1

S

0

0

1

0

0

0

N

0

0

+

c

c

nc N N

1

0 0

00c

1 0c

(a) Binary Counter

S

7

0

0

1

N

S

7

0

0

1

N

+ S

7

0

0

1

N

+

c

S

7

0

0

1

N

+

8

S

7

0

0

1

N

8

0

0

1

N

S +

c

S

7

0

0

1

N

8

0

0

1

N

S +

9

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

c

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

0c

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

0c

c

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

+

0c

1

S

7

0

0

1

N

8

0

0

1

N

S

9

S

0

0

1

N

1

0

1

N

0

S

(b) Base-10 Counter

Figure 9 (a) The process of the binary counter. (b) A base-10 counter.

carry, and no carry states (+, c, and nc) forward the counting. The 1, 0, and 0 with a carry411

state make up the number. The counting states and the number states work together as half412

adders to compute bits of the number.413

5.2 Transition Rules / Single Tile Half Adder414

As the column grows, in order to complete computing the number, each new tile attached in415

the current column along with its west neighbor are used in a half adder configuration to416

compute the next bit. Figure 8b shows the various cases for this half adder.417

When a bit is going to be computed, the first step is an attachment of a carry tile or a418

no-carry tile (c or nc). A carry tile is attached if the previous bit has a carry, indicated by a419

tile with a state of plus or 0 with a carry (+ or 0c). A no-carry tile is placed if the previous420

bit has no-carry, indicated by a tile with a state of 0 or 1. Next, a transition needs to occur421

between the newly attached tile and its neighbor to the west. This transition step is the422

addition between the newly placed tile and the west neighbor. The neighbor does not change423

states, but the newly placed tile changes into a number state, 0 or 1, that either contains a424

carry or does not. This transition step completes the half adder cycle, and the next bit is425

ready to be computed.426

5.3 Walls and Stopping427

The computation of a column is complete when a no-carry tile is placed next to any tile with428

a north state. The transition rule changes the no-carry tile into a north state, preventing the429

column from growing any higher. The tiles in the column with a carry transition to remove430

the carry information, as it is no longer needed for computation. A tile with a carry changes431

states into a state without the carry. The next column can begin computation when the plus432

tile transitions into a south tile, thus allowing a new plus tile to be attached. The assembly433

stops growing to the right when the last column gets stuck in an unfinished state. This434

column, the stopping column, has carry information in every tile that is unable to transition.435

When a carry tile is placed next to a north tile, there is no transition rule to change the state436

of the carry tile, thus preventing any more growth to the right of the column.437

CVIT 2016
99



23:14 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

I Theorem 10. For all n > 0, there exists a Tile Automata system that uniquely assembles438

a O(logn)× n rectangle using,439

Deterministic Transition Rules and O(log
1
2 n) states.440

Single-Transition Transition Rules and Θ(log
1
3 n) states.441

Nondeterministic Transition Rules and Θ(log
1
4 n) states.442

5.4 Arbitrary Bases443

Here, we generalize the binary counter process for arbitrary bases. The basic functionality444

remains the same. The digits of the number are computed one at a time going up the column.445

If a digit has a carry, then a carry tile attaches to the north, just like the binary counter. If446

a digit has no carry, then a no-carry tile is attached to the north. The half adder addition447

step still adds the newly placed carry or no-carry tile with the west neighbor to compute the448

next digit. This requires adding O(b) counter states to the system, where b is the base.449

I Theorem 11. For all n > 0, there exists a Deterministic Tile Automata system that450

uniquely assembles a O( logn
log logn )× n rectangle using Θ

(
( logn

log logn ) 1
2

)
states.451

6 Squares452

In this section we utilize the rectangle constructions to build n× n squares using the optimal453

number of states.454

Let n′ = n− 4d logn
log logne − 2, and Γ0 be a determinstic Tile Automata system that builds455

a n′ × (4d logn
log logne+ 2) rectangle using the process described in Theorem 11. Let Γ1 be a456

copy of Γ0 with the affinity and transition rules rotated 90 degrees clockwise, and the state457

labels appended with the symbol “*1”. This system will have distinct states from Γ0, and458

will build an equivalent rectangle rotated 90 degrees clockwise. We create two more copies of459

Γ0 (Γ2 and Γ3), and rotate them 180 and 270 degrees, respectively. We append the state460

labels of Γ2 and Γ3 in a similar way.461

We utilize the four systems described above to build a hollow border consisting of the462

four rectangles, and then adding additional initial states which fill in this border, creating463

the n× n square.464

We create Γn, starting with system Γ0, and adding all the states, initial states, affinity465

rules, and transition rules from the other systems (Γ1,Γ2,Γ3). The seed states of the other466

systems are added as initial states to Γn. We add a constant number of additional states and467

transition rules so that the completion of one rectangle allows for the “seeding” of the next.468

Reseeding the Next Rectangle. To Γn we add transition rules such that once the469

first rectangle (originally built by Γ0) has built to its final width, a tile on the rightmost470

column of the rectangle will transition to a new state pA. pA has affinity with the state471

SA ∗ 1, which originally was the seed state of Γ1. This allows state SA ∗ 1 to attach to the472

right side of the rectangle, “seeding” Γ1 and allowing the next rectangle to assemble (Figure473

10). The same technique is used to seed Γ2 and Γ3.474

Filler Tiles. When the construction of the final rectangle (of Γ3) completes, transition475

rules propagate a state pD towards the center of the square (Figure 11). Additionally, we476

add an initial state r, which has affinity with itself in every orientation, as will as with state477

pD on its west side. This allows the center of the square to be filled with tiles.478

I Theorem 12. For all n > 0, there exists a Tile Automata system that uniquely assembles479

an n× n square with,480

100



R. M. Alaniz et al 23:15

SA

N C pAN

SA

SA*

C*

N*

pA

SA

SA*pA

SA

Figure 10 The transitions that take place after the first rectangle is built. The carry state
transitions to a new state that allows a seed row for the second rectangle to begin growth

pC

SA#

pD pD

SA$

SA*

N*

pA

SA

pB

pC

SA#

pD pD pD

SA$

SA*

N*

pA

SA

pB

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f f

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

f f f f

fff

ff

f f f

f f

f

f

pC

SA#

pD pD pD pD pDpD

SA$

SA*

N*

pA

SA

pB

Figure 11 Once all 4 sides of the square build the pD state propagates to the center and allows
the light blue tiles to fill in

Deterministic transition rules and Θ
(

( logn
log logn ) 1

2

)
states.481

Single-Transition rules and Θ(log
1
3 n) states.482

Nondeterministic transition rules and Θ(log
1
4 n) states.483

7 Future Work484

This paper showed optimal bounds for uniquely building n× n squares in three variants of485

seeded Tile Automata without cooperative binding. En route, we proved upper bounds for486

constructing strings and rectangles. Serving as a preliminary investigation into constructing487

shapes in this model. This leaves many open questions:488

As shown in [5], even 1D Tile Automata systems can perform Turing computation. This489

behavior may imply interesting results for constructing 1× n lines. We conjecture, it is490

possible to achieve the optimal bound of Θ(( logn
log logn ) 1

2 ) with deterministic rules.491

Our rectangles had a height bounded by O( logn
log logn ), and none fell below the k < logn

log logn [2]492

bound for a thin rectangle. In Tile Automata without cooperative binding, is it possible493

to optimally construct k × n thin rectangles?494

We allow transition rules between non-bonded tiles. Can the same results be achieved495

with the restriction that a transition rule can only exist between two tiles if they share496

an affinity in the same direction?497

While we show optimal bounds can be achieved without cooperative binding, can we498

simulate so-called zig-zag aTAM systems? These are a restricted version of the cooperative499

aTAM that is capable of Turing computation.500

We show efficient bounds for constructing strings in Tile Automata. Given the power of501

the model, it should be possible to build algorithmically defined shapes such as in [33] by502

printing Komolgorov optimal strings and inputting them to a Turing machine.503

References504

1 Leonard Adleman, Qi Cheng, Ashish Goel, and Ming-Deh Huang. Running time and program505

size for self-assembled squares. In Proceedings of the thirty-third annual ACM symposium on506

Theory of computing, pages 740–748, 2001.507

CVIT 2016
101



23:16 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

2 Gagan Aggarwal, Qi Cheng, Michael H Goldwasser, Ming-Yang Kao, Pablo Moisset De Espanes,508

and Robert T Schweller. Complexities for generalized models of self-assembly. SIAM Journal509

on Computing, 34(6):1493–1515, 2005.510

3 John Calvin Alumbaugh, Joshua J. Daymude, Erik D. Demaine, Matthew J. Patitz, and511

Andréa W. Richa. Simulation of programmable matter systems using active tile-based self-512

assembly. In Chris Thachuk and Yan Liu, editors, DNA Computing and Molecular Programming,513

pages 140–158, Cham, 2019. Springer International Publishing.514

4 Bahar Behsaz, Ján Maňuch, and Ladislav Stacho. Turing universality of step-wise and stage515

assembly at temperature 1. In Darko Stefanovic and Andrew Turberfield, editors, DNA516

Computing and Molecular Programming, pages 1–11, Berlin, Heidelberg, 2012. Springer Berlin517

Heidelberg.518

5 David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie. Verification and519

Computation in Restricted Tile Automata. In Cody Geary and Matthew J. Patitz, editors,520

26th International Conference on DNA Computing and Molecular Programming (DNA 26),521

volume 174 of Leibniz International Proceedings in Informatics (LIPIcs), pages 10:1–10:18,522

Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. URL: https:523

//drops.dagstuhl.de/opus/volltexte/2020/12963, doi:10.4230/LIPIcs.DNA.2020.10.524

6 Sarah Cannon, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Matthew J. Patitz,525

Robert T. Schweller, Scott M Summers, and Andrew Winslow. Two Hands Are Better Than526

One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM. In 30th International527

Symposium on Theoretical Aspects of Computer Science (STACS 2013), volume 20 of Leibniz528

International Proceedings in Informatics (LIPIcs), pages 172–184. Schloss Dagstuhl–Leibniz-529

Zentrum fuer Informatik, 2013.530

7 Angel A Cantu, Austin Luchsinger, Robert Schweller, and Tim Wylie. Signal passing self-531

assembly simulates tile automata. In 31st International Symposium on Algorithms and532

Computation (ISAAC 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.533

8 Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew Winslow, and534

Tim Wylie. Freezing simulates non-freezing tile automata. In David Doty and Hendrik Dietz,535

editors, DNA Computing and Molecular Programming, pages 155–172, Cham, 2018. Springer536

International Publishing.537

9 Cameron Chalk, Eric Martinez, Robert Schweller, Luis Vega, Andrew Winslow, and Tim538

Wylie. Optimal staged self-assembly of general shapes. Algorithmica, 80(4):1383–1409, 2018.539

10 Gourab Chatterjee, Neil Dalchau, Richard A. Muscat, Andrew Phillips, and Georg Seelig.540

A spatially localized architecture for fast and modular DNA computing. Nature Nano-541

technology, July 2017. URL: https://www.microsoft.com/en-us/research/publication/542

spatially-localized-architecture-fast-modular-dna-computing/.543

11 Matthew Cook, Yunhui Fu, and Robert Schweller. Temperature 1 self-assembly: Deterministic544

assembly in 3d and probabilistic assembly in 2d. In Proceedings of the twenty-second annual545

ACM-SIAM symposium on Discrete Algorithms, pages 570–589. SIAM, 2011.546

12 Erik D Demaine, Martin L Demaine, Sándor P Fekete, Mashhood Ishaque, Eynat Rafalin,547

Robert T Schweller, and Diane L Souvaine. Staged self-assembly: nanomanufacture of arbitrary548

shapes with o (1) glues. Natural Computing, 7(3):347–370, 2008.549

13 Alberto Dennunzio, Enrico Formenti, Luca Manzoni, Giancarlo Mauri, and Antonio E Porreca.550

Computational complexity of finite asynchronous cellular automata. Theoretical Computer551

Science, 664:131–143, 2017.552

14 David Doty, Jack H Lutz, Matthew J Patitz, Robert T Schweller, Scott M Summers, and553

Damien Woods. The tile assembly model is intrinsically universal. In 2012 IEEE 53rd Annual554

Symposium on Foundations of Computer Science, pages 302–310. IEEE, 2012.555

15 Nazim Fates. A guided tour of asynchronous cellular automata. In International Workshop on556

Cellular Automata and Discrete Complex Systems, pages 15–30. Springer, 2013.557

102



R. M. Alaniz et al 23:17

16 Bin Fu, Matthew J Patitz, Robert T Schweller, and Robert Sheline. Self-assembly with558

geometric tiles. In International Colloquium on Automata, Languages, and Programming,559

pages 714–725. Springer, 2012.560

17 David Furcy, Scott M. Summers, and Logan Withers. Improved Lower and Upper Bounds on561

the Tile Complexity of Uniquely Self-Assembling a Thin Rectangle Non-Cooperatively in 3D.562

In Matthew R. Lakin and Petr Šulc, editors, 27th International Conference on DNA Computing563

and Molecular Programming (DNA 27), volume 205 of Leibniz International Proceedings in564

Informatics (LIPIcs), pages 4:1–4:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-565

Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/14671,566

doi:10.4230/LIPIcs.DNA.27.4.567

18 Oscar Gilbert, Jacob Hendricks, Matthew J Patitz, and Trent A Rogers. Computing in568

continuous space with self-assembling polygonal tiles. In Proceedings of the Twenty-Seventh569

Annual ACM-SIAM Symposium on Discrete Algorithms, pages 937–956. SIAM, 2016.570

19 Eric Goles, P-E Meunier, Ivan Rapaport, and Guillaume Theyssier. Communication complexity571

and intrinsic universality in cellular automata. Theoretical Computer Science, 412(1-2):2–21,572

2011.573

20 Eric Goles, Nicolas Ollinger, and Guillaume Theyssier. Introducing freezing cellular auto-574

mata. In Cellular Automata and Discrete Complex Systems, 21st International Workshop575

(AUTOMATA 2015), volume 24, pages 65–73, 2015.576

21 Leopold N Green, Hari KK Subramanian, Vahid Mardanlou, Jongmin Kim, Rizal F Hariadi,577

and Elisa Franco. Autonomous dynamic control of DNA nanostructure self-assembly. Nature578

chemistry, 11(6):510–520, 2019.579

22 Daniel Hader and Matthew J Patitz. Geometric tiles and powers and limitations of geometric580

hindrance in self-assembly. Natural Computing, 20(2):243–258, 2021.581

23 Jacob Hendricks, Matthew J. Patitz, Trent A. Rogers, and Scott M. Summers. The power of du-582

ples (in self-assembly): It’s not so hip to be square. Theoretical Computer Science, 743:148–166,583

2018. URL: https://www.sciencedirect.com/science/article/pii/S030439751501169X,584

doi:https://doi.org/10.1016/j.tcs.2015.12.008.585

24 Ming-Yang Kao and Robert Schweller. Reducing tile complexity for self-assembly through586

temperature programming. In Proceedings of the Seventeenth Annual ACM-SIAM Symposium587

on Discrete Algorithm, SODA ’06, page 571–580, USA, 2006. Society for Industrial and Applied588

Mathematics.589

25 Pierre-Etienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew590

Winslow, and Damien Woods. Intrinsic universality in tile self-assembly requires cooperation.591

In Proceedings of the 2014 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),592

pages 752–771, 2014. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611973402.593

56, arXiv:https://epubs.siam.org/doi/pdf/10.1137/1.9781611973402.56, doi:10.1137/594

1.9781611973402.56.595

26 Pierre-Étienne Meunier and Damien Regnault. Directed Non-Cooperative Tile Assembly Is596

Decidable. In Matthew R. Lakin and Petr Šulc, editors, 27th International Conference on597

DNA Computing and Molecular Programming (DNA 27), volume 205 of Leibniz International598

Proceedings in Informatics (LIPIcs), pages 6:1–6:21, Dagstuhl, Germany, 2021. Schloss Dagstuhl599

– Leibniz-Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/600

14673, doi:10.4230/LIPIcs.DNA.27.6.601

27 Pierre-Étienne Meunier and Damien Woods. The non-cooperative tile assembly model is not602

intrinsically universal or capable of bounded Turing machine simulation. In Proceedings of the603

49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, page 328–341,604

New York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3055399.605

3055446.606

28 Turlough Neary and Damien Woods. P-completeness of cellular automaton rule 110. In Michele607

Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata, Languages608

and Programming, pages 132–143, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.609

CVIT 2016
103



23:18 Building Squares with Optimal State Complexity in Restricted Active Self-Assembly

29 Nicolas Ollinger and Guillaume Theyssier. Freezing, bounded-change and convergent cellular610

automata. arXiv preprint arXiv:1908.06751, 2019.611

30 Matthew J. Patitz, Robert T. Schweller, and Scott M. Summers. Exact shapes and Turing612

universality at temperature 1 with a single negative glue. In Proceedings of the 17th Interna-613

tional Conference on DNA Computing and Molecular Programming, DNA’11, page 175–189,614

Berlin, Heidelberg, 2011. Springer-Verlag.615

31 Paul WK Rothemund and Erik Winfree. The program-size complexity of self-assembled616

squares. In Proceedings of the thirty-second annual ACM symposium on Theory of computing,617

pages 459–468, 2000.618

32 Nicholas Schiefer and Erik Winfree. Time complexity of computation and construction in the619

chemical reaction network-controlled tile assembly model. In Yannick Rondelez and Damien620

Woods, editors, DNA Computing and Molecular Programming, pages 165–182, Cham, 2016.621

Springer International Publishing.622

33 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal on623

Computing, 36(6):1544–1569, 2007.624

34 Anupama J. Thubagere, Wei Li, Robert F. Johnson, Zibo Chen, Shayan Doroudi,625

Yae Lim Lee, Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, Erik626

Winfree, and Lulu Qian. A cargo-sorting DNA robot. Science, 357(6356):eaan6558,627

2017. URL: https://www.science.org/doi/abs/10.1126/science.aan6558, arXiv:https:628

//www.science.org/doi/pdf/10.1126/science.aan6558, doi:10.1126/science.aan6558.629

35 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,630

June 1998.631

36 Damien Woods, Ho-Lin Chen, Scott Goodfriend, Nadine Dabby, Erik Winfree, and Peng Yin.632

Active self-assembly of algorithmic shapes and patterns in polylogarithmic time. In Proceedings633

of the 4th conference on Innovations in Theoretical Computer Science, pages 353–354, 2013.634

37 Thomas Worsch. Towards intrinsically universal asynchronous ca. Natural Computing,635

12(4):539–550, 2013.636

104



APPENDIX B

105



APPENDIX B

SIMULATION OF MULTIPLE STAGES IN SINGLE BIN ACTIVE TILE 

SELF-ASSEMBLY

106



Simulation of Multiple Stages in Single 
Bin Active
Tile Self-Assembly
Sonya C. Cirlos 

University of Texas Rio Grande Valley
Timothy Gomez 

Massachusetts Institute of Technology
Elise Grizzell 

University of Texas Rio Grande Valley
Andrew Rodriguez 

Texas State University
Robert Schweller 

University of Texas Rio Grande Valley

Tim Wylie  (  timothy.wylie@utrgv.edu )
University of Texas Rio Grande Valley

Research Article

Keywords: Staged Self-assembly, Tile Automata, Context-Free Grammar, Freezing TA

Posted Date: December 21st, 2023

DOI: https://doi.org/10.21203/rs.3.rs-3762430/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License. 
Read Full License

Additional Declarations: No competing interests reported.

107



001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

Simulation of Multiple Stages in Single Bin Active

Tile Self-Assembly

Sonya C. Cirlos1, Timothy Gomez2, Elise Grizzell1,
Andrew Rodriguez3, Robert Schweller1, Tim Wylie1*†

1*Department of Computer Science, University of Texas Rio Grande
Valley, 1201 W. University Dr., Edinburg, TX, 78539, USA.

2Computer Science and Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, 32 Vassar Street, Cambridge, MA, 02139, USA.
3Department of Computer Science, Texas State University, San Marcos,

TX, 78666, USA.

*Corresponding author(s). E-mail(s): timothy.wylie@utrgv.edu;
Contributing authors: sonya.cirlos01@utrgv.edu; tagomez7@mit.edu;

elise.grizzell01@utrgv.edu; andrew.rodriguez@txstate.edu;
robert.schweller@utrgv.edu;

†These authors contributed equally to this work.

Abstract

Two significant and often competing goals within the field of self-assembly are
minimizing tile types and minimizing human-mediated experimental operations.
The introduction of the Staged Assembly and Single Staged Assembly models,
while successful in the former aim, necessitate an increase in mixing operations
later. In this paper, we investigate building optimal lines as a standard benchmark
shape and building primitive. We show that a restricted version of the 1D Staged
Assembly Model can be simulated by the 1D Freezing Tile Automata model with
the added benefits of the complete automation of stages and completion in a
single bin while maintaining bin parallelism and a competitive number of states
for lines, patterned lines, and context-free grammars.

Keywords: Staged Self-assembly, Tile Automata, Context-Free Grammar, Freezing TA

1

108



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092

1 Introduction

Many molecular programmers dream of designing single-pot reactions in which system
molecules do the entirety of the computational work without any necessary inter-
vention by the experimenter. This is arguably true self-assembly. Yet the power of
experimenter intervention, in the form of mixing and splitting pots over a sequence of
stages, yields power and efficiency in both theory and practice [18] that is currently
unmatched even with some of the most powerful models of active self-assembly. This
paper aims to address this gap in the case of 1-dimensional (1D) assembly by show-
ing how an abstract modeling of operations of experimental stages, termed the Staged
Assembly Model (SAM) [12], can be efficiently simulated by an abstract model of
single-pot active self-assembly, termed Tile Automata (TA) [9].

Tile Automata generalizes passive tile assembly models (such as the two-handed
tile assembly model [7]) by giving tiles dynamic states that update based on local pair-
wise rules, thus making it a model of active self-assembly. The Staged Assembly Model
(SAM) generalizes tile assembly models by the modeling of experimenter-mediated
operations, including the ability to store different portions of the system particles in
separate containers or bins, and the ability to combine separate bins or split the con-
tents of a bin among multiple bins, over a sequence of distinct stages. Previous results
show that both models have substantially increased power over the basic tile self-
assembly models they generalize. In particular, by offloading some of the computation
onto an experimenter responsible for performing the required mixing operations of the
system between stages, SAM can build complex shapes and patterns in near-optimal
complexity with respect to tile types, bin counts, and stage counts [10–13, 20].

In answer to the long-standing open question of whether the substantial power of
the SAM could be efficiently encoded into the reaction rules of an active single-pot
system, this paper shows that in the case of 1-dimensional systems, any staged system
can be encoded into a single-pot TA system with a comparable state and rule space
to the tiles, bins, and stages of the SAM system it simulates. This result provides
a corresponding corollary in TA for any results in 1D staged self-assembly. Further,
this provides a new approach for programming 1D TA systems since designing staged
systems is relatively simple with strong timing guarantees based on separate bins and
stages, whereas programming complex TA systems from scratch can be daunting as
the single-pot nature of the system requires careful attention to race conditions. As
evidence of the power of this new result, we show how several previous results in TA
now become simple corollaries of this new result. Further, we show how a general
linear pattern can be constructed in TA using a number of states linear in the size of
the smallest context-free grammar that produces the target pattern.

1.1 Staged Self-Assembly and Tile Automata

Algorithmic self-assembly emerged from a formalization of Wang Tiles to explore self-
assembling structures. Defined by Winfree in [19], this was partially motivated by new
DNA techniques that allow for the creation of DNA-based ‘tiles’ that can assemble into
lattice structures at the nanoscale [22]. Further experimental work has investigated

2

109



093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

active DNA-based components capable of complex tasks such as sorting molecules
attached to a DNA origami surface [17].

The Staged Tile Assembly Model [12] generalizes the 2-Handed Assembly Model
to allow growth to occur in multiple bins, mixing in a sequence described as stages,
creating the capability to model experimental techniques, such as in [18] where 2D
patterns are built with DNA origami tiles in multiple stages.

Tile Automata was introduced in [9] as a combination of hierarchical passive self-
assembly systems and the active self-assembly of Cellular Automata systems where all
tiles have a transitionable state. Affinity rules define which tiles can bond with each
other based on their states and with how much strength. Starting from singleton tiles
with states, any two producibles in the system may combine if there is enough affinity
between adjacent tiles. Transition rules define state changes that may occur between
two tiles once they are neighbors in an assembly.

Efficient line construction in Tile Automata was briefly studied in [5].

1.2 Related Work

Shape building was the first problem explored when the staged model was introduced
[12]. In the staged model, a constant-sized set of glue types is sufficient to build any
shape by encoding the description in the mix graph. The trade-off between the number
of glues, bins, and stages was further investigated in later work with 1× n, O(1)× n
[11], and general assemblies [10]. The complexity of verifying whether an assembly is
uniquely produced is PSPACE-complete [6, 15].

A restricted class of systems in SAM, called Single Staged Assembly Systems
(SSAS) in [13], requires each bin to only contain one terminal assembly built from two
input assemblies. This restriction eliminates having multiple assemblies built in the
same bin (bin parallelism). The size of the smallest SSAS that builds a 1D pattern P
is equivalent (up to constant factors) to the size of the smallest Context-Free Gram-
mar (CFG) that defines only P. However, when bin parallelism is allowed, staged is
more efficient than CFGs for a specific family of strings.

In [20], they built on previous results and define Polyomino Context-Free Gram-
mars (PCFG), which generalize CFGs to 2D. The size of the smallest staged system
that uniquely produces a patterned assembly is within a log factor of the smallest
PCFG. In some cases, staged is much better.

One strength of Tile Automata is the possibility of being a “unifying” model,
where multiple models can be connected through simulation results. The work that
introduced the model [9] showed that the freezing model, where a tile may never
repeat a state, simulates the non-freezing version of the model. Tile Automata was
shown to simulate a model of programmable matter called Amoebots [2]. The chain of
simulation was further extended in [8] where the Signal-Passing Tile Assembly Model
(STAM) was shown to simulate Tile Automata. Work done in [3] shows how the 1D
STAM can simulate a s stage 1D SSAS system using a single tile with O(s4) glues
types.

3

110



139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

Ameo

-bots

Freezing

Affinity

Strengthening

TA

Tile

Automata

(TA)

Freezing 

Tile 

Automata

RCFG

1D 

Staged
1D SSAS

Signal 

Tile 

Model

(STAM)

Fig. 1: Informal map of relations between models. Dotted line arrows indicate model
is a special case of the previous. Solid lines indicate simulation results.

Tile Automata Scale States Theorem
Freezing Strengthening 1 O(sbt) Thm.
Freezing Strengthening 2 O(sbg) Thm.

Strengthening 2 O(sg + bg) Open

Table 1: Restricted 1D Tile Automata can simulate
1D Staged model. We allow for 1D scaling. s is number
of states, b is number of bins, g is the number of glues.

Aff Str Cycle Frz. Det. Single Double

Yes Yes No ND O(|P | 13 ) 2× 3 [1] O(|P | 14 ) 2× 4 [1]

Yes No Yes Det O(|P | 12 ) 1× 2 [1] O(|P | 12 ) 1× 1 [1]
No Yes Yes Det O(KP ) O(1)×O(1) [5, 8] O(KP ) 1× 1 [5]

No No No Det O(K
1
2
P ) 1× 1 Thm. 4 O(K

1
2
P ) 1× 1 Thm. 4

Yes No No Det O(L
1
2
p ) O(1)× 2 O(L

1
2
p ) O(1)× 1

Yes No Yes ND O(CFP ) 1× 1 Thm 2 O(CFP ) 1× 1 Thm. 2

Table 2: Minimum number of states needed to construct a patterned rectangle over a constant
number of colors representing the 1D pattern P in Affinity Strengthening Tile Automata with
tiles not changing colors. KP is the Kolmogorov complexity of the pattern P , CFP is the size
of the smallest Context Free Grammar that produces the singleton language {P}.

1.3 Our Contributions

We show that the 1D version of Freezing Affinity Strengthening Tile Automata can
simulate the 1D staged assembly model, even with flexible glues (Section 3). The Tile
Automata system uses O(sbt) states for a system with s stages, b bins, and t tile types.

Using this result we inherit the ability to simulate Context-Free Grammars from
the staged model in [13] showing the same upper bound. For the line-building results,
we inherit them from [12]. Additionally using results from [8], these results carry over
to the STAM as well.

This is the full version of a paper presented at UCNC 2023. We include additional
upper and lower bounds on pattern building in different versions of Tile Automata.

4

111



185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

(a) A Tile Automata System

G(o) = 1

G(r) = 1

G(b) = 1

Glues Tile Sets

Temperature

Mixgraph

3
 B

in
s

3
 S

ta
g
e
s

1

3 Tile Types

(b) Staged Self-Assembly Example

Fig. 2: (a) An example of a Tile Automata system Γ. Recursively applying the tran-
sition rules and affinity functions to the initial assemblies of a system yields a set of
producible assemblies. Any producibles that cannot combine with, break into, or tran-
sition to another assembly are considered terminal. Note that none of the transition
rules allow states to change color. (b) A simple staged self-assembly example. The sys-
tem has 3 bins, 3 stages, and 3 tile types, assigned to bins, as shown in the mix graph.
Only terminal assemblies can pass to a successive stage. The result of this system is
the assembly shown in the bin in stage 3.

The result in Section 4 is a direct version of a Context-Free Grammar simulation which
works in a slighty stronger version of Tile Automata, i.e., Theorem 2 works even in the
case of Deterministic Single-Transitions. We additionally include bounds on building
patterns in relaxed versions of Tile Automata and these results are outlined in Table 2.

2 Model and Definitions

We provide simplified definitions for 1D Tile Automata, then define 1D Staged Assem-
bly as a generalization. Refer to previous work [1] and [12] for full definitions of the
models.

2.1 The 1D Tile Automata model (TA)

In this dimensionally restricted version of the model, a Tile Automata system1 is a
triple (Σ,Π,∆) where Σ is an alphabet of state types, Π is an affinity function, and
∆ is a set of transition rules for states in Σ. An example 1D Tile Automata system is
shown in Figure 2.

1Typical TA models are defined with a temperature parameter τ however, with consideration of solely
1D, eliminating the possibility of cooperative binding, we assume τ = 1.

5

112



231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

Tile. Let Σ be a set of states or symbols. A tile t = (σ, p) is a non-rotatable unit
square placed at point p ∈ Z1 and has a state of σ ∈ Σ.

Assembly. An assembly A is a sequence of tiles {t1, t2, t3, . . . , t|A|}. Let A(i) and

AΣ(i) represent the ith tile and its state in assembly A, respectively. For a tile t in
assembly A let ρA(t) be the position of t in A.

Affinity Function. An affinity function Π takes an ordered pair in Σ2 as input
and outputs either 0 or 1. The affinity strength between two states for the ordered
orientation is the binary output of the corresponding function. An assembly A is stable
if, for every pair of tiles, Π(AΣ(i), AΣ(i + 1)) = 1. Informally, if all adjacent tiles in
assembly A have an affinity, A is stable. Two assembles, A and B are combinable if
the concatenation of the two assemblies AB = C is also a stable assembly.

Transition Rules. Transition rules allow states to change based on their neighbors.
A transition rule is denoted (σ1a, σ2a)→ (σ1b, σ2b) with σ1a, σ2a, σ1b, σ2b ∈ Σ. If states
σ1a and σ2a are adjacent to each other, they can transition to states σ1b and σ2b,
respectively. An assembly A is transitionable to an assembly B if there exists two
adjacent tiles A(i), A(i + 1) ∈ A, two adjacent tiles B(i), B(i + 1) ∈ B, a transition
rule (AΣ(i), AΣ(i+1))→ (BΣ(i), BΣ(i+1)) ∈ ∆, and A(j) = B(j) for all j ̸= i, i+1.

Producibility. We define the set of producible assemblies starting from a set of initial
assemblies Λ. For a given 1D Tile Automata system Γ = (Σ,Π,∆) and initial assembly
set Λ, the set of producible assemblies of Γ, denoted PRODΓ(Λ), is defined recursively:

• (Base) Λ ⊆ PRODΓ(Λ)
• (Combinations) For any A,B ∈ PRODΓ(Λ) s.t. A and B are combinable into C,
then C ∈ PRODΓ(Λ).

• (Transitions) For any A ∈ PRODΓ(Λ) s.t. A is transitionable into B using δ ∈ ∆,
then B ∈ PRODΓ(Λ).

For a system Γ, we say A →Γ
1 B for assemblies A and B if A is combinable

with some producible assembly to form B, if A is transitionable into B, or if A =
B. Intuitively, this means that A may grow into assembly B through one or fewer
combinations or transitions.
We define the relation →Γ to be the transitive closure of →Γ

1 , i.e., A →Γ B means
that A may grow into B through a sequence of combinations and transitions.

Terminal Assemblies. A producible assembly A of a Tile Automata system Γ is
terminal provided A is not combinable with any producible assembly of Γ, and A is
not transitionable to any producible assembly of Γ. Let TERMΓ(Λ) ⊆ PRODΓ(Λ) denote
the set of producible assemblies of Γ that are terminal.

Unique Assembly. A 1D TA system Γ, starting from initial assemblies Λ, uniquely
produces a set of assemblies A if

• A = TERMΓ(Λ),
• for all B ∈ PRODΓ(Λ), B →Γ A for some A ∈ A

6

113



277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

2.2 Staged Assembly Model

Here, we define the Staged Assembly model using the definitions from above.

Tile Types and Glues. In the staged assembly model, tiles are defined by their
glues. Let G be a set of glues. A tile type is an ordered pair of glues (w, e) ∈ G2 where
tile t = (w, e) has west glue w and east glue e. The affinity function Π for the staged
assembly model takes as input two tile types t1 = (a, b), t2 = (c, d) and outputs 1 if
b = c and 0 otherwise.

When allowing Flexible Glues we remove the restriction that Π outputs 0 when
b ̸= c allowing for a general glue function. Note this is equivalent to the affinity function
of Tile Automata.

Assembly. An assembly A in a staged assembly system is a sequence of tile types
{t1, t2, t3, . . . , t|A|}. Let A(i) be the ith tile type in assembly A.

Staged Assembly Systems. An r-stage, b-bin mix-graph Mr,b, is an acyclic r-partite
digraph consisting of rb vertices mi,j for 1 ≤ i ≤ r and 1 ≤ j ≤ b, and edges of the
form (mi,j ,mi+1,j′) for some i, j, j′. A staged assembly system is a duple Υ = (Mr,b, T )
where Mr,b is an r-stage, b-bin mix-graph, T ⊂ G2 is a set of tiles types labeled from
the set of pairs of glues G.
Two-Handed Assembly and BinsWe define the assembly process in terms of bins2.
Each bin can be considered an instance of a Tile Automata system without transition
rules where ∆ = ∅. However, each bin has a different set of initial assemblies denoted
as Λi,j where i is the stage and j is the bin. Let Tj be the set of initial tile types in
bin j.
1. Λ1,j = {Tj} (this is a bin in the first stage);

2. For i ≥ 2, Λi,j =
( ⋃

k: (mi−1,k,mi,j)∈Mr,b

TERMΥ(Λi−1,k)
)
.

Thus, the jth bin in stage 1 is provided with the initial tile set Tj . Each bin in any
later stage receives an initial set of assemblies consisting of the terminally produced
assemblies’ bins in the previous stage indicated by the edges of the mix-graph. The
output of the staged system is the union of all terminal assemblies from each bin in
the final stage. We say this set of output assemblies is uniquely produced if each bin
in the staged system uniquely produces its respective set of terminal assemblies.

2.3 Assembly Trees

We may represent the assembly process in a single bin as an assembly tree in the
staged model. An example tree can be seen in Figure 3a.
Definition 1 (Assembly Tree). An assembly tree T bA, for a producible assembly A
in a bin b, is a binary tree where each node represents a subassembly of A. The root
represents assembly A, and each leaf represents an initial assembly of b. Each node
can be formed by combining the assemblies represented by the children.

An assembly tree is a Left-Handed Assembly Tree if every assembly that attaches
on the right side is an initial assembly. A Right-Handed Assembly Tree is the inverse

2Each bin may be seen as an instance of the 2-Handed Assembly Model.

7

114



323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

(a) Assembly Tree (b) Left Handed (c) Right Handed

Fig. 3: Examples of assembly trees for the same assembly. (a) A balanced tree. (b) A
left-handed assembly tree. (c) A right-handed assembly tree.

where every left assembly is an initial assembly. Examples of these two types of trees
are in Figures 3b and 3c.

2.4 Colors and Patterns

In this section, we augment the Tile Automata model with the concept of a tile’s color
being based on the current state. Colors for Staged has been defined in [13]. For a
set of color labels C, this is a partition of the states into |C| sets. We only consider
constant-sized C. Thus, the color of a tile t is the partition of the tile’s state, denoted
as c(t).
Definition 2 (Pattern). A pattern P over a set of colors C is a partial mapping of
Z to elements in C. Let P (z) be the color at z ∈ Z. A scaled pattern Phw is a pattern
replacing each pixel within a 1× w line of pixels.
Definition 3 (Patterned Assemblies). We say a positioned assembly A′ represents a
pattern P if for each tile t ∈ A′, c(t) = P (ρA′(t)) and dom(A′) = dom(P ). We say a
positioned assembly B′ represents a pattern P at scale h×w if it represents the scaled
pattern Phw.

A system Γ uniquely assembles a pattern P if it uniquely assembles an assembly
A, such that A contains a positioned assembly that represents P .

2.5 Tile Automata Restrictions

Here we define the relevant restrictions of Tile Automata. All but the last has been
defined in previous work [1, 5, 8, 9]

Affinity Strengthening. Affinity Strengthening requires that any transition pre-
serves affinities between tiles within assemblies. For each transition rule (σa, σb) →
(σc, σd), Π(σc, σd) = 1. By limiting our focus to affinity strengthening systems, we

8

115



369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414

do not need to consider the scenario where a stable assembly becomes unstable (and
would fall apart).

Freezing. In a freezing system, a tile may not transition to any state more than once.
Thus, if a tile with state σa transitions into another state σb, it is not allowed to
transition back to σa.

Bonded. Transitions only occur between tiles that have affinity with each other.

Single-Transition Tile Automata system. Γ is a Single-Transition Tile Automata
system if for all transitions rules (S1a, S2a, S1b, S2b, d) either S1a = S1b or S2a = S2b.

Bonded, Single-Transition allows us to skip a couple steps in the simulation in the
STAM from [8].

Deterministic Transition Rules. A system has deterministic transitions rules if for
all pairs of states S1, S2 and direction d ∈ {v, h} there only exists one transition rule
between the states in that direction.

Color-Locked. A tile automata system is Color-Locked if for every transition rule
δ = (S1a, S2a, S1b, S2b, d) ∈ ∆, c(S1a) = c(S1b) and c(S2a) = c(S2b), i.e. tiles are not
allowed to change their color.

This restriction allows for transitions to be independent of the color, we can imagine
this the color being inherent to the tile. These restrictions all together can model a
signal tile carrying a chemical marker that cannot change, and transitions only expose
more binding sites.

3 Simulation of General 1D Staged

In this section, we show how to simulate all 1D staged systems with TA systems. First,
we define what simulate means for these systems, followed by a high-level overview of
our simulation, and then the details.

3.1 Simulation

Here, we utilize a simplified definition of simulation in which the set of final terminal
assemblies, from the target staged system to be simulated, is exactly the same, under
a mapping function, as the final terminal assemblies of the source TA system that is
simulating it. This is a standard type of simulation used, and we omit technical def-
initions in this version. A stronger definition of simulation incorporates dynamics, in
which assemblies may attach in the target system if and only if they attach in the
source system. However, our approach focuses on simulating a restricted set of dynam-
ics that are sufficient to ensure the production of all final (and partial) assemblies. We
leave the problem of fully simulating the dynamics of a staged system as future work.

3.2 Overview

We create a Tile Automata system with initial tiles representing the initial tile types of
the staged system. Each assembly in our Tile Automata system represents an assembly
in a specific stage and bin. Each state is a pair consisting of a tile type t and a

9

116



415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

1,1||1,1 2,1*

Glue Labels

Caps

Token

(a) Tiles

1,1||1,1 1,1*

2,1|1,1 1,1

Stage 1

Stage 2

(b) Assemblies

Fig. 4: (a) Each of our Tile Automata states conceptually represents two glue labels
that say which tile type they map to (a glue may be null, as in the leftmost state).
They may also contain features such as the left/right cap or the active state token. (b)
Assemblies map based on the glue labels on the Tile Automata states. Multiple Tile
Automata assemblies represent the same Staged assembly, but sometimes in different
stages.

stage-bin label representing t in that specific stage and bin. Some states will have
an active state token(*) used to track the progress of the Tile Automata assembly in
the assembly tree. We simulate only left- or right-handed assembly trees based on the
parity of the stage number. The logic for the transition rules is described in Algorithm
1 using a Glue-Terminal Table. Each Tile Automata assembly builds according to the
assembly trees of the staged system by having the token “read” the glues to decide if
an assembly is terminal in a bin and needs to transition to the next stage.

3.3 Glue-Terminal Table

For the simulation to work, we need to know the glues used in each bin of the target
system because we cannot “read” the absence of a glue/assembly in self-assembly.
However, we can use the Glue-Terminal Table to construct the transition rules. This
table stores which glues correspond with each bin.
Definition 4 (Glue-Terminal Table). For a staged system Υ = (Mr,b, T ), the Glue-
Terminal table GT ((s, b), g) is a binary |Mr,b|×G table with rows labeled with stage-bin
pairs and columns labeled with glues. The entry GT ((s, b), g) is true (Used) if there
exists at least two producible assemblies in bin b that attach using glue g in stage s. If
it is false (Term.), the glue is never used in bin b for stage s.

This table can be computed recursively by checking the glues of the that are
assemblies in the previous bin. Computing terminal assemblies can be done much
easier since it’s 1D.

3.4 States and Initial Tiles

A state in our Tile Automata system has the following properties: each state has the
first two properties and the second two properties are optional. The first label has
sb possible options, the second has t, and the rest only increase the state space by a
constant factor. This results in an upper bound on the states used of O(sbt).

• Stage-Bin Label. Each state (s, i)t is labeled with a pair of integers (s, i) saying
the state represents the ith bin in stage s.

10

117



461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

Algorithm 1 Algorithm to create transition rules for each pair of states in a Tile
Automata system.

Data: Left state a and right state b, and glue-terminal table GT .
Result: Transition rule (a, b)→ (a′, b′) if such a rule exists.
Let L(σ)/R(σ) be the left/right glue label of the tile type σ maps to.
Let STAGE(σ) be the stage σ is in. Let BIN(σ) be the bin σ is in.
Let NEXT BIN(σ) be the bin σ will be in the next stage.
Let HAS TOKEN(σ) be true if σ contains a token, false otherwise.

if R(a) ̸= L(b) then
Return null

if HAS TOKEN(a) ∧ STAGE(a) is odd then
if b has a right cap then

if GT ((STAGE(b), BIN(b)), R(b)) = Used then
a′ ← a− ∗; b′ ← b+ ∗; b′ ← b′ − |

else if GT ((STAGE(b) + 1, NEXT BIN(b)), R(b)) = Used then
a′ ← a− ∗; b′ ← b− | STAGE(b′)← STAGE(b′) + 1; BIN(b′)← NEXT BIN(b′)

else
a′ ← a; b′ ← b STAGE(a′) ← STAGE(a′) + 1; BIN(a′) ← NEXT BIN(a′)
STAGE(b′)← STAGE(b′) + 1; BIN(b′)← NEXT BIN(b′)

else
a′ ← a− ∗; b′ ← b+ ∗ STAGE(b′)← STAGE(b′) + 1; BIN(b′)← NEXT BIN(b′)

Return (a, b)→ (a′, b′)
if HAS TOKEN(b) ∧ STAGE(b) is even then

if a has a left cap then
if GT ((STAGE(a), BIN(a)), L(a)) = Used then

b′ ← b− ∗; a′ ← a+ ∗; a′ ← a′ − |
else if GT ((STAGE(a) + 1, NEXT BIN(a)), L(a)) = Used then

b′ ← b−∗; a′ ← a− | STAGE(a′)← STAGE(a′)+ 1; BIN(a′)← NEXT BIN(a′)
else

b′ ← b; a′ ← a STAGE(b′) ← STAGE(b′) + 1; BIN(b′) ← NEXT BIN(b′)
STAGE(a′)← STAGE(a′) + 1; BIN(a′)← NEXT BIN(a′)

else
b′ ← b− ∗; a′ ← a+ ∗ STAGE(a′)← STAGE(a′) + 1; BIN(a′)← NEXT BIN(a′)

Return (a, b)→ (a′, b′)

• Glue Labels. Each state (s, i)t represents a tile t from the staged system. We
say this state has the glue labels of t when defining our affinity rules in Tile
Automata. This label also defines our mapping from TA states to staged tiles in
both directions.

• Active State Token. A state (s, i)∗t may have an Active State Token ∗. The
token is used to enforce the left/right handed assembly trees by starting on one
side of an assembly, and allowing attachment to other states with matching glue
and stage-bin labels.

11

118



507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

(a) Staged System

(s, b) Red Blue Green Yellow
(1, 1) Term Used Used Term
(1, 2) Used Used Term Term
(1, 3) Used Term Term Used
(2, 1) Term Term Used Used

(b) Glue-Terminal Table

Fig. 5: (a) Example Staged system to be simulated. (b) Glue-Terminal Table for
shown staged system. In the table, s is the stage and b is the bin.

• Caps. A state may have a cap on one side, denoted |s, i)t or (s, i|t. This means
that on the side of the cap |, there are no affinity rules for that state. Until an
assembly is ready to attach, it will have caps on its left and right most tiles.

