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ABSTRACT 

Nunez, Jose A., White Light Specular Reflection Data Augmentation for Polyp Detection. 

Master of Science (MS), August 2024, 48 pp., 18 tables, 17 figures, 25 references. 

 Colorectal cancer is among the deadliest cancers, but fortunately, this type of cancer can 

be prevented. The best current method of prevention is via detecting the bad polyps in the colon 

in time. Furthermore, the best method we have available to detect these bad polyps is through 

colonoscopies. Even though a lot of lives have been saved via these methods, it is still not perfect 

because of human error. Integrating artificial intelligence into colonoscopy procedures is our 

next evolution in increasing our prevention of colorectal cancer. Polyp detectors are one of the 

tools brought by advancements in technology that may aid doctors in colonoscopy procedures. It 

is vital that we continually improve the quality of polyp detectors. A common problem in polyp 

detectors is that they sometimes confuse the white light specular reflections produced by the 

endoscope with polyps. This study proposes a new data augmentation technique that artificially 

augments the images with more white light specular reflections. The hypothesis is that by 

providing the model more opportunities to make mistakes, it also gives it more chances to learn 

from those mistakes, thus improving the quality of the model. 
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CHAPTER I 

INTRODUCTION 

1.1 A World Health Problem 

Colorectal cancer (CRC) is a significant health problem in our world. According to the 

World Health Organization (World Health Organization, 2021), CRC ranks as the third most 

common cancer worldwide and is the second leading cause of cancer-related deaths. 

Furthermore, CRC’s 5-year survival rate ranges from 48.6% to 59.4% (Morris et al., 2007). 

Factors such as gender, age, smoking, body mass index (BMI), and family history increase CRC 

risk (Joseph et al., 2012). Initially, medical guidelines recommended colorectal cancer screenings 

starting at age 50. However, the American Cancer Society now advises beginning screenings at 

age 45 due to a significant increase in incidence rates among younger adults. Notably, incidence 

rates for colorectal cancer have been rising by 1% to 2% annually, particularly among 

individuals under 55 years old (Siegel et al., 2024). This adjustment of earlier screening aims to 

address this younger demographic’s growing number of cases and improve early detection and 

treatment outcomes. 

There seems to be some sort of connection between CRC incidence rates and the 

economic power of a country. It has been observed that higher-income countries experience 

higher incidence rates of CRC but lower mortality rates than lower-income countries (Favoriti et 

al., 2016). Some speculate that it could be the dietary changes that evolve as a result of economic 

improvement such as access to a wider variety of foods, such as sugary and junk foods. 
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However, it is important to note that although incidence rates are higher in better off 

countries, the mortality rates due to CRC are lower and is likely due to better treatment options 

and medical access in these countries. There was a study done on 37 countries to find patterns in 

CRC incidence rates and it was found that incidence and mortality rate correlate with present 

human development levels (Arnold et al., 2017). Furthermore, CRC is expected to increase 

significantly by 2040, with an estimated 3.2 million new cases and 1.6 million deaths in high 

Human Development Index countries (Eileen et al., 2022). 

This type of cancer also poses a substantial economic burden. It causes a strain on 

healthcare resources, it increases health insurance premiums, affects the workforce, and 

treatment costs are massive. A study done in Canada, found that increased screening 

participation to 60% would lead to better clinical outcomes across all income groups, which 

would translate to lower treatment costs, saving on average 95 million Canadian Dollars per year 

over the period of 2024 to 2073 (Adegbulugbe et al., 2024). The economic burden of different 

types of cancers was studied in the European Union (EU). It revealed that CRC incurred an 

economic cost of 13.1 billion euros in the EU in 2009, which amounted to 10% of the total 

cancer costs (Ramon et al., 2013).  