We create an initial state for each pair b1,i, t where b1,i is the ith bin of the first
stage and t is a tile input to that bin. If the left glue of the t is used in the b1,i, then
we include the state (1, it|, i.e., the right cap state. If the left glue is open, but the
right glue is used, the tile is the first in a left-handed assembly tree. In this case, we
include the token left cap state |1, i∗t ).

If a tile is terminal in the first bin, we instead include an initial state representing
the first bin where the state is consumed. For example, if a tile t is input to bin (1, i)
and is terminal, but its right glue is used in an attachment in bin (2, j) (where there’s
an edge between (1, i) and (2, j)), then we instead include an initial state |2, jt).

3.5 Bin Simulation

In any odd stage, we construct every terminal using a sequence of attachments repre-
senting a left-handed assembly tree. For even stages, we use a right-handed assembly
tree. We control this with the token by defining our affinity rules such that every
attachment occurs between one state with the token and one without a cap. We switch
between the left and right handed trees to reduce the amount of times the token must
walk back and forth on the assembly since the token ends on the opposite side each
time.

We walk through an example of a bin in the first stage in Figure 6a. The token
left cap state |1, 1∗t ) attaches to the right cap state (1, 1t′ | if t′ attaches to the right

12

119



553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598

|1,1* 1,1|

1,1|

|1,1*

1,1|

1,1|

|1,1 1,1*

|1,1 1,1*

2,1|1,1 1,1

(a) (1, 1)

1,3||1,3 1,3*

2,1||1,3 2,1*

2,1|2,1* 2,1

(b) (1, 3)

Fig. 6: (a) Example simulation of an assembly in stage 1. Notice the token moves
leftward through the assembly as it builds to enforce a left handed assembly tree. (b)
Transition for terminal assembly in bin (1, 3). Since the rightmost glue is terminal in
bin (1, 3) the token changes the stage to 2 and starts moving left to remove the cap.

of t. These two states then transition. If the right glue of t′ is used in the bin, the
token moves to that state and removes the cap. This process can then repeat in the
bin. Looking at the next tile t′′, the right glue is unused, and thus, the assembly is
terminal, and the transition should move it to the next stage, now changing directions
as outlined in Figure 6b. The process for defining transitions is described in Algorithm
1; when given two states and the Glue-Transition table, a transition rule is returned if
one would exist in the system. Note that this algorithm is non-deterministic as one bin
may output to multiple bins in the next stage, so a pair of states may have multiple
transition rules.
Theorem 1. For any 1D staged system Υ with flexible glues, s stages, b bins, and t
tile types, there exists a 1D Freezing Affinity-Strengthening Tile Automata system Γ
with O(sbt) states that simulates Υ.

Proof. Consider a staged system Υ = (Mr,b, T ) with s stages, b bins and t tiles types.
Tile Automata system Γ = (Σ,Π,∆) which simulates Υ is defined and discussed below.

State complexity O(sbt). Each tile type in Υ requires a unique state in Γ for every
bin in every stage, resulting in s ·b ·t states. The additional state increase for the token
and caps of each state is constant for a total of O(sbt) states.

Flexible Glues, Freezing and Affinity Strengthening. A state σt ∈ Σ with tile type
t ∈ T has affinity with a state σ′

t ∈ Σ with tile type t′ ∈ T if t attaches to t′ in Υ. With
the affinity function we can encode general glues so we can simulate flexible glues. For
every transition rule δ ∈ ∆, δ does not alter the tile type a state represents since only
the stage, bin, token, or cap are affected.

Every transition rule is freezing and either removes a cap, moves the token forward,
or advances to the next stage. Once a state with a tile type t has lost its cap it can
never regain it. In a single stage, the token may walk over each tile a maximum of
2 times as both sides of the assembly must be checked to decide if the assembly is

13

120



599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644

terminal. Note that this token walk involves adding an additional distinct state so the
tiles do not visit the same state twice.

Simulation. We prove this is a correct simulation by induction on the size of the
assemblies. The initial assemblies cover our base case for single tiles in Λ. The tile
input in the first stage in Υ ensures each included assembly is in Λ. For the recursive
case, assume every assembly A ∈ PRODΥ with |A| < x is simulated. Let b be the bin
in which A is produced. A must be produced using two assemblies B and C, each
of size < x, which are also in bin b. From our assumption, B and C have assemblies
representing them- B′, C ′ ∈ PRODΓ(Λ). Since B and C are produced in the same bin
and have matching assemblies B′ and C ′ with matching tokens, they may combine
into an assembly A′. A will represent A since it has the same labels.

3.6 Lines

Using Theorem 1, we provide an alternate proof from [5] of length-n lines with O(log n)
states.
Corollary 1. For all n ∈ N, there exists a freezing Tile Automata system that uniquely
assembles a 1× n line in O(log n) states.
Proof. In [12], it is shown that there exists a staged assembly system that uniquely
produces a 1× n line with 6 tile types, 7 bins, and O(log n) stages. From theorem 1,
there exists a Freezing Affinity-Strengthening Tile Automata system Γ with O(sbt)
states that simulates any staged system Υ with s stages, b bins and t tile types.
Therefore, simulating the staged assembly system from [12] can be done with O(log n)
states.

4 Freezing Affinity Strengthening

While the results in the previous section imply that you may implement Context Free-
Grammar (CFGs) by simulating 1D Staged, here we provide a direct simulation of
CFGs. This direct simulation has the advantage of being deterministic and single tran-
sition. An example CFG is shown in Figure 7, along with the corresponding TA system
in Figure 8. In addition to the freezing and affinity strengthening constraints, this
result achieves the feature that tiles never undergo a change in their color throughout
the assembly process. We denote rules that adhere to this constraint as color-locked
rules.

4.1 Context-Free Grammars

A context-free grammar (CFG) is a set of recursive rules used to generate patterns
of strings in a given language. A CFG is defined as a quadruple G = (V,Υ, R, S). V
represents a finite set of non-terminal symbols and Υ is a finite set of terminal symbols.
The symbol R is the set of production rules and S is a special variable in V called
the start symbol. Production rules R of CFGs are in the form A→ BC|a, with V in
the left-hand side and V and/or Υ on the right- hand side. A CFG derives a string
through recursively replacing nonterminal symbols with terminal and non-terminal
symbols based on its production rules.

14

121



645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690

Fig. 7: A restricted context-free grammar (RCFG) G and its corresponding parse tree
that produces a pattern P , ξξδδδψ. This is a deterministic grammar, producing only
pattern P .

Minimum Context Free Grammars We define the size of a grammar G as the
number of symbols in the right hand side rules. Let CFP be the size of the smallest
CFG that produces the singleton language |P |.

Restricted Context-Free Grammars (RCFG). In this work, we focus on the
CFG class used in [13] which they name Restricted CFGs. These restricted grammars
produce a singleton language, |L(G)| = 1 and thus are deterministic. This is the same
concept of Context-Free Straight Line grammars from [4]. Each RCFG production rule
R contains two symbols on its right-hand side. We can convert any other deterministic
CFG to this form with only a constant factor size increase.

Figure 7 presents an example RCFG G and its parse tree that derives a pattern of
symbols P , ξξδδδψ. The parse tree shows how internal nodes are non-terminal symbols
and leaf nodes contain a terminal symbol whose in-order traversal derives the output
string. Notice that since RCFG G is deterministic, each non-terminal symbol N ∈ V
has a unique subpattern g(N) that is defined by taking N to be the start symbol S
and applying the production rules. Here, the language or output pattern P of G can
be denoted by L(G) = g(S).

4.2 1D Patterned Assembly Construction

We describe our method of simulating a Restricted CFG G with Tile Automata to
build a 1D patterned assembly that represents the pattern P derived from G.

Initial Tiles and Producibles. This Tile Automata system, ΓG, begins with
creating its initial tiles from the unique terminal symbols, Υ, in RCFG G. In Figure 7,
the output pattern P derived from G has three unique terminal symbols ξ, δ, and ψ.
Each unique Υ in G is mapped to a distinct color and remains locked to the symbol
throughout the construction. From G’s production rule parse tree, internal nodes have
two child nodes consisting of two similar or different terminal symbols, Υ. Depending
on the placement of the terminal symbols, the initial tiles are designated as L for left-
hand side or R for right-hand side. Figure 8a depicts that an initial tile consists of an
Υ symbol with its distinct color in an L or R state.

Following G’s parse tree, the initial tiles can combine to build ΓG’s first set of
producible assemblies. Grammar G’s production rules can be encoded into system
ΓG by providing the affinity rules. If two terminal symbols in G connect to the same
internal node in its parse tree, the initial tiles in ΓG that represent the symbols combine
to form a producible. The first set of producibles cannot bind to any other tile because

15

122



691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736

(a) (b)

(c) (d)

Fig. 8: Tile Automata system, ΓG, assembling a 1D patterned assembly that repre-
sents the pattern P produced by the RCFG G shown in Figure 7. (a) ΓG contains
initial tiles from the unique terminal symbols of G. Grammar G’s production rules are
encoded in ΓG as affinity rules, allowing initial tiles to form the first set of producibles.
(b) Following G’s rules, ΓG’s color-locked, one-sided transition rules are applied to the
first set of producibles. (c) Subpattern assembly LδDδFδRψ transitions tiles towards
captile R, marking visited tiles. Once the transitions reach captile R, we transition to
the left of the subassembly to Cδ tiles, removing the marks along the way. (d) RCFG
G production rule Y → BC, directs ΓG to combine B and C subassemblies to build
the terminal patterned line assembly, representing pattern P from grammar G.

they are capped with L and R states, which we denote as captiles, and thus are stopped
from growing, shown in Figure 8b. Note that these first producibles are subpatterns
of P .

Uncapping Producibles. RCFG G production rules tell ΓG how the first pro-
ducible assemblies will combine to form larger subpatterns of P and ultimately
represent the final patterned line assembly. In ΓG, our first set of producibles are com-
posed of L and R captiles. For these producibles to combine with each other, we apply
one-sided, color-locked transition rules to uncap each producible, opening their left
or right-hand side depending on the nonterminal symbols placement in grammar G’s
production rules. For example, in Figure 7 nonterminal C is composed of a D on the
left-hand side and F on the right-hand side. In Figure 3.2b, the producible LδRψ rep-
resents G’s terminal symbols δψ as well as nonterminal F. Because F sticks to D’s right
side, a one-sided transition rule is applied to producible LδRψ changing only the pink
tile Lδ to a new tile Fδ, forming next producible FδRψ. Here, the color-locked restric-
tion in ΓG applies because the new tile Fδ retains its color (pink) that is designated
to the terminal symbol δ of P from G. This producible FδRψ is considered a right-
handed subassembly because it is uncapped on its left side, allowing it to attach to

16

123



737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782

the right-hand side of the producible that represents nonterminal D. The rest of ΓG’s
first producibles transition according to G’s production rules as shown in Figure 8b.

Transition Walk. ΓG recursively applies G’s production rules to build the other
subassemblies needed to represent pattern P . Grammar G’s production rule C → DF
tells ΓG that there is affinity between D and F, directing producibles LδDδ and FδR
to combine and form a new subpattern assembly δδδψ of P , shown at the top of Figure
8c. In Lemma 1, we show how every nonterminal in G is represented as a subpattern
assembly produced by ΓG. Subpattern assembly LδDδFδRψ, represents nonterminal
C from G and is capped with captiles L and R. From G’s production rules in Figure
7, nonterminal symbol Y is composed of B on the left-hand side and C on right-hand
side. To uncap the left side of subpattern LδDδFδRψ, a series of one-sided, color-locked
transition rules are applied to turn each tile into a Cδ tile making the subassembly
uniform, depicted in Figure 8c. The adjacent tiles that have transition rules between
them are outlined in purple, with the resulting tiles shown in the subassembly below it.

We apply the method of ”walking” across 1D assemblies from [5] to uncap left or
right sides of subassemblies. Subpattern assembly LδDδFδRψ must have an opened
left side to attach to subassembly B, so we first transition tiles towards the right
side, marking visited tiles with a prime notation. Once the transitions reach captile
R, we begin to transition to the left of the subassembly to Cδ tiles, removing the
prime notations along the way. As shown in Figure 8c, once producibles D and F
combine, a one-sided, color-locked transition rule applies changing the Fδ tile for a
temporary C ′

δ tile, where the prime marks the tile as visited. Next, the adjacent C ′
δ

and Rψ tiles transition to remove the prime from the C ′
δ tile, producing subpattern

LδDδCδRψ. Another transition is applied between adjacent tiles DδCδ to form the
fourth subassembly in Figure 8c. Finally, one more transition occurs between LδCδ to
produce subpattern CδCδCδRψ.

Patterned Line Assembly. Figure 8d depicts the subpattern assemblies created
by ΓG that represent nonterminal symbols B and C. According to the affinity rules of
ΓG, subassemblies B and C combine to form terminal assembly Y. Subassemblies for
B and C attach and terminal assembly Y is constructed and capped with captiles L
and R on its sides. This new terminal assembly Y represents G’s pattern P , with each
distinct colored tile representing unique terminal symbols of pattern P .
Definition 5 (Nonterminal Pattern). For a nonterminal N ∈ V , let g(N) be a
substring derived when N is the start symbol of grammar G.
Lemma 1. Each producible assembly in ΓG, created from a RCFG G = (V,Υ, R, S)
represents a subpattern g(N) for some symbol N in V

⋃
Υ.

Proof. We will prove by induction that any producible assembly B represents a
subpattern g(N) for some symbol N in V

⋃
Υ.

For the base case, if B is an initial tile, then B represents some terminal symbolN ∈
Υ. For the inductive step, if B is a larger assembly, then we show B represents a non-
terminal N ∈ V . We define the following two recursive cases. B is built from combining
subassemblies C and D, we can assume these assemblies represent symbols NC and
ND respectively. We know from how we defined our affinity rules if C and D can
combine then there is some rule N → NCND. Then B represents the pattern g(N) =

17

124



783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828

g(NC)⊕ g(ND). B is producible via transition from an assembly C, B must represent
the same subpattern as C since the transition rules do not change the color.

Theorem 2. For any pattern P , there exists a Freezing Tile Automata system Γ with
deterministic single transition rules that uniquely assembles P with O(CFP ) states
and 1× 1 scale. This system is cycle-free and transition rules do not change the color
of tiles.

Proof. By definition, there exists a CFG G that produces P with |G| = CFP . We
construct the system ΓG. From Lemma 1, each producible assembly B must represent
a subpattern g(N) for some symbol N . The only terminal of Γ is the assembly rep-
resenting the start symbol S since all other assemblies either can attach to another
assembly or can transition.

5 Optimal Patterns in Tile Automata

In this section we show that general Tile Automata can obtain Kolmogorov optimal
state complexity at 1×1 scale. These first results are achieved by applying the efficient
binary string construction from [1], and allowing the additional tiles used by the
assembly to fall off, thus leaving only the string. We can then utilize the Turing
machine from to simulate a universal Turing Machine. The Turing Machine in was
designed to accept/reject an input, so we modify the Turing Machine to print P on
the tape and halt.
Lemma 2. For any binary pattern X there exists an affinity strengthening Tile
Automata system that uniquely constructs an assembly representing X at scale,

• 4× 2 with O(|X| 14 ) states,
• 3× 2 with O(|X| 13 ) states using single-transition rules, and
• 2× 1 with O(|X| 12 ) states using deterministic single-transition rules and is cycle

free.

Proof. These constructions are provided in [1] which shows that there exists a method
to encode the bits of a string in the transition rules of the system. Each construction
takes advantage of a feature not available in the stricter class of systems. The model
shown in this paper however does have seeded growth but a simple extension shows
this works with 2-handed production.

Theorem 3. For any pattern P , there exists a Tile Automata system Γ that uniquely

assembles P with Θ(K
1
4

P ) states at 1× 1 scale.

Proof. Given a pattern P , we first consider a Turing machine M that will print P .
Using the process described in [5], we create a system ΓM = (Σ,Π,Λ,∆, τ) that
simulates M . When M has completed printing P , the buffer states BL and BR need
to detach. We take Σ and create a copy ΣSR which we modify by removing the
accept/reject states in favor of final states. For every state ρ ∈ ΣSR where ρ composes
P , we create ρF ∈ ΣSR with affinity only for every other final state. Starting with
the rightmost tile that composes P , we add transition rules that will transition each
tile with state ρ into their final state equivalent ρF . Since these final states have no
affinity with the buffer states, tiles with those buffer states, and any other state not

18

125



829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874

considered a final state, will detach from the assembly. This detaching process begins
with a transition rule between BR and the rightmost tile with state ρ, turning ρ into
ρF .

From Lemma 2, we encode ΓM in a binary string b(ΓM ) and use b(ΓM ) to construct

system ΓS that uses Θ(K
1
4

P ) to assemble b(ΓM ). [21] states there exists a universal
Turing machine that uses linear space in the amount of space used by the machine
being simulated. Γ will simulate a universal Turing machine with ΓS being used to

construct the input into Γ, giving us a system that uniquely assembles P with Θ(K
1
4

P )
states and 1× 1 scale.

5.1 Deterministic Single Transition Turing Machine

The Turing machine from [5] utilizes transition rules that change both tiles in the same
step. While [8] shows a way to simulate double rules with single rules, we present a
slight modification to the Turing machine construction to make it utilize single rules.
Lemma 3. For any pattern P , there exists a Tile Automata system Γ with determin-
istic single-transition rules that uniquely assembles P with O(KP ) states and 1 × 1
scale. This system is cycle free.

Proof. We create a Turing machineM that will print P . Using Turing machineM , we
use the process described in [5] to create a system ΓD = (Σ,Π,Λ,∆, τ) that simulates
M utilizing double-transition rules. We then modify Σ, ∆, and Π into single-transition
rule versions ΣSR, ∆SR, and ΠSR as follows.

ΣSR and ΠSR will initially be a copy of Σ and Π respectively, while ∆SR is
populated with every single-transition rule in ∆. For every double-transition rule
δ = (A,B,C,D, d) ∈ ∆, we create an additional state ω ∈ ΣSR. The affinity strength
of ω using ΠSR will be equal to the affinity strength of D using Π for all directions.
We take δ and create 3 transition rules δS1, δS2, δS3 ∈ ∆S defined below.

• δS1 = (A,B,A, ω, d)
• δS2 = (A, ω,C, ω, d)
• δS3 = (C, ω,C,D, d)
We use the final states described in the proof of Theorem 3 to modify ΣSR in order

to detach the buffer states. Using our modifications, we create a Tile Automata system
Γ = (ΣSR,ΠSR,Λ,∆SR, τ) with deterministic single-transition rules that uniquely
assembles P with O(KP ) states and 1× 1 scale.

Using Lemma 2we can encode the input to a universal Turing machine with square
root the number of states with deterministic single transition rules.
Theorem 4. For any pattern P , there exists a Tile Automata system Γ with deter-

ministic single transition rules that uniquely assembles P with O(K
1
2

P ) states and 1×1
scale. This system is cycle free.

Proof. We make some modifications to the process used in the proof of Theorem 3
to satisfy the deterministic single-transition rules. We create ΓM using the method
described in the proof of Lemma 3 and encode the system in a binary string b(ΓM ). ΓS

is created using b(ΓM ) which will use O(K
1
2

P ) as shown in Lemma 2. Γ will simulate a

19

126



875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920

universal Turing machine that uses the assembly built by ΓS , giving us a system that

uniquely assembles P with O(K
1
2

P ) states and 1× 1 scale.

Other methods for non-deterministic rules and with single and double rules give
the following.
Theorem 5. For any pattern P , there exists a Tile Automata system Γ with single

transition rules that uniquely assembles P with Θ(K
1
3

P ) states and 1× 1 scale.

Proof. A deterministic single-rule TA system ΓM can be constructed according to

Lemma 3, and using an encoding b(ΓM ), we make ΓS which uses Θ(K
1
3

P ) states using
Lemma 2

5.2 Freezing with Detachment

We do not directly consider Freezing and allowing detachment since the results of [9]
shown that any non-freezing system can be simulated by a freezing system by replacing
tiles. Also shown in the full version of [5] it was shown freezing Tile Automata with
only height 2 assemblies can simulate a general Turing machine. The assembly can
then fall apart to achieve 1× 1 scale.

6 Affinity Strengthening

As shown in [5], Affinity Strengthening Tile Automata (ASTA) is capable of
simulating Linear Bounded Automata (LBA) and that verification in ASTA is
PSPACE-Complete. Thus, it makes sense to view this version of the model as the
spaced-bounded version of Tile Automata, similar in power to LBAs or Context Sen-
sitive Grammars. We select space-bounded Kolmogorov complexity as our method of
bounding the state complexity since we can encode a string and simulate a Turing
machine as in the previous section to get an upper bound. The concept of bounded
Kolmogorov Complexity was explored in [14]. For these results, we consider building
scaled patterns in which each pixel of the pattern is expanded to a s × O(1) box of
pixels. Another way to view this upper bound is that for any algorithm α that outputs
P in f(|P |) space, we may construct an assembly representing P of size O(f(|P |), in
O(|α|) 1

4 states, where |α| is the number of bits describing α for general Tile Automata.
Similar bounds are shown for the other restrictions. It is interesting to point out that
with a large enough scale factor we achieve Kolmogorov optimal bounds, including
optimal scaled shape constructions as in [16].

6.1 Space Bounded Kolmogorov Complexity

Definition 6 (Space Bounded Kolmogorov Complexity). Given a pattern P , and a
function f : N→ N that outputs the space used by a Turing machine, let KSP (f(|P |))
be the length of the smallest string that, when input to a universal Turing machine
MK , halts with the pattern P on the tape in f(|P |) space.

It was stated in [14] that there exists some optimal Turing machine, which we call
MK , that incurs only a constant multiplicative factor increase in the space used. We
note for two space bounds f(|P |) and g(|P |), the value KSP (g(|P |)) ≤ KSP (f(|P |))

20

127



921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966

1 0 0 1 1 1 0 1

(a) Assembly representing input string.

1 0 0 1 1 1 0 1 1 1 0 0 1 0 0 1

(b) Universal Turing machine running on
input.

1 0 1 1 1 0 0 1 0 0 1

(c) The pattern is output on the tape.
(d) The pattern scales outward to fill the
assembly.

Fig. 9: (a) It is possible to build assemblies representing binary strings with an efficient
number of states. (b) We can then run a universal Turing machine on the input
increasing the length of the assembly as needed. (c) The Turing machine will halt with
the pattern output on the tape. (d) The pattern will then scale out to fill the assembly.

as using more space allows for more efficient computing of all pattern P , with |P | < c
for some constant c.

6.2 Construction

Figure 9a shows a sketch of the assembly for deterministic Tile Automata using the
string constructions from [1] shown in Lemma 2. The single rule Turing machine can
be modified to never break apart and only increase the tape length, similar to the
PSPACE-hard reduction from [5]. Figure 9b shows an example Turing machine being
run where the tape length is increased.

Once the pattern has been printed or assembled (Figure 9c), there are additional
tiles in the assembly to deal with. However, since we cannot detach tiles, we scale the
pattern. The first step is to expand the length of pattern. If we use s tape cells to print
a pattern |P |, we scale each point in the pattern by c · |P |. This is done with a simple
algorithm implemented in the transition rules. Create a token state that starts at the
leftmost state after the string is printed. Go to each ‘pixel’ and tell it expand once
after first signaling the neighboring cells to move right (to prevent overwriting). We do
this for each pixel in the pattern, push the other states, increase pixel size. The system
repeats this process until all pixels of the pattern are fully expanded, and then they
transition the tiles below them, which results in the patterned assembly of Figure 9d.
Theorem 6. For any pattern P , scale factor s > 0, there exists an Affinity Strength-
ening Tile Automata system Γ with deterministic single transition rules that uniquely
assembles P with O(KSP (s|P |)

1
2 ) states and s× 2 scale. This system is cycle free.

Proof. LetX be the string that when input toM , P is written to the tape in s|P | space.
Using the binary string building results from Lemma 2 we can encode X in O(|X| 12 )
states. Then we runM using the single transition rule Turing machine described in the
proof of Lemma 3. This will run and leave the pattern P on the tape states. Consider
a second Turing machine MINC scales up the pattern to fill the width of the tape.
Each pixel is increased by the same amount. The states then copy the color to the
state below it as well. This can be done in a constant number of states. The amount
that each pattern scales by is s|P |

|P | = |P | · (s− 1).

21

128



967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

Theorem 7. For any pattern P , scale factor s > 0, there exists an Affinity Strength-
ening Tile Automata system Γ with single-transition rules that uniquely assembles P
with O(KSP (s|P |)

1
3 ) states and s× 3 scale.

Proof. Again using the Single-Transition rule Turing machine from the proof of Lemma
3 and the string building result from Lemma 2, we can construct the input to the
universal Turing machine MK . The pattern P can be output in s|P | space. We then
scale up the pattern to fill the assembly.

Theorem 8. For any pattern P , scale factor s > 0, there exists an Affinity Strength-
ening Tile Automata system Γ that uniquely assembles P with O(KSP (s|P |)

1
4 ) states

and s× 4 scale.

Proof. Lastly using the same method from Lemma 2 we can encode the input to the
universal Turing machine in |X| 14 where |X| is the length of the string. This results in
an assembly of height 4 as resulting assembly will be of dimensions |X|×4. The string
X can then be input to the Turing machine to print the pattern than scale up.

7 Lower Bounds

We provide lower bounds for general Tile Automata under the three transition rule
restrictions. We do this by showing a binary string encoding a Tile Automata system
can be passed to a Turing machine to output a patterned assembly, from which the
pattern P can be read and output. This means we cannot encode a system in less bits
than the Kolmogorov Complexity KP . We achieve similar bounds as [1] as we use the
same system for binary string encoding.

For affinity strengthening we provide a lower bound based on the Space Bounded
Kolmogorov Complexity defined in Section 6. As with the previous result, we show that
a binary string encoding a system can be passed to a Turing machine that outputs the
uniquely produced assembly representing the pattern P in f(|P |) space. This means
we cannot encode the system in less than KSP (f(|P |)) bits. We give an upper bound
of f(n) = O((s|P |)2 log2 s|P |) in Lemma 4 to compute a pattern scaled by a factor of
s. With this we base our lower bounds on KSP ((s|P |)2 log2 s|P |).

7.1 General

Theorem 9. For any Pattern P over constant colors a Tile Automata system Γ that

uniquely assembles P at any scale requires Ω(K
1
4

P ) states.

Proof. A Tile Automata system Γ = {Σ,Π,Λ,∆, τ = O(1)} can be encoded in < c|Σ|4
bits for some constant c. We may store Π as a |Σ| × |Σ| table with each O(log τ)
bit cell storing their binding strength which is at most τ . The initial tiles Λ can be
encoded with a single bit for each state. ∆ is the largest part of the encoding taking
2|Σ|4 bits . This can be stored as a 4D table where each cell contains two bits (v, h).
The first bit at index σ1, σ2, σ3, σ4 being whether or not the states (σ1, σ2) transition
to (σ3, σ4) vertically and the second bit horizontally. The exact constant achieved is
thus dependent on τ .

22

129



1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058

Consider a Turing machine MTA that takes as input the binary description of
a Tile Automata system Γ that uniquely assembles an assembly A and outputs the
pattern of A as a string. We can assume MTA can be described in constant bits. The
producible assemblies of a Tile Automata system are recursively enumerable. Since we
know that Γ uniquely produces P we know there exists a finite number of assemblies
as well as the system must be bounded. This makes verifying the terminal assembly
is decidable as there’s only a finite number of possible Combinations, Breaks, and
Transitions to check.

Let MK be the fixed universal Turing machine to define KP , assume there exists
a system Γ′ = {Σ′,Π′,Λ′,∆′, τ ′ = O(1)} that uniquely produces the pattern P with
|Σ′| < (KP

c )
1
4 states. Using our encoding method above encode Γ′ as a binary string

b(Γ′) with in |b(Γ′)| < KP . If we pass b(Γ′) along with an encoding of MTA to the
universal Turing Machine MK it will simulate the algorithm and output the pattern
P . This would mean thatMK can produce the pattern with less than KP + | < Mk > |
bits which violates the Kolmogorov Complexity so this is not possible.

Theorem 10. For any Pattern P over constant colors, a Tile Automata system Γ with

single transition rules that uniquely assembles P at any scale requires Ω(K
1
3

P ) states.

Proof. We use the same argument for this proof but show the system can be encoded
more efficiently. We can store our transition rules in a O(|Σ|3) bit table. This is a
3D table where each cells stores 4 bits. The first two indices representing the starting
states and the third is the target state. There is only one state since single transition
rules only change one rule at a time. The table stores 4 bits in order to store whether
they transitions vertically or horizontally, and whether the first or second tile changes
to the other state.

Theorem 11. For any Pattern P over constant colors, a Tile Automata system Γ
with deterministic transition rules that uniquely assembles P at any scale requires

Ω
(
( KP

logKP
)

1
2

)
states.

Proof. Deterministic rules can be encoded in O(|Σ|2 log |Σ|) bits. To achieve this, store
the rules in a |Σ| × |Σ| table where each cell stores up to two other pairs of states
which takes O(log |Σ|) bits. We only need to store a constant number of pairs since
each pair of states and orientation can only have a single rule. Note that this method
can encode single or double transition rules with only a constant factor difference.

Applying similar algebra as done for Theorem 9 we have |Σ| = Ω
(
( KP

logKP
)

1
2

)
.

7.2 Affinity Strengthening

In [5] it was shown that the Unique Assembly Verification Problem (UAV) for affinity
strengthening Tile Automata is solvable in PSPACE. In Lemma we show that given a
binary string b(|Γ|) describing a directed Affinity Strengthening Tile Automata system,
we can produce a description of the uniquely produced assembly A in O(|A|2 log2 |Σ|)
space. We then apply this fact in Theorem 12 to get a state complexity lower bound
based on bounded-space Kolmogorov complexity.

23

130



1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104

Lemma 4. Given a binary string b(Γ) describing a directed Tile Automata system Γ,
there exists an algorithm that outputs the uniquely produced assembly TERMΓ = {A},
in O(|A|2 log2 |Σ|) space.
Proof. This can be done by making multiple calls to a subroutine that solves the
unique assembly verification problem (UAV) for affinity strengthening Tile Automata.
For each integer starting at i = 1, call the algorithm for UAV on each assembly B
of size |B| = i. If the UAV algorithm returns yes, then return B since A = B, i.e. B
is the uniquely produced assembly. Storing one of these assembly take O(|A| log |Σ|)
bits and we only need to have stored one at a time and the largest assembly we store
is |A| size.

The exact details of the algorithm are shown in [5]. This algorithm only stores
a constant number of assemblies at a time each of up to size 2|A|. We can store an
assembly in |A| log |Σ| bits thus giving our bound.

Theorem 12. For all Patterns P , scale factor s > 0, an Affinity Strengthening Tile
Automata system Γ that uniquely assembles P at scale n×m for nm = s requires
Ω(KSP ((s|P |)2 log2 s|P |)

1
4 ) states.

Proof. We can use the same method for encoding Γ into a binary string b(Γ) as done
in Theorem 9 to achieve |b(Γ)| = O(|Σ|4). We can pass b(Γ) along with an algorithm
that outputs the pattern P produced by Γ to the universal Turing MachineMK . With
this we can bound the length of the string, |b(Γ)| ≥ KSP (f(|P |)) where f(|P |) is the
space taken by the algorithm to output P .

From Lemma 4 we know we can output a description of the uniquely produced
assembly A in O(|A|2 log2 |Σ|) space and the pattern can be read and output. A
naive implementation can give |Σ| ≤ |A| by assigning each tile a unique state.
The size of the assembly is |A| = s|P |, so we can bound the space by the scale
factor s and the pattern size |P | giving us O((s|P |)2 log2 s|P |). We therefore get

|Σ| = Ω
(
KSP ((s|P |)2 log2 s|P |)

1
4

)
.

Theorem 13. For all Patterns P , scale factor s > 0, an Affinity Strengthening Tile
Automata system Γ with single transition rules that uniquely assembles P at scale
n×m for nm = s, requires Ω(KSM (P, s|P |3) 1

3 ) states.

Proof. We may encode a system with single transition rules in |Σ|3 bits so we get a

bound of |Σ| = Ω
(
KSP ((s|P |)2 log2 s|P |)

1
3

)
.

Theorem 14. For all Patterns P , scale factor s > 0 , an Affinity Strengthening Tile
Automata system Γ with deterministic transition rules that uniquely assembles P at

scale n×m for nm = s, requires Ω
(
( KS(P,|P |3)
logKSM (P,|P |3) )

1
2

)
states.

Proof. A deterministic Tile Automata system can be encoded O(|Σ|2 log |Σ|) bits. By
performing the same steps as in Theorem 11 we get |Σ| = Ω

(
( KS(P,|P |3)
logKSM (P,|P |3) )

1
2

)
.

24

131



1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

8 Conclusion

In this paper we show how to convert any 1D staged assembly system to an equivalent
1D freezing Tile Automata system. We then show how this generalizes some previous
results. We then show how a similar techinque can be used to implement CFGs to
build patterns. We then described a set of upper and lower bounds for pattern building
based on previous work. There are many interesting directions for future work.

• What is the most efficient method to compute the glue-terminal table?
• Can we improve the number of states needed in the TA simulation? Could it be
reduced to O(st + bt) or even O(sg + bg) where g is the number of glues in the
system? What is the lower bound?

• Does allowing for 1D scaling help achieve better bounds?
• Can 1D staged simulate 1D freezing Affinity-Strengthening Tile Automata? I.e.,
are they equivalent? If so, how many tiles, bins, and stages are needed?

• What challenges arise when attempting to generalize this to 2D? The glue-
terminal table must not only store whether or not an assembly is terminal based
on its glues, but also its geometry.

• What is the lower bound for building patterns in 1D freezing Affinity-
Strengthening Tile Automata? Are there languages that Tile Automata can
assemble more efficiently than staged?

Declarations

Ethical Approval

Not applicable.

Competing interests

There are no competing interests that we are aware of in reference to this paper.

Authors’ contributions

These authors contributed equally to this work.

Funding

No external funding was received.

Availability of data and materials

Data Availability Statement: No Data associated in the manuscript.

References

[1] Alaniz RM, Caballero D, Cirlos SC, et al (2022) Building squares with optimal
state complexity in restricted active self-assembly. In: Proc. of the Symposium on
Algorithmic Foundations of Dynamic Networks, pp 6:1–6:18

25

132



1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196

[2] Alumbaugh JC, Daymude JJ, Demaine ED, et al (2019) Simulation of pro-
grammable matter systems using active tile-based self-assembly. In: DNA
Computing and Molecular Programming, Cham, DNA’19, pp 140–158

[3] Barad G, Amarioarei A, Paun M, et al (2019) Simulation of one dimen-
sional staged dna tile assembly by the signal-passing hierarchical tam. Procedia
Computer Science 159:1918–1927

[4] Benz F, Kötzing T (2013) An effective heuristic for the smallest grammar problem.
In: Proc. of the 15th Annual Conf. on Genetic and Evolutionary computation, pp
487–494

[5] Caballero D, Gomez T, Schweller R, et al (2020) Verification and Computa-
tion in Restricted Tile Automata. In: 26th Inter. Conf. on DNA Computing and
Molecular Programming, pp 10:1–10:18

[6] Caballero D, Gomez T, Schweller R, et al (2021) Covert computation in
staged self-assembly: Verification is pspace-complete. In: 29th Annual European
Symposium on Algorithms, ESA’21, pp 23:1–23:18

[7] Cannon S, Demaine ED, Demaine ML, et al (2013) Two Hands Are Better Than
One (up to constant factors): Self-Assembly In The 2HAM vs. aTAM. In: 30th
Inter. Sym. on Theoretical Aspects of Computer Science, pp 172–184

[8] Cantu AA, Luchsinger A, Schweller R, et al (2020) Signal passing self-assembly
simulates tile automata. In: 31st Inter. Sym. on Algorithms and Computation,
ISAAC’20, pp 53:1–53:17

[9] Chalk C, Luchsinger A, Martinez E, et al (2018) Freezing simulates non-freezing
tile automata. In: DNA Computing and Molecular Programming, Cham, pp 155–
172

[10] Chalk C, Martinez E, Schweller R, et al (2018) Optimal staged self-assembly of
general shapes. Algorithmica 80(4):1383–1409

[11] Chalk C, Martinez E, Schweller R, et al (2019) Optimal staged self-assembly of
linear assemblies. Natural Computing 18(3):527–548

[12] Demaine ED, Demaine ML, Fekete SP, et al (2008) Staged self-assembly:
nanomanufacture of arbitrary shapes with o (1) glues. Natural Computing
7(3):347–370

[13] Demaine ED, Eisenstat S, Ishaque M, et al (2011) One-dimensional staged self-
assembly. In: Proceedings of the 17th international conference on DNA computing
and molecular programming, DNA’11, pp 100–114

26

133



1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242

[14] Longpré L (1986) Resource bounded kolmogorov complexity, a link between
computational complexity and information theory. Tech. rep., Cornell University

[15] Schweller R, Winslow A, Wylie T (2019) Verification in staged tile self-assembly.
Natural Computing 18(1):107–117

[16] Soloveichik D, Winfree E (2007) Complexity of self-assembled shapes. SIAM
Journal on Computing 36(6):1544–1569

[17] Thubagere AJ, Li W, Johnson RF, et al (2017) A cargo-sorting DNA robot.
Science 357(6356):eaan6558

[18] Tikhomirov G, Petersen P, Qian L (2017) Fractal assembly of micrometre-scale
dna origami arrays with arbitrary patterns. Nature 552(7683):67–71

[19] Winfree E (1998) Algorithmic self-assembly of DNA. PhD thesis, California
Institute of Technology

[20] Winslow A (2015) Staged self-assembly and polyomino context-free grammars.
Natural Computing 14(2):293–302

[21] Woods D, Neary T (2009) The complexity of small universal turing machines: A
survey. Theoretical Computer Science 410(4-5):443–450

[22] Woods D, Doty D, Myhrvold C, et al (2019) Diverse and robust molecular
algorithms using reprogrammable dna self-assembly. Nature 567(7748):366–372

27

134



APPENDIX C

135



APPENDIX C

COVERT COMPUTATION IN THE ABSTRACT TILE SELF-ASSEMBLY MODEL

136



Covert Computation in the Abstract Tile-Assembly1

Model2

Robert M. Alaniz #3

Department of Computer Science, University of Texas Rio Grande Valley4

David Caballero #5

Department of Computer Science, University of Texas Rio Grande Valley6

Timothy Gomez #7

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology8

Elise Grizzell #9

Department of Computer Science, University of Texas Rio Grande Valley10

Andrew Rodriguez #11

Department of Computer Science, University of Texas Rio Grande Valley12

Robert Schweller #13

Department of Computer Science, University of Texas Rio Grande Valley14

Tim Wylie #15

Department of Computer Science, University of Texas Rio Grande Valley16

Abstract17

There have been many advances in molecular computation that offer benefits such as targeted18

drug delivery, nanoscale mapping, and improved classification of nanoscale organisms. This power19

led to recent work exploring privacy in the computation, specifically, covert computation in self-20

assembling circuits. Here, we prove several important results related to the concept of a hidden21

computation in the most well-known model of self-assembly, the Abstract Tile-Assembly Model22

(aTAM). We show that in 2D, surprisingly, the model is capable of covert computation, but only23

with an exponential-sized assembly. We also show that the model is capable of covert computation24

with polynomial-sized assemblies with only one step in the third dimension (just-barely 3D). Finally,25

we investigate types of functions that can be covertly computed as members of P/Poly.26

2012 ACM Subject Classification Theory of computation → Computational complexity and cryp-27

tography28

Keywords and phrases self-assembly, covert computation, atam29

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2330

Funding This research was supported in part by National Science Foundation Grant CCF-1817602.31

Acknowledgements This research was supported in part by National Science Foundation Grant32

CCF-1817602.33

1 Introduction34

With the ability to manufacture nanoscale structures and to use DNA as building blocks for35

structures [28] or for data storage [10], there has been a great increase in the need to process36

and compute information at the same level. Thus, the study of self-assembling computation37

has been an important and active area of research over the last two decades.38

Designing self-assembling systems that compute functions is an active and well-studied39

area of computational geometry and biology [4,19]. This ability to craft monomers capable of40

placing themselves — especially when doing precision construction and computation at scales41

where conventional tools are incapable of operating, e.g., the nanoscale — has tremendous42

© Robert M. Alaniz, David Caballero, Timothy Gomez, Elise Grizzell, Andrew Rodriguez, Robert
Schweller, Tim Wylie;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

137



23:2 Covert Computation in the Abstract Tile-Assembly Model

power. One of the few downsides to self-assembly computation is that the entire history of43

the computation is visible. In certain cases, this may be undesirable for privacy or security44

reasons, which we motivate below. Thus, we build on recent work [6,7,9] to explore covert45

computation, where we build Tile Assembly Computers (TACs) designed with the goal of46

obtaining the output of computation while obscuring the inputs and computational history.47

We do this by proving that covert computation is possible even in one of the simplest standard48

models of self-assembly: the Abstract Tile-Assembly Model (aTAM) [29].49

Motivation. The development of covert computation as a model and method of designing50

self-assembling systems was driven by several areas of concern in cryptography, biomedical51

engineering, privacy, and might even help protect intellectual property in systems that use52

“products of nature,” such as DNA, as they cannot be patented in the United States as of53

2013 [14]. Covert computation has also emerged as a powerful complexity tool, being used to54

show the coNP-completeness of the Unique Assembly Verification problem in the negative55

glue aTAM [9], and the PSPACE-completeness of the Unique Assembly Verification problem56

in the Staged Assembly Model [6]. As this paper focuses on systems without detachment,57

there might also be important applications in implantable systems where even the possibility58

of displacement from free-floating DNA could cause unknown side effects or destabilization59

of the assembly [23].60

1.1 Previous Work61

The Abstract Tile-Assembly Model (aTAM) was first introduced in [29] and inherited the62

ability to perform Turing computation from Wang tiles. Since then, investigation into the63

model has led in many directions, such as Intrinsic Universality [18, 22], efficient assembly of64

shapes [25], and parallel computation [5, 24]. Many generalizations have also appeared, such65

as allowing for RNA tiles that can be deleted [1,15], multiple stages of growth [6,12,16], and66

even negative glues [9, 17]. The aTAM is powerful because not only can the tile set store67

information, but work has also gone into using the seed [3], or even the temperature [11, 26],68

for making systems more complex.69

Tile Assembly Computers were defined in [5, 24], and Covert Computation, as defined in70

the field of self-assembly, was first introduced in 2019 [9] for negative growth-only aTAM. In71

negative variations of tile self-assembly models, tiles are capable of not only attachment to72

but also detachment from an assembly if the remaining assembly is still stable. In negative73

growth-only aTAM, tiles are never allowed to detach even though there may be glues providing74

a repellent force, and the system must be designed so that detachment does not occur. This75

paper introduced the covert construction framework to answer an open complexity problem76

for Unique Assembly Verification (UAV) with negative growth-only glues in the aTAM model,77

showing it to be coNP-complete. Notably, without negative glues, the UAV problem is78

solvable in polynomial time [2].79

Covert computation has been explored in two other models of self-assembly as well:80

Staged Self-Assembly [6] and Tile Automata [7]. The staged self-assembly model, one of the81

most powerful passive tile self-assembly models, abstracts the process of scientists mixing test82

tubes together by allowing multiple self-assembly processes occurring in separate ‘bins’ that83

may be combined in subsequent ‘stages.’ The authors show that 3-stages suffice for covert84

computation and used the techniques to show that the UAV problem directly relates the85

number of stages to a specific level of the polynomial hierarchy. Thus, with no restrictions on86

the number of stages, UAV in the staged model is PSPACE-complete. Covert Computation87

in the active self-assembly model of Tile Automata was shown to be rather simple as tiles88

in the model are capable of changing states (instead of having static glues), easily erasing89

138



R. M. Alaniz et al 23:3

Class Model Size Of Ref
Input Tile Set Output Assembly

Bool. Circuits NegGO O(n) O(MCS) O(k) O(MCS) [9]
Bool. Circuits 3D O(n) O(MCS) O(k) O(MCS) Thm. 1
Rev. Circuits∗ 2D O(n + MSC) O(MCS) O(1) O(2n) Thm. 2

Table 1 Known Covert Circuits for n-bit function f(x). Let MCS be the minimum circuit size
that computes f(x). Input Size is the size of the input assembly. Output Size is the size of the
output template, where we use k to describe the number of output bits. ∗ currently only works for
binary functions.

computational history.90

1.2 Our Contributions91

In this work, we further explore the problem of designing covert tile assembly computers92

(TACs) in the aTAM, focusing on TACs that have a polynomial size description. We provide93

two new covert computers in the aTAM with only positive glue strengths of {1, 2} in Sections94

3 and 4. The 3D construction uses a similar technique to the circuits in [9] by implementing95

a NAND gate using dual rail logic and backfilling. We refer to this covert TAC as having96

a strict polynomial size since the systems defined by the TAC all produce assemblies of97

polynomial size. This only uses a single-step into the third dimension, which is occasionally98

referred to as just-barely 3D [20,21].99

The covert TAC in Section 4 is in the standard 2D aTAM. The TAC is of polynomial size,100

but produces an exponential-size terminal assembly. This works by computing the function101

non-covertly using Toffoli gates, getting the output, reversing the computation to recover102

the input, then building the next and previous circuit assemblies until all possible circuits103

are built. We utilize the Toffoli gates’ reversibility property to have a symmetrical circuit104

assembly that displays its input on both sides that we can increment or decrement (the input105

used) to start the next computation.106

In Section 5 we explore the classes of decision problems solvable by polynomial size covert107

TACs. Table 1 gives an overview of known covert circuits for functions based on the input108

size. Since covert has been defined as a non-uniform model, meaning different input sizes109

have different tile sets, we look at non-uniform complexity classes as well. Namely, the class110

P/poly, the class of problems solvable by polynomial size circuits. We prove that if a problem111

is solvable by a 3D covert TAC, then it is in P/poly. This, taken with the result in Section 3,112

shows an equivalence between these two models of computation.113

2 Definitions114

We begin with an overview of the Abstract Tile-Assembly Model, then follow with a definition115

of Tile Assembly Computers and covert computation.116

2.1 Abstract Tile Assembly Model117

At a high level, the Abstract Tile-Assembly Model (aTAM) uses a set of tiles capable of118

sticking together to construct shapes. These tiles are typically squares (2D) or cubes (3D)119

with glues on each side where they may attach to one another. A glue is labeled to indicate120

its type, governing what other tiles it may bond with and the strength of the bond. A tile121

CVIT 2016
139



23:4 Covert Computation in the Abstract Tile-Assembly Model

with all of its labels is a tile type. A tile set contains all the tile types of the system. A single122

tile may attach at a location if the combined strength of the matching glues is greater than123

or equal to the temperature τ . An assembly is a shape made up of one or more combined124

tiles. Construction is started around a designated seed assembly S. Any assembly capable125

of being made from the seed is called a producible assembly. An assembly is terminal if no126

more tiles can attach. A terminal assembly is said to be uniquely produced if it is the only127

terminal assembly that can be made by a tile system. A tile system is formally represented128

as an ordered triplet Γ = (T, s, τ) of the tile set, seed assembly, and temperature parameter,129

respectively.130

2.1.1 aTAM Formal Definitions131

Tiles. Let Π be an alphabet of symbols called the glue types. A tile is a finite edge polygon132

with some finite subset of border points, each assigned a glue type from Π. Each glue type133

g ∈ Π also has some integer strength str(g). Here, we consider unit square tiles of the same134

orientation with at most one glue type per face, and the location to be the center of the tile135

located at integer coordinates.136

Assemblies. An assembly A is a finite set of tiles whose interiors do not overlap. If137

each tile in A is a translation of some tile in a set of tiles T , we say that A is an assembly138

over tile set T . For a given assembly A, define the bond graph GA to be the weighted graph139

in which each element of A is a vertex, and the weight of an edge between two tiles is the140

strength of the overlapping matching glue points between the two tiles. Only overlapping141

glues of the same type contribute a non-zero weight, whereas overlapping, non-equal glues142

contribute zero weight to the bond graph. The property that only equal glue types interact143

with each other is referred to as the diagonal glue function property, and is perhaps more144

feasible than more general glue functions for experimental implementation (see [13] for the145

theoretical impact of relaxing this constraint). An assembly A is said to be τ -stable for an146

integer τ if the min-cut of GA has weight at least τ .147

Tile Attachment. Given a tile t, an integer τ , and an assembly A, we say that t148

may attach to A at temperature τ to form A′ if there exists a translation t′ of t such that149

A′ = A ∪ {t′}, and the sum of newly bonded glues between t′ and A meets or exceeds τ .150

For a tile set T , we use notation A →T,τ A′ to denote there exists some t ∈ T that may151

attach to A to form A′ at temperature τ . When T and τ are implied, we simply say A → A′.152

Further, we say that A →∗ A′ if either A = A′, or there exists a finite sequence of assemblies153

⟨A1 . . . Ak⟩ such that A → A1 → . . . → Ak → A′.154

Tile Systems. A tile system Γ = (T, S, τ) is an ordered triplet consisting of a set of tiles155

T called the system’s tile set, a τ -stable assembly S called the system’s seed assembly, and a156

positive integer τ referred to as the system’s temperature. A tile system Γ = (T, S, τ) has157

an associated set of producible assemblies, PRODΓ, which define what assemblies can grow158

from the initial seed S by any sequence of temperature τ tile attachments from T . Formally,159

S ∈ PRODΓ is a base case producible assembly. Further, for every A ∈ PRODΓ, if A →T,τ A′,160

then A′ ∈ PRODΓ. That is, assembly S is producible, and for every producible assembly A, if161

A can grow into A′, then A′ is also producible.162

We further denote a producible assembly A to be terminal if A has no attachable tile163

from T at temperature τ . We say a system Γ = (T, S, τ) uniquely produces an assembly A if164

all producible assemblies can grow into A through some sequence of tile attachments. More165

formally, Γ uniquely produces an assembly A ∈ PRODΓ if for every A′ ∈ PRODΓ it is the case166

that A′ →∗ A. Systems that uniquely produce one assembly are said to be deterministic.167

140



R. M. Alaniz et al 23:5

2.2 Covert Computation168

Here, we provide formal definitions for computing a function with a tile system and the169

further requirements for the covert computation of a function. Our formulation of computing170

functions is that used in [9], which is a modified version of the definition provided in [24] to171

allow for each bit to be represented by a subassembly potentially larger than a single tile.172

173

Tile Assembly Computers (TAC). Informally, a Tile Assembly Computer (TAC) for174

a function f consists of a set of tiles, along with a format for both input and output. The175

input format is a specification for how to build an input seed to the system that encodes the176

desired input bit-string for function f . We require that each bit of the input be mapped to177

one of two assemblies for the respective bit position: a sub-assembly representing “0” or a178

sub-assembly representing “1”. The input seed for the entire string is the union of all these179

sub-assemblies. This seed, along with the tile set of the TAC, forms a tile system. The180

output of the computation is the final terminal assembly this system builds. To interpret181

what bit-string is represented by the output, a second output format specifies a pair of182

sub-assemblies for each bit. The bit-string represented by the union of these subassemblies183

within the constructed assembly is the output of the system.184

For a TAC to covertly compute f , the TAC must compute f and produce a unique185

assembly for each possible output of f . We note that our formulation for providing input and186

interpreting output is quite rigid and may prohibit more exotic forms of computation. Further,187

we caution that any formulation must take care to prevent “cheating” that could allow the188

output of a function to be partially or completely encoded within the input. To prevent189

this, a type of uniformity constraint, akin to what is considered in circuit complexity [27],190

should be enforced. We now provide the formal definitions of function computing and covert191

computation.192

Input/Output Templates. An n-bit input/output template over tile set T is a sequence193

of ordered pairs of assemblies over T : A = (A0,0, A0,1), . . . , (An−1,0, An−1,1). For a given194

n-bit string b = b0, . . . , bn−1 and n-bit input/output template A, the representation of b with195

respect to A is the assembly A(b) =
⋃

i Ai,bi
. A template is valid for a temperature τ if196

this union never contains overlaps for any choice of b and is always τ -stable. An assembly197

B ⊇ A(b), which contains A(b) as a subassembly, is said to represent b as long as A(d) ⊈ B198

for any d ̸= b. We refer to the size of a template as the size of the largest assembly defined199

by the template.200

Function Computing Problem. A tile assembly computer (TAC) is an ordered201

quadruple ℑ = (T, I, O, τ) where T is a tile set, I is an n-bit input template, and O is a202

k-bit output template. A TAC is said to compute function f : Zn
2 → Zk

2 if for any b ∈ Zn
2203

and c ∈ Zk
2 such that f(b) = c, then the tile system Γℑ,b = (T, I(b), τ) uniquely assembles a204

set of assemblies which all represent c with respect to template O.205

Covert Computation. A TAC covertly computes a function f(b) = c if 1) it computes206

f , and 2) for each c, there exists a unique assembly Ac such that for all b, where f(b) = c,207

the system Γℑ,b = (T, I(b), τ) uniquely produces Ac. In other words, Ac is determined by c,208

and every b where f(b) = c has the exact same final assembly.209

Polynomial-Sized Tile Assembly Computers. We say a TAC is polynomial size210

if the input template, tile set, and output template are all polynomial in n. However, this211

requirement still allows the producible assemblies to be exponentially larger. We say a TAC212

is strictly polynomial size if the produced assemblies are also polynomial in size.213

CVIT 2016
141



23:6 Covert Computation in the Abstract Tile-Assembly Model

0

(a) Bit Assembly
Template 0

1

(b) Bit Assembly
Template 1

1

0

(c) Bit Assembly
Output Template

1
0

(d) Bit Assembly Output
Template (isometric view)

Figure 1 Input assemblies and their respective input templates. The blue squares represent the
bit set to zero, and the orange squares represent a bit set to one. Grey glues are strength-1, black
glues are strength-2.

3 3-Dimensional Covert Circuits214

In this section, we show how to perform covert computation in the aTAM using 3 dimensions.215

The computation behaves similarly to the covert circuit construction in [9] by building NAND216

gates and FANOUTs using dual rail logic. We start with showing a NOT that switches which217

wire is “on”, then extending to a NAND by utilizing cooperative binding.218

The main difference between the two constructions is when backfilling occurs, which is219

the process of filling in the unused dual rail line once that line is no longer needed. Here, we220

do not backfill as we go, rather, we fill in the assembly once the computation is complete.221

3.1 Input Assemblies222

Our input assembly consists of n 1 × 6 columns with two of four tiles attached on the right223

(Figures 1a and 1b). The top two tiles will be included when the input is 1, and the bottom224

two tiles if the input is 0. These tiles have enough attachment strength to be stable when225

both are present, however, since the tiles only have strength 1 bonds, they may not attach226

alone. This initially prevents the growth of the other bit, which is not placed until the227

computation is complete, further elaboration of this process is described in section 3.5.228

3.2 Wires and NOT Gates229

Bit information is represented and transferred using a wire. A wire is constructed using two230

rows of tiles (Figure 2a), each representing a binary value of 0 or 1. This dual rail system231

initially grows only one of the rows from the input assembly based off the input and then232

builds into the gates. Before the circuit finishes growing, only one row of each wire will be233

constructed, and at the end, the other wire row will be built.234

Gates such as the NOT grow off the wires. An example of a NOT gate can be seen in235

Figure 2b, notice how we utilize the third dimension to cross the wires over each other. This236

gate swaps the position of the rows of tiles; a row that represents a 0 will now be in the upper237

row and represent a 1. At the end of each gate is a diode gadget that was used in previous238

work [9]. The gadget is a 2 × 2 subassembly that grows only in one direction. If the first tile239

is placed, the whole thing will be first. If the last tile is placed, nothing else grows since it240

connects using two strength 1 glues. This prevents errors caused by “backward” growth.241

142



R. M. Alaniz et al 23:7

0

1

(a) Dual Rail Logic

0

1

(b) NOT Gate

Figure 2 (a) We use dual rail gates. The input glue of 1 grows the orange tiles and 0 grows the
blue. (b) A NOT gate is implemented by crossing the wires over each other.

0

1

0

1

0

1

Figure 3 Full NAND Gate construction in the full circuit. The tiles in orange represent tiles that
will be built from an input of 1 input, while the blue tiles come from an input of 0.

3.3 NAND Gates242

We construct a NAND gate using the NOT gate and cooperative binding. The full NAND243

gate can be seen in Figure 3. If either input to a NAND gate is 0, the output is always 1.244

This can be seen in Figures 4a, 4b, and 4c. If any blue tile is placed, the 1 output of the245

gate will be built. If both inputs are 1, the 0 output can be constructed using cooperative246

binding.247

One thing to note in the case of one output being 0 and the other being 1 is that the248

blue tiles will be placed along the other wire. However, this will not cause any issues since it249

can only build back up to the output of the previous gate due to the diode gadget.250

3.4 Fan Out and Crossover251

Two other gadgets that assist in creating circuits are the fan out and crossover gadgets. The252

fan out (Figure 5a) splits a wire in order to copy the value to two gates. It does this by253

having each tile path split, and then use the third dimension to swap the positions.254

The crossover gadget (Figure 5c) allows for the creation of non-planar circuits. Using the255

third dimension, a wire can go over another wire in order to reach its input. While such 3D256

crossovers simplify constructions greatly, we note that such crossovers are not necessarily257

needed, as planar circuits can simulate such crossovers using XOR gates [9].258

3.5 Backfilling and Target Assemblies259

In order to perform covert computation, there must exist a unique assembly for each output.260

The gray tile at the end of the circuit in Figure 6a is one of two flag tiles that denotes the261

output of the circuit. Once this tile is placed, a row of tiles is built back towards the input262

(Figure 6b). Once the input assembly is reached, the tiles above the input are placed, thus263

CVIT 2016
143



23:8 Covert Computation in the Abstract Tile-Assembly Model

0

0

1

(a) Input 00

0

1

1

(b) Input 01

1

0

1

(c) Input 10

1

1

0

(d) Input 11

Figure 4 Growth of possible inputs to a NAND gate. The gate will stay like this after computing,
before the history is hidden.

0

1

0

1

0

1

(a) Fan Out Gadget

1
0

1
0

1
0

(b) Fan Out Gadget (Isometric)

0

1

0

1

0

1

0

1

(c) Crossover Gadget

1
0

1
0

1

1
0

0

(d) Crossover Gadget (Isometric)

Figure 5 (a) A fan out gadget. (b) Isometric view of the fan out gadget. (c) While a crossover is
not required for universal computation, we can easily implement one by using the 3rd dimension.
(d) Isometric view of the crossover gadget.

allowing for the input assemblies to be filled in. This causes the entire circuit to be filled out,264

which hides the original input and computation history.265

▶ Theorem 1. For any n-bit function f that is computable by a Boolean circuit, there exists266

a Tile Assembly Computer ℑ which covertly computes f in the 3D aTAM with only positive267

glues. Further, ℑ is strictly polynomial in n.268

Proof. We can construct the tile set Tc from the circuit c that computes f . Arrange the269

gates and wires on the square grid using O(n2) space, and scale up each gate and wire by a270

constant factor. Wires are scaled up by a factor of 2 to account for the dual rail logic wires.271

The gates are scaled up by a factor depending on which gate it is, however, all the gates we272

present are only a constant size. This creates assembly Ac,F ull.273

We now show that ℑ computes f . Consider an n-bit input x to f , using the input274

template create seed assembly Ax. Each gate will grow from Ax, computing the circuit on275

each input. Since backfilling does not occur until the circuit finishes computing, we guarantee276

only the correct outputs grow from the final gate. The circuit is computed covertly since the277

output then grows back to the start of the circuit and places the unused inputs. ◀278

The 3rd dimension is vital in this construction to allow signals to cross over for the NOT279

gate. Notice the part of the NAND gadget that is computing the AND gate and how the280

144



R. M. Alaniz et al 23:9

(a) Computed Circuit (b) Output Assembly

Figure 6 Example structures of the computation circuit of an XOR using NOTs and NANDs.
The circuit before backfilling is on the left, and the final output is shown on the right side. (a) A
circuit once the output is computed. (b) Once the output grows backward, the other input bits are
placed.

diode uses cooperative binding. Additionally, it would not be possible to build the full input281

gadget to allow the circuit to backfill. The positions that must be filled will be blocked282

on one side by the input assembly and on the other by wire. The backfilling here is used283

differently than in [8] since there each gate would backfill its input wires. There the negative284

glues were used to allow the tiles to cross over signals to build a NOT gate.285

4 Exponential Assembly Covert Computer in 2D286

In this section, we show that covert computation is possible in 2D in the standard aTAM,287

where the input can be described in polynomial size, yet the final terminal assembly is288

exponential in size. Thus, while we are able to achieve strictly polynomial-sized covert289

computation in 3D, we achieve (non-strict) polynomial-sized covert computation in 2D.290

This construction is possible by first computing the function using reversible Toffoli gates,291

and then replicating and computing the circuit for all possible inputs. Once the output292

of the original input is placed, the Toffoli gate reverses its computation to build a mirror293

of the circuit with the input replicated on both the right and left. The output builds an294

assembly arm used to place tiles on either side of the assembly to increment and decrement295

the mirrored inputs based on the binary value of the original input, thus seeding a new input296

for exponential growth in each direction. Thus, for a 4-bit input, it builds the circuit for all297

24 possible inputs after it builds the output template.298

4.1 Toffoli Gate299

The Toffoli gate is a 3-bit reversible universal logic gate (Figure 7a), we denote the inputs300

A, B, C, and the outputs A′, B′, C ′. The first two input and output bits map to each other:301

A = A′ and B = B′. The third output flips the C bit if both A and B are 1. Logically302

expressed, this is C ⊗ (A ∧ B) = C ′.303

We can express an n-bit d-depth reversible circuit as a n×d grid where each row represents304

a wire, and each column is a layer of gates and wires. Each gate can be represented by tiles305

computing the elementary 2-bit AND and XOR and implementing a fan out, as shown in306

Figure 7b.307

4.2 Covert Circuit308

The input template is a specific tile for each bit. Given an n-bit string, we create a n × 1 bit309

assembly with stability-granting left and bottom circuit construction scaffolds, as shown in310

CVIT 2016
145



23:10 Covert Computation in the Abstract Tile-Assembly Model

(a)

1

1

1

1

1

0

A

B

C

AND

A'

B'

C'

XOR

(b)

Figure 7 (a) Logical representation of Toffoli gate. (b) A Toffoli gate on a grid can be represented
by the three vertical ‘cells’ of elementary logic gates.

0

0

0

0

0

0

1

1

1

1

1

0

Figure 8 All possible computations of a single Toffoli gate. 1 (orange), 0 (blue). 111 → 110, 110 →
111, 101 → 101, 100 → 100, Row 2: 000 → 000, 001 → 001, 010 → 010, and 011 → 011.

Figure 9c.311

The circuit assembly is a n × (d + 2) rectangle. Each Toffoli gate is a 3 × 1 subassembly.312

Three possible computations of a single Toffoli gate are shown in Figure 8. Typically, these313

gates must be reversible, meaning the circuit may grow from the east or west but produce314

the same assembly We note that the gate itself is not covert, and the “covertness” comes315

from the full construction.316

An example Toffoli circuit is shown in Figure 9a along with the logical representation in317

Figure 9b. A constructed circuit assembly in one direction can be seen in Figure 9d.318

4.3 Increment/Decrement Input to Next Circuit Logic319

After completion of a circuit, three columns of tiles are built: mark for increment (left),320

copy or flip (center), and mark for decrement (right). The order of growth of these columns321

depends on the starting direction. Growing from the left to increment input to the next322

circuit or from the right to decrement it. Cooperatively with those columns, below the output323

arm begins its extension to transmit the outcome, accept or reject, of the original circuit.324

This arm extension continues to the center circuit output outcome tile location. From here,325

the circuit construction scaffold, previously provided in the input template, may loop back to326

the edge of the circuit so the new input scaffold and bits may place as illustrated in Figure327

11. The circuit growth continues normally from that point forward, with the exception of328

the output tile placement.329

146



R. M. Alaniz et al 23:11

(a) Toffoli Circuit

(b) AND/XOR Diagram

1(
0,
1)

1(
0,
2)

1(
0,
3)

1(
0,
4)

Input
Left

Scaffold
Left

x4

x4

x3

x3

x2

x2

x1

L1

0(
0,
0)

x1

L0

L1

L1

L1

L0

L1

L1

L1

L1

0

1

1

1

1

(c) Toffoli Input Assembly

0(
0,

0)

0(
0,

0)

1(
1,

0)

1(1,1)

1(
2,

1)

1(
3,

1)

0(3,2)

1(
0,

1)

1(
1,

0)

1(
2,

0)

1(
0,

1)

1(
1,

1)

1(1,1)

1(1,2)

1(
2,

0)

1(
3,

0)

1(
1,

1)

1(
2,

1)

1(
0,

2)

1(
0,

2)

1(
1,

2)

1(1,2)

0(
2,

2)

1(
1,

2)

1(2,3)

0(
2,

2)

0(
3,

2)

0(3,2)

1(3,3)

1(
0,

3)
1(

0,
4)

1(
0,

4)

1(
1,

4)

1(
0,

3)

1(
1,

3)

1(
1,

3)

1(
2,

3)

1(2,3)

1(2,4)

1(
1,

4)

1(
2,

4)

1(2,4)

1(
2,

4)

1(
3,

4)

1(
2,

3)

1(
3,

3)

1(3,3)

1(3,4)

1(3,4)

1(
3,

0)
1(

3,
1)

0(
3,

2)
1(

3,
3)

1(
3,

4)

Input
Left

Scaffold
Left

x4

x4

x3

x3

x2

x2

x1

x1

L1

L0L0

L1

L1L1

L1L1

L1L1

Accept/Reject Tile 
Placed & TAC 

Construction Cont.

Junk/Output

(d) Toffoli Circuit Assembly

Figure 9 (a) Example 5-bit Toffoli Circuit. (b) The Toffoli circuit represented with AND and
XOR gates. (c) Example Input Assembly. For each bit (1 or 0), we place the scaffold (grey or
white) and input bit tile (orange or blue). The bottom is a row of circuit construction scaffold
tiles (maroon). (d) The Toffoli Circuit Assembly built in one direction. The (green) tile below the
output/junk column represents the (positive) output and will allow the output control row to place.

4.4 Output Assembly330

Once the output is built, the rows below have d tiles attached in the east and west directions331

that encode the output. Through cooperative attachment, tiles are placed to allow the strings332

to increment/decrement, as described above. The final terminal assembly contains every333

possible computation.334

▶ Theorem 2. For all functions f(x) that are computable by a n-bit reversible circuit R,335

there exists a polynomial tile assembly computer ℑ = (T, I, O, 2) that covertly computes f(x)336

and has an output assembly of size O(2n).337

Proof. If there exists a n-bit reversible circuit R that computes f(x), we construct tile338

assembly computer ℑ = (T, I, O, 2) as follows. From the circuit R that computes f , we339

design a circuit R′ to compute f with Toffoli gates as described in section 4.2. Using R′ and340

the developed input increment/decrement logic for circuit replication, we construct a tile set341

Tc.342

We create the input assembly I by converting the n-bit input string x to tiles Li in343

scaffold left (figure 9c) and associated input, and a bottom row of tiles called the left circuit344

construction scaffold.345

From here, the left assembly will grow into figure 9d, once the output is determined to be346

‘accept’ or ‘reject’, the output indicator tile is placed, and the original output indicator arms347

CVIT 2016
147



23:12 Covert Computation in the Abstract Tile-Assembly Model

0(
0,

0)

0(
0,

0)

1(
1,

0)

1(1,1)

1(
2,

1)

1(
3,

1)

0(3,2)

1(
0,

1)

1(
1,

0)

1(
2,

0)

1(
0,

1)

1(
1,

1)

1(1,1)

1(1,2)

1(
2,

0)

1(
3,

0)

1(
1,

1)

1(
2,

1)

1(
0,

2)

1(
0,

2)

1(
1,

2)

1(1,2)

0(
2,

2)

1(
1,

2)

1(2,3)

0(
2,

2)

0(
3,

2)

0(3,2)

1(3,3)

1(
0,

4)

1(
1,

4)

1(
0,

3)

1(
1,

3)

1(
1,

3)

1(
2,

3)

1(2,3)

1(2,4)

1(
1,

4)

1(
2,

4)

1(2,4)

1(
2,

4)

1(
3,

4)

1(
2,

3)

1(
3,

3)

1(3,3)

1(3,4)

1(3,4)

1(
3,

0)
1(

3,
1)

0(
3,

2)
1(

3,
3)

1(
3,

4)

Input
Left

Scaffold
Left

x3

x2

x2

x1

x1

L1

L0L0

L1

L1L1

1(
0,

3)

x4

x3

L1L1

1(
0,

4)

x4

L1L1

1(
3,

0)
1(

3,
1)

0(
3,

2)
1(

3,
3)

1(
3,

4)

1(
0,

4)

x4

R1

1(
0,

3)

x4

x3

R1

1(
0,

2)

x3

x2

R1

1(
0,

1)

x2

x1

R1

0(
0,

0)

x1

R0

Junk/
Output

Input
Right

R1

R1

R1

R1

R0

Scaffold
Right

Inc/Dec Circuit 
Transition Logic

Inc/Dec Circuit 
Transition Logic

Begin 
Decrement 
Logic Tile

Begin 
Increment
Logic Tile

Figure 10 An example of a symmetrical circuit that has built both sides and is placing begin
decrement and increment logic tiles.

Increment/Decrement Input
Circuit  Transition Logic

1(
0,

4)

x4

R1

1(
0,

3)

x3

x2

R1

1(
0,

1)

x2

x1

R1

Input
Right

R1

R1

R1

R1

R0

Scaffold
Right

1(
0,

0)

x1

R1

0(
0,

2)

x4

R0

x3

1 1'

+

1 1'

+

1 1
^

1 1
^

0 0''

^

1 1

0'0

0'0

-

1''1

-

1 11 1

''10''  ⇄

1' '0 ⇄

1' '0 ⇄

1 1
^

L0
New Circuit Begins to Build

Figure 11 An example of a new circuit created by incrementing the output from a previously
built assembly.

grow to allow the Right Assembly the ability to grow as well as place begin decrement and348

increment logic tiles on the bottom left and right sides of the completed assembly respectively,349

as seen in figure 10.350

All n-bit computations of f(y) for y less than original input x will be computed to the left351

of the original assembly, and all xn > x after being decremented and incremented using the352

reversible and symmetric logic in yellow from figure 11. Growth is halted by the INC/DEC353

logic at overflow in either direction.354

The ability to grow further left/right circuit construction scaffolds is dependent on the355

output arms from the original output indicator arms growing to the center of the circuit about356

to begin construction where the output accept/reject indicator tile would place, preserving357

the output status for every circuit built in the TAC.358

As there are only two possible assemblies that can be built, accept all or reject all, the359

Tile Assembly Computer is polynomial size in description and exponential in output size. ◀360

148



R. M. Alaniz et al 23:13

PCT2D

P/poly = SPCT3D

SPCT2D

Figure 12 Diagram showing important classes defined in this section and their relation to P/poly.
Note that none of these containments are known to be proper.

We have shown that if the output assembly is allowed to be exponential in size, that361

covert computation is possible in the aTAM, even in two dimensions. However, in practice,362

this is not usually a plausible solution. Given that Unique Assembly Verification is in P [2],363

it is unlikely that covert computation is possible with a strictly polynomial-size TAC.364

▶ Conjecture 3. There does not exist a strictly polynomial-size Tile Assembly Computer in365

the 2D Abstract Tile-Assembly Model.366

5 Polynomial-Sized Covert Circuits367

In this section, we define and investigate complexity classes based on decision problems368

computable by polynomial-sized covert computers. We start by introducing the class P/poly369

and defining three classes of covertly computable problems: the class of problems covertly370

computable by a strictly polynomial 3D system (SPCT3D), the class of problems computable371

by a strictly polynomial 2D system (SPCT2D), and the class of problems computable by372

a (non-strict) polynomial 2D system (PCT2D). We show how these classes relate to each373

other, including the result that P/poly is equal to SPCT3D. Our results in this section are374

summarized in Figure 12.375

5.1 Complexity Classes376

The class P/poly is a well-studied complexity class defined as the class of problems solvable377

by a polynomial-sized circuit. One note about this class is it puts no requirement on the378

circuit other than that it exists. This has an equivalent definition as the problems solvable379

by a polynomial-time Turing machine with a polynomial advice string. We can think of this380

as the Turing machine being given a description of the circuit and evaluating it. Here, the381

advice string or circuit must be identical for all inputs of length n. 1382

▶ Definition 4 (P/poly). The class of problems solvable by a polynomial-sized Boolean383

circuit. Alternatively, defined as the problems solvable by a polynomial-time Turing machine384

M < x, a|x| >, where x is the input and a|x| is an advice string that is based only on the385

length of x. That is, if two inputs x, y have the same size |x| = |y|, then they must use the386

same advice string.387

We define the following three complexity classes to categorize the functions that are388

computable by polynomial-size covert TACs.389

1 Under this definition, every unary language is in this class, including UHALT.

CVIT 2016
149



23:14 Covert Computation in the Abstract Tile-Assembly Model

▶ Definition 5 (SPCT3D). The class of problems solvable by a strict polynomial sized covert390

tile assembly computer in the 3D Abstract Tile-Assembly Model.391

Formally, a language L is in SPCT3D if there exists a sequence of covert TACs C =392

{C1, C2, ...} such that the ith TAC, Ci, is strictly polynomial in i and if it correctly computes393

all x ∈ L where |x| = i.394

▶ Definition 6 (SPCT2D). The class of problems solvable by a strict polynomial sized covert395

tile assembly computer in the 2D Abstract Tile-Assembly Model.396

▶ Definition 7 (PCT2D). The class of problems solvable by a polynomial sized covert tile397

assembly computer in the 2D Abstract Tile-Assembly Model.398

5.2 Strict Polynomial Size Equivalence399

To show equivalence between P/poly and SPCT3D, we first define the 2-Promise Unique400

Assembly Verification problem, a modified version of Unique Assembly Verification where we401

are given two assemblies, a and b, rather than a single target. The problem asks to separate402

two cases: accept if an assembly containing a as a subassembly is produced, and reject if an403

assembly containing b is produced. We assume it is promised that one of these cases is true.404

This problem is solvable in polynomial time since you only need to attach tiles until one of405

the two assemblies is produced (Lemma 9).406

▶ Definition 8 (2-Promise Unique Assembly Verification problem). Input: Assemblies a, b and407

an aTAM system (T, s, τ) which is promised to uniquely produce one of two assemblies, A or408

B, such that a ⊆ A and b ⊂ B. Output: ‘Yes’, if Γ uniquely assembles A, and ‘No’, if Γ409

uniquely assembles B.410

▶ Lemma 9. The 2-Promise Unique Assembly Verification problem is solvable in polynomial411

time in the 3D aTAM.412

Proof. Call greedy grow (from [2]) to get maximal producible assembly C. If Γ uniquely413

assembles C and a ⊆ C, return ‘yes’. Otherwise, return ‘no’. ◀414

Equipped with the algorithm for the 2-promise problem, and taking the description of a415

covert computer as an advice string, it follows that we can compute the seed assembly from416

the input template, and the two possible output assemblies from the output template, and417

then run the algorithm for the 2-Promise UAV problem (Lemma 10). This puts any problem418

solvable by a polynomial-sized covert circuit in the class P/poly. The other direction of419

equivalence is given by the 3D covert computer constructions.420

▶ Lemma 10. If a language L is computable by a strict polynomial-sized covert tile assembly421

computer in the 3D aTAM, then L is in P/poly.422

Proof. Let ℑn(T, I, O, τ) be the covert computer for the strings in language L of size n.423

Since ℑn is of strict polynomial size, we can encode the tile set, input/output templates,424

and temperature in poly(n) bits. Thus, ℑn will be our advice string for membership in425

P/poly. Further, we are only considering decision problems. Thus, there are only two output426

templates which we denote as aa and br for accept and reject, respectively.427

Consider a Turing machine given the string x and covert circuit ℑ|x| = (T, I, (aa, br), τ)428

that does the following:429

Convert x to an assembly I(x) using the input template.430

150



R. M. Alaniz et al 23:15

Call the algorithm for 2-Promise UAV on input ((T, I(x), τ), aa, br).431

If the algorithm accepts then x ∈ L, else x /∈ L432

This Turing machine essentially runs the covert computer on x and then checks the433

output by seeing which template is included in the final assembly. ◀434

▶ Theorem 11. The classes SPCT3D and P/poly are equivalent.435

Proof. By Lemma 10, if a language is in P/poly there is a Boolean circuit of polynomial size436

which computes it, giving us P/poly ⊆ PCT3D. In Theorem 1 we show that if there exists a437

Boolean circuit, there exists a strictly polynomial sized covert computer that computes the438

circuit. ◀439

5.3 Polynomial Sized 2D Covert Circuits440

Here, we use previous constructions to show that the class of polynomial sized 2D covert441

circuits is at least as strong as strict polynomial covert circuits. That is every language in442

SPCT3D is in PCT2D.443

▶ Theorem 12. If a language L is in P/poly then L is in PCT2D444

Proof. In Lemma 10 we show that if a language is in P/poly there is a Boolean circuit of445

polynomial size which computes it. Any Boolean circuit can be turned into a reversible446

circuit, thus by Theorem 2, if there exists a reversible circuit, there exists a polynomial tile447

assembly computer that computes it in 2D. ◀448

6 Conclusion and Future Work449

Previous work in the aTAM required negative glues in order to build covert Tile Assembly450

Computers. We have provided two new covert computers in the aTAM with only positive glue451

strengths, one in (just-barely) 3D and one in 2D with an exponential-sized output assembly.452

These covert TACs add new tools to the field that may find use in future complexity results,453

or in future applications related to privacy, cryptography, or biological computation. We454

have further initiated the study of covert computers in the context of known complexity455

classes, showing connections to the well-studied class P/poly. These results motivate future456

work to find functions that can be covertly computed in the 2D aTAM with strict polynomial457

size, such as (perhaps) Branching Programs.458

Some additional specific directions for future work are as follows. We show the containment459

of the class of strict polynomial computers to be in P/poly. Can this be improved? Could460

we possibly use the P/poly log space analogue L/poly? What about in smaller classes, such461

as covert computers with non-cooperative binding or at temperature-1?462

References463

1 Zachary Abel, Nadia Benbernou, Mirela Damian, Erik D. Demaine, Martin L. Demaine, Robin464

Flatland, Scott D. Kominers, and Robert Schweller. Shape replication through self-assembly465

and rnase enzymes. In Proceedings of the 2010 Annual ACM-SIAM Symposium on Discrete466

Algorithms, SODA’10, pages 1045–1064, 2010. doi:10.1137/1.9781611973075.85.467

2 Leonard M. Adleman, Qi Cheng, Ashish Goel, Ming-Deh A. Huang, David Kempe, Pablo Mois-468

set de Espanés, and Paul W. K. Rothemund. Combinatorial optimization problems in469

self-assembly. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing,470

pages 23–32, 2002.471

CVIT 2016
151



23:16 Covert Computation in the Abstract Tile-Assembly Model

3 Andrew Alseth and Matthew J. Patitz. The need for seed (in the abstract tile assembly model).472

In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),473

SODA’23, pages 4540–4589, 2023.474

4 Spring Berman, Sándor P Fekete, Matthew J Patitz, and Christian Scheideler. Algorithmic475

foundations of programmable matter (dagstuhl seminar 18331). In Dagstuhl Reports, volume 8.476

Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.477

5 Yuriy Brun. Arithmetic computation in the tile assembly model: Addition and multiplication.478

Theoretical Comp. Sci., 378:17–31, 2007.479

6 David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie. Covert computation480

in staged self-assembly: Verification is pspace-complete. In Proceedings of the 29th European481

Symposium on Algorithms, ESA’21, 2021.482

7 David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie. Verification and computa-483

tion in restricted tile automata. Natural Computing, 2021. doi:10.1007/s11047-021-09875-x.484

8 Angel A. Cantu, Austin Luchsinger, Robert Schweller, and Tim Wylie. Covert Computation485

in Self-Assembled Circuits. In 46th International Colloquium on Automata, Languages, and486

Programming (ICALP 2019), volume 132 of Leibniz International Proceedings in Informatics487

(LIPIcs), pages 31:1–31:14, 2019.488

9 Angel A. Cantu, Austin Luchsinger, Robert T. Schweller, and Tim Wylie. Covert computation489

in self-assembled circuits. Algorithmica, 83:531 – 552, 2019.490

10 Luis Ceze, Jeff Nivala, and Karin Strauss. Molecular digital data storage using dna. Nature491

Reviews Genetics, 20(8):456–466, 2019.492

11 Cameron Chalk, Austin Luchsinger, Robert Schweller, and Tim Wylie. Self-assembly of any493

shape with constant tile types using high temperature. In Proc. of the 26th Annual European494

Symposium on Algorithms, ESA’18, 2018.495

12 Cameron T. Chalk, Eric Martinez, Robert T. Schweller, Luis Vega, Andrew Winslow, and496

Tim Wylie. Optimal staged self-assembly of general shapes. Algorithmica, 80(4):1383–1409,497

2018. doi:10.1007/s00453-017-0318-0.498

13 Qi Cheng, Gagan Aggarwal, Michael H. Goldwasser, Ming-Yang Kao, Robert T. Schweller,499

and Pablo Moisset de Espanés. Complexities for generalized models of self-assembly. SIAM500

Journal on Computing, 34:1493–1515, 2005.501

14 Supreme Court. Ass’n for molecular pathology v. myriad, 2013.502

15 Erik Demaine, Matthew Patitz, Robert Schweller, and Scott Summers. Self-assembly of503

arbitrary shapes using rnase enzymes: Meeting the kolmogorov bound with small scale504

factor. Symposium on Theoretical Aspects of Computer Science (STACS2011), 9, 01 2010.505

doi:10.4230/LIPIcs.STACS.2011.201.506

16 Erik D. Demaine, Sándor P. Fekete, Christian Scheffer, and Arne Schmidt. New geometric507

algorithms for fully connected staged self-assembly. Theoretical Computer Science, 671:4 –508

18, 2017. Computational Self-Assembly. URL: http://www.sciencedirect.com/science/509

article/pii/S030439751630679X, doi:https://doi.org/10.1016/j.tcs.2016.11.020.510

17 David Doty, Lila Kari, and Benoît Masson. Negative interactions in irreversible self-assembly.511

Algorithmica, 66(1):153–172, 2013.512

18 David Doty, Jack H Lutz, Matthew J Patitz, Robert T Schweller, Scott M Summers, and513

Damien Woods. The tile assembly model is intrinsically universal. In 2012 IEEE 53rd Annual514

Symposium on Foundations of Computer Science, pages 302–310. IEEE, 2012.515

19 Pim WJM Frederix, Ilias Patmanidis, and Siewert J Marrink. Molecular simulations of self-516

assembling bio-inspired supramolecular systems and their connection to experiments. Chemical517

Society Reviews, 47(10):3470–3489, 2018.518

20 David Furcy, Samuel Micka, and Scott M. Summers. Optimal program-size complexity for519

self-assembled squares at temperature 1 in 3d. Algorithmica, 77(4):1240–1282, March 2016.520

doi:10.1007/s00453-016-0147-6.521

21 David Furcy, Scott M. Summers, and Logan Withers. Improved Lower and Upper Bounds on522

the Tile Complexity of Uniquely Self-Assembling a Thin Rectangle Non-Cooperatively in 3D.523

152



R. M. Alaniz et al 23:17

In Matthew R. Lakin and Petr Šulc, editors, 27th International Conference on DNA Computing524

and Molecular Programming (DNA 27), volume 205 of Leibniz International Proceedings in525

Informatics (LIPIcs), pages 4:1–4:18, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-526

Zentrum für Informatik. URL: https://drops.dagstuhl.de/opus/volltexte/2021/14671,527

doi:10.4230/LIPIcs.DNA.27.4.528

22 Daniel Hader, Aaron Koch, Matthew J Patitz, and Michael Sharp. The impacts of dimensional-529

ity, diffusion, and directedness on intrinsic universality in the abstract tile assembly model. In530

Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages531

2607–2624. SIAM, 2020.532

23 Adam M Kabza, Nandini Kundu, Wenrui Zhong, and Jonathan T Sczepanski. Integration533

of chemically modified nucleotides with dna strand displacement reactions for applications534

in living systems. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology,535

14(2):e1743, 2022.536

24 Alexandra Keenan, Robert Schweller, Michael Sherman, and Xingsi Zhong. Fast arithmetic in537

algorithmic self-assembly. Natural Computing, 15(1):115–128, Mar 2016.538

25 Paul WK Rothemund and Erik Winfree. The program-size complexity of self-assembled539

squares. In Proceedings of the thirty-second annual ACM symposium on Theory of computing,540

pages 459–468, 2000.541

26 Robert Schweller, Andrew Winslow, and Tim Wylie. Complexities for high-temperature542

two-handed tile self-assembly. In Robert Brijder and Lulu Qian, editors, DNA Computing and543

Molecular Programming, pages 98–109, Cham, 2017. Springer International Publishing.544

27 Heribert Vollmer. Introduction to Circuit Complexity. Springer Berlin Heidelberg, 1999.545

doi:10.1007/978-3-662-03927-4.546

28 Klaus F Wagenbauer, Christian Sigl, and Hendrik Dietz. Gigadalton-scale shape-programmable547

dna assemblies. Nature, 552(7683):78–83, 2017.548

29 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,549

June 1998.550

CVIT 2016
153



APPENDIX D

154



APPENDIX D

REACHABILITY IN RESTRICTED CHEMICAL REACTION NETWORKS

155



Reachability in Restricted Chemical Reaction1

Networks2

Robert M. Alaniz #3

University of Texas Rio Grande Valley, Edinburg, TX, USA4

Bin Fu #5

University of Texas Rio Grande Valley, Edinburg, TX, USA6

Timothy Gomez #7

Massachusetts Institute of Technology, Cambridge, MA, USA8

Elise Grizzell #9

University of Texas Rio Grande Valley, Edinburg, TX, USA10

Andrew Rodriguez #11

University of Texas Rio Grande Valley, Edinburg, TX, USA12

Robert Schweller #13

University of Texas Rio Grande Valley, Edinburg, TX, USA14

Tim Wylie #15

University of Texas Rio Grande Valley, Edinburg, TX, USA16

Abstract17

The popularity of molecular computation has given rise to several models of abstraction, one of18

the more recent ones being Chemical Reaction Networks (CRNs). These are equivalent to other19

popular computational models, such as Vector Addition Systems and Petri-Nets, and restricted20

versions are equivalent to Population Protocols. This paper continues the work on core reachability21

questions related to Chemical Reaction Networks; given two configurations, can one reach the22

other according to the system’s rules? With no restrictions, reachability was recently shown to be23

Ackermann-complete, which resolved a decades-old problem.24

In this work, we fully characterize monotone reachability problems based on various restrictions25

such as the allowed rule size, the number of rules that may create a species (k-source), the number26

of rules that may consume a species (k-consuming), the volume, and whether the rules have an27

acyclic production order (feed-forward). We show PSPACE-completeness of reachability with only28

bimolecular reactions in two-source and two-consuming rules. This proves hardness of reachability29

in a restricted form of Population Protocols. This is accomplished using new techniques within the30

motion planning framework.31

We give several important results for feed-forward CRNs, where rules are single-source or single-32

consuming. We show that reachability is solvable in polynomial time as long as the system does not33

contain special void or autogenesis rules. We then fully characterize all systems of this type and34

show that with void/autogenesis rules, or more than one source and one consuming, the problems35

become NP-complete. Finally, we show several interesting special cases of CRNs based on these36

restrictions or slight relaxations and note future significant open questions related to this taxonomy.37

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness38

Keywords and phrases Chemical Reaction Networks, reachability, hardness39

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2340

1 Introduction41

The popularity of molecular computation and the need to model distributed reactions has42

given rise to several models of abstraction and multiple areas of research. Many of these43

models arose naturally in different fields decades apart, yet mathematically are nearly44

© Robert M. Alaniz, Bin Fu, Timothy Gomez, Elise Grizzell, Andrew Rodiguez, Robert Schweller, Tim
Wylie;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

156



23:2 Reachability in Restricted CRNs

equivalent. The focus of this paper is on Chemical Reaction Networks (CRNs) [4, 5], a45

model equivalent [8] to Vector Addition Systems (VASs) [16] and Petri-Nets [20]. Further,46

the Population Protocols model [2] is just a restricted version of these models, limited by the47

number of input and output elements in each operation.48

Although these models may be substantively equivalent, we focus on CRNs for two49

reasons: first, due to the simplicity and convenience of the system definition. Specifically,50

expressing the production operations through reaction rules gives a straightforward rubric to51

measure and characterize the power of the system. The second is because CRNs, in some52

form, are also the oldest formulation of these types of distributed systems. Even though the53

reaction rule description is more intuitive in many cases, in our formal definitions, we rely on54

a matrix interpretation for notational convenience with precision, similar to Vector Addition55

Systems.56

From the inceptions of each of these models, two of the most fundamental questions have57

always been production and reachability. Production asks if some species/element can ever58

be produced. Reachability simply asks if, given a system and initial configuration, whether59

it will even reach another specific configuration. As the expectation of behaviors and the60

attainability of end goals are necessary in the design of any of these systems, production and61

reachability are at the heart of system design. Despite the fundamental nature of reachability62

questions, most remain open or have only recently been solved, while production is better63

understood overall. Since many results are applicable, or equivalent, between these models,64

we briefly survey the reachability question in relation to each of the models.65

1.1 An Overview of Related Models66

While reachability was proven EXPSPACE-hard 1976 in [18] and decidable in 1981 [19],67

completeness wasn’t proven until 2021 when the unrestricted version of the reachability68

problem was proven to be Ackermann-complete [9, 17] for the equivalent models of Vector69

Addition Systems, Petri-Nets, and Standard CRNs.70

Chemical Reaction Networks. The desire and attempt to bring a mathematical ab-71

straction to model chemical reactions has been well-documented for over a hundred years,72

but began in its modern incarnation during the 1960s as chemical reaction network theory73

[4, 5]. Given that CRNs are motivated by actual chemical processes, there is a reasonably74

distinct split between the purely mathematical and applied experimental work in the research75

literature. Applied work typically uses stochastic versions of the model. In Proper CRNs,76

where reactions do not change the system’s total volume, reachability and production are77

known to be PSPACE-hard even with catalytic reactions [13].78

Vector Addition Systems. Vector Addition Systems (VAS) have an initial vector of79

non-negative integers and a set of operational integer vectors. The system is allowed to add80

these vectors however desired, as long as none of the values in the initial/counter vector81

ever become negative. The related questions of coverage, asking if there exists a reachable82

configuration with at least the given number of each species, and boundness, asking if the set83

of reachable configurations is finite, were shown to be in EXPSPACE [22]. Other relevant84

reachability results include, VASs with dimension ≤ 5 were proven decidable [15], as the set85

of reachable configurations is a semilinear set. In VAS with states (VASS), it was also shown86

that there exists 6-dimensional VASs whose reachable configurations can form non-semilinear87

functions. In 2-Dimensional VASS, reachability is PSPACE-complete if the values of the88

input and target vector are encoded in binary and NL-complete if encoded in unary [6].89

Petri-Nets. Petri-Nets were first formally introduced in [20] in 1962 to visually describe90

chemical processes. Petri-Nets provide a graphical representation of reactions by having places91

157



Alaniz et al. 23:3

General CRNS
Cons. Source Rule Size Volume Membership Theorem
O(q) O(q) (2, 2) U/B PSPACE-complete [13]

2 2 (2, 2) U/B PSPACE-complete Thm. 13
2 2 (1, 2) and (2, 1) U/B PSPACE-hard Thm. 15
j k (1, 1) U/B NL-hard Thm. 18
1 1 (k, 1) U/B P Thm. 20

Feed-Forward
Cons. Source Rule Size Volume Membership Theorem

2 2 (1, 2) or (2, 2) or (2, 1) U/B NP-complete Thm. 26
j 1 No Void U/B P Thm. 32
1 k No Autogenesis U/B P Thm. 33
1 1 Any U/B P Cor. 34

Feed-Forward with Void/Autogenesis Rules
Cons. Source Rule Size Volume Membership Theorem

3 0 (3, 0) U/B NP-complete Thm. 35
j 0 (2, 0) U P Thm. 37
j 0 (2, 0) B P (Bipartite) Thm. 39

Table 1 Table of reachability results. The Volume column indicates the input encoding of the
volume, and thus U is for unary and B is for binary. Rule sizes (a, b) indicates a elements interact
as input to produce b elements as output. q denotes the number of states in the Turing machine.

with edges to transitions, which have edges to other places. Weights accompanying these92

edges correspond to consumption within reactions between different elements. Reachability93

in Petri-Nets has continued to be an active area of research, with numerous extensions and94

restrictions on the graph structure. Immediate observation Petri-Nets (IO Nets), introduced95

in [13], place a restriction on the transitions such that each transition involves 3 places: the96

source, the destination, and the observed place. The observed place acts as a ‘catalyst’ in97

the transition. By simulating a bounded-tape Turing machine, reachability in IO nets is98

shown to be PSPACE-hard [13].99

Population Protocols. Created to model distributed and decentralized computing with100

agents that are highly resource-limited, Population Protocols was introduced in 2004 [1, 2].101

In the model, at most two agents may interact at any time and may choose to change state102

based on this communication. Since only two agents interact at a time, the model can be103

viewed as a restricted form of CRNs, VASs, and Petri-Nets. Due to the limited nature of the104

agents, all reactions are volume-preserving with two inputs and two outputs. Reachability105

was proven to be PSPACE-hard in [13] via a limited version of IO Petri-Nets.106

1.2 Our Contributions107

In this paper, we improve on nearly all known results related to monotone volume-restricted108

CRNs, where each reaction preserves the volume of the system, based on several aspects of109

the rules. An overview of the major results is listed in Table 1. The results in the three110

sub-tables roughly correspond to the major results in Sections 3, 4, and 5, respectively.111

Proper/General CRNs. The general reachability problem in CRNs is Ackermann-112

complete [9, 17], and thus we focus on the restriction of proper CRNs, in which each113

reaction/rule preserves or decreases system volume, putting the problem in PSPACE. Prac-114

tical considerations motivate the study of small reactions, such as bimolecular reactions in115

which up to 2 molecules are used as products (such as in Population Protocols). Although116

CVIT 2016
158



23:4 Reachability in Restricted CRNs

this was recently shown in [13], the number of rules producing and consuming any given117

species was based on the size of the input. We show that reachability is PSPACE-complete118

with bimolecular reactions even when at most two rules consume or produce a species119

(Theorem 13). Thus, reachability in population protocols is PSPACE-complete under this120

restriction (2-source, 2-consuming). In Corollaries 14 and 15, this reduction extends to the121

universal reachability problem, and reachability for non-monotone volume. For production,122

our PSPACE-complete result is tight with regards to rule size as we show NL-completeness123

for (1, 1) rules in Theorem 18. We also provide several related smaller results.124

Feed-Forward CRNs. We fully characterize, based on rule size, void/autogenesis rules,125

and the number of source/consuming rules, all CRN systems that are feed-forward, which126

is where reactions of the CRN permit an ordering such that products of later reactions do127

not occur as reactants in earlier rules [7]. We show that, without void/autogenesis rules, the128

feed-forward property alone moves the reachability problem into the class NP (Theorem 24).129

We show that reachability is polynomial-time solvable for a feed-forward system if it is130

either 1-consuming or 1-source and uses no void rules (rules that produce no species) or131

autogenesis rules (rules that consume no species). We prove that relaxing these restrictions132

makes reachability hard by showing that the problem in feed-forward systems is NP-complete133

in 2-consuming, 2-source systems (Theorem 26), and if they have void or autogenesis rules.134

Consuming and Source. A k-consuming CRN is one where the number of rules that135

consume or “use up” a species is bound by k. k-source systems limit the number of rules136

that a species may be sourced from, or created by, the CRN. Non-Competitive CRNs [25]137

are a special case of 1-consuming where any rule that is consumed is not allowed to be a138

catalyst. Consuming and source metrics are not only interesting from a theoretical perspective139

since reachability is hard even for small k, but also from a implementation aspect. When140

implementing CRNs with DNA strand displacement, one method implements reactions as141

larger DNA complexes that bind to smaller DNA strands complexes [23]. Limiting source142

and consuming rules make the DSD systems less complex as we are limiting the number of143

complexes the strands must interact with.144

Void and Autogenesis Rules. Our final consideration is the case of systems that utilize145

a particularly powerful class of rules: void rules which do not produce any species types,146

and autogenesis rules which do not consume any species types. We show that reachability is147

NP-complete even if system reactions are all void rules or all autogenesis rules of size (3, 0)148

or (0, 3), respectively (Theorem 35). We then explore the case of (2, 0) void rule systems and149

show that reachability is polynomial-time solvable if the volume of the input configuration is150

polynomial bounded (Theorem 37), or if the CRN is bipartite (Theorem 39). For other (2, 0)151

void rule systems, we leave the complexity of reachability as an open problem.152

2 Preliminaries153

Basics. Let Λ = s1, s2, . . . , s|Λ| denote some ordered alphabet of species. A configuration154

over Λ is a length-|Λ| vector of non-negative integers, denoting the number of copies of each155

present species. A rule or reaction has two multisets, the first containing one or more reactant156

(species) used to create resulting product (species), the second multiset. We represent each157

rule as an ordered pair of configuration vectors R = (Rr, Rp). Rr contains the minimum158

counts of each reactant species necessary for reaction R to occur, where reactant species are159

either consumed by the rule in some count or leveraged as catalysts (not consumed); in some160

cases a combination of the two. The product vector Rp has the count of each species produced161

by the application of rule R, effectively replacing vector Rr. The species corresponding to162

159



Alaniz et al. 23:5

the non-zero elements of Rr and Rp are termed reactants and products of R, respectively.163

The application vector of R is Ra = Rp − Rr, which shows the net change in species164

counts after applying rule R once. For a configuration C and rule R, we say R is applicable165

to C if C[i] ≥ Rr[i] for all 1 ≤ i ≤ |Λ|, and we define the application of R to C as the166

configuration C ′ = C + Ra. For a set of rules Γ, a configuration C, and rule R ∈ Γ applicable167

to C that produces C ′ = C + Ra, we say C →1
Γ C ′, a relation denoting that C can transition168

to C ′ by way of a single rule application from Γ. We further use notation C ⇝Γ C ′ to signify169

the transitive closure of →1
Γ and say C ′ is reachable from C under Γ, i.e., C ′ can be reached170

by applying a sequence of applicable rules from Γ to initial configuration C. We use the171

following notation to depict a rule R = (Rr, Rp):172 ∑|Λ|
i=1 Rr[i]si →

∑|Λ|
i=1 Rp[i]si173

For example, a rule turning two copies of species H and one copy of species O into one174

copy of species W would be written as 2H + O →W .175

▶ Definition 1 (Discrete Chemical Reaction Networks). A discrete chemical reaction network176

(CRN) is an ordered pair (Λ, Γ) where Λ is an ordered alphabet of species, and Γ is a set of177

rules over Λ.178

The primary computational problem we consider in this paper is the reachability problem.179

We consider additional problems in the paper, such as determining if it is possible to produce180

a given amount of a particular species from an initial configuration of a CRN, as well as181

universal reachability, which asks if the target configuration is reachable for all reaction182

application sequences.183

▶ Definition 2 (Reachability Problem.). Given a CRN (Λ, Γ), an initial configuration I, and184

a destination configuration D, the Reachability Problem is to compute whether or not D is185

reachable from I with respect to Γ.186

▶ Definition 3 (Production Problem). Given a CRN (Λ, Γ), an initial configuration I, a187

species si ∈ Λ, and a positive integer k, decide if there exists a reachable configuration B188

such that B[i] ≥ k.189

▶ Definition 4 (Universal Reachability Problem.). Given a CRN (Λ, Γ), an initial configuration190

I, and a destination configuration D, the Universal Reachability Problem is to compute191

whether D is reachable from all configurations M that are reachable from I with respect to Γ.192

Primary Restrictions. We consider the reachability problem under several different193

restrictions defined below. Fig. 1 provides examples of the various restrictions on the model.194

▶ Definition 5 (Feed-Forward). A CRN (Λ, Γ) is feed-forward if Γ permits an ordering on195

the rules such that the products of any given rule never occur as reactants for earlier rules of196

the ordering [7].197

Each rule in a system produces some species and consumes others. The following metric198

places a maximum bound on the number of rules that either produce a given species (j-source)199

or consume a given species (j-consuming).200

▶ Definition 6 (j-source, j-consuming). A species si is consumed in rule R = (Rr, Rp) if201

Rr[i] > Rp[i], produced if Rr[i] < Rp[i], and is a catalyst in rule R if Rr[i] = Rp[i] > 0. A202

CRN (Λ, Γ) is j-source if for all species s ∈ Λ, s is produced in at most j distinct rules in Γ.203

A CRN (Λ, Γ) is j-consuming if for all species s ∈ Λ, s is consumed in at most j distinct204

rules in Γ. We use the terms single-source and single-consuming for the special cases of205

1-source and 1-consuming CRNs, respectively.206

CVIT 2016
160



23:6 Reachability in Restricted CRNs

Species

a b c ed

c
⟶a b

⟶a b 
a

Void

⟶ a b
c⟶ aa

Auto-Genesis

⟶a d e d

Catalytic

2-
C

on
su

m
in

g

{ ⟶

⟶a d e d

d

e d

ba

{

2-Source

⟶

⟶c c

bd c a

b a

Consuming/Source

d e

(2, 2)

⟶ a

c⟶ (2, 1)

(0, 3)

Rule Size

⟶a d

e b

a b

Reactants

c d

Products

Reaction
⟶

⟶b ed, ,d⟶ca⟶ cba

Feed Forward System

, , ⟶ bed⟶ bca⟶ cba

General System

Figure 1 Example CRN rules to demonstrate the primary restrictions.

The next concept is a special class of rules that either produce nothing (void rules) or207

consume nothing (autogenesis rules). This could potentially be motivated by evaporation,208

the ability to pass through a membrane or the spontaneous appearance of ions in a vacuum.209

▶Definition 7 (Void and Autogenesis rules). A rule R = (Rr, Rp) is a void rule if Ra = Rp−Rr210

has no positive entries. A rule is an autogenesis rule if Ra has no negative values.211

Additional Restrictions. We also consider the complexity of reachability and production212

with respect to the size of rules.213

▶ Definition 8. The size/volume of a configuration vector C is volume(C) =
∑

C[i].214

▶ Definition 9 (size-(i, j) rules). A rule R = (Rr, Rp) is said to be a size-(i, j) rule if215

(i, j) = (volume(Rr), volume(Rp)). A reaction is bimolecular if i = 2 and unimolecular if216

i = 1.217

▶ Definition 10 (Volume Decreasing, Increasing, Preserving). A rule R = (Rr, Rp) of size-(i, j)218

is said to be volume decreasing if i > j, volume increasing if i < j, and volume preserving if219

i = j. A CRN (Λ, Γ) is said to be volume decreasing (respectively increasing, preserving) if220

all rules in Γ are volume decreasing (respectively increasing, preserving). Note: In previous221

work, volume preserving has been called Proper.222

A special subset of CRN systems studied in the literature is Population Protocols, in223

which agents bump into each other and adjust their state according to rules. This model224

is equivalent to a CRN that is limited to exactly volume 2 for both the reactants (the two225

agents that bump into each other) and the products (representing the two new states of the226

agents after the collision).227

▶ Definition 11 (Population Protocols). A CRN (Λ, Γ) in which all rules in Γ are size-(2, 2)228

is called a population protocol.229

3 Reachability in General CRNs230

The main result of this section is PSPACE-completeness of the reachability problem with 2-231

source, 2-consuming, size-(2, 2) reactions in Theorem 13. En route, we prove that production232

is PSPACE-complete with Theorem 12. We extend this reduction in two ways. First, in233

Corollary 14, we prove our reduction holds for the universal reachability problem, and second,234

we show the reduction holds for non-monotonic volume with rule sizes of (1, 2) and (2, 1) in235

Theorem 15. We follow with several interesting, yet minor results. Detailed proofs can be236

found in Appendix A.237

161



Alaniz et al. 23:7

db
a c

(a)

db
a c

(b)

−→a + G→←−c + G′

−→
b + G→←−d + G

−→c + G→←−c + G′

−→
d + G→←−b + G

(c)

−→a + G′ →←−a + G′

−→
b + G′ →←−b + G′

−→c + G′ →←−a + G
−→
d + G′ →←−d + G′

(d)

a b
c

(e)

−→a +r⟳ →
←−
b +r⟳

−→
b +r⟳ →←−c +r⟳
−→c +r⟳ →←−a +r⟳

(f)

Figure 2 (a) Unlocked state of a Toggle-Lock gadget represented by species G. (b) Locked state
of a Toggle-Lock gadget represented by species G′. (c-d) Reactions which implement a single gadget.
(c) represents a successful traversal and (d) represents the ‘bound-back’ reactions. The arrow is
incoming or outgoing from port. (e) The rotate gadget. (f) Rules for the rotate gadget.

3.1 Gadget Reconfiguration Framework238

Our main result is based on the motion planning problem through Toggle-Lock and Rotate239

gadgets [11]. Motion planning is PSPACE-hard with only a rotate gadget and any reversible240

gadget with interacting tunnels, a class that includes the Toggle-Lock [10]. The motion241

planning problem considers two input configurations of gadgets, a start location for the agent,242

and a target location, and asks if the agent can reach the target location. 1243

A gadget consists of a set of labeled ports and states describing the gadget’s legal traversals,244

which may change the state of the gadget. The Toggle-Lock Gadget has an unlocked and245

locked state, shown in Figure 2a and 2b, respectively. The top path is directed based on the246

state of the gadget, and the agent must follow the direction. Traversing this path changes247

the state of the gadget. Traversal of the bottom tunnel can only occur in the unlocked state;248

this can be done in either direction and does not change the state of the gadget. The rotate249

gadget only has one state that sends the agent to the next port, going clockwise. A motion250

planning system consists of a set of gadgets, a set of wires denoting port connections, and an251

initial signal location.252

We are simulating a 0-player gadget framework where the agent makes no choices. The253

agent is directed down the wire and turns around if the gadget is not traversable in the254

current state, corresponding to a deterministic model of computation. An early version of255

this result appeared in the short abstract [14], which reduced from a different gadget and256

used the 1-player framework studied in [3, 10, 12]. However, the reduction was not constant257

source or constant consuming.258

3.2 Production and Reachability259

We prove production is PSPACE-complete using the framework described above. The target260

species is the agent species representing the target wire.261

▶ Theorem 12. Production in 2-source, 2-consuming preserving CRNs is PSPACE-complete262

with only bimolecular reactions.263

We extend the reduction above to work for reachability by taking advantage of the264

fact that the toggle-lock is reversible. Once we reach the target species, we flip the rotate265

catalyst to allow the agent to move counterclockwise through a rotate gadget, allowing us266

1 In [11] this problem is called the reachability problem. To avoid confusion, we refer to this as the motion
planning problem.

CVIT 2016
162



23:8 Reachability in Restricted CRNs

to undo all the changes to the gadget states. When the agent reaches the starting location267

again, the system is in the initial configuration except with the opposite rotate catalyst.268

Reconfiguration for the 1-player version of the motion planning framework was shown to be269

PSPACE-complete using a similar technique where the agent changes the state of the final270

gadget, then undoes all of its previous movements [3]. This reduction extends to the universal271

reachability problem since there is only one reaction at each step that can be performed.272

▶ Theorem 13. Reachability in 2-source, 2-consuming preserving CRNs is PSPACE-complete273

with only bimolecular reactions.274

▶ Corollary 14. Universal reachability in 2-source, 2-consuming preserving CRNs is PSPACE-275

complete with only bimolecular reactions.276

3.3 Volume Related Results277

Here, we look at several restrictions related to rule size, and consequently, volume.278

Non-Monotone Volume. We extend the reduction to utilize smaller rules. We show279

PSPACE-hardness of production and reachability when allowing both (1, 2) and (2, 1) rules.280

The CRN has both volume increasing and decreasing rules, which means it is non-monotone,281

and thus, these problems are not known to be in PSPACE. To prove this, we add an282

intermediate species for each reaction. We replace the reaction −→a + G→ −→c + G′ with the283

two reactions −→a + G→ −−→aGc and −−→aGc→ −→c + G′.284

▶ Corollary 15. Production and reachability in 2-source, 2-consuming CRNs is PSPACE-hard285

with rules of size (2, 1) and (1, 2).286

Unary Encoded Volume. When a system is volume-increasing or volume-decreasing,287

the reaction sequence length is polynomial in the volume of the system, so we achieve the288

following theorem.289

▶ Theorem 16. Reachability is in NP for volume-increasing and volume-decreasing CRNs290

when the volume is encoded in unary.291

Unimolecular Reactions. Unimolecular reactions are of the form A→ B, i.e. preserving292

rules of size 1. If we are limited to only this type of reaction, production is NL-complete.293

The NL-hardness result works for reachability as well.294

▶ Theorem 17. Production with rules of size (1, 1) is NL-complete.295

We only show hardness for this case. The naïve non-deterministic algorithm does not296

work when the input values of the vectors are encoded in binary. We would need to track297

the entire configuration in-between each step. We leave exact membership for future work.298

▶ Theorem 18. Reachability and production in CRNs is NL-hard with rules of size (1, 1).299

3.4 Results Related to Single-Consuming or Single-Source300

Although the majority of the results in this section relate to rule size, we also look at rule301

restrictions based on the number of source and consuming rules. Our main result shows302

that reachability in a 2-consuming, 2-source general CRN system is PSPACE-complete. In303

Sections 4 and 5, we fully characterize these systems if the rules are feed-forward. Here, we304

address a few interesting results for CRNs that are not feed-forward.305

Production is NP-Hard. Here, we state that production is NP-hard in single-consuming306

CRNs. We reduce from 3-SAT by creating species for the variables and clauses, as well as307

creating rules to assign variables and satisfy clauses.308

163



Alaniz et al. 23:9

▶ Theorem 19. Production in single-consuming CRNs is NP-hard.309

Algorithm for (k, 1) rules. Here, we state the existence of a polynomial-time algorithm for310

single-source single-consuming simple CRNs where each rule is of the form a1 + · · ·+ ak → b,311

and satisfies the requirements that k ≥ 2 and a1, · · · , ak, b are different species.312

▶ Theorem 20. There is a polynomial-time algorithm to solve the reachability problem for313

single-source and single-consuming simple CRNs.314

4 Reachability in Feed-Forward CRNs315

Having established PSPACE-completeness for general CRNs, we consider the feed-forward316

restriction, in which rule sets do not have cycles. Feed-forward CRNs are motivated in317

that they allow functional composition of CRNs [25]. We characterize the complexity of318

reachability for feed-forward CRNs under the assumption that the system does not contain319

either void or autogenesis rules, leaving a focused consideration of void and autogenesis rules320

for Section 5. Detailed proofs can be seen in Appendix Section B.321

We first show NP-completeness of feed-forward systems in Section 4.1, even in the case of322

size-(2, 2) rules (i.e., bimolecular rules / Population Protocols), while at the same time being323

only 2-source and 2-consuming. We then show a polynomial-time solution to reachability in324

Section 4.2 for any feed-forward system that is either 1-source or 1-consuming, thus giving a325

complete characterization of feed-forward reachability.326

4.1 NP-completeness for Bimolecular Reactions327

In this section, we show that reachability (and production) in feed-forward systems is NP-328

complete for bimolecular reactions (rules of size at most (2, 2)), even when the CRN is329

2-source and 2-consuming. This hardness result is tight because a decrease to either 1-source330

or 1-consuming, as shown in Section 4.2, implies a polynomial time solution to reachability.331

We start with proof of membership in NP, followed by NP-hardness from a reduction from332

the Hamiltonian Path problem.333

NP Membership. A key property of feed-forward systems is that any sequence of rule334

applications can be reordered such that all system rules are applied consecutively. This new335

ordering is still a valid sequence of applicable rules that reaches the same final configuration.336

▶ Definition 21 (Ordered Application). A sequence of reactions is an ordered application if all337

the applications of any given rule take place right after each other in a contiguous sequence.338

An example of this is R1, R1, . . . , R1, R2, . . . , R2, R3.339

▶ Lemma 22. Let C = (Λ, Γ) be a feed-forward CRN with a feed-forward ordering F =340

{R0, R1, . . . , R|R|−1} over Γ. Given configurations c, c′, and a sequence of reactions S =341

{. . . , Rj , Ri, . . .} in Γ that converts c to c′ where i < j, then the sequence S′ = {. . . , Ri, Rj , . . .},342

i.e., the sequence obtained by swapping the two rules Ri and Rj, also transforms c→ c′.343

▶ Corollary 23. A configuration D is reachable from a configuration I with a feed-forward344

CRN if and only if D is reachable from I by an ordered application of rules.345

▶ Lemma 24. The reachability problem is in NP for feed-forward CRNs that do not use346

autogenesis rules.347

NP-Hardness. We now show the reachability problem is NP-complete for feed-forward348

CRNs even for size (2, 2)-rules (bimolecular reactions, Population Protocols) and for 2-source,349

2-consuming systems. We show this by a reduction from the Directed Hamiltonian Path350

CVIT 2016
164



23:10 Reachability in Restricted CRNs

S A

C

B T

(a) Graph

S A

C

B T

(b) Hamiltonian Path

{S∗
0 A B C T }

{Sv A∗
1 B C T }

{Sv Av B∗
2 C T }

{Sv Av Bv C∗
3 T }

{Sv Av Bv Cv T 4}
(c) Configurations

Figure 3 Our starting configuration c = {S∗
0 , A, B, C, T }. Our goal configuration is c′ =

{Sv, Av, Bv, Cv, T 4}. Each vertex must be changed to the visited state to reach the target, and the
T must be the last vertex.
problem with vertices of in-degree and out-degree of at most 2 [21]. We reduce from bounded351

degree in order to achieve bounded source/consuming. For each vertex X in the graph352

G = (V, E), we include 2 + |V | states: an initial state X, a visited state Xv, and |V | signal353

states X∗
i . The additional signal states are added so the system is feed-forward. An example354

reduction is shown in Figure 3. We encode the edges of the example graph in the rules as355

follows,356

Rules R =
{

S∗
i + A → Sv + A∗

i+1 B∗
i + C → Bv + C∗

i+1 B∗
i + T → Bv + T ∗

i+1

A∗
i + B → Av + B∗

i+1 C∗
i + A → Cv + A∗

i+1 C∗
i + T → Cv + T ∗

i+1

}
357

▶ Definition 25 (HAMPATH). Given a graph G = {V, E} and two nodes s, t ∈ V , does there358

exist a path from s to t that visits each node precisely once?359

Given this reduction, any Hamiltonian path of graph G has a corresponding sequence of360

rules that end with every vertex, other than T , represented with the visited state, and T361

represented with the signal state matching the count of the vertices. Conversely, the only362

way to reach such a configuration corresponds directly to a Hamiltonian path of G from S to363

T , yielding Theorem 26. With minor modifications, the reduction can be adapted to achieve364

the corollaries below.365

▶ Theorem 26. Reachability is NP-complete for feed-forward CRNs with size (2, 2) rules366

that are 2-source and 2-consuming.367

▶ Corollary 27. Reachability is NP-complete for feed-forward CRNs that are 2-source and368

2-consuming with all rules of size (2, 1).369

▶ Corollary 28. Reachability is NP-complete for feed-forward CRNs that are 2-source and370

2-consuming and with all rules of size (1, 2).371

▶ Corollary 29. Production is NP-complete for feed-forward CRNs with either size (2, 2)372

rules, size (2, 1) rules, or size (1, 2) rules, that are 2-source and 2-consuming.373

Species-based Restrictions. For a CRN to be j-consuming, all species must be consumed374

in only j rules. We can relax this restriction to be j-consuming/k-source per species, meaning375

a rule is consumed in only j rules OR produced in only k rules. Each species is still bounded376

in one of the ways, but not both. We then show reachability, with the species-based restriction377

of k-consuming/1-source, is NP-hard by a reduction from the 3-Dimensional Matching (3DM)378

problem.379

▶ Definition 30 (Three Dimensional Matching Problem (3DM)). The 3DM problem takes as380

input a hypergraph H = (X, Y, Z, T ) where X, Y, Z are three disjoint sets, and T ⊆ X×Y ×Z381

is a set of hyperedges. The output is whether or not there exists a subset of T that covers382

all vertices in H without any overlap.383

▶ Corollary 31. Reachability in CRNs with each species being k-consuming/1-source or384

1-consuming/k-source is NP-complete even with only one species being different than the385

others and the system being feed-forward without void/autogenesis rules.386

165



Alaniz et al. 23:11

4.2 Feed-Forward, Single-Consuming/Single-Source387

In this section, we establish Theorem 32 that shows the reachability problem is polynomial-388

time solvable for feed-forward, single-source rule sets that do not use void rules. We then389

extend this into Theorem 33 to show that reachability in feed-forward, single-consuming390

systems without autogenesis rules is also polynomial time solvable. Lastly, we give Corollary 34391

that states the reachability problem for feed-forward, single-source, and single-consuming392

rule sets is polynomial-time solvable. Additional explanation and proofs are in Appendix393

B.2.394

▶ Theorem 32. The reachability problem is solvable in polynomial time for a rule set Γ that395

is feed-forward, single-source, and without void rules.396

▶ Theorem 33. The reachability problem is solvable in polynomial time for a ruleset Γ that397

is feed-forward, single-consuming, and without autogenesis rules.398

▶ Corollary 34. The reachability problem is solvable in polynomial time for a rule set Γ that399

is feed-forward, 1-source, and 1-consuming with no further restrictions on the rule set.400

5 Void and Autogenesis Rules401

In our consideration of feed-forward CRNs, we omitted two classes of rules: void rules that402

consume reactants without creating any products and autogenesis rules that create products403

without consuming any reactants. One reason for separating these rules is that their lack404

of conservation of mass might mean they are not feasible in some experimental settings.405

Another important reason is that their inclusion alone substantially impacts the complexity406

of problems such as reachability.407

Here, we explore reachability in the scenario where all rules are void rules or, conversely,408

all rules are autogenesis rules. We show that void rules (or autogenesis rules) alone imply the409

NP-completeness of reachability, even if such systems are both feed-forward and 0-source. We410

specifically show NP-completeness for size (3, 0) void rules. We then explore the complexity411

of reachability with size (2, 0) void rules and provide a polynomial time solution when the412

system’s volume is encoded in unary. We further show a polynomial time solution for binary413

encoded volume for a restricted class of bipartite (2, 0) CRNs. We leave the remaining general414

case of reachability with (2, 0) void rules as an open question. We note by Definition 52,415

that we may prove results for void only rules, and they are equivalent for autogenesis rules.416

Detailed proofs can be found in the Appendix Section C.417

Size (3, 0) Void Rules / (0, 3) Autogenesis Rules. We show that reachability is NP-418

complete by a reduction from 3-Dimensional Matching (3DM) (Definition 30).419

▶ Theorem 35. Reachability for CRNs with only rules of size (3, 0) is NP-complete.420

▶ Corollary 36. Reachability for CRNs with only rules of size (0, 3) is NP-complete.421

Size (2, 0) rules with Unary Encoding. As with (3, 0) rules, (2, 0) may also be reduced422

by matching. This time bipartite.423

▶ Theorem 37. Reachability in CRNs is in P with rules of size (2, 0) if configuration counts424

are encoded in unary.425

Size (2, 0) rules with Binary Encoding We now consider (2, 0) with binary encoded426

species counts, which permits a potentially exponential configuration volume, making the427

algorithm of Theorem 37 no longer polynomial time. In this scenario, we consider a new428

restriction in which the CRN rules are bipartite:429

CVIT 2016
166



23:12 Reachability in Restricted CRNs

▶ Definition 38 (Bipartite CRN). A bipartite CRN (Λ, Γ) is one in which the species Λ can430

be partitioned into two disjoint sets Λ1 and Λ2 such that for each rule R ∈ Γ, there are at431

most 2 reactants of R and they do not occur within the same partition of Λ.432

Determining if a CRN is bipartite can be solved in polynomial time by a bipartite graph433

detection algorithm. If the CRN is bipartite, we reduce the problem to the maximum flow434

problem. Although this algorithm only works with bipartite CRNs, we conjecture that the435

problem is in P , and leave it as an important open question related to general matching in436

weighted graphs.437

▶ Theorem 39. Reachability is polynomial-time solvable for bipartite CRNs with (2, 0) rules.438

▶ Conjecture 40. Reachability is polynomial-time solvable for CRNs with (2, 0) rules.439

6 Conclusion440

With the complexity of the general reachability problem solved recently, this paper resolves441

several restricted cases of the problem. We prove hardness for several open problems or442

improve the known results. These include answering reachability in Population Protocols,443

showing that non-increasing volume CRNs are PSPACE-complete with rules of size two444

(improved from 5), proving that feed-forward systems are NP-complete and giving a poly-445

nomial algorithm if it is single-source or single-consuming without void/autogenesis rules,446

and showing how void and autogenesis rules affect the complexity of feed-forward systems.447

Additionally, we provide several other results related to these restrictions.448

Related Problems. While we give many results, this is by no means the end of the449

investigation into the computational complexity of restricted Chemical Reaction Networks, as450

this work can be extended in multiple ways. Do the reachability and production problems ever451

have different complexities for the same version of the model? When is universal reachability452

a harder problem than reachability? What about the version of production where we want453

to produce k copies of a given species rather than just a single copy?454

Reachability. For a complete characterization of reachability for all parameters, here we455

note some open problems and future directions of investigation.456

Reachability for 1-consuming and 1-source CRNs with the feed-forward property has457

membership in P. Is the feed-forward restriction required for this result, or does it hold458

for a 1-consuming and 1-source proper CRN as well?459

We show the problem of reachability is PSPACE-complete with rules of size (2, 2) (as460

previously shown in [13]). Is reachability also hard with smaller rule sizes? Can we461

achieve the same result with (2, 1) rules and a binary encoded volume?462

What is the smallest catalytic (2,2) system that is PSPACE-complete?463

Production with (1, 1) rules is NL-complete. However, we do not know if reachability is464

easy as well. Is there a polynomial time algorithm to decide unimolecular reactions?465

With a non-monotone volume, we no longer have membership in PSPACE- we only have466

an Ackermann upper bound. With constant rule size, is reachability still Ackermann-hard?467

Reachability for (2, 0) rules with the volume encoded in binary is an open problem. This468

is a generalized matching problem on a weighted graph. We know the problem is in P for469

bipartite CRNs or with unary volume. Is the problem still easy in the general case?470

167



Alaniz et al. 23:13

References471

1 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation472

in networks of passively mobile finite-state sensors. In Proceedings of the Twenty-Third Annual473

ACM Symposium on Principles of Distributed Computing, PODC ’04, page 290–299, New York,474

NY, USA, 2004. Association for Computing Machinery. doi:10.1145/1011767.1011810.475

2 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation476

in networks of passively mobile finite-state sensors. Distribed Computing, 18(4):235–253, mar477

2006. doi:10.1007/s00446-005-0138-3.478

3 Joshua Ani, Erik D Demaine, Yevhenii Diomidov, Dylan Hendrickson, and Jayson Lynch.479

Traversability, reconfiguration, and reachability in the gadget framework. In Intl. Conf. and480

Work. on Algorithms and Comp., 2022.481

4 Rutherford Aris. Prolegomena to the rational analysis of systems of chemical reactions. Archive482

for Rational Mechanics and Analysis, 19(2):81–99, jan 1965. doi:10.1007/BF00282276.483

5 Rutherford Aris. Prolegomena to the rational analysis of systems of chemical reactions484

ii. some addenda. Archive for Rational Mechanics and Analysis, 27(5):356–364, jan 1968.485

doi:10.1007/BF00251438.486

6 Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase, Ranko Lazić,487

Pierre Mckenzie, and Patrick Totzke. The reachability problem for two-dimensional vector488

addition systems with states. Journal of the ACM (JACM), 68(5):1–43, 2021.489

7 Ho-Lin Chen, David Doty, and David Soloveichik. Rate-independent computation in continuous490

chemical reaction networks. In Proceedings of the 5th Conference on Innovations in Theoretical491

Computer Science, ITCS ’14, page 313–326, New York, NY, USA, 2014. Association for492

Computing Machinery. doi:10.1145/2554797.2554827.493

8 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of494

Chemical Reaction Networks, pages 543–584. Springer Berlin Heidelberg, Berlin, Heidelberg,495

2009. doi:10.1007/978-3-540-88869-7_27.496

9 Wojciech Czerwiński and Łukasz Orlikowski. Reachability in vector addition systems is497

ackermann-complete. In 62nd Annual Symposium on Foundations of Computer Science,498

FOCS’21, pages 1229–1240. IEEE, 2021.499

10 Erik D Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational complexity500

of motion planning of a robot through simple gadgets. In 9th Intl. Conf. on Fun with Algorithms501

(FUN 2018), 2018.502

11 Erik D Demaine, Robert A Hearn, Dylan Hendrickson, and Jayson Lynch. Pspace-completeness503

of reversible deterministic systems. arXiv preprint arXiv:2207.07229, 2022.504

12 Erik D Demaine, Dylan H Hendrickson, and Jayson Lynch. Toward a general complexity theory505

of motion planning: Characterizing which gadgets make games hard. In 11th Innovations in506

Theoretical Computer Science Conference (ITCS 2020), 2020.507

13 Javier Esparza, Mikhail Raskin, and Chana Weil-Kennedy. Parameterized analysis of immediate508

observation petri nets. In Application and Theory of Petri Nets and Concurrency, pages509

365–385. Springer International Publishing, 2019. doi:10.1007/978-3-030-21571-2_20.510

14 Bin Fu, Timothy Gomez, Elise Grizzell, Andrew Rodriguez, Robert Schweller, and Tim Wylie.511

Reachability in population protocols. In The Japan Conference on Discrete and Computational512

Geometry, Graphs, Games (JCDCG3), 2022.513

15 John Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional514

vector addition systems. Theoretical Computer Science, 8(2):135–159, 1979.515

16 Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer516

and System Sciences, 3(2):147–195, 1969. doi:https://doi.org/10.1016/S0022-0000(69)517

80011-5.518

17 Jérôme Leroux. The reachability problem for petri nets is not primitive recursive. In 62nd519

Annual Symposium on Foundations of Computer Science, FOCS’21. IEEE, 2021.520

18 Richard J. Lipton. The reachability problem requires exponential space. Technical Report 62,521

Yale University, 1976.522

CVIT 2016
168



23:14 Reachability in Restricted CRNs

19 Ernst W. Mayr. An algorithm for the general petri net reachability problem. In Proceedings523

of the Thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81, page 238–246,524

New York, NY, USA, 1981. Association for Computing Machinery. doi:10.1145/800076.525

802477.526

20 Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Rheinisch-Westfälischen527

Institutes für Instrumentelle Mathematik an der Universität Bonn, 1962.528

21 J Plesník. The np-completeness of the hamiltonian cycle problem in planar diagraphs with529

degree bound two. Information Processing Letters, 1979.530

22 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor-531

etical Computer Science, 6(2):223–231, 1978.532

23 David Soloveichik, Georg Seelig, and Erik Winfree. Dna as a universal substrate for chemical533

kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010.534

24 Chris Thachuk and Anne Condon. Space and energy efficient computation with dna strand535

displacement systems. In International Workshop on DNA-Based Computers, 2012.536

25 Marko Vasić, Cameron Chalk, Austin Luchsinger, Sarfraz Khurshid, and David Soloveichik.537

Programming and training rate-independent chemical reaction networks. Proceedings of the538

National Academy of Sciences, 119(24):e2111552119, 2022.539

169



Alaniz et al. 23:15

A Appendix for Section 3540

A.1 Gadget Reconfiguration Framework541

Directed Wire. Two ports are connected by a wire. We label each wire with a symbol such542

as a and include two species −→a ,←−a to denote the direction moved along the wire. We refer543

to these as the agent species.544

Toggle-Lock and Rotate Gadgets. We have two species for each Toggle-Lock that we545

call the gate catalysts. We represent the unlocked gate using the species G, and the locked546

state with species G′. Traversing the toggle tunnel requires the gadget to be in the correct547

state for the toggle. The reaction changes the state of the gate catalyst and the agent species.548

The bottom tunnel can only be traversed if the gate is in the unlocked state. However, this549

does not change the state of the gate, so the G species acts a catalyst that must be present550

to traverse the gadget. Figures 2c and 2d shows the rules used to implement a toggle lock.551

We implement rotate gadgets with a single rotate clockwise species r⟳. The rotate gadget552

diagram is shown in Figure 2e. The signal state changes to the outgoing direction of the next553

wire in the clockwise ordering of ports using the rules shown in Figure 2f. Note that each554

reaction consumes and creates exactly one agent species yielding the following observation:555

▶ Observation 41. Any reachable configuration in the reduction only contains a single agent556

species.557

▶ Theorem 12. Production in 2-source, 2-consuming preserving CRNs is PSPACE-complete558

with only bimolecular reactions.559

Proof. Membership in PSPACE for Proper CRNs was shown in [24]. Given an instance of560

the motion planning problem with toggle-locks and rotate gadgets, create a CRN ruleset and561

configuration as described above. Our starting configuration of the CRN encodes the start562

location and starting states of the gadgets. The target species we wish to produce is the563

agent species for the target location in the motion planning problem.564

The agent may only traverse a toggle-lock gadget if the gate catalyst is in the correct565

state. The rotate gadget sends the signal to the correct next state. Once the agent reaches566

the target wire, the agent species representing it is produced. If the agent reaches the target567

location, then reactions apply representing the path of the agent to produce the target568

species.569

From Observation 41, there only exists one agent species and the reactions encode only570

valid traversals through the gadgets. If the target species is produced, then the sequence of571

reactions to produce it represents the path of the agent though the system of gadgets. Each572

gate catalyst is only produced and consumed in the reaction that implements the toggle573

tunnel. Each agent species is directed, so it also is only produced and consumed in one rule.574

Note that if an agent ever attempts to cross a gadget in a state that does not allow that575

traversal, the configuration will no longer have any valid reactions. This is the equivalent to576

an illegal move in the motion planning problem and the agent cannot progress, so the game577

is over. ◀578

▶ Theorem 13. Reachability in 2-source, 2-consuming preserving CRNs is PSPACE-complete579

with only bimolecular reactions.580

Proof. The reduction from Theorem 12 can be extended to show the reachability problem is581

PSPACE-hard as well. We add an additional species r⟲ which is the rotate counterclockwise582

catalyst. The target configuration is the same as the initial configuration except with the583

CVIT 2016
170



23:16 Reachability in Restricted CRNs

counterclockwise catalyst r⟲. If the target wire is a, we add the rule −→a + r⟳ → ←−a + r⟲,584

which changes the direction of the rotate catalyst and turns the agent around on the wire.585

Since the toggle lock gadget is reversible, the agent will undo all of its moves and return to586

the start configuration. Since the gadget system has the property of being reversible, this587

backwards traversal is possible. ◀588

▶ Corollary 14. Universal reachability in 2-source, 2-consuming preserving CRNs is PSPACE-589

complete with only bimolecular reactions.590

Proof. From Observation 41, we know there only exists one agent state in the system at a591

time. Since the system is single-consuming, the agent state is only consumed in a single rule.592

These two points mean there only exists a single move sequence, so if the target configuration593

is reachable, it is universally reachable. ◀594

A.2 Volume Related Results595

▶ Corollary 15. Production and reachability in 2-source, 2-consuming CRNs is PSPACE-hard596

with rules of size (2, 1) and (1, 2).597

Proof. The reduction behaves the same way as in Theorems 12 and 13, however, here, we598

either have a single agent species, or a single intermediate species. ◀599

▶ Theorem 16. Reachability is in NP for volume-increasing and volume-decreasing CRNs600

when the volume is encoded in unary.601

Proof. When the volume of a system is strictly increasing or decreasing, any reaction sequence602

between I and D is bounded by of size ≤ |I −D|. The sequence can then be given as a ‘yes’603

certificate for reachability. ◀604

▶ Theorem 18. Reachability and production in CRNs is NL-hard with rules of size (1, 1).605

Proof. Given a directed graph G we create a set of species and reactions as follows. For606

each node v ∈ G we create a species. For each edge (a, b) ∈ E we create a reaction a→ b.607

We reduce from the directed path problem: given two nodes s, t ∈ G, does there exist a608

path between s and t? Let our initial configuration be a single copy of the species representing609

s and our target configuration be a single copy of t. At each step the species will represent610

the current node in the path to reach t if and only if there exists a path. ◀611

▶ Theorem 17. Production with rules of size (1, 1) is NL-complete.612

Proof. Non-deterministically select a species i with a positive count in the initial configuration,613

check if the target species is reachable from i, if yes then the target species is producible.614

Checking reachability is in NL, since the reactions can be viewed as directed edges. NL-615

hardness comes from Theorem 18. ◀616

A.3 Results Related to Single-Consuming or Single-Source617

▶ Theorem 19. Production in single-consuming CRNs is NP-hard.618

Proof. Consider an instance of 3SAT where X is the set of variables and C is the set of clauses.619

For each xi ∈ X we include xi, xi, xT
i , xF

i in our species set. The starting configuration620

includes a copy of each of the species xi, xi. For each cj ∈ C with cj = (xa, xb, xc), we include621

ca
j , cb

j , cc
j , cSAT

j , SATj . The starting configuration includes a copy of each species ca
j , cb

j , cc
j622

and SAT0. The target species we wish to produce is SAT|C|.623

171



Alaniz et al. 23:17

Two assignments species T, F are included. One copy of each of these species is included624

in the starting configuration that acts as a catalyst. There are two rules for each xi:625

T + xi + xi → T + xT
i + xi for assigning true, and F + xi + xi → F + xi + xF

i for assigning626

false. The T and F catalysts are used in order to not have two rules with the same reactants.627

The rules change one of the species to the true or the false species, and the other can not be628

created. We add a rule ca
j + xT

a → cSAT
j + xT

a for positive literals and ca
j + xF

a → cSAT
j + xF

a629

for negated literals. To verify each clause we include the rules, SATj + cSAT
j → SATj+1630

The target SAT|C| is only producible by starting with SAT0 and applying the rule631

SATj + cSAT
j → SATj+1 exactly |C| times to verify the satisfaction of each clause. ◀632

A.3.1 A Polynomial-Time Algorithm for Single-Source and633

Single-Consuming Simple CRNs634

In this section, we present a polynomial-time algorithm for the reachability problem of CRNs635

where each species has at most one source and is at most one consuming, and each rule636

generates at most one species.637

Preliminaries. A CRN(Λ, Γ) is a (1, 1, 1)-CRN if it is 1-source and 1-consuming, and each638

rule a1 + · · · + ak → b satisfies that k ≥ 2 and the species a1, · · · , ak, b are different from639

each other. A (1, 1, 1)-CRN is also called single source and single consuming simple CRN.640

Let G = (V, E) be a directed graph with |V | = n. A directed graph G = (V, E) is weakly641

connected if the undirected graph G′ = (V, E′) is connected, where E′ is the set of undirected642

edges (u, v) with u→ v as a directed edge in G = (V, E). A vertex v is a leaf in G = (V, E)643

if there is one edge u→ v coming to it. A vertex v is an almost leaf if every edge u→ v in644

E has u as a leaf.645

Let (Λ, Γ) be a (1, 1, 1)-CRN. Let each species of the CRN be a vertex in a directed graph646

G = (V, E). There is an edge u → v if there is a rule that has u on the left and v on the647

right side. We say G = (V, E) is derived from the CRN (Λ, Γ).648

The reachability problem for a directed graph G = (V, E) derived from a CRN (Λ, Γ), is649

to find a way to apply rules to reach configuration (j1, · · · , jn) from the starting configuration650

(i1, · · · , in), where vertex t has it copies in the beginning and jt copies in the end.651

Let G = (V, E) be directed a graph. We say G is an almost-cycle if it contains a unique652

directed cycle C and every vertex has an edge directed to a vertex in the cycle C.653

▶ Lemma 42. Let G = (V, E) be derived from a (1, 1, 1)-CRN (Λ, Γ) and be weakly connected.654

Then G = (V, E) has at most one directed cycle. Furthermore, if G = (V, E) does not have a655

directed cycle, then it is a directed tree with a root that every vertex has a directed path to. If656

G = (V, E) does have a directed cycle, then every vertex has a directed path to a vertex in657

the cycle.658

Proof. This is because (Λ, Γ) is a (1, 1, 1)-CRN. Assume there are two different directed659

cycles C1 and C2 in G. We discuss two cases.660

Case 1. There is a common vertex v in both C1 and C2. We have that v has two outgoing661

edges from v. This contradicts that G is derived from a (1, 1, 1)-CRN since this implies662

the CRN is 2-consuming.663

Case 2. There is a common vertex between C1 and C2. We can find a weak path664

connecting C1 and C2, where a weak path is a set of directed edges in G and form a665

regular path when they are converted into undirected edges. One vertex on the weak path666

must have two outgoing edges. This contradicts that G is derived from a (1, 1, 1)-CRN667

since this implies the CRN is 2-consuming.668

CVIT 2016
172



23:18 Reachability in Restricted CRNs

Therefore, G has at most one directed cycle, or a single vertex graph. If it is an almost-cycle,669

we are done with the proof.670

Now assume that G is neither an almost-cycle nor a single vertex graph. Let v → v1 →671

· · · → vk be a longest directed path without any vertex in the directed cycle. We have that672

v1 is an almost leaf. Otherwise, the directed path would not be the longest. Assume that v1673

is generated by v, u1, · · · , ut in (Λ, Γ) (it has a rule v + u1 + · · ·+ ut → v1). We transform674

G = (V, E) into G′ = (V \ {v, u1, · · · , ut}, E \ {v → v, u1 → v, · · · , ut → v}). G′ is derived675

from another (1, 1, 1)-CRN (Λ′, Γ′) that is transformed from (Λ, Γ) by removing the rule676

v + u1 + · · ·+ ut → v and v, u1, · · · , ut from (Λ, Γ). This is proven via a simple induction. ◀677

▶ Lemma 43. Let G = (V, E) be derived from a (1, 1, 1)-CRN (Λ, Γ). Let u be an almost leaf678

(not a vertex on a directed cycle) in G = (V, E). Then the reachability problem for G = (V, E)679

can be transformed into G′ = (V \ U, E \ E(U)), where U is the set of vertices v entering u680

((v → u) ∈ E) and E(U) is the set of edges ((v → u) ∈ E) entering u in G = (V, E).681

Proof. For an almost leaf u not in a cycle, there is a unique way to apply the rules in order682

to reach the target configuration. If u has i1 copies in the input configuration, j1 copies in683

the target configuration, we must have i1 ≤ j1. Otherwise, the target configuration is not684

reachable. If rule v1 + · · · + vt → u is the only one to generate u, then we have to apply685

these rules j1 − i1 times. After applying this rule j1 − i1 times, we check if the number of686

copies of those v1, · · · , vt are equal to their target values, respectively. ◀687

▶ Lemma 44. There is a polynomial-time algorithm to solve the reachability problem for an688

almost-cycle graph derived from a (1, 1, 1)-CRN.689

Proof. Let G = (V, E) be an almost-cycle graph with a unique C in it. Let v be a vertex690

in C. The vertex v appears in a rule R : v + v1 + · · ·+ vt → u. It is easy to see that none691

of v1, · · · , vt is the cycle C. If vi is in C, we have u with both v and vi going toward it in692

C, which is a contradiction. Thus, the number of copies of each vi is decreasing. Therefore,693

we know the number of times the rule R should be used. For each v in C, we compute the694

number of copies (Cv) that v is consumed and the number (Pv) of copies v are produced.695

The difference Cv − Pv is how many times (noted gv) we enter and leave v.696

Assume that the target configuration is reachable from the current configuration. Let697

it start from a vertex v in the cycle C. If it does not finish the first g iterations, we can698

adjust the operations until it finishes the first g iterations. Assume that the broken point is699

at vertex v′.700

We can decide the number of iterations to apply rules along the cycle C. It will be701

g = min{gv} if gv > 0 for each vertex v in C. Without loss of generality, let g = gv1 .702

Assume that the target configuration is reachable from the current configuration. Let it703

start from a vertex vi in the cycle C. If it does not finish the first g iterations, we can adjust704

the operations so that it finishes the first g iterations along the cycle C. Assume that the705

broken point is at vertex vj . The next operation is at a vertex vk with |j − k| > 1. We apply706

the rules R1, R2 · · · , Rs−1, Rs, where Rs is the rule to generate vj+1. The operations can be707

transformed to Rs, R1, R2 · · · , Rs−1.708

After applying the rules along the cycle C with g iterations, we compute g′
v = gv − gv1 ,709

C ′
v = Cv − gv1 and P ′

v = Pv − gv1 for all vertices v in C. We have g′
v1 = 0. Let v1, v2, · · · , vn710

be the n vertices in the cycle C according the direction of the cycle. For i = 2, 3, · · · , n, 1,711

we apply the rule P ′
vi

times to generate vi, and another rule Pvi
times to produce vi. At the712

end, we check if we fail or reach the target configuration. Thus, we have a polynomial-time713

algorithm for the reachability of (1, 1, 1)-CRNs. ◀714

173



Alaniz et al. 23:19

▶ Theorem 20. There is a polynomial-time algorithm to solve the reachability problem for715

single-source and single-consuming simple CRNs.716

Proof. Let (i1, · · · , in) be the configuration of the input species, where it is the number of717

copies of the species t. Let (j1, · · · , jn) be the target configuration of species in the end of718

process. We need to find a polynomial-time solution for each weakly connected component.719

Without loss of generality, we assume G only has one weakly connected720

Case 1. There is no directed cycle in G. By Lemma 43, we can shrink the graph G until721

it becomes a trivial case.722

Case 2. There is one directed cycle C in G. By Lemma 43, we can shrink the graph723

G until it becomes an almost-cycle, and then by Lemma 44, we know reachability is724

decidable in polynomial-time.725

Therefore, we have a polynomial-time algorithm for the reachability problem for (1, 1, 1)-726

CRNs. ◀727

B Appendix for Section 4728

B.1 NP-completeness for Bimolecular Reactions729

▶ Lemma 22. Let C = (Λ, Γ) be a feed-forward CRN with a feed-forward ordering F =730

{R0, R1, . . . , R|R|−1} over Γ. Given configurations c, c′, and a sequence of reactions S =731

{. . . , Rj , Ri, . . .} in Γ that converts c to c′ where i < j, then the sequence S′ = {. . . , Ri, Rj , . . .},732

i.e., the sequence obtained by swapping the two rules Ri and Rj, also transforms c→ c′.733

Proof. Let X denote the configuration obtained by applying the rules of S up to just before734

the application of rule Rj . Let Rj = (Rj
r, Rj

p) and Ri = (Ri
r, Ri

p). As S is a valid sequence735

of rule applications, X −Rj
r is a non-negative vector. Due to the feed-forward ordering F ,736

the reactants Ri
r do not occur as products in Rj

p, and thus X −Rj
r −Ri

r is also non-negative,737

implying that rule Ri and Rj can be applied in either order. ◀738

▶ Corollary 23. A configuration D is reachable from a configuration I with a feed-forward739

CRN if and only if D is reachable from I by an ordered application of rules.740

▶ Lemma 24. The reachability problem is in NP for feed-forward CRNs that do not use741

autogenesis rules.742

Proof. We utilize the ordered application from Corollary 23 as a polynomial-sized certificate.743

Denote this certificate as A = ⟨a1, a2, a3, . . . , ak⟩ where each ai is an nonnegative integer744

denoting the number of applications of rule Ri in the feed-forward ordering. While sequence A745

could include a large (exponential) number of total rule applications, we bound the number of746

applications by bounding the volume of the system at any given point during the application747

of these rules, which both shows that the sequence can be represented in size polynomial in748

the input size n of the reachability problem, and verified in polynomial time, thus showing749

membership in NP.750

Let Vi denote the volume of the CRN after the complete application of all ai instances of751

rule Ri in the feed-forward ordering, with V0 = V (I) denoting the volume of the initial given752

configuration I. Note that since there are no autogenesis rules, we know that ai ≤ Vi−1,753

since each rule must exhaust at least one count of some species in the system. Let V (pi)754

denote the volume of the product of the ith rule in the feed-forward ordering, and let V (p)755

denote the largest V (pi) plus 1, noting that each application of Ri increases the system756

CVIT 2016
174



23:20 Reachability in Restricted CRNs

volume by at most V (pi) ≤ V (p). Thus, Vi ≤ Vi−1 +aiV (pi) ≤ Vi−1 +Vi−1V (pi) ≤ Vi−1V (p).757

This recurrence equation solves to Vi ≤ V (0)V (p)i. If we let n denote the input size758

to the reachability problem, we know that V (0) ≤ 2n, and V (p) ≤ 2n, and therefore759

Vi ≤ 2n · 2i·n ≤ 2n2+n. Thus, the total volume of the system at any point, as well as each ai,760

can be represented in a polynomial number of bits in n. We make a nondeterministic path761

to guess nonnegative integers a1, a2, · · · an in the [0, 2n2+n], verify the system has enough762

reactants to support ai applications of each rules ri in the sequence, and compute the763

configuration C = C0 + a1H1 + a2H2 · · ·+ akHk, where C0 is the initial configuration vector,764

and Hi is the application vector of rule Ri (see Section 2). Finally, we check if C is the same765

as the target configuration. Since all integers involved in these calculations are stored using766

a polynomial number of bits, this computation can be performed in polynomial time. ◀767

▶ Lemma 45. The reachability problem is in NP for feed-forward CRNs that do not use void768

rules.769

Proof. This follows from Lemma 24 and Lemma 53. ◀770

▶ Theorem 26. Reachability is NP-complete for feed-forward CRNs with size (2, 2) rules771

that are 2-source and 2-consuming.772

Proof. If there exists a Hamiltonian path P in G, there exists a sequence of rules rP , each773

moving the ∗ to a subsequent agent matching the sequence of vertices in P and further774

setting the previous agent to the visited state. Such a rule sequence ends with a single visited775

state for each vertex in the graph other than T and a T|V | state.776

Conversely, if a sequence of rules r that results in the target configuration exists, then a777

Hamilton path exists as each rule changes the agent location to the visited state, which can778

no longer change state, and moves the ∗ to the next agent. The sequence of ∗ species in the779

configuration represents the Hamilton path.780

Finally, note that this system is feed-forward since an agent starts in the initial state,781

changes to a signal state, then to the visited state. We can ensure the ordering since the782

signal states are numbered. ◀783

▶ Corollary 27. Reachability is NP-complete for feed-forward CRNs that are 2-source and784

2-consuming with all rules of size (2, 1).785

Proof. This is obtained by simply removing the visited states in the previous reduction. ◀786

▶ Corollary 28. Reachability is NP-complete for feed-forward CRNs that are 2-source and787

2-consuming and with all rules of size (1, 2).788

Proof. This follows from the above corollary combined with Lemma 53 (defined in Section789

4.2). ◀790

▶ Corollary 29. Production is NP-complete for feed-forward CRNs with either size (2, 2)791

rules, size (2, 1) rules, or size (1, 2) rules, that are 2-source and 2-consuming.792

Proof. In the previous reduction, the species T|V | is only producible if it is reached after793

reaching all other species, implying the previous reduction above holds for the production794

problem. ◀795

175



Alaniz et al. 23:21

▶ Definition 30 (Three Dimensional Matching Problem (3DM)). The 3DM problem takes as796

input a hypergraph H = (X, Y, Z, T ) where X, Y, Z are three disjoint sets, and T ⊆ X×Y ×Z797

is a set of hyperedges. The output is whether or not there exists a subset of T that covers798

all vertices in H without any overlap.799

▶ Corollary 31. Reachability in CRNs with each species being k-consuming/1-source or800

1-consuming/k-source is NP-complete even with only one species being different than the801

others and the system being feed-forward without void/autogenesis rules.802

Proof. We reduce from the 3DM problem, which is hard even when each vertex is covered803

by at most 3 hyper edges. Let H = (X, Y, Z, T ) be an input to the 3DM problem. From this,804

create an input to the reachability problem as follows. Let Λ = {Sv|v ∈ X
⋃

Y
⋃

Z}⋃{a},805

and let Γ = {Sx + Sy + Sz → a|(x, y, z) ∈ T}. The initial configuration I is the configuration806

in which each species has count 1 except species a with count 0. Let D be the configuration807

in which each species has count 0 except a, which has count |X| = |Y | = |Z|. Then D is808

reachable from I under (Λ, Γ) if and only if H has a three-dimensional matching.809

Species a is never consumed, but is produced by all k = |X| = |Y | = |Z| of the rules.810

Thus, it is 0-consuming/k-source. All other species are never produced, and are consumed811

in 3 different rules. Thus, they are 3-consuming/0-source. Finally, since species A is never812

consumed, any ordering of the rules is feed-forward, and there are no void or autogenesis813

rules used. By Lemma 24, the problem is in NP. ◀814

‘815

B.2 Feed-Forward, Single-Consuming/Single-Source816

We now introduce some machinery for constructing an efficient algorithm for solving reach-817

ability in the special case of feed-forward, single-source rule sets with no void rules.818

▶ Definition 46 (Leaf Rule.). A rule R ∈ Γ is a leaf rule for Γ if the products of R do not819

occur as reactants within any other rule of the system Γ (however, the products of a leaf rule820

may occur as reactants within the same leaf rule). A leaf rule could also be a void rule.821

▶ Lemma 47. A feed-forward, non-empty rule set has at least one leaf rule.822

Proof. The final rule in the feed-forward ordering must be a leaf rule, as its product may823

not occur as a reactant for any previous rule of the system, which includes all rules other824

than itself. ◀825

▶ Lemma 48. If Γ is a feed-forward, single-source rule set without void rules, then so is any826

subset of Γ.827

Proof. This follows from the definitions of feed-forward, single-source, and void rules. ◀828

▶ Definition 49 (Pruned Configuration.). Consider a configuration I, a target configuration D,829

and feed-forward rule set Γ with non-void leaf rule R = (Rr, Rp). If there exists a non-negative830

integer x such that D(i) \ xRa(i) = I(i), for all i where Rp(i) ̸= 0, and R is applicable to831

D \ xRa, we say that D is prunable towards I with respect to rule R, and define the pruning832

of D towards I with respect to R to be the configuration Prune(D, I, R) = D \ xRa. If no833

such non-negative integer x exists, then we say that D is inconsistent with I for rule R. Note834

that the integer x, and thus the configuration Prune(D, I, R) = D \ xRa, are unique as long835

as R is not a void leaf rule.836

CVIT 2016
176



23:22 Reachability in Restricted CRNs

▶ Lemma 50. If a configuration D is inconsistent with a configuration I for any leaf rule837

R ∈ Γ, then D is not reachable from I with a rule set Γ.838

Proof. As R is a leaf rule, the counts of the product species in rule R are only affected by839

rule R among the rules of Γ. Therefore, if D is reachable from I, it must be possible to840

generate the counts of these species specified by D by some number of applications x of rule841

R. If no such integer exists, which is the definition of inconsistent, then the species counts842

for R’s products cannot equal the counts specified by D, making D unreachable. ◀843

▶ Lemma 51. For a rule set Γ and configuration D that is consistent with I for non-void leaf844

rule R ∈ Γ, then D is reachable from I with a rule set Γ if and only if D′ = Prune(D, I, R)845

is reachable from configuration I with a rule set Γ \R.846

Proof. We first show that if D′ = Prune(D, I, R) is reachable with a rule set Γ \R, then so847

is D with a rule set Γ. This is because once D′ is reached, we know from the definition of848

D′ = Prune(D, I, R) that there exists a non-negative integer x such that x applications of849

rule R to configuration D′ yields D, implying that D is reachable.850

For the other direction, suppose we can reach D. From the sequence of rule applications851

that reaches D, there must be exactly some non-negative integer x applications of rule R.852

Create a modified sequence of configurations by omitting these x operations, and you get853

configuration D′ = Prune(D, I, R) by application of rules from Γ\R, meaning D′ is reachable854

from Γ \R. ◀855

▶ Theorem 32. The reachability problem is solvable in polynomial time for a rule set Γ that856

is feed-forward, single-source, and without void rules.857

Proof. Let I denote the starting configuration, D denote the destination configuration, and858

(Λ, Γ) be a feed-forward CRN without void rules for a given reachability instance. The859

following recursive algorithm solves reachability for a feed-forward, single-source rule set860

with no void rules.861

As a base case, if the input system has 0 rules, then D is reachable if and only if I = D.862

Otherwise, identify a leaf rule R from Γ, which must exist by Lemma 47. Check if D is863

consistent with I for rule R. If not, return false, which is the correct answer by Lemma 50. If864

it is, then let D′ = Prune(D, I, R) denote the pruning of D towards I for rule R and return865

the result of recursively solving reachability with initial configuration I, ruleset Γ \R, and866

destination configuration D′, which is a valid input to this algorithm as Γ \R is assured to867

be a feed-forward, single-source rule set without void rules by Lemma 48, and is assured to868

yield the correct result by Lemma 51. In total, this algorithm executes |Γ| prune operations.869

Further, as the system is both feed-forward and without void rules, a polynomial number870

of prune operations preserves the property that the count of any system species after each871

pruning is small enough to be represented in only a polynomial number of bits (the argument872

for this is the same as the proof of Lemma 24). Therefore, the polynomial number of873

arithmetic operations used to compute a prune can each be completed in polynomial time,874

and so each prune can be performed in polynomial time, and therefore the algorithm overall875

finishes in polynomial time. ◀876

▶ Definition 52. For a rule set Γ, let ←−Γ be the reverse of Γ where ←−Γ = {(a, b)|(b, a) ∈ Γ}.877

▶ Lemma 53. For any two configurations A, B and rule set Γ, B is reachable from A in Γ878

if and only if A is reachable from B in ←−Γ .879

177



Alaniz et al. 23:23

We now consider the case of reachability in feed-forward, single-consuming systems880

without autogenesis rules. Our approach is to reverse the given rule set Γ and apply our881

algorithm for Theorem 32.882

▶ Theorem 33. The reachability problem is solvable in polynomial time for a ruleset Γ that883

is feed-forward, single-consuming, and without autogenesis rules.884

Proof. Given a CRN (Λ, Γ) where Γ is feed-forward, single-consuming, and without autogen-885

esis rules, along with initial configuration I, and destination D, generate rule set ←−Γ . Note886

that ←−Γ must be single-source as Γ is single-consuming, and must have no void rules since Γ887

has no autogenesis rules, and must be feed-forward since Γ is feed-forward. We can therefore888

determine if I is reachable from D under ←−Γ in polynomial time by Theorem 32, which gives889

the answer to our original reachability problem by Lemma 53. ◀890

Here we consider the case of reachability in feed-forward, 1-source, and 1-consuming systems891

with no further restrictions on the rule set. A single-consuming rule set will contain at most892

one void rule, allowing void rules to be considered when pruning a configuration.893

▶ Corollary 34. The reachability problem is solvable in polynomial time for a rule set Γ that894

is feed-forward, 1-source, and 1-consuming with no further restrictions on the rule set.895

Proof. Let I denote the initial configuration, let D denote the target configuration, and let896

(Λ, Γ) be a feed-forward, 1-source, and 1-consuming CRN for a given reachability instance.897

With a single-consuming rule set Γ, any rule R, void or otherwise, may be used to prune D if898

there exists some non-negative integer x such that D(i) \ xRa(i) = I(i). By the definition of899

single-consuming, the integer x and the configuration Prune(D, I, R) = D(i) \ xRa(i) remain900

unique.901

It follows that the recursive algorithm used in Theorem 32 solves reachability for a feed-902

forward, single-source, and single-consuming rule set by allowing void rules when pruning. ◀903

C Appendix for Section 5904

▶ Theorem 35. Reachability for CRNs with only rules of size (3, 0) is NP-complete.905

Proof. We reduce from the 3DM problem. Let H = (X, Y, Z, T ) be an input to the906

3DM problem. From this, create an input to the reachability problem as follows. Let907

Λ = {Sv|v ∈ X
⋃

Y
⋃

Z}, and let Γ = {Sx + Sy + Sz → ∅|(x, y, z) ∈ T}. Let configuration908

I be the configuration in which each species has count 1 and let D be the configuration in909

which each species has count 0. Then D is reachable from I under (Λ, Γ) if and only if H910

has a three-dimensional matching. ◀911

▶ Corollary 36. Reachability for CRNs with only rules of size (0, 3) is NP-complete.912

Proof. We show this by reduction from the reachability problem with size (3, 0) rules.913

Consider an instance of the reachability problem with an input of a CRN (Λ, Γ), an initial914

configuration I, and a destination configuration D in which rules in Γ are exclusively sized915

(3, 0) void rules. Let Λ′ = Λ, Γ′ =←−Γ , initial configuration I ′ = D, and target configuration916

D′ = I. Observe that Γ′ consists of rules only of size (0, 3). By Lemma 53, D′ is reachable917

from I ′ under ruleset Γ′ if and only if D is reachable from I under ruleset Γ. ◀918

▶ Theorem 37. Reachability in CRNs is in P with rules of size (2, 0) if configuration counts919

are encoded in unary.920

CVIT 2016
178



23:24 Reachability in Restricted CRNs

Proof. We show this by reducing reachability in this scenario to the two-dimensional match-921

ing problem, which has an established polynomial-time solution. We first consider the922

configuration X = I −D, creating a graph from this configuration. For each non-zero count923

species X(i) > 0, X(i) vertices are added to the graph of type i. For each rule i + j → ∅, we924

add edges to the graph connecting all vertices of type i to all vertices of type j. Then we925

have that X can reach the empty configuration if and only if the created graph has a perfect926

two-dimensional matching, and thus I reaches D if and only if such a matching exists. ◀927

▶ Definition 38 (Bipartite CRN). A bipartite CRN (Λ, Γ) is one in which the species Λ can928

be partitioned into two disjoint sets Λ1 and Λ2 such that for each rule R ∈ Γ, there are at929

most 2 reactants of R and they do not occur within the same partition of Λ.930

▶ Theorem 39. Reachability is polynomial-time solvable for bipartite CRNs with (2, 0) rules.931

Proof. We show this by reducing reachability for a (2, 0) rule bipartite CRN to the maximum932

network flow problem. Consider an input (2, 0)-rule bipartite CRN (Λ, Γ) with partitions Λ1933

and Λ2, input configuration I, and output configuration D. From this, generate a max-flow934

instance as follows: for each s ∈ Λ, let the network contain a corresponding vertex vs. For935

each rule, a + b→ ∅ ∈ Γ, add an infinite capacity edge between vertices va and vb. For each936

xi ∈ Λ1, add an edge from the source vertex to vertex vxi of capacity I[i]−D[i], and for each937

yi ∈ Λ2, add an edge from vyi
to the sink vertex of capacity I[i]−D[i]. The maximum-flow938

of this network is equal to the configuration volume I − D if and only if D is reachable939

from I under Γ, and therefore reachability can be computed in polynomial time using the940

Edmonds-Karp maximum-flow algorithm. ◀941

179



APPENDIX E

180



APPENDIX E

COMPUTING THRESHOLD CIRCUITS WITH VOID REACTIONS IN STEP 

CHEMICAL REACTION NETWORKS

181



Computing Threshold Circuits with Void Reactions1

in Step Chemical Reaction Networks2

Anonymous author3

Anonymous affiliation4

Anonymous author5

Anonymous affiliation6

Anonymous author7

Anonymous affiliation8

Anonymous author9

Anonymous affiliation10

Anonymous author11

Anonymous affiliation12

Anonymous author13

Anonymous affiliation14

Anonymous author15

Anonymous affiliation16

Anonymous author17

Anonymous affiliation18

Anonymous author19

Anonymous affiliation20

Anonymous author21

Anonymous affiliation22

Anonymous author23

Anonymous affiliation24

Abstract25

We introduce a new model of step Chemical Reaction Networks (step CRNs), motivated by the26

step-wise addition of materials in standard lab procedures. Step CRNs have ordered reactants that27

transform into products via reaction rules over a series of steps. We study an important subset of28

weak reaction rules, void rules, in which chemical species may only be deleted but never changed.29

We demonstrate the capabilities of these simple limited systems to simulate threshold circuits and30

compute functions using various configurations of rule sizes and step constructions, and prove that31

without steps, void rules are incapable of these computations, which further motivates the step32

model. Additionally, we prove the coNP-completeness of verifying if a given step CRN computes a33

function, holding even for O(1) step systems.34

2012 ACM Subject Classification Replace ccsdesc macro with valid one35

Keywords and phrases CRN, Chemical Reaction Network, Threshold Circuits, Void Reactions36

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.2337

Category Student Paper. The circuit constructions given, and the presentations were all created38

and primarily written by five undergraduate students. Specifically, Sections 3 and 4. The images,39

examples, and tables were also created by them. The introduction and lower bounds were mainly40

done by graduate students (two MS and one PhD).41

© Anonymous author(s);
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

182



23:2 Threshold Circuits with Void Reactions in Step CRNs

1 Introduction42

Chemical Reaction Networks (CRNs) are one of the most established and longest studied43

models of self-assembly [5, 6]. CRNs originate in attempting to model chemical interactions as44

molecular species that react and create products from the reaction. This can be represented45

as an original number of each species and a set of replacement rules. The fundamental nature46

of the model is evident in the independent inception of equivalent models in multiple areas47

of research through other motivations [17], such as Vector Addition Systems (VASs) [26] and48

Petri-Nets [32]. Further, Population Protocols [2] are a restricted version where the number49

of input and output elements are each two.50

Step CRNs. We propose and investigate an important but straightforward extension to51

the CRN model motivated by the desire to reflect standard laboratory and medical practices.52

The Step CRN models augments the CRN model with a sequence of discrete steps where53

an additional specified amount of chemical species is combined with the existing CRN after54

running the system to completion. Our goal is to explore the computational power of Step55

CRNs using highly restricted classes of CRN rules that would otherwise be computationally56

weak. In particular, we consider the problem of implementing the computationally universal57

class of Threshold Circuits using only void rules.58

Void Rules. We study the computational power of Step CRNs under an extremely simple59

subset of CRN rules termed void rules [1]. General CRN rules are powerful since they allow60

the removal, addition, and replacement of species. Impressively, these rules have successful61

experimental implementations using DNA strand replacement mechanisms [37]. However,62

implementing this level of generality requires sophisticated, and large, DNA complexes63

that incur practical errors and constitute one of the primary hurdles limiting the scalable64

implementation of molecular computing schemes [13, 43]. In contrast, void rules only have65

the ability to delete species. Such a simple subset of reactions could plausibly permit66

drastically simpler and scalable molecular implementations based solely on the pair-wise67

bonding strength of single-stranded DNA. The only drawback is the inability of void rule68

systems to compute even simple functions. We show that void rules become computationally69

powerful in the step model with just tri-molecular or bi-molecular interactions. Specifically,70

we show how Threshold Circuits (TC), a powerful class of circuits with applications in deep71

learning, are simulated with void rules using a number of steps linear in the circuit’s depth.72

Our utilization of steps under this void rule restriction is necessary, as we further show that73

even simple circuits require the use of steps when restricted to pure void rules.74

1.1 Previous Work75

Computation in Chemical Reaction Networks. Stochastic Chemical Reaction Networks76

are only Turing-complete with the possibility for error [36] while error-free stochastic Chemical77

Reaction Networks can compute precisely the set of semilinear functions [4, 15]. CRNs have78

also recently been shown to be experimentally viable through DNA Strand Displacement79

(DSD) systems [37], and several CRN to DSD compilers have been created [9, 27, 40, 46].80

Boolean Circuits. Using molecules for information storage and Boolean logic is a deep81

field of study. Here, we show a few highlights, starting with one of the first discussions in82

1988 [8] and an initial presentation of circuits with CRNs in 1991 [24]. Since then, the area83

has been extensively studied in CRNs and related models [7, 10, 12, 17, 20, 25, 28, 33, 34].84

Numerous gates have been built experimentally and proposed theoretically such as the AND85

[12, 18, 29, 34, 39, 45], OR [12, 18, 34, 39], NOT [12], XOR [12, 45], NAND [12, 17, 20, 44],86

NOR [12], Parity [21, 22, 23], and Majority [3, 11, 30]. Symmetric boolean functions of87

183



Anonymous author(s) 23:3

Function Computation
Rules Species Steps Simulation Family Ref
(3, 0) O(min(W 2, GFout)) O(D log Fout) Strict TC Circuits Theorem 7

(2, 0)(2, 1) O(G) O(D) Strict TC Circuits Theorem 8
(2, 1) O(G) O(D log Fmaj) Strict TC Circuits Corollary 9
(c, 0) any Ω(log k) Strict k-CNOT Theorem 11

Strict Function Verification
Rules Steps Complexity Ref
(3, 0) O(1) coNP-complete Theorem 14

Table 1 Summary of n-bit circuit simulation results. D is the depth of the circuit, W is the
width, G is the number of gates in a circuit or number of operators in a formula, Fout is the max
fan-out, and Fmaj is the max fan-in of majority gates. TC stands for Threshold Circuits. The
k-CNOT is a k fan-in generalization of a Controlled NOT gate. Rule size (c, 0) means the row holds
for all integer constants c > 0.

n variables such as Majority have been found to have a circuit depth of O(log n) when88

implemented by AND, OR and NOT gates [35].89

Void Rules. The reachability problem, with systems of only void rules in proper CRNs, was90

studied in [1]. Previous studies had included void rules as a part of their systems but were91

never studied exclusively. The CRN++ programming language [42] allows these reactions to92

be programmed using the sub module. However, if any product(s) remain, they can differ93

from the reactants. They can also be considered a subcategory of the broader concept of the94

extinction of rules and species in a system as referred to in [44].95

Mixing Systems. Another generalization of CRNs that is closely related to the step model96

is I/O CRNs [20], where additional inputs can be added at timed intervals. Still, those inputs97

are read-only in the system (used exclusively as catalysts). Step CRNs generalize I/O CRNs98

as the inputs are not read-only and are rate-independent, unlike I/O CRNs. Staged systems99

have been explored in many self-assembly models[14, 16, 19, 31].100

1.2 Our Contributions101

Table 1 has an overview of the main results of this paper beyond the introduction of the102

model and simulation definitions. The most important results being the ability to simulate103

the class of Threshold Circuits (TC) by simulating AND, OR, NOT, and MAJORITY gates104

through a restrictive definition of simulation while only using small void rules.105

In Section 2, we define Step Chemical Reaction Networks and what it means to compute106

a function. Following, in Section 3, we show how to simulate the class TC of Threshold107

Circuits with void rules of size (3, 0) (rules where 3 species react to delete each other) using108

O(D log f) steps, where D is the depth of the circuit and f denotes the maximum fan-out109

of the circuit. In Section 4, we achieve the same result using both (2, 0) and (2, 1) rules110

and a slightly more efficient step complexity of O(D). We then use exclusively (2, 1) rules111

to achieve this same result by adding a factor of log Fmaj to the steps, where Fmaj is the112

maximum fan-in of majority gates. In Section 5, we show there exist functions that require a113

logarithmic number of steps when restricted to constant reaction size, as well as the existence114

of O(1)-depth threshold circuits of fan-out f that require Ω(log f) steps, which matches the115

O(D log f) upper bound for (3, 0) circuits. Finally, we show that it is coNP-complete to116

know whether a function can be strictly simulated by a step CRN system.117

CVIT 2016
184



23:4 Threshold Circuits with Void Reactions in Step CRNs

2 Preliminaries118

2.1 Chemical Reaction Networks119

Basics. Let Λ = {λ1, λ2, . . . , λ|Λ|} denote some ordered alphabet of species. A configuration120

over Λ is a length-|Λ| vector of non-negative integers that denotes the number of copies of121

each present species. A rule or reaction is represented as an ordered pair of configuration122

vectors R = (Rr, Rp). Rr contains the minimum counts of each reactant species necessary for123

reaction R to occur, where reactant species are either consumed by the rule in some count or124

leveraged as catalysts (not consumed); in some cases a combination of the two. The product125

vector Rp has the count of each species produced by the application of rule R, effectively126

replacing vector Rr. The species corresponding to the non-zero elements of Rr and Rp are127

termed reactants and products of R, respectively.128

The application vector of R is Ra = Rp − Rr, which shows the net change in species129

counts after applying rule R once. For a configuration C and rule R, we say R is applicable130

to C if C[i] ≥ Rr[i] for all 1 ≤ i ≤ |Λ|, and we define the application of R to C as the131

configuration C ′ = C + Ra. For a set of rules Γ, a configuration C, and rule R ∈ Γ applicable132

to C that produces C ′ = C + Ra, we say C →1
Γ C ′, a relation denoting that C can transition133

to C ′ by way of a single rule application from Γ. We further use the notation C →∗
Γ C ′ to134

signify the transitive closure of →1
Γ and say C ′ is reachable from C under Γ, i.e., C ′ can be135

reached by applying a sequence of applicable rules from Γ to initial configuration C. Here,136

we use the following notation to depict a rule R = (Rr, Rp):
∑|Λ|

i=1 Rr[i]si → ∑|Λ|
i=1 Rp[i]si.137

For example, a rule turning two copies of species H and one copy of species O into one138

copy of species W would be written as 2H + O → W .139

▶ Definition 1 (Discrete Chemical Reaction Network). A discrete chemical reaction network140

(CRN) is an ordered pair (Λ, Γ) where Λ is an ordered alphabet of species, and Γ is a set of141

rules over Λ.142

An initial configuration and CRN (Λ, Γ) is said to be bounded if a terminal configuration143

is guaranteed to be reached within some finite number of rule applications starting from144

configuration I. We denote the set of reachable configurations of a CRN as REACHI,Λ,Γ. A145

configuration is called terminal with respect to a CRN (Λ, Γ) if no rule R can be applied to146

it. We define the subset of reachable configurations that are terminal as TERMI,Λ,Γ.147

2.2 Void Rules148

▶Definition 2 (Void and Autogenesis rules). A rule R = (Rr, Rp) is a void rule if Ra = Rp−Rr149

has no positive entries and at least one negative entry. A rule is an autogenesis rule if Ra150

has no negative values and at least one positive value. If the reactants and products of a rule151

are each multisets, a void rule is a rule whose product multiset is a strict submultiset of the152

reactants, and an autogenesis rule one where the reactants are a strict submultiset of the153

products. There are two classes of void rules, catalytic and true void. In catalytic void rules,154

such as (2, 1) rules, one or more reactants remain, and one or more is deleted after the rule155

is applied. In true void rules, such as (2, 0) and (3, 0) rules, there are no products remaining.156

▶ Definition 3. The size/volume of a configuration vector C is volume(C) =
∑

C[i].157

▶ Definition 4 (size-(i, j) rules). A rule R = (Rr, Rp) is said to be a size-(i, j) rule if158

(i, j) = (volume(Rr), volume(Rp)). A reaction is trimolecular if i = 3, bimolecular if i = 2,159

and unimolecular if i = 1.160

185



Anonymous author(s) 23:5

a
c

d
→

d
c

a
Species

a c d f ge

Rules

a c e+ + → ∅

b d e+ + → ∅

c f g+ + →

d f g+ + →

f

g

b

a
c

d
. . .

Step 1

S₀

e

e

a
c

d
→

e
e

. . .

Step 2

S1

e

d

e

d

f

g

g

. . .

Step 3

S₂

e

f

g

Final Configuration

Figure 1 An example step CRN system. The test tubes show the species added at each step and
the system with those elements added. The CRN species and void rule-set are shown on the left.

2.3 Step CRNs161

A step CRN is an augmentation of a basic CRN in which a sequence of additional copies162

of some system species are added after a terminal configuration is reached. Formally, a163

step CRN of k steps is an ordered pair ((Λ, Γ), (s0, s1, s2, . . . , sk−1)), where the first element164

of the pair is a normal CRN (Λ, Γ), and the second is a sequence of length-|Λ| vectors of165

non-negative integers denoting how many copies of each species type to add after each step.166

Figure 1 illustrates a simple step CRN system.167

Given a step CRN, we define the set of reachable configurations after each sequential168

step. Let REACH1 be the set of reachable configurations of (Λ, Γ) with initial configuration169

c0 at step s0, and let TERM1 be the subset of reachable configurations that are terminal.170

Define REACH2 to be the union of all reachable configurations from each possible starting171

configuration attained by adding s1 to a configuration in TERM1. Let TERM2 be the172

subset of these reachable configurations that are terminal. Similarly, define REACHi to be173

the union of all reachable sets attained by using initial configuration ci−1 at step si−1 plus174

any element of TERMi−1, and let TERMi denote the subset of these configurations that175

are terminal.176

The set of reachable configurations for a k-step CRN is the set REACHk, and the set of177

terminal configurations is TERMk. A classical CRN can be represented as a step CRN with178

k = 1 steps and an initial configuration of I = s0.179

Note that our definitions assume only the terminal configurations of a given step are180

passed on to seed the subsequent step. This makes sense if we assume we are dealing with181

bounded systems, as this represents simply waiting long enough for all configurations to reach182

a terminal state before proceeding to the next step. In this paper we only consider bounded183

void rule systems; we leave more general definitions to be discussed in future work.184

2.4 Computing Functions in Step CRNs185

Here, we define what it means for a step CRN to compute a function f(x1, . . .n) = (y1, . . . ym)186

that maps n-bit strings to m-bit strings. For each input bit, we denote two separate species187

types, one representing bit 0, and the other bit 1. We add one copy for each bit to encode188

an input n-bit strig. Similarly, each output bit has two representatives(for 0 and 1), and189

we say the step CRN computes function f if for any given n-bit input x1, . . . xn, the system190

results in a final configuration whose output species encode the string f(x1, . . . xn). For a191

fixed function f , the values denoted at each step si are fixed to disallow outside computation.192

Input-Strict Step CRN Computing. Given a Boolean function f(x1, . . . , xn) = (y1, . . . , ym)193

that maps a string of n bits to a string of m bits, we define the computation of f194

with a step CRN. An input-strict step CRN computer is a tuple Cs = (S, X, Y ) where195

S = ((Λ, Γ), (s0, s1, . . . , sk−1)) is a step CRN, and X = ((x0
1, x1

1), . . . , (x0
n, x1

n)) and Y =196

CVIT 2016
186



23:6 Threshold Circuits with Void Reactions in Step CRNs

((y0
1 , y1

1), . . . , (y0
m, y1

m)) are sequences of ordered-pairs with each x0
i , x1

i , y0
j , y1

j ∈ Λ. Given an197

n-input bit string b = b1, . . . , bn, configuration X(b) is defined as the configuration over Λ ob-198

tained by including one copy of x0
i only if bi = 0 and one copy of x1

i only if bi = 1 for each bit199

bi. We consider this representation of the input to be strict, as opposed to allowing multiple200

copies of each input bit species. The corresponding step CRN (Λ, Γ, (s0 + X(b), . . . , sk−1)) is201

obtained by adding X(b) to s0 in the first step, which conceptually represents the system202

programmed with specific input b.203

An input-strict step CRN computer computes function f if, for all n-bit strings b and204

for all terminal configurations of (Λ, Γ, (s0 + X(b), . . . , sk−1)), the terminal configuration205

contains at least 1 copy of y0
j and 0 copies of y1

j if the jth bit of f(b) is 0, and at least 1 copy206

of y1
j and 0 copies of y0

j if the jth bit of f(b) is 1, for all j from 1 to m.207

We use the term strict to denote requiring exactly one copy of each bit species and208

we leave it for future work to consider a more general form of input allowance or strict209

output. Here, we only consider input-strict computation, so we use input-strict and strict210

interchangeably.211

Relation to CRN Computers. Previous models of CRN computers considered functions212

over large domains such as the positive integers. Due to the infinite domain, the input to213

such systems cannot be bounded. As such, the CRN computers shown in [15] define the214

input in terms of the volume of some input species. In these scenarios, CRN computers215

are limited to computing semi-linear functions. Here, we instead focus on computing n-bit216

functions, and instead encode the input per bit with potentially unique species. This is a217

model more similar to the PSPACE computer shown in [38].218

2.5 Boolean and Threshold Circuits219

A Boolean circuit on n variables x1, x2, . . . , xn is a directed, acyclic multi-graph. The vertices220

of the graph are generally referred to as gates. The in-degree and out-degree of a gate are221

called the fan-in and fan-out of the gate respectively. The fan-in 0 gates (source gates)222

are labeled from x1, x2, . . . , xn, or labeled by constants starting at 0 or 1. Each non-source223

gate is labeled with a function name, such as AND, OR, or NOT. Given an assignment of224

boolean values to variables x1, x2, . . . , xn, each gate in the circuit can be assigned a value by225

first assigning all source vertices the value matching the labeled constant or labeled variable226

value and subsequently assigning each gate the value computed by its labeled function on227

the values of its children. Given a fixed ordering on the output gates, the sequence of bits228

assigned to the output gates denotes the value computed by the circuit on the given input.229

The depth of a circuit is the longest path from a source vertex to an output vertex. Here,230

we focus on circuits that consist of AND, OR, NOT, and MAJORITY gates with arbitrary231

fan in. We refer to circuits that use these gates as threshold circuits (TC).232

2.6 Notation233

When discussing a boolean circuit, we use the following variables to denote the properties234

of the circuit: Let D denote the circuit’s depth, G the number of gates in the circuit, W235

the circuit’s width, Fout the maximum fan-out of any gate in the circuit, Fin the maximum236

fan-in, and Fmaj the maximum fan-in of any majority gate within the circuit.237

3 Computation of Threshold Circuits with (3, 0) Rules238

Here, we introduce a step CRN system construction with only true void rules that can239

compute Threshold Circuits. In other words, given any TC and some truth assignment to240

187



Anonymous author(s) 23:7

the input variables, we can construct a step CRN with only true void rules that computes241

the same output as the circuit.242

This section specifically focuses on step CRNs consisting of (3, 0) rules. Subsection243

3.1 shows how the system can compute individual logic gates, and we show an example244

construction of a circuit in Subsection 3.2. We then present the general construction of245

computing TC circuits by two different methods, differing in the number of species needed246

based on the fan-out and width of the circuit. This results in Theorem 7, which states247

that TCs can be strictly computed, even with unbounded fan-out, with O(min(W 2, GFout))248

species, O(D log Fout) steps, and O(W ) volume.249

3.1 Computing Logic Gates250

Indexing. The number of steps to compute an individual depth level of a circuit varies251

between 2-8 steps depending on the gates and wiring of the specified circuit. To convert a252

circuit into a (3, 0) step CRN system, we need to index the wires (input and output) at each253

level of the circuit in order to ensure the species is input to the correct gate. An example254

circuit with bit/wire indexing is shown in Figure 3c. At each level, we call the indices of255

the inputs of gates the input indices, and the indices of the output of each gate the gate256

indices. Note that the index numbers may need to change along the wire, or change due to257

fan-out/fan-in (see Figure 3c). This is accomplished by rules of the form tj→i that map an258

input index of j to a gate index of i.259

Bit Representation. The input bits of a binary gate are represented in a step CRN with260

(3, 0) rules by the species xb
n, where n ∈ N and b ∈ {T, F}. Here, n represents the bit’s index261

(based on the ordering of all bits into the gates) and b represents its truth value. Let f in
i be262

the set of all the indices of input bits fanning into a gate at index i (gate indices). Let fout
i263

be the set of all indices of the output bits fanning out of a gate at index i.264

The output bits of a gate are represented by the species yb
n,g, where n is instead the output265

bit’s index (input index of the next level) and g denotes the gate type g ∈ {B, A, O, N, M}266

(BUFFER, AND, OR, NOT, and MAJORITY). The BUFFER (B) represents a signal wire267

that changes depth without passing through a gate. For example, the outputs of an AND268

gate, an OR gate, and a NOT gate at index n are represented by the species yb
n,A, yb

n,O, and269

yb
n,N , respectively.270

AND/OR Gate. The general process to compute an AND gate (an OR gate is similar) is271

given in Table 2. First, all input species are converted into a new species ab
i,g (step 1). The272

species retains truth value b as the original input, and includes the gate index i and type273

of the gate g. The species bb
i,g is then introduced (step 2), which computes the operation274

of gate g across all existing species. Any species that do not share the same truth value as275

the gate’s intended output are deleted (step 3-4). The species remaining after the operation276

is then converted into the correct output species (step 5). The species ui, vi, wi, and tj→i,277

where j is the input index and i is the gate index, are used to assist in removing excess278

species in certain steps.279

AND Example. Consider an AND gate whose gate index is 1 with input bits 1 and 0 as280

shown in Figure 2. In this case, |f in
i | = 2 and the initial configuration consists of the species281

xT
1 and xF

2 . Following Table 2, this gate can be computed in five steps.282

1. Two aT
1,A, two aF

1,A, one t1→1, and one t2→1 species are added to the system. This converts283

the two input species of the gate into aT
1,A and aF

1,A (causes all species except aT
1,A and284

aF
1,A to be deleted).285

2. One bT
1,A, two bF

1,A, and two u1 species are added. All species except a single bF
1,A are286

CVIT 2016
188



23:8 Threshold Circuits with Void Reactions in Step CRNs

Figure 2 Example AND gate and steps to compute using (3, 0) rules. Note the gate indexing of
the wires (i : 1 and i : 2) and the input indexing for the next level (i : 1 since there is only one gate).
The process of computing the gate is shown on the right in steps. The new species added at each
step are above and the remaining ones are in the system. The lines show the rules that would be
executed during each step. To see the added species and rules in detail, see Table 2.

Steps Relevant Rules Description

1 Add
|f in

i | · aT
i,g

|f in
i | · aF

i,g

∀j ∈ f in
i : tj→i

∀j ∈ f in
i :

xT
j + aF

i,g + tj→i → ∅
xF

j + aT
i,g + tj→i → ∅

∀j ∈ f in
i , convert xb

j input
species into ab

i,g species.

2 Add
bT

i,g

|f in
i | · bF

i,g

|f in
i | · ui

ui + aT
i,g + bF

i,g → ∅
ui + aF

i,g + bT
i,g → ∅

Keep at least one of the correct output
species and delete all incorrect species.

This step computes the AND gate.∗

3 Add 2|f in
i | · vi ui + vi + vi → ∅ Delete extra/unwanted species.

4 Add |f in
i | · wi

wi + vi + vi → ∅
wi + aF

i,g + bF
i,g → ∅ Delete extra/unwanted species.

5 Add yT
i,g, yF

i,g, t
bT

i,g + yF
i,g + t → ∅

bF
i,g + yT

i,g + t → ∅
Convert bb

i,g into the proper output
species yb

i,g.
Table 2 (3, 0) rules and steps for an AND gate. To compute an OR gate, add |f in

i | · bT
i,g and

one bF
i,g in step 2 instead, and replace wi + aF

i,g + bF
i,g → ∅ with wi + aT

i,g + bT
i,g → ∅ in step 4.

deleted by reactions.287

3. Four v1 species are added to remove excess species. There are none, so no reactions occur.288

4. Two w1 are added to delete excess species. Now, only a bF
1,A species remains.289

5. One yT
1,A, one yF

1,A and one t species are added. The bF
1,A species cause the yT

1,A and t290

species to be deleted. The yF
1,A species is the only species remaining, which represents291

the intended “false” output of the AND gate.292

NOT Gate. Table 3 shows the general process to computing NOT gates. To compute a293

NOT gate, only the output species and species t are added in. In NOT gates specifically, the294

input species and the output species that share the same truth value b remove each other,295

leaving the complement of the input species as the remaining and correct output species.296

Majority Gate. The majority gate outputs 1 if and only if more than half of its inputs are297

1. Otherwise, it returns 0. The general step process is overviewed in Table 4 To compute a298

majority gate, all input species are converted into a new species ab
i,M (step 1). The species299

retains the same index i and truth value b as the original input. If the number of species300

fanning into the majority gate is even, an extra false input species is added in. The species301

bb
i,M is then introduced, which computes the majority operation across all existing species.302

Any species that represent the minority inputs are deleted (step 2). The species remaining303

after the operation are converted into the correct output (gate index) species (step 5). The304

species ui, vi, wi, and tj→i, where j is the input index and i is the gate index, are used to305

assist in removing excess species in certain steps.306

189



Anonymous author(s) 23:9

Steps Relevant Rules Description

1 Add
yT

i,N

yF
i,N

tj→i

yT
i,N + xT

j + tj→i → ∅
yF

i,N + xF
j + tj→i → ∅

The output species (yb
i,N ) that is

the complement of the input species (xb
j)

will be the only species remaining.
Table 3 (3, 0) rules and steps for a NOT gate.

Steps Relevant Rules Description

1 Add
|f in

i | · aT
i,M

|f in
i | · aF

i,M

∀j ∈ f in
i : tj→i

∀j ∈ f in
i :

xT
j + aF

i,M + tj→i → ∅
xF

j + aT
i,M + tj→i → ∅

∀j ∈ f in
i , convert xb

j input
species into ab

i,M species.

2 Add
⌊|f in

i |/2⌋ · bT
i,M

⌊|f in
i |/2⌋ · bF

i,M

(|f in
i | − 1) · ui

ui + aT
i,M + bF

i,M → ∅
ui + aF

i,M + bT
i,M → ∅

Adding ⌊|f in
i |/2⌋ amounts of bT

i,M and
bF

i,M species will delete all of the
minority species, leaving some amount

of the majority species remaining.
3 Add 2(|f in

i | − 1) · vi ui + 2vi → ∅ Delete extra/unwanted species.

4 Add (|f in
i | − 1) · wi

wi + 2vi → ∅
wi + aT

i,M + bT
i,M → ∅

wi + aF
i,M + bF

i,M → ∅
Delete extra/unwanted species.

5 Add
yT

i,M

yF
i,M

t

aT
i,M + yF

i,M + t → ∅
aF

i,M + yT
i,M + t → ∅

Convert ab
i,M into the proper output
species (yb

i,M ).

Table 4 (3, 0) rules and steps for a majority gate.

3.2 (3,0) Circuit Example307

With the computation of individual gates demonstrated in our system, we now expand these308

features to computing entire circuits. We begin with a simple example (Figure 3c) to show309

the concepts before giving the general construction. The circuit has four inputs: x1, x2, x3,310

and x4. At the first depth layer, x1 fans into a NOT gate and x2 and x3 are both fanned311

into an OR gate. At the next depth level, the output of the OR gate is fanned out twice.312

One of these outputs, along with the output of the NOT gate, is fanned into an AND gate,313

while the other and x4 fans into another AND gate. At the last depth level, both AND gate314

outputs fan into an OR gate, which computes the final output of the circuit.315

Table 5 shows how to compute the circuit in Figure 3c. The primary inputs of the circuit316

in Figure 3c are represented by the species in the initial configuration. Step 1 converts the317

primary inputs into input species. If there was any fan out of the primary inputs, it would318

be done in this step. Steps 2-6 compute the gates at the first depth level. Steps 7-8 compute319

the fan out between the first and second depth level. Step 9 converts the outputs of the320

gates at the first depth level into input species. Steps 10-14 use those inputs to compute321

the gates at the second depth level. Step 15 converts the outputs of these gates into inputs.322

Steps 16-20 compute the final gate. Step 21 converts the output of that gate into an input323

species that represents the solution to the circuit (xF
1 ).324

3.3 Computing Circuits325

▶ Lemma 5. Threshold circuits (TC) with a max fan-out of 2 can be strictly computed by a326

step CRN with only (3,0) rules, O(W 2) species, O(D) steps, and O(W ) volume.327

Proof. The initial configuration of the step CRN should consist of one yb
n,B species for each328

primary input with the appropriate indices and truth values. Section 3.1 explains how to329

compute TC gates. In order to run a circuit, we need to convert the outputs at an index i330

into the inputs for the next gate at index j. To simulate circuits with O(W 2) species, we also331

need to be able to reuse these input, output, and helper species. This can be accomplished332

CVIT 2016
190



23:10 Threshold Circuits with Void Reactions in Step CRNs

Initial Configuration: yT
1,B yT

2,B yT
3,B yF

4,B

Steps Relevant Rules Steps Relevant Rules

1
xT

1 , xT
2 , xT

3 , xT
4

t1→1, t3→3
xF

1 , xF
2 , xF

3 , xF
4

t2→2, t4→4

yT
1,B + xF

1 + t1→1 → ∅
yT

2,B + xF
2 + t2→2 → ∅

yT
3,B + xF

3 + t3→3 → ∅
yF

4,B + xT
4 + t4→4 → ∅

10
2aT

1,A, 2aT
2,A

2aF
1,A, 2aF

2,A

t2→1, t4→2
t1→1, t3→2

xF
1 + aT

1,A + t1→1 → ∅
xT

2 + aF
1,A + t2→1 → ∅

xT
3 + aF

2,A + t3→2 → ∅
xF

4 + aT
2,A + t4→2 → ∅

2
yT

1,N , 2aT
2,O, yT

3,B

t1→1, t3→2
yF

1,N , 2aF
2,O, yF

3,B

t2→2, t4→3

xT
1 + yT

1,N + t1→1 → ∅
xT

2 + aF
2,O + t2→2 → ∅

xT
3 + aF

2,O + t3→2 → ∅
xT

4 + yT
3,B + t4→3 → ∅

11
bT

1,A, bT
2,A

2u1, 2bF
1,A

2bF
2,A, 2u2

aT
1,A + bF

1,A + u1 → ∅
aF

1,A + bT
1,A + u1 → ∅

aT
2,A + bF

2,A + u2 → ∅
aF

2,A + bT
2,A + u2 → ∅

3 2bT
2,O, 2u2, bF

2,O aT
2,O + bF

2,O + u2 → ∅ 12 4v1, 4v2 No Rules Apply
4 4v2 u2 + v2 + v2 → ∅ 13 2w1, 2w2

w1 + v1 + v1 → ∅
w2 + v2 + v2 → ∅

5 2w2
w2 + v2 + v2 → ∅
w2 + aT

2,O + bT
2,O → ∅ 14 yT

1,A, yT
2,A, 2t

yF
1,A, yF

2,A

bF
1,A + yT

1,A + t → ∅
bF

2,A + yT
2,A + t → ∅6 yT

2,O, t, yF
2,O bT

2,O + yF
2,O + t → ∅

7 yT
2,O, r, yF

2,O yT
2,O + yT

2,O + r → ∅ 15 xT
1 , xT

2 , t1→1
xF

1 , xF
2 , t2→2

yF
1,A + xT

1 + t1→1 → ∅
yF

2,A + xT
2 + t2→2 → ∅

8 2yT
2,O, 2yF

2,O yF
2,O + yF

2,O + yF
2,O → ∅ 16 2aT

1,O, t1→1
2aF

1,O, t2→1

xF
1 + aT

1,O + t1→1 → ∅
xF

2 + aT
1,O + t2→1 → ∅

9
xT

1 , xT
2 , xT

3 , xT
4

t1→1, t2→3
xF

1 , xF
2 , xF

3 , xF
4

t2→2, t3→4

yF
1,N + xT

1 + t1→1 → ∅
yT

2,O + xF
2 + t2→2 → ∅

yT
2,O + xF

3 + t2→3 → ∅
yF

3,B + xT
4 + t3→4 → ∅

17 2bT
1,O, 2u1, bF

1,O aF
1,O + bT

1,O + u1 → ∅
18 4v1 No Rules Apply
19 2w1 w1 + v1 + v1 → ∅
20 yT

1,O, t, yF
1,O bF

1,O + yT
1,O + t → ∅

21 xT
1 , t1→1 xF

1 yF
1,O + xT

1 + t1→1 → ∅
Table 5 (3, 0) rules and steps to compute the circuit in Figure 3c based on the indexing shown in

Figure 3a. Note that as in other tables, the ‘Steps’ column shows the number and types of species
being added at the beginning of that step.

Steps Relevant Rules Description

1 Add ∀j ∈ fout
i : xT

j , xF
j , ti→j

∀j ∈ fout
i :

yT
i,g + xF

j + ti→j → ∅
yF

i,g + xT
j + ti→j → ∅

∀j ∈ fout
i , convert yb

i,g output
species into xb

j input species.

Table 6 (3, 0) rules for converting outputs into inputs per circuit level.

by having unique species for each gate at a given depth level. Figure 3a shows a pattern the333

gates can be indexed in.334

When reusing species, we incorporate a unique ti→j species (different from the tj→i335

species used in computing gates) for each gate at index i that converts the output species336

into an input species with the index j. Converting outputs into inputs is done for all gates337

at the same depth level. Table 6 shows the steps and rules needed to complete this process.338

Fan Out. In order to perform a 2-fan out, we create a second copy of the output species339

that is fanning out. Table 7 shows the steps and rules needed to perform this duplication.340

After duplicating the output, the simulation continues as usual. All outputs at the same341

depth level can be fanned out at the same time using these two steps.342

Complexity. The ti→j approach results in, at most, W 2 unique species since 1 ≤ i, j ≤ W .343

All other types of species either have O(1) or O(W ) unique species. Therefore, a simulation344

of a circuit with a max fan-out of 2 requires O(W 2) species.345

All gates at a given depth level are evaluated at the same time, so a simulation of a circuit346

with a max fan-out of 2 requires O(D) steps. Additionally, circuits are evaluated one depth347

level at a time. Thus, at most, a max width amount of input, output, and helper species are348

added at the same time. All of the input, output, and helper species from previous depth349

191



Anonymous author(s) 23:11

Steps Relevant Rules Description

1 Add yT
i,g, yF

i,g, r
yT

i,g + yT
i,g + r → ∅

yF
i,g + yF

i,g + r → ∅
Flip output’s bit (e.g. if species

yT
i,g is present, then delete

it and preserve yF
i,g)

2 Add 2yT
i,g, 2yF

i,g

yT
i,g + yT

i,g + yT
i,g → ∅

yF
i,g + yF

i,g + yF
i,g → ∅

Delete all copies of the negation
of the initial input, and preserve

the two copies of the input
that were just added.

Table 7 (3,0) rules and steps for 2-fan out.

1
2

1

1

2
3
4

(a)

1
2

5

7

6
3
4

(b) (c)

0

1

1

Input Bit Indices
1

2

3

2

2

2

3

4

5

6

7

1

(d)

Figure 3 (a) Example indexing pattern of wires for the step CRN method using O(W 2) species.
(b) Example indexing pattern of wires for the step CRN method using O(G) species. (c) Example
circuit (with indexing) for Table 5. (d) Example circuit (with indexing) for Table 10.

levels get deleted when progressing to the next depth level, so the simulation requires O(W )350

volume. A constant number of species, steps, and volume are needed to perform a 2-fan out,351

so a 2-fan out operation does not affect the complexity. ◀352

▶ Lemma 6. Threshold circuits (TC) with a max fan-out of 2 can be strictly computed by a353

step CRN with only (3, 0) rules, O(G) species, O(D) steps, and O(W ) volume.354

Proof. Most of the rules, species, and steps used to compute a circuit with O(W 2) species355

(Lemma 5) should also be used for this step CRN. The main difference is that there is an356

index for every gate in the circuit instead of limiting the indexes of these species by the max357

width. Figure 3b shows a pattern the gates can be indexed in. Also, we don’t need the ti→j358

species. This is because rules could overlap when reusing species, so the ti→j species was359

used to make certain rules distinct and prevent the wrong reactions from occurring. However,360

each gate being represented by unique species eliminates the possibility of this error as every361

rule used to compute a gate will also be unique. So, in this step CRN, all instances where362

ti→j species is used (including those in Section 3.1) are replaced by the generic t species.363

Complexity. The ti→j species that was the bottleneck for species in the step CRN364

discussed in Lemma 5 has been replaced by the t species. Therefore, the number of species365

is no longer upper bounded by O(W 2). Instead, there are unique species for each gate, thus366

requiring O(G) species. The differences discussed in this lemma do not affect the step or367

volume complexity determined in Lemma 5 (O(D) and O(W ), respectively). ◀368

▶ Theorem 7. Threshold circuits (TC) can be strictly computed by a step CRN with only369

(3, 0) rules, O(min(W 2, G · Fout)) species, O(D log Fout) steps, and O(W ) volume.370

Proof. Since the methods used in Lemmas 5 and 6 can only achieve a max fan-out of 2,371

a circuit with a larger fan-out (Fout) must be turned into a circuit with a max fan-out of372

2. The max width does not change in the transformation process, but the total number of373

gates does. The transformation process creates a binary tree-like structure within the circuit,374

where the gate that is fanning out can be likened to the root, and the gates that the output375

is being inputted into can be likened to the leaves. Therefore, because a binary tree can376

have, at most, 2ℓ − 1 vertices, and an arbitrary fan out already has the “root” gate and377

CVIT 2016
192



23:12 Threshold Circuits with Void Reactions in Step CRNs

“leaves” gates, the transformation process requires, at most, ℓ − 2 more gates to construct the378

binary tree-like structure. Thus, the method requiring O(G) species would require O(GFout)379

species to simulate a circuit with arbitrary fan-out. The most efficient method can be used380

for a given circuit, resulting in O(min(W 2, GFout)) species required to simulate a circuit.381

Due to the binary tree-like structure made for gates with large fan out, the transformation382

process would increase the size of the depth from D to D log Fout. Since the steps are383

dependent on the size of the depth, a circuit simulation would require O(D log Fout) steps.384

The volume of a circuit simulation does not differ between the two methods (O(W )385

volume) nor is it affected by the transformation process. ◀386

4 Threshold Circuits with (2, 0) and (2, 1) Catalyst Rules387

Having established computation results with step CRNs using only true void rules, we now388

examine step CRNs whose rule-sets contain catalytic rules. These rulesets can either consist389

of only (2, 1) rules or both (2, 1) and (2, 0) rules. Subsection 4.1 shows how the computation390

of logic gates is possible in step CRNs with just (2, 0) or (2, 1) rules. We then demonstrate391

with Theorem 4.3 how the system can compute TCs with O(G) species, O(D) steps, and392

O(W ) volume. Subsection 4.4 then shows that TCs can also be calculated (with more steps)393

with only the (2, 1) catalyst rules.394

4.1 Computing Logic Gates395

Bit Representation and Indexing. The inputs of a binary gate are constructed the same396

as in Section 3.1. However, with catalysts, we slightly modify our indexing scheme. When397

fanning out, we do not split the output of the gate into input species with different indices398

because the catalyst rules remove the need to differentiate the input species. Let f in
i be the399

set of all the indices of the inputs fanning into a gate at index i. Let fout
i be the set of all400

the indices of the inputs fanning out of a gate at index i.401

The output of a gate is represented by the species yb
i or yb

j→i, where j is the index of the402

input bit and i is the index of the gate.403

AND/OR/NOT Gate. Table 8 shows the general process to computing AND, OR, and404

NOT gates. To compute an AND gate, we add a single copy of the species representing a405

true output (yT
i ) and a species representing a false output for each input (∀j ∈ f in

i : yF
j→i).406

To compute an OR gate instead, we add a species representing a true output (yT
j→i) for each407

input and a single yF
i species. To compute NOT gates, we add one copy of each output408

species (yb
i ). For every input into an AND/OR/NOT gate, a corresponding rule should be409

created to remove the output species of the gate with the opposite truth value to the input.410

If the output species has a unique j → i index, then only the input with the corresponding i411

can delete that output species.412

These gates can also be computed with (2,1) catalyst rules by making the xb
j species413

a catalyst. For example, the (2,0) rule xT
j + yT

i → ∅ would be replaced by the (2,1) rule414

xT
j + yT

i → xT
j .415

OR Example. Consider OR gate whose gate index is 1 with input bits 0 and 1. Here,416

|f in
i | = 2, and the initial configuration consists of the species xF

1 and a xT
2 .417

This gate can be computed in one step, following Table 8, by adding one yT
1→1, one yT

2→1,418

and one yF
1 species to the system. The species xT

2 and yF
1 delete each other. xF

1 and yT
1→1419

are also removed together. Only the species yT
2→1 remains, which represents the intended420

“true” output of the OR gate.421

Majority Gate. The general process of computing a majority gate is shown at Table 9.422

To compute a majority gate, all input species are converted into a new species ab
i (step 1).423

193



Anonymous author(s) 23:13

Gate Type Step Relevant Rules Description

AND Add yT
i

∀j ∈ f in
i : yF

j→i

xT
j + yF

j→i → ∅
xF

j + yT
i → ∅

An input species with a certain
truth value deletes the

complement output species.

OR Add yF
i

∀j ∈ f in
i : yT

j→i

xT
j + yF

i → ∅
xF

j + yT
j→i → ∅

An input species with a certain
truth value deletes the

complement output species.

NOT Add yT
i

yF
i

xT
j + yT

i → ∅
xF

j + yF
i → ∅

The input and output species that
share the same truth value delete

each other.
Table 8 (2, 0) rules for AND, OR, and NOT gates.

Steps Relevant Rules Description

1 Add |f in
i | · aT

i

|f in
i | · aF

i

∀j ∈ f in
i :

xT
j + aF

i → ∅
xF

j + aT
i → ∅

∀j ∈ f in
i , convert xb

j input
species into ab

i species.

2 Add ⌊|f in
i |/2⌋ · bT

i

⌊|f in
i |/2⌋ · bF

i

aT
i + bF

i → ∅
aF

i + bT
i → ∅

Adding ⌊|f in
i |/2⌋ amounts of bT

i and
bF

i species will delete all of the
minority species, leaving some amount

of the majority species remaining.

3 Add yT
i

yF
i

aT
i + yF

i → ∅
aF

i + yT
i → ∅

Convert ab
i into the proper output
species (yb

i ).
Table 9 (2, 0) rules for majority gates.

The species retains the same truth value b as the original input and has the gate index i. If424

the number of species fanning into the majority gate is even, an extra false input species is425

added in. The species bb
i is then introduced, which computes the majority operation across426

all existing species. Any species that represent the minority inputs are deleted (step 2). The427

species remaining afterwards are then converted into the correct output species (step 3).428

4.2 Examples429

With the computation of individual gates demonstrated in our system, we now expand these430

features to computing entire circuits. We begin with a simple example in Figure 3d to show431

the concepts before giving the general construction.432

Our example circuit has three inputs: x1, x2, and x3. In the first layer, x2 is fanned out433

three times. One is fanned into an AND gate with x1, another fanned into a NOT gate, and434

the other fanned into an AND gate with x3. Finally, at the next depth level, the output of435

all three gates are fanned into an OR gate, whose output is the final circuit output.436

Table 10 shows how to compute the circuit in Figure 3d. The primary inputs of the437

circuit in Figure 3d are represented by the species in the initial configuration. Steps 1-5 fan438

out the second primary input, convert the output species (yb
n) into input species (xb

n), and439

delete excess species. Step 6 computes the gates at the first depth level. Steps 7-11 convert440

the output species into input species and deletes excess species. Step 12 computes the final441

gate. Steps 13-17 delete excess species and converts the output of the final gate into an input442

species that represents the solution to the circuit (xT
7 ).443

4.3 Computing Circuits with (2,0) Void and (2,1) Catalyst Rules444

▶ Theorem 8. Threshold circuits (TC) can be strictly computed with (2, 0) void rules and445

(2, 1) catalyst rules, O(G) species, O(D) steps, and O(W ) volume.446

Proof. With only (2, 0) rules, there is no known way to perform fan-outs without introducing,447

at most, an exponential count of species at certain steps. This makes it impossible to strictly448

compute circuits with only (2, 0) rules and results in a large volume. The use of (2, 1)449

CVIT 2016
194



23:14 Threshold Circuits with Void Reactions in Step CRNs

Initial Configuration: yF
1 yT

2 yT
3

Steps Relevant Rules Steps Relevant Rules
1 Add dx No Rules Apply 8 Add dx dx + dx → ∅
2 Add dx dx + dx → ∅

9 Add
xT

4 , xF
4

xT
5 , xF

5
xT

6 , xF
6

yF
1→4 + xT

4 → yF
1→4

yF
5 + xT

5 → yF
5

yT
6 + xF

6 → yT
63 Add

xT
1 , xF

1
3xT

2 , 3xF
2

xT
3 , xF

3

yF
1 + xT

1 → yF
1

yT
2 + xF

2 → yT
2

yT
3 + xF

3 → yT
3

10 Add dy

yF
1→4 + dy → dy

yF
5 + dy → dy

yT
6 + dy → dy4 Add dy

yF
1 + dy → dy

yT
2 + dy → dy

yT
3 + dy → dy 11 Add dy dy + dy → ∅

5 Add dy dy + dy → ∅
12 Add yT

4→7, yT
5→7

yT
6→7, yF

7

xF
4 + yT

4→7 → ∅
xF

5 + yT
5→7 → ∅

xT
6 + yF

7 → ∅

6 Add

yT
4 , yF

1→4
yT

5 , yF
2→4

yF
5 , yF

2→6
yT

6 , yF
3→6

xF
1 + yT

4 → ∅
xT

2 + yF
2→4 → ∅

xT
2 + yT

5 → ∅
xT

2 + yF
2→6 → ∅

xT
3 + yF

3→6 → ∅

13 Add dx No Rules Apply
14 Add dx dx + dx → ∅
15 Add xT

7 , xF
7 yT

6→7 + xF
7 → yT

6→7
16 Add dy yT

6→7 + dy → dy

7 Add dx No Rules Apply 17 Add dy dy + dy → ∅
Table 10 (2, 0) and (2, 1) rules and steps to compute the circuit in Figure 3d with Figure 3b’s

indexing.
catalyst rules enables the step CRN to compute with arbitrary fan-out without an increase450

in species count, as well as deleting all species that are no longer needed. This allows for451

strict computation and decreases the volume of the step CRN to a polynomial size.452

The initial configuration of this step CRN should consist of a yb
n species with the453

appropriate indexing and truth values for each primary input. Section 4.1 explains how to454

compute TC gates. To run the circuit, we must convert the output species into input species.455

In addition, this step CRN uses dx and dy as deleting species. Table 11 shows the steps and456

rules needed to perform arbitrary fan-out for a gate. All outputs at the same depth level can457

be fanned out at the same time.458

Complexity: Having a constant amount of unique species represent each gate in a459

circuit and a constant number of helper species results in O(G) species. All gates at a given460

depth level are computed at the same time in a constant number of steps. Thus, the circuit461

simulation requires O(D) steps. This step CRN only needs to introduce a constant number462

of species to compute each gate, and it deletes all species no longer needed after computing463

all gates at a given depth level. Thus, the step CRN requires O(W ) volume. ◀464

4.4 Computing Circuits with (2,1) Catalyst Rules465

It’s worth noting that (2,1) catalyst rules are able to compute TCs on their own. The main466

drawback is that there is no known way to directly compute majority gates without (k ≥ 2, 0)467

void rules. Thus, any majority gate must be computed using AND, OR, and NOT gates468

when using only catalyst rules. Furthermore, deleting species that are no longer needed is469

slightly more convoluted with (2,1) rules compared to pure void rules.470

▶ Corollary 9. Threshold circuits (TC) can be strictly computed with only (2, 1) catalyst471

rules, O(G) species, O(D log Fmaj) steps, and O(W ) volume.472

Proof. Section 4.1 explains how to compute AND/OR/NOT gates using (2,0) rules, and473

they can easily be changed to (2,1) rules by making the xb
j species a catalyst. The method474

used to perform arbitrary fan out in Theorem 8 can be slightly modified to function with475

only (2,1) rules. Table 12 demonstrates how this can be done. A special property of using476

195



Anonymous author(s) 23:15

Steps Relevant Rules Description

1 Add dx

∀n ∈ {1, · · · , G} :
∀b ∈ {T, F }

dx + xb
n → dx

dx + ab
n → dx

dx + bb
n → dx

Delete all input species (xb
n) and helper

species that are no longer needed.

2 Add dx dx + dx → ∅ Remove deleting species dx.

3 Add |fout
i | · xT

i

|fout
i | · xF

i

yT
i + xF

i → yT
i

yF
i + xT

i → yF
i

∀j ∈ f in
i :

yT
j→i + xF

i → yT
j→i

yF
j→i + xT

i → yF
j→i

Add species representing true and false
inputs and delete the species that are the

complement of the output. A single output
species can assign the truth value for as

many input species as needed.

4 Add dy

∀n ∈ {1, · · · , G} :
dy + yT

n → dy

dy + yF
n → dy

∀j ∈ f in
i :

dy + yT
j→i → dy

dy + yF
j→i → dy

Delete all output species (yb
n) that no

longer needed.

5 Add dy dy + dy → ∅ Remove deleting species dy.

Table 11 (2, 0) and (2, 1) rules and steps for a gate with arbitrary fan out.
(2,1) rules to compute gates is that the counts of the species being added are flexible. This is477

not the case when gates are computed with pure void rules, as it is necessary for the counts478

of certain species to be precise. For example, while Step 3 in Table 11 and Step 5 in Table479

12 are functionally equivalent steps, they have different computing requirements. When480

computing with (2,0) rules, we need exactly |fout
i | amount of xb

i species by the end of that481

step. On the other hand, when computing with (2,1) rules, we only need one copy of xb
i , and482

even if multiple copies of that species were added, it would not have a significant impact on483

the computation of the circuit.484

Complexity: The techniques used to compute circuits are functionally equivalent to the485

ones used in Theorem 8, so the upper bound of species and volume remain the same, that is,486

O(G) and O(W ), respectively.487

Since majority gates must be computed using AND and OR gates when using only488

(2,1) rules, the depth of the circuit must increase. The conversion of a majority gate to489

AND/OR/NOT gates can be achieved with O(n) gates and O(log n) depth where n is the490

number of input bits of the majority gate [35] (any symmetric boolean function has a circuit491

of depth O(log n) and size O(n) for n bits). Thus, the maximum number of steps needed492

to compute a circuit would be O(D log Fmaj), where Fmaj is the maximum fan-in of any493

majority gate in the circuit. ◀494

5 Lower Bounds and Hardness495

In this section, we prove negative results for computing with step CRNs. First, we show there496

exists a family of functions that require a logarithmic number of steps to compute. Then, we497

show hardness of verifying whether a step CRN properly computes a given function.498

5.1 Step Lower Bound for Controlled NOT499

CNOT. The Controlled NOT gate is a 2-bit input and 2-bit output gate taking inputs X500

and Y , and outputting X and X ⊕ Y . In other words, the gate flips Y if X is true.501

k-CNOT. We generalize this to a Controlled k-NOT gate. This is a (k + 1)-bit gate with502

CVIT 2016
196



23:16 Threshold Circuits with Void Reactions in Step CRNs

Steps Relevant Rules Description

1 Add d′
x d′

x + d′′
x → d′

x

Deleting species d′′
x makes it possible for

species dx to exist in the next step
without complications.

2 Add dx

dx + d′
x → dx

∀n ∈ {1, · · · , G} :
∀b ∈ {T, F }

dx + xb
n → dx

dx + ab
n → dx

dx + bb
n → dx

Deleting species d′
x makes it possible for

species d′′
x to exist in the next step

without complications.
Delete all input species (xb

n) and helper
species that are no longer needed.

3 Add d′′
x dx + d′′

x → d′′
x Removes deleting species dx.

4 Add d′
y d′

y + d′′
y → d′

y

Deleting species d′′
y makes it possible for

species dy to exist in the next step
without complications.

5 Add xT
i

xF
i

yT
i + xF

i → yT
i

yF
i + xT

i → yF
i

∀j ∈ f in
i :

yT
j→i + xF

i → yT
j→i

yF
j→i + xT

i → yF
j→i

Add species representing true and false
inputs and delete the species that are the

complement of the output. A single output
species can assign the truth value for as

many input species as needed.

6 Add dy

dy + d′
y → dy

∀n ∈ {1, · · · , G} :
dy + yT

n → dy

dy + yF
n → dy

∀j ∈ f in
i :

dy + yT
j→i → dy

dy + yF
j→i → dy

Deleting species d′
y makes it possible for

species d′′
y to exist in the next step

without complications.
Delete all output species (yb

n) that are
no longer needed.

7 Add d′′
y dy + d′′

y → d′′
y Remove deleting species dy.

Table 12 (2, 1) rules and steps for a gate with arbitrary fan out.

inputs X, Y1, . . . , Yk. The Y bits all flip if X is true. We choose this function since it has503

the property that changing 1 bit of the input changes a large number of output bits.504

Configuration Distance. Recall configurations are defined as vectors. For two configura-505

tions c0, c1, we say the distance between them is ||c0 − c1||1, i.e., the sum of the absolute506

value of each entry in c0 − c1.507

▶ Lemma 10. Let r be a positive integer parameter. For all step CRNs Γ with void rules of508

size (r1, 0) with r1 ≤ r and pairs of initial configurations cT and cF with distance 2 and equal509

volume, for any configuration cT s terminal in the step s from cT , there exists a configuration510

cF s terminal in step s from cF such that the distance between cT s and cF s is O(rs).511

Proof. Let T be the species that is in configuration cT and not in cF . Similarly, define the512

species F to be the species in configuration cF and not in cT . Consider the reaction sequence513

RT starting from cT and ending in cT 1. All but one reaction in RT can be applied to cF .514

Consider the reaction sequence RF that differs from RT by two reactions. The first is the515

reaction in RT that consumes T and r − 1 other species, and the second is a reaction that516

consumes F and r − 1 other species. Applying RF results in a configuration cF 1 that differs517

from cT 1 by at most 2r species.518

Now, assume there are two initial configurations in step s with distance 2rs−1 away from519

each other. In the base case, each different species between the configurations can be used in520

197



Anonymous author(s) 23:17

at most one rule, thus the species can only propagate r − 1 additional changes in the next521

terminal configuration. This results in a difference of 2rrs−1 = 2rs in the s stage. ◀522

The configuration distance between two output configurations is related to the Hamming523

distance of the output strings they represent. Lemma 10 can be used to get a get a logarithmic524

lower bound for the number of steps required when we fix our rule size to be a constant.525

▶ Theorem 11. For all constants r, any CRN that strictly computes a k-CNOT gate with526

rules of size (r1, 0) satisfying r1 ≤ r requires Ω(log k) steps.527

Proof. Flipping only the X bit of the the input changes all k + 1 output bits. It follows528

that in order to compute a k-CNOT, we must have at least k distance between the two final529

configurations even when starting from configurations with distance 1. We can also assume530

these have the same volume since by changing a bit value we are only changing which species531

we add. With Lemma 10, we get the following inequality and must compute s.532

k ≤ 2rs → log k ≤ 2s log r → log k

2 log r
≤ s533

Since r is a constant we get an asymptotic bound of s = Ω(log k). ◀534

We also note the k-CNOT can be computed by k XOR gates in parallel. This implies535

this lower bound does not hold with catalytic reactions either as Theorem 8 shows this536

can be computed in O(1) steps or without the input-strict requirement. This is because537

increasing the fan-out of the X bit does not incur a cost in the number of steps in both of538

these generalizations. Plugging this XOR circuit into Theorem 7 gives a bound of Θ(log k)539

steps showing the construction is optimal for some circuits.540

5.2 Function Verification Hardness541

We have established that void step CRNs can simulate Boolean circuits. We now discuss the542

complexity of the computational problem of determining if a given (void) step CRN does543

compute a given function. Specifically, we consider the following decision problem:544

(Strict Function Verification): Given a step CRN CS = (S, X, Y ) and a Boolean545

function f(·)1 where f(x1, · · · , xn) = y1 : {0, 1}n → {0, 1}, decide if CS computes Boolean546

function f(·). In particular, let f0(x1, · · · , xn) = false, which is false for all inputs.547

Theorem 12 shows that strict function verification in a step CRN system with void rules548

is coNP-hard, and coNP membership for this problem is shown in Theorem 13.549

▶ Theorem 12. It is coNP-hard to determine if a given a O(1)-step CRN CS = (S, X, Y )550

with (3, 0) rules computes the boolean function f0(x1, · · · , xn).551

Proof. The decision problem 3SAT is a classical NP-complete problem. Its complementary552

problem, which is coNP-complete, is to decide if the conjunction of several clauses with553

three literals cannot be satisfied. We also reduce from the special case of 3SAT where each554

variable appears at most 4 times, shown to be NP-complete in [41]. Let F (x1, · · · , xn) =555

C1 ∧ C2 ∧ · · · Cm be an instance for a 3SAT problem, where each Ci is a clause that has at556

most three literals, for example, C1 = (x1 ∨ x2 ∨ x3). The function F (.) can be computed557

by a boolean circuit of constant depth. Checking if F (x1, · · · , xn) = f0(x1, · · · , xn) for all558

(x1, · · · , xn) is the complementary problem for 3SAT.559

1 We assume that f(·) is given in the form of a circuit cf . We leave as future work the complexity of
other representations such as a truth table.

CVIT 2016
198



23:18 Threshold Circuits with Void Reactions in Step CRNs

It follows from Theorem 7, which shows F (.) can be simulated by a step CRN CS =560

(S, X, Y ) with (3, 0) rules. The number of steps of the CRN is O(D log Fout). The depth561

of the circuit is constant since all clauses can be computed in parallel and the gates handle562

arbitary fan-in. The fanout is also constant because each variable only appears 4 times. ◀563

▶ Theorem 13. Determining if a given a s-step CRN CS = (S, X, Y ) with (r, 0) rules564

computes the boolean function f0(x1, · · · , xn) is in coNP.565

Proof. This problem can be solved by a polynomial time non-deterministic algorithm which566

does the following. Pick a string b of length n and compute f0(b) = Y . Then convert b567

to the initial configuration X(b). Guess a sequence of s terminal configurations c1, . . . , cs568

where ci is a terminal configuration in the ith step. To verify this, call the NP algorithm for569

reachability in Volume Decreasing CRNs from [1] to verify each configuration is reachable in570

the correct step. If the final configuration cs does not represent Y then reject. ◀571

▶ Theorem 14. It is coNP-Complete to determine if a given a O(1)-step CRN CS = (S, X, Y )572

with (3, 0) rules computes the boolean function f0(x1, · · · , xn).573

Proof. Follows from Theorems 12 and 13. ◀574

6 Conclusions and Future Work575

We have proposed the step CRN model, a natural augmentation to the CRN model, and576

shown that void rule CRNs, a simple but computationally weak class of CRNs, become577

capable of efficiently simulating Threshold Circuits under this extension. We have shown this578

holds even when limited to (3, 0) reactions, and further shown that bi-molecular reactions579

are equally powerful if permitted access to catalytic reactions. We also show that the580

step augmentation is fundamentally needed: without access to a super-constant number581

of steps, such computation is impossible. Finally, we utilize our positive results to show582

coNP-completeness for the problem of deciding if a given step CRN computes a given function.583

The step CRN model presented in this work, along with our results, naturally lead to a584

number of additional promising research directions. A small sample of these are:585

Lower Bounds and Catalysts: We conjecture (3, 0) void rules are the smallest size rules586

for strictly simulating TC without the use of a catalyst. Further, we show that more587

than a constant number of steps are required for circuit computation for non-catalytic588

void rules, but is it true with a catalyst?589

Robustness: While void rules potentially offer a simpler path to experimental feasibility590

and scalability, some of our techniques require precise counts of species to be added at591

different steps of the computational process. Such precision is a hurdle to experimental592

implementation. Thus, it is interesting to consider to what extent these results can be593

made robust to approximate counts (or have a lower-bound).594

Reachability: The reachability problem of determining if a given configuration is reachable595

from an initial configuration is well-studied in CRNs and other computational models. We596

showed that steps allow for greater computational power with void rules. How does the597

addition of steps affect the reachability problem, and specifically, what is the complexity598

when relating void rules, catalysts, rule size, and number of steps?599

General Staged CRNs: We explored a simple scheme for including separate stages into600

the CRN model by simply adding new species at each step. A more general modelling601

could include multiple separate bins that may be mixed or split together over a sequence602

of stages. Formalizing such a model and exploring the added power of this generalization603

is an interesting direction for future work.604

199



Anonymous author(s) 23:19

References605

1 Robert M. Alaniz, Bin Fu, Timothy Gomez, Elise Grizzell, Andrew Rodriguez, Robert606

Schweller, and Tim Wylie. Reachability in restricted chemical reaction networks, 2022.607

arXiv:2211.12603.608

2 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation609

in networks of passively mobile finite-state sensors. Distribed Computing, 18(4):235–253, mar610

2006. doi:10.1007/s00446-005-0138-3.611

3 Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for fast612

robust approximate majority. Distributed Computing, 21:87–102, 2008.613

4 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational power614

of population protocols. Distributed Computing, 2007.615

5 Rutherford Aris. Prolegomena to the rational analysis of systems of chemical reactions. Archive616

for Rational Mechanics and Analysis, 19(2):81–99, jan 1965. doi:10.1007/BF00282276.617

6 Rutherford Aris. Prolegomena to the rational analysis of systems of chemical reactions618

ii. some addenda. Archive for Rational Mechanics and Analysis, 27(5):356–364, jan 1968.619

doi:10.1007/BF00251438.620

7 Adam Arkin and John Ross. Computational functions in biochemical reaction networks.621

Biophysical journal, 67(2):560–578, 1994.622

8 Ari. Aviram. Molecules for memory, logic, and amplification. Journal of the American Chemical623

Society, 110(17):5687–5692, Aug 1988. doi:10.1021/ja00225a017.624

9 Stefan Badelt, Seung Woo Shin, Robert F Johnson, Qing Dong, Chris Thachuk, and Erik625

Winfree. A general-purpose crn-to-dsd compiler with formal verification, optimization, and626

simulation capabilities. In International conference on DNA-based computers, pages 232–248.627

Springer, 2017.628

10 Z Beiki, Z Zare Dorabi, and Ali Jahanian. Real parallel and constant delay logic circuit design629

methodology based on the dna model-of-computation. Microprocessors and Microsystems,630

61:217–226, 2018.631

11 Luca Cardelli and Attila Csikász-Nagy. The cell cycle switch computes approximate majority.632

Scientific reports, 2(1):656, 2012.633

12 Luca Cardelli, Marta Kwiatkowska, and Max Whitby. Chemical reaction network designs for634

asynchronous logic circuits. Natural computing, 17:109–130, 2018.635

13 Luca Cardelli, Mirco Tribastone, and Max Tschaikowski. From electric circuits to chemical636

networks. Natural Computing, 19:237–248, 2020.637

14 Cameron Chalk, Eric Martinez, Robert Schweller, Luis Vega, Andrew Winslow, and Tim638

Wylie. Optimal staged self-assembly of general shapes. Algorithmica, 80:1383–1409, 2018.639

15 Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with640

chemical reaction networks. Natural computing, 13(4):517–534, 2014.641

16 Sonya C Cirlos, Timothy Gomez, Elise Grizzell, Andrew Rodriguez, Robert Schweller, and642

Tim Wylie. Simulation of multiple stages in single bin active tile self-assembly. In International643

Conference on Unconventional Computation and Natural Computation, pages 155–170. Springer,644

2023.645

17 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of646

Chemical Reaction Networks, pages 543–584. Springer Berlin Heidelberg, Berlin, Heidelberg,647

2009. doi:10.1007/978-3-540-88869-7_27.648

18 Neil Dalchau, Harish Chandran, Nikhil Gopalkrishnan, Andrew Phillips, and John Reif.649

Probabilistic analysis of localized dna hybridization circuits. ACS synthetic biology, 4(8):898–650

913, 2015.651

19 Erik D Demaine, Sarah Eisenstat, Mashhood Ishaque, and Andrew Winslow. One-dimensional652

staged self-assembly. Natural Computing, 12(2):247–258, 2013.653

20 Samuel J Ellis, Titus H Klinge, and James I Lathrop. Robust chemical circuits. Biosystems,654

186:103983, 2019.655

CVIT 2016
200



23:20 Threshold Circuits with Void Reactions in Step CRNs

21 Abeer Eshra and Ayman El-Sayed. An odd parity checker prototype using dnazyme finite656

state machine. IEEE/ACM Transactions on Computational Biology and Bioinformatics,657

11(2):316–324, 2013.658

22 Daoqing Fan, Yongchao Fan, Erkang Wang, and Shaojun Dong. A simple, label-free, electro-659

chemical dna parity generator/checker for error detection during data transmission based on660

“aptamer-nanoclaw”-modulated protein steric hindrance. Chemical Science, 9(34):6981–6987,661

2018. doi:10.1039/C8SC02482K.662

23 Daoqing Fan, Jun Wang, Jiawen Han, Erkang Wang, and Shaojun Dong. Engineering dna663

logic systems with non-canonical dna-nanostructures: Basic principles, recent developments664

and bio-applications. Science China Chemistry, 65(2):284–297, 2022.665

24 Allen Hjelmfelt, Edward D Weinberger, and John Ross. Chemical implementation of neural666

networks and turing machines. Proceedings of the National Academy of Sciences, 88(24):10983–667

10987, 1991.668

25 Hua Jiang, Marc D Riedel, and Keshab K Parhi. Digital logic with molecular reactions.669

In 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages670

721–727. IEEE, 2013.671

26 Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer672

and System Sciences, 3(2):147–195, 1969. doi:https://doi.org/10.1016/S0022-0000(69)673

80011-5.674

27 Matthew R Lakin, David Parker, Luca Cardelli, Marta Kwiatkowska, and Andrew Phillips.675

Design and analysis of dna strand displacement devices using probabilistic model checking.676

Journal of the Royal Society Interface, 9(72):1470–1485, 2012.677

28 Yu-Chou Lin and Jie-Hong R Jiang. Mining biochemical circuits from enzyme databases via678

boolean reasoning. In Proceedings of the 39th International Conference on Computer-Aided679

Design, pages 1–9, 2020.680

29 David C Magri. A fluorescent and logic gate driven by electrons and protons. New Journal of681

Chemistry, 33(3):457–461, 2009.682

30 Shay Mailloux, Nataliia Guz, Andrey Zakharchenko, Sergiy Minko, and Evgeny Katz. Majority683

and minority gates realized in enzyme-biocatalyzed systems integrated with logic networks and684

interfaced with bioelectronic systems. The Journal of Physical Chemistry B, 118(24):6775–6784,685

Jun 2014. doi:10.1021/jp504057u.686

31 Dandan Mo and Darko Stefanovic. Iterative self-assembly with dynamic strength transformation687

and temperature control. In DNA Computing and Molecular Programming: 19th International688

Conference, DNA 19, Tempe, AZ, USA, September 22-27, 2013. Proceedings 19, pages 147–159.689

Springer, 2013.690

32 Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Rheinisch-Westfälischen691

Institutes für Instrumentelle Mathematik an der Universität Bonn, 1962.692

33 Lulu Qian and Erik Winfree. Scaling up digital circuit computation with dna strand displace-693

ment cascades. science, 332(6034):1196–1201, 2011.694

34 Lulu Qian and Erik Winfree. A simple dna gate motif for synthesizing large-scale circuits.695

Journal of The Royal Society Interface, 8(62):1281–1297, Feb 2011. doi:10.1098/rsif.2010.696

0729.697

35 Igor Sergeevich Sergeev. Upper bounds for the formula size of symmetric boolean functions.698

Russian Mathematics, 58:30–42, 2014.699

36 David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with700

finite stochastic chemical reaction networks. natural computing, 7(4):615–633, 2008.701

37 David Soloveichik, Georg Seelig, and Erik Winfree. Dna as a universal substrate for chemical702

kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010.703

38 Chris Thachuk and Anne Condon. Space and energy efficient computation with dna strand704

displacement systems. In International Workshop on DNA-Based Computers, 2012.705

39 Chris Thachuk, Erik Winfree, and David Soloveichik. Leakless dna strand displacement706

systems. In DNA Computing and Molecular Programming: 21st International Conference,707

201



Anonymous author(s) 23:21

DNA 21, Boston and Cambridge, MA, USA, August 17-21, 2015. Proceedings 21, pages708

133–153. Springer, 2015.709

40 Anupama J Thubagere, Chris Thachuk, Joseph Berleant, Robert F Johnson, Diana A Ardelean,710

Kevin M Cherry, and Lulu Qian. Compiler-aided systematic construction of large-scale dna711

strand displacement circuits using unpurified components. Nature Communications, 8(1):1–12,712

2017.713

41 Craig A Tovey. A simplified np-complete satisfiability problem. Discrete applied mathematics,714

8(1):85–89, 1984.715

42 Marko Vasić, David Soloveichik, and Sarfraz Khurshid. Crn++: Molecular programming716

language. Natural Computing, 19:391–407, 2020.717

43 Boya Wang, Chris Thachuk, Andrew D Ellington, Erik Winfree, and David Soloveichik.718

Effective design principles for leakless strand displacement systems. Proceedings of the National719

Academy of Sciences, 115(52):E12182–E12191, 2018.720

44 Erik Winfree. Chemical reaction networks and stochastic local search. In DNA Computing721

and Molecular Programming: 25th International Conference, DNA 25, Seattle, WA, USA,722

August 5–9, 2019, Proceedings 25, pages 1–20. Springer, 2019.723

45 Wei Xiao, Xinjian Zhang, Zheng Zhang, Congzhou Chen, and Xiaolong Shi. Molecular724

full adder based on dna strand displacement. IEEE Access, 8:189796–189801, 2020. doi:725

10.1109/ACCESS.2020.3031221.726

46 David Yu Zhang and Georg Seelig. Dynamic dna nanotechnology using strand-displacement727

reactions. Nature chemistry, 3(2):103–113, 2011.728

CVIT 2016
202



APPENDIX F

203



APPENDIX F

COMPLEXITY OF RECONFIGURATION IN SURFACE CHEMICAL REACTION 

NETWORKS

204



Complexity of Reconfiguration in Surface Chemical
Reaction Networks
Robert M. Alaniz #

University of Texas Rio Grande Valley, USA

Josh Brunner #

Massachusetts Institute of Technology, USA

Michael Coulombe #

Massachusetts Institute of Technology, USA

Erik D. Demaine #

Massachusetts Institute of Technology, USA

Jenny Diomidova #

Massachusetts Institute of Technology, USA

Timothy Gomez #

Massachusetts Institute of Technology, USA

Elise Grizzell #

University of Texas Rio Grande Valley, USA

Ryan Knobel #

University of Texas Rio Grande Valley, USA

Jayson Lynch #

Massachusetts Institute of Technology, USA

Andrew Rodriguez #

University of Texas Rio Grande Valley, USA

Robert Schweller #

University of Texas Rio Grande Valley, USA

Tim Wylie #

University of Texas Rio Grande Valley, USA

Abstract
We analyze the computational complexity of basic reconfiguration problems for the recently

introduced surface Chemical Reaction Networks (sCRNs), where ordered pairs of adjacent species
nondeterministically transform into a different ordered pair of species according to a predefined set
of allowed transition rules (chemical reactions). In particular, two questions that are fundamental to
the simulation of sCRNs are whether a given configuration of molecules can ever transform into
another given configuration, and whether a given cell can ever contain a given species, given a set of
transition rules. We show that these problems can be solved in polynomial time, are NP-complete,
or are PSPACE-complete in a variety of different settings, including when adjacent species just
swap instead of arbitrary transformation (swap sCRNs), and when cells can change species a limited
number of times (k-burnout). Most problems turn out to be at least NP-hard except with very few
distinct species (2 or 3).

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Problems, reductions and completeness

Keywords and phrases Chemical Reaction Networks, reconfiguration, hardness

Digital Object Identifier 10.4230/LIPIcs...

© Robert M. Alaniz, Josh Brunner, Michael Coulombe, Erik D. Demaine, Jenny Diomidova, Timothy
Gomez, Elise Grizzell, Ryan Knobel, Jayson Lynch, Andrew Rodriguez, Robert Schweller, and Tim
Wylie ;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

205



XX:2 Complexity of Reconfiguration in Surface Chemical Reaction Networks

1 Introduction

The ability to engineer molecules to perform complex tasks is an essential goal of molecular
programming. A popular theoretical model for investigating molecular systems and distrib-
uted systems is Chemical Reaction Networks (CRNs) [6, 26]. The model abstracts chemical
reactions to independent rule-based interactions that creates a mathematical framework
equivalent [8] to other well-studied models such as Vector Addition Systems [18] and Petri
nets [24]. CRNs are also interesting for experimental molecular programmers, as examples
have been built using DNA strand displacement (DSD) [27].

Abstract Surface Chemical Reaction Networks (sCRNs) were introduced in [25] as a way
to model chemical reactions that take place on a surface, where the geometry of the surface
is used to assist with computation. In this work, the authors gave a possible implementation
of the model similar to ideas of spatially organized DNA circuits [21]. This strategy involves
DNA strands being anchored to a DNA origami surface. These strands allow for “species”
to be attached. Fuel complexes are pumped into the system, which perform the reactions.
While these reactions are more complex than what has been implemented in current lab
work, it shows a route to building these types of networks.

1.1 Motivation
Feed-Forward circuits using DNA hairpins anchored to a DNA origami surface were imple-
mented in [5]. This experiment used a single type of fuel strand. The copies of the fuel
strand attached to the hairpins and were able to drive forward the computation.

A similar model was proposed in [9], which modeled DNA walkers moving along tracks.
These tracks have guards that can be opened or closed at the start of computation by
including or omitting specific DNA species at the start. DNA walkers have provided
interesting implementations such as robots that sort cargo on a surface [29].

A new variant of surface CRNs we introduce is the k-burnout model in which cells can
switch states at most k time before being stuck in their final state. This models the practical
scenario in which state changes expend some form of limited fuel to induce the state change.
Specific experimental examples of this type of limitation can be seen when species encode
“fire-once" DNA strand replacement reactions on the surface of DNA origami, as is done
within the Signal Passing Tile Model [22].

1.2 Previous Work
The initial paper on sCRNs [25] gave a 1D reversible Turing machine as an example of the
computational power of the model. They also provided other interesting constructions such
as building dynamic patterns, simulating continuously active Boolean logic circuits, and
cellular automata. Later work in [7] gave a simulator of the model, improved some results of
[25], and gave many open problems- some of which we answer here.

In [2], the authors introduce the concept of swap reactions. These are reversible reactions
that only “swap” the positions of the two species. The authors of [2] gave a way to build
feed-forward circuits using only a constant number of species and reactions. These swap
reactions may have a simpler implementation and also have the advantage of the reverse
reaction being the same as the forward reaction, which makes it possible to reuse fuel species.

A similar idea for swap reactions on a surface that has been studied theoretically are
friends-and-strangers graphs [10]. This model was originally introduced to generalize problems
such as the 15 Puzzle and Token Swapping. In the model, there is a location graph containing

206



Alaniz et al. XX:3

uniquely labeled tokens and a friends graph with a vertex for every token, and an edge if
they are allowed to swap locations when adjacent in the location graph. The token swapping
problem can be represented with a complete friends graph, and the 15 puzzle has a grid
graph as the location graph and a star as the friends graph (the ‘empty square’ can swap
with any other square). Swap sCRNs can be described as multiplicities friends-and-strangers
graph [19], which relax the unique restriction, with the surface grid (in our case the square
grid) as the location graph and the allowed reactions forming the edges of the friends graph.

1.3 Our Contributions
In this work, we focus on two main problems related to sCRNs. The first is the reconfiguration
problem, which asks given two configurations and a set of reactions, can the first configuration
be transformed to the second using the set of reactions. The second is the 1-reconfiguration
problem, which asks whether a given cell can ever contain a given species. Our results are
summarized in Table 1. The first row of the table comes from the Turing machine simulation
in [25] although it is not explicitly stated. The size comes from the smallest known universal
reversible Turing machine [20] (see [30] for a survey on small universal Turing machines.)

We first investigate swap reactions in Section 3. We prove both problems are PSPACE-
complete using only four species and three swap reactions. For reconfiguration, we show
this complexity is tight by showing with three or less species and only swap reactions the
problem is in P.

In Section 4, we study a restriction on surface CRNs called k-burnout where each species is
guaranteed to only transition k times. This is similar to the freezing restriction from Cellular
Automata [14, 15, 28] and Tile Automata [4]. We start with a simple reduction showing
reconfiguration is NP-complete in 2-burnout. This is also of interest since the reduction only
uses three species types and a reaction set of size one. For 1-reconfiguration, we show the
problem is also NP-complete in 1-burnout sCRNs. This reduction uses a constant number of
species.

In Section 5, we analyze reconfiguration for all sCRNs that have a reaction set of size
one. For the case of only two species, we show for every possible reaction, the problem is
solvable in polynomial time. With three species or greater, we show that reconfiguration is
NP-complete. The hardness comes from the reduction in burnout sCRNs.

Finally, in Section 6, we conclude the paper by discussing the results as well as many
open questions and other possible directions for future research related to surface CRNs.

2 Surface CRN model

Chemical Reaction Network. A chemical reaction network (CRN) is a pair Γ = (S, R)
where S is a set of species and R is a set of reactions, each of the form A1 + · · · + Aj →
B1 + · · · + Bk where Ai, Bi ∈ S. (We do not define the dynamics of general CRNs, as we do
not need them here.)

Surface, Cell, and Species. A surface for a CRN Γ is an (infinite) undirected graph
G. The vertices of the surface are called cells. A configuration is a mapping from each cell
to a species from the set S. While our algorithmic results apply to general surfaces, our
hardness constructions assume the practical case where G is a grid graph, i.e., an induced
subgraph of the infinite square grid (where omitted vertices naturally correspond to cells
without any species). When G is an infinite graph, we assume there is some periodic pattern
of cells that is repeated on the edges of the surface. Figure 1 shows an example set of species
and reactions and a configuration of a surface.

207



XX:4 Complexity of Reconfiguration in Surface Chemical Reaction Networks

Problem Type Graph Species Rules Result Ref
Reconfiguration sCRN 1D 17 67 PSPACE-complete [25]

1-Reconfiguration Swap sCRN Grid 4 3 PSPACE-complete Thm. 3
1-Reconfiguration Swap sCRN Any ≤ 3 Any P Thm. 6
1-Reconfiguration Swap sCRN Any Any ≤ 2 P Thm. 6
Reconfiguration Swap sCRN Grid 4 3 PSPACE-complete Thm. 4
Reconfiguration Swap sCRN Any ≤ 3 Any P Thm. 5
Reconfiguration Swap sCRN Any Any ≤ 2 P Thm. 5
Reconfiguration 2-burnout Grid 3 1 NP-complete Thm. 7

1-Reconfiguration 1-burnout Grid 17 40 NP-complete Thm. 8
Reconfiguration sCRN Grid ≥ 3 1 NP-complete Cor. 15
Reconfiguration sCRN Any ≤ 2 1 P Thm. 11
Table 1 Summary of our and known complexity results for sCRN reconfiguration problems,

depending on the type of sCRN, number of species, and number of rules. All problems are contained
in PSPACE, while all k-burnout problems are in NP.

{
SurfaceReaction  Rules

⟶x

⟶z y zx

z x xx ⟶

z y⟶x

Species

x

y

z

Figure 1 Example sCRN system.

Reaction. A surface Chemical Reaction Network (sCRN) consists of a surface and a
CRN, where every reaction is of the form A + B → C + D denoting that, when A and B

are in neighboring cells, they can be replaced with C and D. A is replaced with C and B

with D.
Reachable Configurations. For two configurations I, T , we write I →1

Γ T if there
exists a r ∈ R such that performing reaction r on a pair of species in I yields the configuration
T . Let I →Γ T be the transitive closure of I →1

Γ T , including loops from each configuration
to itself. Let Π(Γ, I) be the set of all configurations T for which I →Γ T is true. A sequence
of reachable states is shown in Figure 2

Initial Configuration

z

x

z

xy

y

Target Reconfiguration

x

z

x

y

y

⟶ ⟶ ⟶

z

x

z

xy

y ...

Figure 2 An initial, single step, and target configurations

208



Alaniz et al. XX:5

2.1 Restrictions
Reversible Reactions. A set of reactions R is reversible if, for every rule A + B → C + D

in R, the reaction C + D → A + B is also in R. We may also denote this as a single reversible
reaction A + B ⇌ C + D.

Swap Reactions. A reaction of the form A + B ⇌ B + A is called a swap reaction.
k-Burnout. In the k-burnout variant of the model, each vertex of the system’s graph

can only switch states at most k times (before “burning out" and being stuck in its final
state).

2.2 Problems
Reconfiguration Problem. Given a sCRN Γ and two configurations I and T , is T ∈
Π(Γ, S)?

1-Reconfiguration Problem. Given a sCRN Γ, a configuration I, a vertex v, and a
species s, does there exist a T ∈ Π(Γ, S) such that T has species s at vertex v?

3 Swap Reactions

In this section, we will show 1-reconfiguration and reconfiguration with swap reactions is
PSPACE-complete with only 4 species and 3 swaps in Theorems 3 and 4. We continue
by showing that this complexity is tight, that is, reconfiguration with 3 species and swap
reactions is tractable in Theorems 5 and 6.

3.1 Reconfiguration is PSPACE-complete
We prove PSPACE-completeness by reducing from the motion planning through gadgets
framework introduced in [11]. This is a one player game where the goal is to navigate a
robot through a system of gadgets to reach a goal location. The problem of changing the
state of the entire system to a desired state has been shown to be PSPACE-complete [1].
This reduction treats the model as a game where the player must perform reactions moving
a robot species through the surface.

The Gadgets Framework
Framework. A gadget is a finite set of locations and a finite set of states. Each state is a
directed graph on the locations of the gadgets, describing the traversals of the gadget. An
example can be seen in Figure 3. Each edge (traversal) describes a move the robot can take
in the gadget and what state the gadget ends up in if the robot takes that traversal. A robot
enters from the start of the edge and leaves at the exit.

In a system of gadgets there are multiple gadgets connected by their locations. The
configuration of a system of gadgets is the state of all gadgets in the system. There is a single
robot that starts at a specified location. The robot is allowed to move between connected
locations and allowed to move along traversals within gadgets. The system of gadgets can
also be restricted to be planar, in which case the cyclic order of the locations on the gadgets
is fixed, and the gadgets along with their connections must be embeddable in the plane
without crossings.

The 1-player motion planning reachability problem asks whether there exists a sequence
of moves within a system of gadgets which takes the robot from its initial location to a target
location. The 1-player motion planning reconfiguration problem asks whether there exists

209



XX:6 Complexity of Reconfiguration in Surface Chemical Reaction Networks

3

2

21 3

1

1

Figure 3 The Locking 2-Toggle (L2T) gadget and its states from the motion planning framework.
The numbers above indicate the state and when a traversal happens across the arrows, the gadget
changes to the indicated state.

a sequence of moves which brings the configuration of a system of gadgets to some target
configuration.

There are many sets of motion planning models and gadgets to build our reduction. We
select 1-player over 0-player since in the sCRN model there are many reactions that may
occur and we are asking whether there exists a sequence of reactions which reaches some
target configuration; in the same way 1-player motion planning asks if there exists a sequence
of moves which takes the robot to the target location. The existential query of possible
moves/swaps remains the same regardless of whether a player is making decisions vs them
occurring by natural processes. The complexity of the gadgets used here are considered in
the 0-player setting in [12].

Locking 2-Toggle. The Locking 2-toggle (L2T) is a 4 location, 3 state gadget. The
states of the gadget are shown in Figure 3. The L2T has advantages because it universal for
reversible deterministic gadgets. Reversibility was important to picking a gadget since swap
reactions are naturally reversible.

Constructing the L2T
We will show how to simulate the L2T in a swap sCRN system. Planar 1-player motion
planning with the L2T was shown to be PSPACE-complete [11]. We now describe this
construction.

Species. We utilize 4 species types in this reduction and we name each of them according
to their role. First we have the wire. The wire is used to create the connection graph between
gadgets and can only swap with the robot species. The robot species is what moves between
gadgets by swapping with the wire and represents the robot in the framework. Each gadget
initially contains 2 robot species, and there is one species that starts at the initial location
of the robot in the system. The robot can also swap with the key species. Each gadget
has exactly 1 key species. The key species is what performs the traversal of the gadget by
swapping with the lock species. The lock species can only swap with the key. There are 4
locks in each gadget. The locks ensure that only legal traversals are possible by the robot
species.

These species are arranged into gadgets consisting of two length-5 horizontal tunnels.
The two tunnels are connected by a length-3 central vertical tunnel at their 3rd cell. At the
4th cell of both tunnels there is an additional degree 1 cell connected we will call the holding
cell.

States and Traversals. The states of the gadget we build are represented by the
location of the key species in each gadget. If the key is in the central tunnel of the gadget
then we are in state 1 as shown in Figure 4b. Note that in this state the key may swap with
the adjacent locks, however we consider these configurations to also be in state 1 and take

210



Alaniz et al. XX:7

Robot Key

LockWire

(a) Swap rules/species (b) State 1 (c) State 2 (d) State 3

Figure 4 Locking 2-toggle implemented by swap rules. (a) The swap rules and species names.
(b-d) The three states of the locking 2-toggle.

Figure 5 Traversal of the robot species.

advantage of this later. The horizontal tunnels of the gadget in this state contain a single
lock with an adjacent robot species.

States 2 and 3 are reflections of each other (Figures 4c and 4d). This state has a robot in
the central tunnel and the key in the respective holding cell. The gadget in this state can
only be traversed from right to left in one of the tunnels.

Figure 5 shows the process of a robot species traversing through the gadget. Notice when
a robot species “traverse” a gadget, it actually traps itself to free another robot at the exit.
We prove two lemmas to help verify the correctness of our construction. The lemmas prove
the gadgets we design correctly implement the allowed traversals of a locking 2-toggle.

▶ Lemma 1. A robot may perform a rightward traversal of a gadget through the north/south
tunnel if and only if the key is moved from the central tunnel to the north/south holding cell.

Proof. The horizontal tunnels in state 1 allow for a rightward traversal. The robot swaps
with wires until it reaches the third cell where it is adjacent to two locks. However the key
in the central tunnel may swap with the locks to reach the robot. The key and robot then
swap. The key is then in the horizontal tunnel and can swap to the right with the lock there.
It may then swap with the robot in the holding cell. This robot then may continue forward
to the right and the key is stuck in the holding cell.

Notice when entering from the left the robot will always reach a cell adjacent to lock
species. The robot may not swap with locks so it cannot traverse unless the key is in the
central tunnel. ◀

▶ Lemma 2. A robot may perform a leftward traversal of a gadget through the north/south
tunnel if and only if the key is moved from the north/south holding cell to the central tunnel.

Proof. In state 2 the upper tunnel can be traversed and in state 3 the lower tunnel can be
traversed. The swap sequence for a leftward traversal is the reverse of the rightward traversal,
meaning we are undoing the swaps to return to state 1. The robot enters the gadget and

211



XX:8 Complexity of Reconfiguration in Surface Chemical Reaction Networks

swaps with the key, which swaps with the locks to move adjacent to the central tunnel. The
key then returns to the central tunnel by swapping with the robot. The robot species can
then leave the gadget to the left.

A robot entering from the right will not be able to swap to the position adjacent to
the holding cell if it contains a lock. This is true in both tunnels in state 1 and in the
non-traversable tunnels in states 2 and 3. ◀

We use these lemmas to first prove PSPACE-completeness of 1-reconfiguration. We
reduce from the planar 1-player motion planning reachability problem.

▶ Theorem 3. 1-reconfiguration is PSPACE-complete with 4 species and 3 swap reactions or
greater even when the surface is a subset of the grid graph.

Proof. Given a system of gadgets create a surface encoding the connection graph between
the locations. Each gadget is built as described above in a state representing the initial state
of the system. Ports are connected using multiple cells containing wire species. When more
than two ports are connected we use degree-3 cells with wire species. The target cell for
1-reconfiguration is a cell containing a wire located at the target location in the system of
gadgets.

If there exists a solution to the robot reachability problem then we can convert the
sequence of gadget traversals to a sequence of swaps. The swaps relocate a robot species to
the location as in the system of gadgets.

If there exists a swap sequence to place a robot species in the target cell there exists a
solution to the robot reachability problem. Any swap sequence either moves an robot along
a wire, or traverses it through a gadget. From Lemmas 1 and 2 we know the only way to
traverse a gadget is to change its state (the location of its key) and a gadget can only be
traversed in the correct state. ◀

Now we show Reconfiguration in sCRNs is hard with the same set of swaps is PSPACE-
complete as well. We do so by reducing from the Targeted Reconfiguration problem which
asks, given an initial and target configuration of a system of gadgets, does there exist sequence
of gadget traversals to change the state of the system from the initial to the target and
has the robot reach a target location. Note prior work only shows reconfiguration (without
specifying the robot location) is PSPACE-complete[1] however a quick inspection of the proof
of Theorem 4.1 shows the robot ends up at the initial location so requiring a target location
does not change the computational complexity for the locking 2-toggle. One may also find
it useful to note that the technique used in [1] for gadgets and in [17] for Nondeterministic
Constraint Logic can be applied to reversible deterministic systems more generally. This
means the method described in those could be used to give an alternate reduction directly
from 1-reconfiguration of swap sCRNs to reconfiguration of swap sCRNs.

▶ Theorem 4. Reconfiguration is PSPACE-complete with 4 species and 3 swap reactions or
greater.

Proof. Our initial and target configurations of the surface are built with the robot species at
the robots location in the system of gadget, and each key is placed according to the starting
configuration of the gadget.

Again as in the previous theorem we know from Lemmas 1 and 2 the robot species
traversal corresponds to the traversals of the robot in the system of gadgets. The target
surface can be reached if and only the target configuration in the system of gadgets is
reachable. ◀

212



Alaniz et al. XX:9

3.2 Polynomial-Time Algorithm
Here we show that the previous two hardness results are tight: when restricting to a smaller
cases, both problems become solvable in polynomial time. We prove this by utilizing
previously known algorithms for pebble games, where labeled pebbles are placed on a subset
of nodes of a graph (with at most one pebble per node). A move consists of moving a pebble
from its current node to an adjacent empty node. These pebble games are again a type of
multiplicity friends-and-strangers graph.

▶ Theorem 5. Reconfiguration is in P with 3 or fewer species and only swap reactions.
Reconfiguration is also in P with 2 or fewer swap reactions and any number of species.

Proof. First we will cover the case of only two swap reactions. There are two possibilities:
the two reactions share a common species or they do not. If they do not, we can partition the
problem into two disjoint problems, one with only the species involved in the first reaction
and the other with only the species from the second reaction. Each of these subproblems has
only one reaction, and is solvable if and only if each connected component of the surface has
the same number of each species in the initial and target configurations.

The only other case is where we have three species, A, B, and C, where A and C can
swap, B and C can swap, but A and B cannot swap. In this case, we can model it as a
pebble motion problem on a graph. Consider the graph of the surface where we put a white
pebble on each A species vertex, a black pebble on each B species vertex, and leave each C
species vertex empty. A legal swap in the surface CRN corresponds to sliding a pebble to
an adjacent empty vertex. Goraly et al. [16] gives a linear-time algorithm for determining
whether there is a feasible solution to this pebble motion problem. Since the pebble motion
problem is exactly equivalent to the surface CRN reconfiguration problem, the solution given
by their algorithm directly says whether our surface CRN problem is feasible. ◀

▶ Theorem 6. 1-reconfiguration is in P with 3 or fewer species and only swap reactions.
1-reconfiguration is also in P with 2 or fewer swap reactions.

Proof. If there are only two swap reactions, we again have two cases depending on whether
they share a common species. If they do not share a common species, then we only need
to consider the rule involving the target species. The problem is solvable if and only if the
connected component of the surface of species involved in this reaction containing the target
cell also has at least one copy of the target species. Equivalently, if the target species is A,
and A and B can swap, then there must either be A at the target location or a path of B
species from the target location to the initial location of an A species.

The remaining case is when we again have three species, A, B, and C, where A and C
can swap, B and C can swap, but A and B cannot swap. If C is the target species, then the
problem is always solvable as long as there is any C in the initial configuration. Otherwise,
suppose without loss of generality that the target species is A. Some initial A must reach
the target location. For each initial A, consider the modified problem which has only that
single A and replaces all of the other copies of A with B. A sequence of swaps is legal in this
modified problem if and only if it was legal in the original problem. The original problem has
a solution if and only if any of the modified ones do. We then convert each of these problems
to a robot motion planning problem on a graph: place the robot at the vertex with a single
copy of A, and place a moveable obstacle at each vertex with a B. A legal move is either
sliding the robot to an adjacent empty vertex or sliding an obstacle to an adjacent empty
vertex. Papadimitriou et al. [23] give a simple polynomial time algorithm for determining
whether it is possible to get the robot to a given target location. By applying their algorithm

213



XX:10 Complexity of Reconfiguration in Surface Chemical Reaction Networks

Figure 6 An example reduction from Hamiltonian Path. We are considering graphs on a grid,
so any two adjacent locations are connected in the graph. Left: an initial board with the starting
location in blue. Middle: One step of the reaction. Right: The target configuration with the ending
location in blue. Bottom: the single reaction rule.

to each of these modified problems (one for each cell that has an initial A), we can determine
whether any of them have a solution in polynomial time (since there are only linearly many
such problems), and thus determine whether the original 1-reconfiguration problem has a
solution in polynomial time.

◀

4 Burnout

In this section, we show reconfiguration in 2-burnout with species (A, B, C) and reaction
A + B → C + A is NP-complete in Theorem 7. Next, we show 1-reconfiguration in 1-burnout
with 17 species and 40 reactions is NP-complete in Theorem 8.

Reconfiguration and 1-Reconfiguration for burnout sCRNs are in NP since there is the
length of any reconfiguration is bounded. For space we do not include this proof but note
this has been proved in other system such as Resource Bounded Cellular Automata [13],
Freezing Cellular Automata [14] and Freezing Tile Automata [3].

4.1 2-Burnout Reconfiguration
This is a simple reduction from Hamiltonian Path, specifically when we have a stated start
and end vertex.

▶ Theorem 7. Reconfiguration in 2-burnout sCRNs with species (A, B, C) and reaction
A + B → C + A is NP-complete even when the surface is a subset of the grid graph. It is
also NP-complete with the same species and reactions without the 2-burnout restriction.

Proof. Let Γ = {(A, B, C), (A + B → C + A)}. Given an instance of the Hamiltonian path
problem on a grid graph H with a specified start and target vertex vs and vt, respectively,
create a surface G where each cell in G is a node from H. Each cell contains the species B

except for the cell representing vs which contains species A. The target surface has species C

in every cell except for the final node containing A, vt. An example can be seen in Figure 6.
The species A can be thought of as an agent moving through the graph. The species B

represents a vertex that hasn’t been visited yet, while the species C represents one that has
been. Each reaction moves the agent along the graph, marking the previous vertex as visited.

(⇒) If there exists a Hamiltonian path, then the target configuration is reachable. The
sequence of edges in the path can be used as a reaction sequence moving the agent through
the graph, changing each cell to species C finishing at the cell representing vt.

(⇐) If the target configuration is reachable, there exists a Hamiltonian path. The sequence
of reactions can be used to construct the path that visits each of the vertices exactly once,

214



Alaniz et al. XX:11

ending at vt.
Note that we have not discussed the effect of Burnout on the reduction. However since

each cell transitions through species in the following order: B, A, C this reaction always
results in a 2-burnout sCRN so the reduction holds with and without the restriction.

This means the CRN is 2-burnout which bounds the max sequence length for reaching
any reachable surface, putting the reconfiguration problem in NP. ◀

4.2 1-Burnout 1-Reconfiguration
For 1-burnout 1-reconfiguration, we show NP-completeness by reducing from 3SAT and
utilizing the fact that once a cell has reacted it is burned out and can no longer participate
in later reactions.

T

T

TT

T
↷

↷ T

TT

T
↷

↷ T

TT

T
↷

↷

T

T

TT

T
↷

↷

↷↷↷

↷↷↷
F

F

F

F

↷↷↷

↷↷↷
F

F

F

F

↷↷↷

↷↷↷
F

F

F

F

↷↷↷

↷↷↷
F

F

F

F

T
↷↷↷

↷↷↷

T

Figure 7 All the possible configurations of two variable gadgets.

▶ Theorem 8. 1-reconfiguration in 1-burnout sCRNs with 17 species and 40 reactions is
NP-complete even when the surface is a subset of the grid graph. It is also NP-complete with
the same species and reactions without the 1-burnout restriction.

Proof. We reduce from 3SAT. The idea is to have an ‘agent’ species traverse the surface to
assign variables and check that the clauses are satisfied by ‘walking’ through each clause. If
the agent can traverse the whole surface and mark the final vertex as ‘satisfied’, there is a
variable assignment that satisfies the original 3SAT instance.

Variable Gadget. The variable gadget is constructed to allow for a nondeterministic
assignment of the variable via the agent walk. At each intersection, the agent ‘chooses’ a
path depending on the reaction that occurs. If the agent chooses ‘true’ for a given variable,
it will walk up then walk down to the center species. If the agent chooses ‘false’, the agent
will walk down then walk up to the center species. From the center species, the agent can
only continue following the path it chose until it reaches the next variable gadget. Examples
of the agent assigning variables can be seen in Figure 7.

Each variable assignment is ‘locked’ by way of geometric blocking. When the agent
encounters a variable gadget whose variable has already been assigned, the agent must follow
that same assignment or it will get ‘stuck’ trying to react with a burnt out vertex. This can
be seen in Figure 8.

Initial Configuration. First, the configuration is constructed with variable gadgets
connected in a row, one for each variable in the 3SAT instance. This row of variable gadgets
is where the agent will nondeterministically assign values to the variables. Next, a row of
variable gadgets, one row for each clause, is placed on top of the assignment row, connected
with helper species to fill in the gaps.

For each clause, if a certain variable is present, the center species of the variable gadget
reflects its literal value from the clause. For example, if the variable x1 in clause c1 should
be true to satisfy the clause, the variable gadget representing x1 in c1’s row will contain
a T species in the center cell. Lastly, the agent species is placed in the bottom left of the
configuration. An example configuration can be seen in Figure 9.

The agent begins walking and nondeterministically assigns a value to each variable. After
assigning every variable, the agent walks right to left. If at an intersection, the agent chooses

215



XX:12 Complexity of Reconfiguration in Surface Chemical Reaction Networks

↷↷↷
F

F

F

F

S

(a) Successful navigation of an intersection.

↷↷↷

F

S↷↷↷

↷↷↷
F

F

F

(b) Agent stuck due to not following the assignment.

Figure 8 The assignment ‘locking’ process.

T

T

F

TF T

F T

T T

⤭ ⤭⤭ ⤭⤭ ⤭⤭

⤭

⤭

⤭⤭ ⤭⤭⤭ ⤭

⤭

⤭⤭ ⤭⤭ ⤭⤭

⤭⤭ ⤭⤭ ⤭

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

Assign T/F 
Input Variables

X1 X2 X3 X4

___
 X1 v X2 v X3  

Clause 3: 

___
 X2 v X3 v X4  

Clause 1:

Clause 2: ___
 X1 v X2 v X4  

(a) Example starting configuration.

T

T

F

F T

T T⤭

⤭⤭ ⤭⤭ ⤭⤭

⤭⤭ ⤭⤭ ⤭

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷

↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

↷ ↷↷↷ ↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷ ↷↷↷ ↷

T

TT

T
↷ ↷↷↷F

F

F

FT

TT

T
↷ ↷↷↷F

F

F

F

F

S

U

F

F

F

F

F

F

F

F

F

T

T T

T

S

T

T

T

T

___
 X2 v X3 v X4  

Clause 1:

↷↷↷

↷↷↷

(b) The surface after evaluating the first clause.

Figure 9 Reduction from 3SAT to 1-burnout 1-reconfiguration. (a) The starting configuration of
the surface for the example formula φ = (¬x2 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ x3). (b)
The configuration after evaluating the first clause. A red outline represents the unsatisfied state,
and a green outline represents the satisfied state.

a different assignment than it did its first pass, the agent becomes ‘stuck’ only being able to
react with a burnt out vertex.

After walking all the way to the left, the first clause can be checked. The agent starts in
the unsatisfied state, walking through each variable in the row, left to right. If the current
variable assignment at a variable gadget satisfies this clause, the agent changes to the satisfied
state and continues walking. If the agent walks through all the variables without becoming
satisfied, the computation ends. If the clause was satisfied, the agent continues by walking
back, right to left, to begin evaluation of the next clause. If the agent walks all the way to
the final vertex with a satisfied state, then the initial variable assignment satisfies all the
clauses.

(⇒) If there exists a variable assignment that satisfies the 3SAT instance, then the final
vertex can be marked with the satisfied state s. The agent can only mark the final cell with
the satisfied state s if all clauses can be satisfied.

(⇐) If the final vertex can be marked with satisfied state s, there exists a variable
assignment that satisfies the 3SAT instance. The variable assignment that the agent non-
deterministically chose can be read and used to satisfy the 3SAT instance. ◀

5 Single Reaction

When limited to a single reaction, we show a complete characterization of the reconfiguration
problem. There exists a reaction using 3 species for which the problem is NP-complete. For
all other cases of 1 reaction, the problem is solvable in polynomial time.

216



Alaniz et al. XX:13

N/S/U  - Not Yet Evaluated/Satisfied/Unsatisified 

T/F
 

Xy / Xy  
___

Input Clause Variable:

N/S/U 

Clause Evaluation Status at Vertex v:

N/S/U US

Clause Checkpoint Status:

Traversed Signal Direction:

🠖 🠖

Non-Deterministic Pivot Points:

⤭
🠖 🠖

Traversal Assist States:

⤭
🠖 🠖

↷
⇄

↷↷↷
⇄

TF F F⟶

FF F F⟶

F ⤭ F F⟶

F ↷ F F⟶F ⤭ F

FF

T⟶

T T T T⟶

T F T T⟶

T ↷↷↷ T T⟶

T T T⟶

⤭T

FT

T T⟶

FFTF ⟶

F FFF ⟶

↷F F F⟶

F F F⟶⤨

⤭F

F

T

F

F⟶

↷↷↷T T T⟶

⤨T T T⟶

TT T T⟶

FT T T⟶

T ⤭ T

F

T

T

⟶

⟶ ⟶

↷ ⟶

⟶

↷↷↷ ⟶

⟶

U ⤭

F

U

U

T⟶

S S

S

⟶

U⟶

U⟶

STT ⟶

F F S⟶

Figure 10 Species identification and transition rules for 1-burnout 1-reconfiguration.

5.1 2 Species
We start with proving reconfiguration is in P when we only have 2 species and a single
reaction.

▶ Lemma 9. Reconfiguration with species {A, B} and reaction A + A → A + B OR A + B →
A + A is solvable in polynomial time on any surface.

Proof. The reaction A + B → A + A is the reverse of the first case. By flipping the target
and initial configurations, we can reduce from reconfiguration with A + B → A + A to
reconfiguration A + A → A + B.

We now solve the case where we have the reaction A + A → A + B.
All cells that start and end with species B can be ignored as they do not need to be

changed, and can not participate in any reactions. If there is a cell that contains B in the
initial configuration but A in the target, the instance is ‘no’ as B may never become A.

Let any cell that starts in species A but ends in species B be called a flip cell, and any
species that starts in A and stays in A a catalyst cell.

An instance of reconfiguration with these reactions is solvable if and only if there exists
a set of spanning trees, each rooted at a catalyst cell, that contain all the flip cells. Using
these trees, we can construct a reaction sequence from post-order traversals of each spanning
tree, where we have each non-root node react with its parent to change itself to a B. In the
other direction, given a reaction sequence, we can construct the spanning trees by pointing
each flip cell to the neighbor it reacts with. ◀

▶ Lemma 10. Reconfiguration with species {A, B} and reaction A + A → B + B is solvable
in polynomial time on any surface.

Proof. Reconfiguration in this case can be reduced to perfect matching. Create a graph
M including a node for each cell in S containing the A species initially and containing B

in the target, with edges between nodes of neighboring cells. If M has a perfect matching,
then each edge in the matching corresponds to a reaction that changes A to B. If the target
configuration is reachable, then the reactions form a perfect matching since they include
each cell exactly once. ◀

▶ Theorem 11. Reconfiguration with 2 species and 1 reaction is in P on any surface.

Proof. As we only have two species and a single reaction, we can analyze each of the four
cases to show membership in P. We divide into two cases:

217



XX:14 Complexity of Reconfiguration in Surface Chemical Reaction Networks

A + A: When a species reacts with itself, it can either change both species, which is
shown to be in P by Lemma 10; or it changes only one of the species, which is in P by
Lemma 9.

A + B: When two different species react, they can either change to the same species,
which is in P by Lemma 9; or they can both change, which is a swap and thus is in P by
Theorem 5. ◀

5.2 3 or more Species
Moving up to 3 species and 1 reaction, we showed earlier that there exists a reaction for
which reconfiguration is NP-complete in Theorem 7. Here, we give reactions for which
reconfiguration between 3 species is in P, and in Corollary 15 we prove that all remaining
reactions are isomorphic to one of the reactions we’ve analyzed.

▶ Lemma 12. Reconfiguration with species (A, B, C) and reaction A+B → C +C is solvable
in polynomial time on any surface.

Proof. At a high level, we create a new graph of all the cells that must change to species C,
and add an edge when the two cells can react with each other. Since a reaction changes both
cells to C we can think of the reaction as “covering” the two reacting cells. Finding a perfect
matching in this new graph will give a set of edges along which to perform the reactions to
reach the target configuration.

Consider a surface G and a subgraph G′ ⊆ G where we include a vertex v′ in G′ for each
cell that contain A or B in the initial configuration and C in the target configuration. We
include an edge (u′, v′) between any vertices in G′ that contain different initial species, i.e.
any pair of cell which one initially contains A and the other initially B.

Reconfiguration is possible if and only if there is a perfect matching in G′. If there is
a perfect matching then there exists a set of edges which cover each cell once. Since G′

represents the cells that must change states, and the edges between them are reactions, the
covering can be used as a sequence of pairs of cells to react. If there is a sequence of reactions
then there exists a perfect matching in G′: each cell only reacts once so the matching must
be perfect, and the cells that react have edges between them in G′. ◀

▶ Lemma 13. Reconfiguration with species (A, B, C) and reaction A+B → A+C is solvable
in polynomial time on any surface.

Proof. The instance of reconfiguration is solvable if and only if any cell that ends with
species C either contained C in the initial configuration, or started with species B and have
an A adjacent to perform the reaction. Additionally, since a reaction cannot cause a cell
to change to A or B, each cell with an A or B in the target configuration must contain the
same species in the initial configuration. ◀

The final case we study is 4 species 1 reaction. Any sCRN with 5 or more species and 1
reaction has a species which is not included in the reaction.

▶ Lemma 14. Reconfiguration with species (A, B, C, D) and the reaction A + B → C + D is
in P on any surface.

Proof. We can reduce Reconfiguration with A + B → C + D to perfect matching similar to
Lemma 12. Create a new graph with each vertex representing a cell in the surface that must
change species. Add an edge between each pair of neighboring cells that can react (between
one containing A and the other B). A perfect matching then corresponds to a sequence of
reactions that changes each of the species in each cell to C or D. ◀

218



Alaniz et al. XX:15

▶ Corollary 15. Reconfiguration with 3 or greater species and 1 reaction is NP-complete on
any surface.

Proof. First, from Theorem 7 we see that there exists a case of reconfiguration with 3 species
that is NP-hard with or without the burnout restriction.

For membership in NP, we analyze each possible reaction. We note that we only need to
consider two cases for the left hand side of the rule, A + A and A + B. Any other reaction is
isomorphic to one of this form as we can relabel the species. For example, rule B +C → A+A

can be relabeled as A + B → C + C. Also, we know that C must appear somewhere in the
right hand side of the rule. If it does not then the reaction only takes place between two
species, which is always polynomial time as shown above, or it involves a species we can
relabel as C.

Here are the cases for A + B and our analysis results:

A + B → A + C P in Lemma 13
A + B → C + B P in Lemma 13 under isomorphism
A + B → C + A NP in Theorem 7
A + B → B + C NP in Theorem 7 under isomorphism
A + B → C + C P in Lemma 12
A + B → C + D P in Lemma 14

When we have A + A on the left side of the rule, the only case we must consider is
A + A → B + C (since all 3 species must be included in the rule). We have already solved
this reaction: first swap the labels of A and C giving rule C + C → B + A, then reverse the
rule to B + A → C + C and swap the initial and target configuration. Finally since rules do
not care about orientation this is equivalent to the rule A + B → C + C in Lemma 12.

Finally, for 4 species and greater, the only new case is A + B → C + D, which is proven
to be in P in Lemma 14. Any other case would have species that are not used since a rule
can only have 4 different species in it.

Thus, all cases are either in NP, or in P which is a subset of NP, therefore, the problem
is in NP. Also, since our results for each case apply for any surface, the same is true in
general. ◀

6 Conclusion

In this paper, we explored the complexity of the configuration problem within natural
variations of the surface CRN model. While general reconfiguration is known to be PSPACE-
complete, we showed that it is still PSPACE-complete even with several extreme constraints.
We first considered the case where only swap reactions are allowed, and showed reconfiguration
is PSPACE-complete with only four species and three distinct reaction types. We further
showed that this is the smallest possible number of species for which the problem is hard
by providing a polynomial-time solution for three or fewer species when only using swap
reactions.

We next considered surface CRNs with rules other than just swap reactions. First, we
considered the burnout version of the reconfiguration problem, and then followed by the
normal version with small species counts. In the case of 2-burnout, we showed reconfiguration
is NP-complete for three species and one reaction type, and 1-burnout is NP-complete for
17 species with 40 distinct reaction types. Without burnout, we achieved, as a corollary,

219



XX:16 Complexity of Reconfiguration in Surface Chemical Reaction Networks

that three species, one reaction type is NP-complete while showing that dropping the species
count down to two yields a polynomial-time solution.

6.1 Computing Polynomial Space Functions
An interpretation of Theorem 3 is that surface Chemical Reactions are capable of computing
any function that can be computed in polynomial space. Perhaps the most important
PSPACE-Complete is the acceptance problem for polynomial space Turing machines. While
there may be a few reduction between these problems, we can may turn any polynomial
space Turing machine into a surface CRN such that the robot species swaps with a wire
species at a target location. In experiments one can imagine the target location as having a
special type of wire species that acts as a reporting, emitting a signal when it reacts with the
robot species. The size of the surface is polynomial in the space of the Turing machine since
these are all polynomial time reductions. While we do not claim this experiment can be done
with such a small number of species, but rather that theoretically more sequence efficient
reaction systems which can compute should exists by taking advantage of the surface.

Our polynomial time algorithms describe experiments with 1, 2, or 3 reactions on surfaces
where well studied algorithms for problems such as matching and motion planning may be of
use.

6.2 Open Problems
This work introduced new concepts that leaves open a number of directions for future work.
While we have fully characterized the complexity of reconfiguration for the swap-only version
of the model, the complexity of reconfiguration with general rule types for three species
systems remains open if the system uses more than one rule. All of hardness results also
use a square grid graph, while our algorithms work on general surfaces. We would like to
know if the threshold for hardness can be lowered on more general graphs. In the 1-burnout
variant of the model, we have shown 1-reconfiguration to be NP-complete, but the question
of general reconfiguration remains a “burning” open question.

References
1 Joshua Ani, Erik D. Demaine, Yevhenii Diomidov, Dylan Hendrickson, and Jayson Lynch.

Traversability, reconfiguration, and reachability in the gadget framework. In WALCOM:
Algorithms and Computation: 16th International Conference and Workshops, WALCOM 2022,
Jember, Indonesia, March 24–26, 2022, Proceedings, pages 47–58. Springer, 2022.

2 Tatiana Brailovskaya, Gokul Gowri, Sean Yu, and Erik Winfree. Reversible computation using
swap reactions on a surface. In International Conference on DNA Computing and Molecular
Programming, pages 174–196. Springer, 2019.

3 David Caballero, Timothy Gomez, Robert Schweller, and Tim Wylie. Verification and
computation in restricted tile automata. Natural Computing, pages 1–19, 2020.

4 Cameron Chalk, Austin Luchsinger, Eric Martinez, Robert Schweller, Andrew Winslow, and
Tim Wylie. Freezing simulates non-freezing tile automata. In DNA Computing and Molecular
Programming: 24th International Conference, DNA 24, Jinan, China, October 8–12, 2018,
Proceedings 24, pages 155–172. Springer, 2018.

5 Gourab Chatterjee, Neil Dalchau, Richard A. Muscat, Andrew Phillips, and Georg Seelig. A
spatially localized architecture for fast and modular DNA computing. Nature nanotechnology,
12(9):920–927, 2017.

6 Ho-Lin Chen, David Doty, and David Soloveichik. Deterministic function computation with
chemical reaction networks. Natural computing, 13:517–534, 2014.

220



Alaniz et al. XX:17

7 Samuel Clamons, Lulu Qian, and Erik Winfree. Programming and simulating chemical reaction
networks on a surface. Journal of the Royal Society Interface, 17(166):20190790, 2020.

8 Matthew Cook, David Soloveichik, Erik Winfree, and Jehoshua Bruck. Programmability of
chemical reaction networks. In Algorithmic bioprocesses, pages 543–584. Springer, 2009.

9 Frits Dannenberg, Marta Kwiatkowska, Chris Thachuk, and Andrew J Turberfield. DNA walker
circuits: computational potential, design, and verification. Natural Computing, 14(2):195–211,
2015.

10 Colin Defant and Noah Kravitz. Friends and strangers walking on graphs. Combinatorial
Theory, 1, 2021.

11 Erik D. Demaine, Isaac Grosof, Jayson Lynch, and Mikhail Rudoy. Computational complexity
of motion planning of a robot through simple gadgets. In 9th International Conference on
Fun with Algorithms (FUN 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

12 Erik D Demaine, Robert A Hearn, Dylan Hendrickson, and Jayson Lynch. Pspace-completeness
of reversible deterministic systems. In Machines, Computations, and Universality: 9th Interna-
tional Conference, MCU 2022, Debrecen, Hungary, August 31–September 2, 2022, Proceedings,
pages 91–108. Springer, 2022.

13 Alberto Dennunzio, Enrico Formenti, Luca Manzoni, Giancarlo Mauri, and Antonio E Porreca.
Computational complexity of finite asynchronous cellular automata. Theoretical Computer
Science, 664:131–143, 2017.

14 Eric Goles, Diego Maldonado, Pedro Montealegre, and Martín Ríos-Wilson. On the complexity
of asynchronous freezing cellular automata. Information and Computation, 281:104764, 2021.

15 Eric Goles, Nicolas Ollinger, and Guillaume Theyssier. Introducing freezing cellular auto-
mata. In Cellular Automata and Discrete Complex Systems, 21st International Workshop
(AUTOMATA 2015), volume 24, pages 65–73, 2015.

16 Gilad Goraly and Refael Hassin. Multi-color pebble motion on graphs. Algorithmica, 58:610–
636, 2010.

17 Robert A Hearn and Erik D Demaine. Games, puzzles, and computation. CRC Press, 2009.
18 Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer

and System Sciences, 3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.
19 Aleksa Milojevic. Connectivity of old and new models of friends-and-strangers graphs. arXiv

preprint arXiv:2210.03864, 2022.
20 Kenichi Morita and Yoshikazu Yamaguchi. A universal reversible turing machine. In Machines,

Computations, and Universality: 5th International Conference, MCU 2007, Orléans, France,
September 10-13, 2007. Proceedings 5, pages 90–98. Springer, 2007.

21 Richard A. Muscat, Karin Strauss, Luis Ceze, and Georg Seelig. DNA-based molecular
architecture with spatially localized components. ACM SIGARCH Computer Architecture
News, 41(3):177–188, 2013.

22 Jennifer Padilla, Wenyan Liu, and Nadrian Seeman. Hierarchical self assembly of patterns from
the robinson tilings: Dna tile design in an enhanced tile assembly model. Natural computing,
11:323–338, 06 2012. doi:10.1007/s11047-011-9268-7.

23 Christos H Papadimitriou, Prabhakar Raghavan, Madhu Sudan, and Hisao Tamaki. Motion
planning on a graph. In Proceedings 35th Annual Symposium on Foundations of Computer
Science, pages 511–520. IEEE, 1994.

24 Carl Adam Petri. Kommunikation mit Automaten. PhD thesis, Rheinisch-Westfälischen
Institutes für Instrumentelle Mathematik an der Universität Bonn, 1962.

25 Lulu Qian and Erik Winfree. Parallel and scalable computation and spatial dynamics with
DNA-based chemical reaction networks on a surface. In DNA Computing and Molecular
Programming: 20th International Conference, DNA 20, Kyoto, Japan, September 22-26, 2014.
Proceedings, volume 8727, page 114. Springer, 2014.

26 David Soloveichik, Matthew Cook, Erik Winfree, and Jehoshua Bruck. Computation with
finite stochastic chemical reaction networks. natural computing, 7:615–633, 2008.

221



XX:18 Complexity of Reconfiguration in Surface Chemical Reaction Networks

27 David Soloveichik, Georg Seelig, and Erik Winfree. DNA as a universal substrate for chemical
kinetics. Proceedings of the National Academy of Sciences, 107(12):5393–5398, 2010.

28 Guillaume Theyssier and Nicolas Ollinger. Freezing, bounded-change and convergent cellular
automata. Discrete Mathematics & Theoretical Computer Science, 24, 2022.

29 Anupama J. Thubagere, Wei Li, Robert F. Johnson, Zibo Chen, Shayan Doroudi, Yae Lim
Lee, Gregory Izatt, Sarah Wittman, Niranjan Srinivas, Damien Woods, et al. A cargo-sorting
DNA robot. Science, 357(6356):eaan6558, 2017.

30 Damien Woods and Turlough Neary. The complexity of small universal turing machines: A
survey. Theoretical Computer Science, 410(4-5):443–450, 2009.

222



APPENDIX G

223



APPENDIX G

RECONFIGURATION OF LINEAR SURFACE CHEMICAL REACTION NETWORKS 

WITH BOUNDED STATE CHANGE

224



CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

Reconfiguration of Linear Surface Chemical Reaction Networks with
Bounded State Change

Robert M. Alaniz∗ Michael Coulombe† Erik D. Demaine† Bin Fu∗ Timothy Gomez†

Elise Grizzell∗ Ryan Knobel∗ Andrew Rodriguez∗ Robert Schweller∗ Tim Wylie∗

Abstract

We present results on the complexity of reconfigura-
tion of surface Chemical Reaction Networks (sCRNs)
in a model where surface vertices can change state a
bounded number of times based on a given burnout pa-
rameter k. We primarily focus on linear 1× n surfaces.
Without a burnout bound, or even with an exponen-
tially high bound on burnout, reconfiguration on linear
surfaces is known to be PSPACE-complete. In contrast,
we show that the problem becomes NP-complete when
the burnout k is polynomially bounded in n. For smaller
k = O(1), we show the problem is polynomial-time solv-
able, and in the special case of k = 1 burnout, reconfig-
uration can be solved in linear O(n + |R|) time, where
|R| denotes the number of system rules. We addition-
ally explore some extensions of this problem to more
general graphs, including a fixed-parameter tractable
algorithm in the height m of an m × n rectangle in
1-burnout, a polynomial-time solution for 1-burnout in
general graphs if reactions are non-catalytic, and an NP-
complete result for 1-burnout in general graphs.

1 Introduction

A prominent area of research in molecular computation,
Chemical Reaction Networks (CRNs), study well-mixed
solutions of molecules. Limited by the inherent lack of
geometry, the model has important restrictions on its
computational power, including no proven capability of
error-free computation of logarithm [6] or Turing uni-
versality [16]. Specifically, CRNs are capable of com-
puting all semilinear functions [5]. The introduction of
a surface and, by extension, geometry, with abstract
Surface Chemical Reaction Networks (sCRNs) removes
these limitations, and thus has increased computational
power. Molecular computing on a surface is an increas-
ingly popular direction in both experimental [4, 18] and
theoretical [10, 13] research.

In this paper, we explore a restricted version of the
powerful surface CRN model, where each molecule in
the system can only change in a reaction a set number of

∗Department of Computer Science, University of Texas Rio
Grande Valley

†Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology

times. We refer to this constraint as burnout. Bounding
the number of state changes leads to polynomial-time
and XP algorithms for many reconfiguration problems
that are otherwise PSPACE-complete.

Motivations for the study of problems with burnout
include examples such as optimizing limited lifetime
biomolecules or modeling redox reactions in which the
electron transfer from one chemical species to another
increases the cost of further reaction beyond what any
other current or future neighbors could afford.

1.1 Previous Work

Surface Chemical Reaction Networks (sCRNs) were in-
troduced in [15] with a simulator provided in [7]. These
papers show various constructions such as Boolean cir-
cuits and a Cellular Automata simulation.

Another restricted version of sCRNs uses only swap
reactions, in which the two species only change position,
Example: A + B → B + A. In [2], the authors show
swap reactions are capable of feed-forward computation
and provide an analysis of thermodynamic properties of
the circuit. Recently, [1] showed that reconfiguration is
PSPACE-complete for swap surface CRNs with only 4
species and 3 reactions, and in P with any system of
fewer species or reactions. This work also introduces k-
burnout surface CRNs and show two important results:
that 1-reconfiguration (whether a single cell can change)
is NP-complete with 1-burnout and that general recon-
figuration is NP-complete with 2-burnout. Burnout is
similar to the freezing concept from Cellular Automata
[11, 12, 17] and Tile Automata [3], but while freezing is
defined as having an ordering on states or a tile never
revisiting a state, burnout is a constraint where a cell
never reacts more than a fixed number of times. Thus,
returning to a previous state is possible, unlike the freez-
ing restrictions.

1D Cellular Automata are capable of Turing compu-
tation from [8]. P-completeness of prediction, is this cell
in state at time step less than t, for Cellular Automata
Rule 110 was shown in [14], implying it is also capable of
efficient computation. This problem is also P-complete
for a number of Freezing CAs in 2D, while it is always
in NL for Freezing 1D CAs [12]. This work also gives a
1D freezing CA, which is Turing universal.

225



35th Canadian Conference on Computational Geometry, 2022

Shape Burnout Result Theorem
1× n 1 O(n+ |R|) Thm. 1
1× n 2 O(n · |S|2 · |R|4) Thm. 2
1× n O(1) P for O(1) degree Thm. 3
1× n k (unary) NP-complete Thm. 4
1× n Unbounded PSPACE-complete [15]

Planar 1 O(|V |1.5 + |R|) Thm. 5**
General 1 NP-complete Thm. 7

m× n 1 NP-complete [1]‡

m× n 1 FPT in m Thm. 8‡

Table 1: Comparison of reconfiguration results. For a
CRN system, R is the set of rules and S is the set of
species. V is the set of vertices for the graph defining
the shape. **Non-catalytic rules only. ‡These results
are for the problem of 1-Reconfiguration.

1.2 Our Contributions

This work investigates the reconfiguration problem for
linear surface CRNs with k-burnout. Our results are
outlined in Table 1. We begin in Section 3, where we
present a polynomial-time algorithm for 1D 1-burnout.
We then increase the burnout number to investigate
1D 2-burnout systems and prove that this is still in P.
Following this, we show that for the case of any fixed
k = O(1), there exists an algorithm that has a polyno-
mial runtime. In the terms of parameterized complex-
ity classes, this is the class XP, also known as slice-wise
polynomial [9]. We then present an NP-completeness
proof for when the burnout is a unary input. This re-
sult contrasts PSPACE-completeness known when the
burnout is unbounded or exponentially high [15].
After 1×n lines, we begin investigating 1-burnout in

2D systems in Section 5. We start with the problem
of reconfiguration, where we only have non-catalytic
rules. We then show that on an arbitrary graph and
with all types of rules, the reconfiguration problem
is NP-complete. Finally, we study the problem of 1-
reconfiguration for bounded-height surfaces, presenting
an XP algorithm parameterized by height.

2 Preliminaries

A brief overview of the model and relevant problems.
Surface, Cells and Species. A surface for a CRN

Γ is an undirected graph G of large size n. The vertices
of the surface are also referred to as cells. Many of our
results deal with 1× n grid graphs, or linear surfaces.
The state of a vertex is representative of a molecu-

lar species in the system. Chemical reactions consid-
ered here are bimolecular, as in they occur between two
species in neighboring vertices. A rule denoting that
neighboring species A and B may react to become C
and D is written as A + B → C + D. This is a non-
catalytic rule, as both species change. In a catalytic
reaction, only one of the two species will change, e.g.

{

Species

Reaction  Rules

⟶

⟶

⟶

(a)

⟶

Left Catalytic

vi

⟶vi-1

Left

vi

⟶

Right Final

vi

(b)

Figure 1: (a) An example sCRN system with 4 species,
three rules, and 1 burnout. (b) Rule types used in
Figure 2 example. Note: The red ring outline shows
whether the vertex has been “burned out.” There is no
effect on the reaction rule itself.

Initial Configuration Final Configuration

Figure 2: A possible sequence of reactions for the system
described in Figure 1

C +D → C +B, the other used as a catalyst.
A surface Chemical Reaction Network (sCRN)

consists of a surface, a set of molecular species S, and
a set of reaction rules R. A configuration is a mapping
from each vertex to a species from the set S.
Reachable Configurations. For two configurations

I, T , we write I →1
Γ T if there exists a r ∈ R such that

performing reaction r on a pair of species in I yields the
configuration T . Let I →Γ T be the transitive closure
of I →1

Γ T , including loops from each configuration to
itself. Let Π(Γ, I) be the set of all configurations T
where I →Γ T is true.
Burnout. A limit on the number of changes that can

occur in any vertex vi. In systems that allow catalytic
reactions, after this limit has been reached, while vi will
not change again, neighboring species may still use the
species in that cell as a catalyst.
Reconfiguration Problem. Given an sCRN Γ and

two configurations I and T , is T ∈ Π(Γ, I)?
1-Reconfiguration Problem. Given an sCRN Γ,

configuration I, vertex v, and species s, does there exist
a T ∈ Π(Γ, I) such that T has species s at vertex v?

3 Algorithms for Constant Burnout

We show that reconfiguration of a linear surface is solv-
able in polynomial-time when the burnout is one or two.

3.1 1-Burnout Linear Surfaces

In the case of 1-burnout with a 1× n line, the problem
of reconfiguration is solvable in linear time with respect
to n and the size of the rule set. As an observation,
there are at most six reactions for any vertex, vi, on a

226



CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

linear surface since a vertex has at most two neighbors.
These reactions include the following:

• A left reaction, where vertex vi reacts with vertex
vi−1 and both vertices reach their final states.

• A left catalytic reaction, where vertex vi reacts with
vertex vi−1 in its initial state to transition vertex
vi to its final state without changing vi−1.

• A left final-catalytic reaction (or left final), where
vertex vi reacts with vertex vi−1 in its final state to
transition vertex vi to its final state without chang-
ing vi−1.

• A right reaction, where vertex vi reacts with vertex
vi+1 and both vertices reach their final states.

• A right catalytic reaction, where vertex vi reacts
with vertex vi+1 in its initial state to transition
vertex vi to its final state without changing vi+1.

• A right final-catalytic reaction (or right final),
where vertex vi reacts with vertex vi+1 in its fi-
nal state to transition vertex vi to its final state
without changing vi+1.

Additionally, we also consider when a vertex is in its fi-
nal state. An example system and sequence of reactions
can be found in Figures 1 and 2.
We construct a 7 × n table (Example in Table 2),

where each row represents one of the possible reactions,
including no reaction, and each column represents the
starting configuration’s vertices from left to right. For
each entry in the table, we see if the reaction exists for
that vertex and if the vertex reaches its final state. If
both cases are satisfied, place a 1 in the corresponding
row, otherwise, place a 0. After all cells are evaluated,
we construct a directed graph with edges being directed
from column i to column i+ 1 with the following prop-
erties for each row entry in column i:

• In final state: edge to every row in column i + 1
with a 1 except left reaction.

• Left final: edge to every row in column i + 1 with
a 1 except left reaction.

• Left catalytic: edge to every row in column i + 1
with a 1 except left reaction.

• Left reaction: edge to every row in column i + 1
with a 1 except left reaction.

• Right final: edge to every row in column i+1 with
a 1 except left reaction and left final.

• Right catalytic: edge to every row in column i+ 1
with a 1 except left reaction and left catalytic.

• Right reaction: edge only to the row corresponding
to left reaction in column i+ 1 if there is a 1.

These edges ensure that no matter which reaction is
chosen for a vertex represented by column i, the reaction
chosen for the column i+1 vertex will be able to perform
its reaction either before or after the previous reaction.
Once these edges are defined for every column, the

problem is then finding a path from s to t, where s is a

Reaction Type

In Final State - - - -
Left - 1 - -
Left Catalytic - - - 1
Left Final - - - -
Right 1 - - -
Right Catalytic - - - -
Right Final - - 1 -

Table 2: Turning the example system from Figure 1 into
a table of reactions.

1

S T

1

1

1

Figure 3: Table 2 as a graph.

vertex that has directed edges to each entry in column 1
and t is a vertex that can be reached from each entry in
column n (see Table 2 and Figure 3 for reference). Any
path represents a set of rules that can be assigned an
ordering to reconfigure all vertices to their final states.

Theorem 1 Reconfiguration in 1-burnout for 1 × n
lines is solvable in O(n+ |R|) time.

Proof. We provide proof by induction for the previ-
ously described algorithm that solves reconfiguration in
1× n surfaces. This proof guarantees that any solution
from this algorithm constitutes a set of reactions that
can be reordered to successfully reconfigure a given ini-
tial configuration to its final configuration.
Base case: n = 2. Let vi be the leftmost vertex. Since

this vertex does not have a neighbor to its left, there are
only 4 reactions we need to consider for this vertex:

1. In final state: vertex vi+1 must be in its final state
or a left catalytic or left final reaction.

2. Right catalytic: vertex vi+1 must be in its final
state or a left final reaction.

3. Right final: vertex vi+1 must be in its final state or
a left catalytic reaction.

4. Right reaction: vertex vi+1 must be a left reaction.

If two such reactions exist for each vertex, then a path
exists from s to t visiting the vertices in the table that
correspond to each reaction. Otherwise, no such path
would exist.
Inductive step: let n = k. Assume that there is a

set of k reactions for vertices v1, . . . , vk that can be re-
ordered to transition all k vertices to their final states.

227



35th Canadian Conference on Computational Geometry, 2022

In order for the reaction chosen for vertex vk+1 to be
valid, it must not interfere with the kth reaction corre-
sponding to vertex vk. Consider two cases:

1. Vertex vk is currently in its final state or reacts with
its left neighbor vk−1. Vertex vk+1 is never used,
so as long as vk+1 does not perform a left reaction
with vk, it will not interfere with the kth reaction.

2. Vertex vk reacts with vertex vk+1. Consider 3 pos-
sible reactions for vk: (1) Right reaction: the only
valid reaction for vk+1 is a left reaction, (2) Right
catalytic: except left or left catalytic, all reactions
are valid for vk+1, and (3) Right final: except left
or left final, all reactions are valid for vk+1.

If we think of vk as being column i and vk+1 as being
column i + 1, edges are defined from i to i + 1 in a
way that avoid these conflicting reactions. Any other
reaction that is chosen for vi+1 can always perform its
reaction before or after vi performs its reaction. As a
result, any path up to column i + 1 would represent a
set of reactions that can be reordered to transition these
k + 1 vertices to their final states.
Given the initial and final configurations, it takes

O(n) time to compare the states. Constructing the ta-
ble takes O(|R|) time. The path finding algorithm runs
in O(V + E) = O(n + E) time. However, the number
of edges is a constant factor of the number of vertices,
whereas |R| might be exponential in n. Thus, the final
runtime for the algorithm is O(n+ |R|). □

3.2 2-Burnout Linear Surfaces
Theorem 2 Reconfiguration of a 1×n line for surface
CRNs with 2-burnout is solvable in O(n·|S|2 ·|R|4) time.

Proof. Since we are considering 2-burnout, every cell
can only change species twice. This is a cell starting
with the initial species, possibly changing to an interme-
diate species, then finally changing to the target species.
It is then possible to track all the possible transitions of
a cell in a polynomial sized table. We define the table
D with each entry D(x, s, r1, r2) being a Boolean indi-
cating if the cells at indices 0, 1, . . . , x can reach their
target species using reactions r1 and r2 on x, and us-
ing s as intermediate species for cell x. (Note, r1 and
s may be null if the cell only reacts once to reach the
target species.) The reactions are specific with which
neighbor the cell reacts with, left or right. This results
in O(n · |S| · |R|2) cells of the table.
To compute each entry D(x, s, r1, r2), we check if r1

and r2 are consistent with cell x− 1. Meaning, if r1 re-
acts with the left neighbor, some entryD(x−1, s′, r1, r3)
or D(x− 1, s′, r3, r1) for any s, r3 must be true. If r1 is
a catalytic reaction, then the species in cell x − 1 does
not change and must be the initial species, intermediate
species, or the target species. We must also be careful
with the ordering of the reactions. If r1 or r2 reacts with

the intermediate species s′ of the (x− 1)th cell, then r1
must be the second reaction for x− 1. The run time to
compute each cell of the table is O(|S| · |R|2).
If any D(n − 1, s, r1, r2) is true, then the answer to

reconfiguration is true. □
3.3 Constant Burnout

In this section, we consider the problem of reconfigu-
ration for a surface CRN with n cells with at most k-
burnouts on a 1× n board.

Theorem 3 There is an n1+k log h-time algorithm for
k-burnout degree-h 1D surface CRN reconfiguration,
where each species is in at most h rules.

Proof. We have a divide-and-conquer approach in our
algorithm. A brute force method is used to enumerate
all the possible transitions for the median position. The
problem is split into two independent problems that can
be solved independently.
Let p be the position of the median in a 1D surface

CRN. We enumerate all the possible ways to burn out
the position p at most k times. Since each species is
in at most h rules, we have at most hk combinations
about the list of transitions involved by position p. Let
T (n) be the running time to solve the reconfiguration
problem. We have the recursion T (n) = hk(2T (n2 )). It
brings a solution with T (n) = hk logn ·n = n1+k log h. □

4 Non-constant Burnout on a Line

Here, we show that reconfiguration with k-burnout,
where k is part of the input, is NP-hard. Without
burnout (no bound on state changes), reconfiguration
of a 1× n line is PSPACE-complete [15], but even with
a burnout k given in binary, the problem may not be in
the class NP since O(kn) possible reactions could occur,
which is exponential in log k. This motivates looking at
bounds on state changes that are polynomial in n and
further motivates the other algorithms in the paper.

Reduction. We reduce from Vertex Cover (VC) by
enumerating all vertices and using them as states on a
1×n line. A state “walks” back and forth choosing a ver-
tex to add to the cover and crossing off instances it finds.
Given a graph G = (V,E) where V = {1, 2, . . . , n} and
an edge e ∈ E is defined as e = {vi, vj} for vi, vj ∈ V
and i ̸= j. An edge is listed as two states: 34 meaning
an edge between vertices v3 and v4. Between any two
edges we include a spacing state −.
Create the line representing the graph with edges in

any order: BS0−e1−e2−· · ·−em−E, where the B state
indicates the beginning of the line, E is the end of the
line, and S0 is a special state indicating no vertices are
in the vertex cover. Example: BS0−34−13−21−14−E.
Basically, each edge independently and nondetermin-

istically picks the vertex to cover it with both possible

228



CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

rules. Create rules for all vi, vj ∈ V as vi + vj → v′i + x
and vi + vj → x + v′j where x is an ignored state and
the prime state is the chosen vertex for that edge. The
spacing states ensure edges do not affect each other.
Example: 3 + 4→ 3′ + x and 3 + 4→ x+ 4′.
The S counting state sweeps back and forth k times

to choose a vertex to add to the cover and ignores the
other states. The S state takes the first picked vertex
and removes all duplicates of it while remembering the
count. There is a state Svertexcount that exists for each vertex
and count up to k. Thus, the rules Si + v′j → Sji+1 + x
are added for each vertex and count up to k. Example:
S0 + 3′ → S3

1 + x is used if v3 is the first vertex added.
Once a vertex transitions to an Si state, it ignores

everything but v′i states. Meaning it only swaps states,
or “walks” in that direction. Thus, all rules Si + A →
A+Si is added for any state X that is not vi, B, or E.
For vi, S

i
c + v′i → Sic + x.

When a Sjc vertex is next to the B or E states, it
can transition to Sc. The rules B + Sjc → B + Sc and
E + Sjc → E + Sc exist for all vertices vj . This means
we have removed all instances of the chosen vertex and
can pick a new vertex for the cover.
This requires O(kn) states to handle counting for each

vertex. If k is odd, the final configuration, given a k VC
exists, is B−xx−xx−xx−· · ·−SkE. If k is even, then
the final configuration is BSk −xx− xx− xx− · · · −E.
Sk can not interact with anything. This requires k + 1
burnout.

Theorem 4 Reconfiguration of a 1 × n configuration
in sCRNs with k-burnout is NP-hard, even when k < n,
and NP-complete as long as k is polynomial in n.

Proof. Given a VC with graph G = (V,E) and k ∈ N,
we create a surface CRN system with configuration C
and rules R as described above. We define the output
configuration D based on the number of edges and par-
ity of k as described. G has a VC of size k if and only if
C can reach configuration D with burnout k + 1. Note
that k ≤ n as input from VC, so the number of states
and rules in the reduction is polynomial.
Given that the graph G has a k vertex cover, in the

sCRN system, the only transitions possible at first are
for each edge to pick a vertex to cover it. Then the
counting state walks across, increases the count and se-
lects the vertex from the first edge, and that state con-
tinues walking and removes any other instance of that
vertex. In the best case, all locations but the first and
last have changed twice. If this continues, and it always
adds the correct vertices, then after k passes only x’s
are left. Sk does not interact with anything, so noth-
ing else transitions. The k passes and the initial choice
requires k + 1 burnout.
If the sCRN system ends in the output configuration

with x’s on every edge state, which can only occur if

the k passes chose vertices that appeared in the other
edges and were crossed out. Thus, every edge correctly
chose the right vertex to cover it so that only k different
vertices were used. □
5 Extension to 2D Graphs

As an extension to the 1D case, we now consider recon-
figuration and 1-reconfiguration for 2D surfaces. In the
case of reconfiguration, we study a restricted version of
the problem where all reactions are non-catalytic.

Theorem 5 Reconfiguration in 1-burnout for a planar
graph G = (V,E) is solvable in O(|V |1.5 + |R|) time if
every reaction is non-catalytic.

Proof. Given a planar graph G = (V,E), construct
a subgraph G′ from G such that there is an edge be-
tween pairs of vertices if there exists a non-catalytic re-
action that transitions both vertices to their final states.
Run maximum matching on G′. If all vertices are either
matched or in their final state, then reconfiguration is
possible. Otherwise, reconfiguration is not possible.
Since non-catalytic reactions transition both vertices

to their final states, a vertex must be involved in at
most one reaction. Edges represent these non-catalytic
reactions between two vertices. As a result, limiting a
vertex to one reaction is the equivalent of matching each
vertex inG′ to at most one other vertex it shares an edge
with, which is a perfect matching problem. For planar
graphs, this can be solved using a maximum matching
algorithm. If any unmatched vertex is not in its final
state, then reconfiguration is not possible because this
vertex is unable to react.
Constructing G′ takes O(V + |R|) time. Running the

maximum matching algorithm takes O(V 1.5) time. A
last check of G′ for any unmatched vertices that are
not in their final state takes O(V ) time. Therefore, the
runtime is O(V 1.5 + |R|). □

Corollary 6 Reconfiguration in 1-burnout for general
graphs is solvable in O(V 4 + |R|) time if every reaction
is non-catalytic, where V is the number of vertices.

Proof. Proof follows from Theorem 5. Maximum
matching on general graphs runs in O(V 4) time. □

5.1 Arbitrary Graphs with 1-Burnout
We now consider surface CRNs that allow catalytic as
well as non-catalytic rules. With this additional rule
type, we prove the problem of reconfiguration is NP-
complete on an arbitrary graph with 1-burnout.

Theorem 7 Reconfiguration with 1-burnout of an ar-
bitrary surface in surface CRNs is NP-complete.

Proof. We reduce from the dominating set problem to
sCRN reconfiguration with 1-burnout. Let G = (V,E)
be an arbitrary graph and k be an integer parameter.

229



35th Canadian Conference on Computational Geometry, 2022

We need to decide if graph G has a dominating set of
size k. Note that a subset U ⊆ V is a dominating set
of G if each vertex v ∈ V − U has (u, v) ∈ E for some
u ∈ U (vertex u dominates v).
Let v1, · · · , vn be the n vertices of G. We design a

surface CRN system. For each edge (vi, vj) in E, create
two rules vi + vj → vi + v′j and vi + vj → v′i + vj . We
introduce k additional species u1, · · · , uk. The target
configuration is to let each vi enter v

′
i for i = 1, · · · , n

and each ut enter u′t. We set up the rules ut + vj →
u′t + v′j for all t ≤ k and all j ≤ n.
If graph G has a dominating set of size k, the tar-

get configuration is reachable. Assume that vi1 , · · · , vik
dominate all the vertices in the graph G. For each vj
with j ∈ {1, · · · , n}−{i1, · · · , ik}, it can be transformed
into v′j by a rule vis + vj → vis + v′j . Each vis can enter
v′is by a rule us + vis → u′s + v′is . Here, the burnout
is 1. Similarly, if the target configuration is reachable,
there is a dominating set of size k. If the target config-
uration is reachable, we have at most vi1 , · · · , vih with
(h ≤ k) such that each vir enters v′ir via the type of rule
ut+vir → u′t+v

′
ir

as there is only one burnout for each
vi and uj . Clearly, vi1 , · · · , vih dominate all the other
vertices in the graph G.
This is a polynomial-time reduction and membership

is known from [1]. □

5.2 1-Burnout 1-Reconfiguration

Theorem 8 1-Reconfiguration in 1-burnout of a
w × n rectangle for surface CRNs is solvable in
O
(
n · (|S||R|)2w · f(w)

)
time.

Proof. We use a dynamic programming approach sim-
ilar to that in Theorem 2, defining a table D with
Boolean entries D(x, s⃗, r⃗, π), where x is a column in-
dex, s⃗ = [s1, s2, . . . , sw], r⃗ = [r1, r2, . . . , rw], and π a
permutation of [1, w]. Each sy ∈ S is a potential fi-
nal species of cell (x, y), which changes from its initial
species into (x, y) due to reaction ry ∈ R, and π gives
the order in which the reactions occur. As before, ry
specifies which of its up-to-four neighboring cells par-
ticipated in the reaction, and sy and ry may be null if
the cell never changes species.
Since only one cell (xt, yt) of the target configuration

is fixed, the top-level of the dynamic program will be
column xt, and it will symmetrically recurse outwards
in both directions, with base-cases at both ends. So,
for x < xt D(x, s⃗, r⃗, π) is true if the cells in columns
0, 1, . . . , x can reach a target configuration in which col-
umn x reaches species s⃗ using reactions r⃗ occurring in
order π, for x > xt we consider columns x, x+1, . . . , n−1
instead, and for x = xt we consider the entire surface.
To compute D(x, s⃗, r⃗, π), say when x < xt, we search

for a smaller subproblem D(x − 1, s⃗ ′, r⃗ ′, π′) which has
value true and (r⃗ ′, r⃗) together are a chain of reactions
that actually transform columns x−1 and x into species

(s⃗ ′, s⃗) from their initial species, given that they must
occur in relative orders π′ and π. Specifically, we can
search each possible interleaving of π(r⃗) and π′(r⃗ ′), sim-
ulate the reactions in that order, and verify that the
reactions within these two columns can actually be per-
formed and do result in (s⃗ ′, s⃗). Notably, for reactions
between columns x − 2 and x − 1, we do not need to
validate the species in column x−2 because the smaller
subproblem already performed that validation, and for
reactions between columns x and x + 1, the species in
column x+1 are assumed to be validated later in a larger
subproblem. For x > xt, the recursion is symmetric.
For top-level subproblems D(xt, s⃗, r⃗, π), we only con-

sider s⃗ that include the fixed target species syt , and
we search for both D(xt − 1, s⃗ ′, r⃗ ′, π′) and D(xt +
1, s⃗ ′′, r⃗ ′′, π′′) and validate between all three columns
xt−1, xt, xt+1 in a similar manner. If any D(xt, s⃗, r⃗, π)
is true, then the answer to 1-reconfiguration is true.
The size of D is O (n · |S|w · (4|R|)w · w!). Computing

each entry involves checking O (|S|w · (4|R|)w · w!) sub-
problems, and each check considers

(
2w
w

)
interleavings

of orderings and runs an simulation taking O(w) time.
Combined, the total time is O

(
n · (|S||R|)2w · f(w)

)
for

a function f only depending on w. Therefore, for con-
stant w, this is polynomial time. □

6 Conclusion

In this paper, we have shown that the reconfiguration
problem on 1× n surface CRNs with k-burnout is in P
when k = 1 or k = 2. To show this, we have given al-
gorithms that output a sequence of reactions to achieve
the given configuration. Further, we show that for any
k = O(1), there exists an algorithm that has a poly-
nomial runtime in k. To conclude our investigation of
1-Dimensional surface CRNs, we prove that when the
burnout number, k, is part of the input (in unary), the
problem of reconfiguration is NP-complete.
Following by exploring 2-Dimensional surface CRNs

and showing that a restricted case of 1-burnout re-
configuration can be seen as perfect matching, show-
ing this case of the problem to still be in P. Finishing
with a proof that the problem of 1-Reconfiguration in
1-burnout can be solved in polynomial time on a w× n
rectangle when w is constant.
Some of the open questions are then:

• What is the lower bound for a given k-burnout?

• In a rectangle/grid graph, what is the lower/upper
bound for k-burnout?

• Most of our complexity is in terms of the size of
the surface. Are there interesting results looking at
the complexity of other aspects of an sCRN such
as states, rules, and burnout?

• We have a direct NP-complete reduction but does
there exist an L-reduction for some inapproxima-
bility result?

230



CCCG 2023, Montreal, QC, Canada, July 31 – August 4, 2023

References

[1] R. M. Alaniz, J. Brunner, M. Coulombe, E. D. De-
maine, Y. Diomidov, T. Gomez, E. Grizzell, R. Knobel,
J. Lynch, A. Rodriguez, R. Schweller, and T. Wylie.
Complexity of reconfiguration in surface chemical reac-
tion networks. In Proc. of the 29th International Con-
ference on DNA Computing and Molecular Program-
ming, DNA’23, 2023. To appear.

[2] T. Brailovskaya, G. Gowri, S. Yu, and E. Winfree. Re-
versible computation using swap reactions on a surface.
In Proc. of the International Conference on DNA Com-
puting and Molecular Programming, DNA’19, pages
174–196. Springer, 2019.

[3] C. Chalk, A. Luchsinger, E. Martinez, R. Schweller,
A. Winslow, and T. Wylie. Freezing simulates non-
freezing tile automata. In DNA Computing and Molecu-
lar Programming: 24th International Conference, DNA
24, Jinan, China, October 8–12, 2018, Proceedings 24,
pages 155–172. Springer, 2018.

[4] G. Chatterjee, N. Dalchau, R. A. Muscat, A. Phillips,
and G. Seelig. A spatially localized architecture for fast
and modular DNA computing. Nature nanotechnology,
12(9):920–927, 2017.

[5] H.-L. Chen, D. Doty, and D. Soloveichik. Deterministic
function computation with chemical reaction networks.
Natural computing, 13:517–534, 2014.

[6] C. T. Chou. Chemical reaction networks for computing
logarithm. Synthetic Biology, 2(1):ysx002, Jan. 2017.

[7] S. Clamons, L. Qian, and E. Winfree. Program-
ming and simulating chemical reaction networks on
a surface. Journal of the Royal Society Interface,
17(166):20190790, 2020.

[8] M. Cook et al. Universality in elementary cellular au-
tomata. Complex systems, 15(1):1–40, 2004.

[9] M. Cygan, F. V. Fomin,  L. Kowalik, D. Lokshtanov,
D. Marx, M. Pilipczuk, M. Pilipczuk, and S. Saurabh.
Parameterized algorithms, volume 5. Springer, 2015.

[10] F. Dannenberg, M. Kwiatkowska, C. Thachuk, and
A. J. Turberfield. DNA walker circuits: computational
potential, design, and verification. Natural Computing,
14(2):195–211, 2015.

[11] E. Goles, D. Maldonado, P. Montealegre, and M. Ŕıos-
Wilson. On the complexity of asynchronous freez-
ing cellular automata. Information and Computation,
281:104764, 2021.

[12] E. Goles, N. Ollinger, and G. Theyssier. Introducing
freezing cellular automata. In Cellular Automata and
Discrete Complex Systems, 21st International Work-
shop (AUTOMATA 2015), volume 24, pages 65–73,
2015.

[13] R. A. Muscat, K. Strauss, L. Ceze, and G. Seelig. DNA-
based molecular architecture with spatially localized
components. ACM SIGARCH Computer Architecture
News, 41(3):177–188, 2013.

[14] T. Neary and D. Woods. P-completeness of cellu-
lar automaton rule 110. In Automata, Languages and
Programming: 33rd International Colloquium, ICALP
2006, Venice, Italy, July 10-14, 2006, Proceedings, Part
I 33, pages 132–143. Springer, 2006.

[15] L. Qian and E. Winfree. Parallel and scalable com-
putation and spatial dynamics with DNA-based chem-
ical reaction networks on a surface. In DNA Com-
puting and Molecular Programming: 20th International
Conference, DNA 20, Kyoto, Japan, September 22-26,
2014. Proceedings, volume 8727, page 114. Springer,
2014.

[16] D. Soloveichik, M. Cook, E. Winfree, and J. Bruck.
Computation with finite stochastic chemical reaction
networks. natural computing, 7:615–633, 2008.

[17] G. Theyssier and N. Ollinger. Freezing, bounded-
change and convergent cellular automata. Discrete
Mathematics & Theoretical Computer Science, 24,
2022.

[18] A. J. Thubagere, W. Li, R. F. Johnson, Z. Chen,
S. Doroudi, Y. L. Lee, G. Izatt, S. Wittman, N. Srinivas,
D. Woods, et al. A cargo-sorting DNA robot. Science,
357(6356):eaan6558, 2017.

231



REFERENCES

[1] R. M. ALANIZ, D. CABALLERO, S. C. CIRLOS, T. GOMEZ, E. GRIZZELL, A. RODRIGUEZ,
R. SCHWELLER, A. TENORIO, AND T. WYLIE, Building squares with optimal state complex-
ity in restricted active self-assembly, Journal of Computer and System Sciences, 138 (2023),
p. 103462.

[2] E. R. BANKS, Universality in cellular automata, in 11th Annual Symposium on Switching
and Automata Theory (swat), 1970, pp. 194–215.

[3] R. BRICEÑO AND I. RAPAPORT, Communication complexity meets cellular automata: Neces-
sary conditions for intrinsic universality, Natural Computing, 20 (2021), pp. 307–320.

[4] A. A. CANTU, A. LUCHSINGER, R. SCHWELLER, AND T. WYLIE, Signal Passing Self-
Assembly Simulates Tile Automata, in 31st International Symposium on Algorithms and
Computation (ISAAC 2020), vol. 181, 2020, pp. 53:1–53:17.

[5] C. CHALK, A. LUCHSINGER, E. MARTINEZ, R. SCHWELLER, A. WINSLOW, AND

T. WYLIE, Freezing Simulates Non-freezing Tile Automata, in DNA Computing and Molecular
Programming, 2018, pp. 155–172.

[6] E. D. DEMAINE, M. L. DEMAINE, S. P. FEKETE, M. J. PATITZ, R. T. SCHWELLER,
A. WINSLOW, AND D. WOODS, One Tile to Rule Them All: Simulating Any Turing Machine,
Tile Assembly System, or Tiling System with a Single Puzzle Piece, ArXiv e-Prints, (2012).

[7] E. D. DEMAINE, M. J. PATITZ, T. A. ROGERS, R. T. SCHWELLER, S. M. SUMMERS,
AND D. WOODS, The Two-Handed Tile Assembly Model is not Intrinsically Universal,
Algorithmica, 74 (2016), pp. 812–850.

[8] D. DOTY, J. H. LUTZ, M. J. PATITZ, R. T. SCHWELLER, S. M. SUMMERS, AND D. WOODS,
The Tile Assembly Model is Intrinsically Universal, in 53rd Annual Symposium on Foundations
of Computer Science, 2012, pp. 302–310.

[9] D. DOTY, J. H. LUTZ, M. J. PATITZ, S. M. SUMMERS, AND D. WOODS, Intrinsic Univer-
sality in Self-Assembly, in 27th International Symposium on Theoretical Aspects of Computer
Science (2010), 2010.

[10] B. DURAND AND Z. RÓKA, The game of life: universality revisited, in Cellular Automata: a
Parallel Model, 1999, pp. 51–74.

232



[11] J. O. DURAND-LOSE, Intrinsic universality of a 1-dimensional reversible cellular automaton,
in 14th Annual Symposium on Theoretical Aspects of Computer Science (STACS), 1997,
pp. 439–450.

[12] E. GOLES, P. MEUNIER, I. RAPAPORT, AND G. THEYSSIER, Communication complexity
and intrinsic universality in cellular automata, Theoretical Computer Science, 412 (2011),
pp. 2–21.

[13] D. HADER, A. KOCH, M. J. PATITZ, AND M. SHARP, The Impacts of Dimensionality,
Diffusion, and Directedness on Intrinsic Universality in the abstract Tile Assembly Model, in
Symposium on Discrete Algorithms (SODA), 2019, pp. 2607–2624.

[14] J. HENDRICKS AND M. J. PATITZ, On the Equivalence of Cellular Automata and the Tile As-
sembly Model, Electronic Proceedings in Theoretical Computer Science, 128 (2013), pp. 167–
189.

[15] J. IIRGEN ALBERT AND K. CULIK II, A simple universal cellular automaton and its one-way
and totalistic version, Complex Systems, 1 (1987), pp. 1–16.

[16] G. LAFITTE AND M. WEISS, Universal tilings, in 24th Annual Symposium on Theoretical
Aspects of Computer Science (STACS), vol. 4393, 2007, pp. 367–380.

[17] , An Almost Totally Universal Tile Set, in Theory and Applications of Models of Compu-
tation, vol. 5532, 2009, pp. 271–280.

[18] , Tilings: simulation and universality, Mathematical Structures in Computer Science, 20
(2010), pp. 813–850.

[19] M. MARGENSTERN, An algorithm for building intrinsically universal cellular automata in
hyperbolic spaces, in International Conference on Foundations of Computer Science (FCS),
2006, pp. 3–9.

[20] P.- MEUNIER, M. J. PATITZ, S. M. SUMMERS, G. THEYSSIER, A. WINSLOW, AND

D. WOODS, Intrinsic universality in tile self-assembly requires cooperation, in 25th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2014, pp. 752–771.

[21] J. V. NEUMANN, Theory of self-reproducing automata, Urbana, University of Illinois Press,
1966.

[22] N. OLLINGER, The Quest for Small Universal Cellular Automata, in Automata, Languages
and Programming, vol. 2380, 2002, pp. 318–329.

[23] , The Intrinsic Universality Problem of One-Dimensional Cellular Automata, in STACS
2003, H. Alt and M. Habib, eds., Lecture Notes in Computer Science, Berlin, Heidelberg,
2003, Springer, pp. 632–641.

233



[24] , Universalities in cellular automata; a (short) survey, Journees Automates Cellulaires,
(2008).

[25] N. OLLINGER AND G. RICHARD, Four states are enough!, Theoretical Computer Science,
412 (2011), pp. 22–32.

[26] P. PETERSEN, G. TIKHOMIROV, AND L. QIAN, Information-based autonomous reconfig-
uration in systems of interacting DNA nanostructures, Nature communications, 9 (2018),
p. 5362.

[27] N. SARRAF, K. R. RODRIGUEZ, AND L. QIAN, Modular reconfiguration of DNA origami
assemblies using tile displacement, Science Robotics, 8 (2023), p. eadf1511.

[28] E. WINFREE, Algorithmic self-assembly of DNA, California Institute of Technology, 1998.

[29] D. WOODS, D. DOTY, C. MYHRVOLD, J. HUI, F. ZHOU, P. YIN, AND E. WINFREE,
Diverse and robust molecular algorithms using reprogrammable DNA self-assembly, Nature,
567 (2019), pp. 366–372.

[30] T. WORSCH, Towards intrinsically universal asynchronous CA, Natural Computing, 12 (2013),
pp. 539–550.

234



VITA

Elise Constance Grizzell grew up in Salt Lake City, Utah and moved to the Rio Grande 

Valley in 2016. While an undergraduate she joined the Algorithmic Self-Assembly research group 

where she along with other students published many papers working under Dr. Bin Fu, Dr. Robert 

Schweller and Dr. Tim Wylie. After completing her undergraduate in Computer Science at UTRGV 

in 2019, Elise continued her education at UTRGV where she received the Graduate Assistance in 

Areas of National Need Fellowship to support her as a graduate student. She received her Master’s 

degree in Computer Science in 2024. Elise can be reached at elisegrizzell@gmail.com.

235


	Intrinsic Universality in Tile Automata and Related Results
	Recommended Citation

	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	CHAPTER I: Introduction
	Overview

	CHAPTER II: Intrinsic Universality in Active Tile Self-Assembly
	Introduction
	Previous Work
	Our Contributions

	Preliminaries
	The Seeded Tile Automata Model
	Simulation

	Impossibility for Passive or Bounded State Change Systems
	Overview of Intrinsic Universality in TA
	Temperature-1 Seeded TA is Intrinsically Universal
	Temperature Simulation at Scale-1
	Seeded TA is Intrinsically Universal

	Temperature Simulation
	Alternate Upper Bound

	Supertiles
	Agents & Gadgets
	Table & Wiring
	Outer Shell

	Attachment
	Initiation
	Checking Attachment
	Preparing for Copying
	Copying Supertile Outline
	Construction Wires
	Copying Table
	Activating Tile and Determining State

	Transitioning Tiles
	Finding Intersection
	Transmitting Intention to Transition
	Transitioning States

	Metrics
	Agents
	Copying States
	Final Count

	Correctness of Construction
	IU TA Simulates 2D Asynchronous CA |N| = 2
	Conclusion

	CHAPTER III: Other Tile Automata Results
	Building squares with optimal state complexity in restricted active self-assembly
	Simulation of Multiple Stages in Single Bin Active Tile Self-Assembly

	CHAPTER IV: Covert Computation in the Abstract Tile-Assembly Model.
	CHAPTER V: Chemical Reaction Networks
	Reachability in Restricted Chemical Reaction Networks
	Computing Threshold Circuits with Void Reactions in Step Chemical Reaction Networks.

	CHAPTER VI: Surface Chemical Reaction Networks
	Complexity of Reconfiguration in Surface Chemical Reaction Networks
	Reconfiguration of Linear Surface Chemical Reaction Networks with Bounded State Change

	APPENDICES
	REFERENCES
	Vita