CRC has a plethora of negative side effects, ranging from affecting our loved ones to 

affecting our economy. Fortunately, there is hope; CRC is largely preventable. This type of 

cancer often develops from polyps, which are little bumps that may form in the colon. Most 

polyps are small, less than 10mm in size. Some of the polyps are benign and pose little to no 

threat; these are called hyperplastic polyps. While other polyps have a high risk of becoming 

cancerous, these polyps are known as adenomatous polyps. Thus, the best way to prevent this 

type of cancer is to detect adenomatous polyps in time and remove them.  
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Colonoscopies are considered the gold standard for detecting polyps. A colonoscopy is a 

medical procedure in which an endoscopist examines the colon for polyps using an endoscope, a 

flexible tube apparatus containing a camera and light. Once an adenomatous polyp is detected, it 

is removed. It is important to note that even though colonoscopies are great for detecting polyps, 

this procedure is dependent on the experience of the endoscopist. Furthermore, human error still 

exists in all professions and at all levels of experience. About 12% of large adenoma polyps (at 

least 1cm) are missed even by experienced endoscopists (Bernal et al., 2021). According to 

another study, the rate of missed polyps during a colonoscopy can vary between 15% to 35% 

depending on the size of the polyp (Lalinia et al., 2023). 

Artificial intelligence is helping evolve many industries. Regarding colonoscopies, there 

are many different AI models that aid in detecting polyps.  Providing these AI tools to 

endoscopists will reduce the chances of missed polyps. In order for a polyp detector to 

successfully integrate well with a colonoscopy procedure, it must work in real time and be as 

precise as possible.  

1.2 Contribution 

Striving towards the goal of increasing the prevention rate of CRC requires decreasing 

the missed polyp rate. To accomplish this using AI, we must aim to make improvements to polyp 

detector models in precision while ensuring that they work in real time.  

After reading the literature on polyp detectors, I noticed that most mention a common 

problem with these detectors: they confuse the white light specular reflections produced by the 

endoscope for polyps. This problem results in more false positives, which as a result reduces the 

precision of the model. To my knowledge, I have not found any research papers that address 

solutions to fix the white light specular problem in polyp detection.  
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Therefore, this thesis attempts to use the knowledge of the white light specular reflection 

problem and use it to make polyp detection stronger. This is accomplished via creating a new 

data augmentation. Data augmentations are widely used to help object detection models become 

more robust and better generalized. Popular data augmentations include mosaic, random 

horizontal flip, random crop, Gaussian blur, mix-up, and a whole bunch more.  

 The data augmentation method created for this paper is called White Light Specular 

Reflection, or WLSR for short. This data augmentation generates more white light specular 

reflections, let’s call them artificial lights for short, and adds them to the training images. The 

purpose is to use the knowledge that white light specular reflections are troublesome for polyp 

detectors and, therefore, make the training images harder by adding artificial lights. My 

hypothesis is that by proving harder training via WLSR data augmentation, it will make the 

model stronger, and thus make gains in mean average precision (mAP).   
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CHAPTER II 

LITERATURE REVIEW 

2.1 Object Detector Basics 

 An object detector comprises two tasks: classifying and locating the object of interest. 

Classifying means correctly identifying the object. For example, if given an image of a polyp, it 

tells us that there is a polyp in the image.  Localization tells us where the polyp is in the image, 

utilizing a bounding box that encapsulates it. Therefore, object detectors would be advantageous 

in colonoscopy procedures because they would help endoscopists in finding polyps. 

 Object detectors output a bounding box to signify where they think the object of interest 

is located. Thus, to measure how well an object detector is at locating objects, we must compare 

the bounding box produced by the model with the ground truth box. The ground truth box is the 

real location of the object. This comparison is done by calculating the intersection over union 

(IoU). IoU ranges from 0 to 1, where 0 indicates no overlap, meaning the model did not locate 

the object. An IoU of 1, indicates that the model located the object exactly. The closer the IoU is 

to 1, the better the model is at accurately locating objects of interest. In object detection, an IoU 

of 0.5 is considered acceptable.  Figure 1, shows a visual representation of IoU. 
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Figure 1: Intersection over Union 

The performance metrics that evaluate object detectors utilize IoU in their calculations by 

specifying an IoU threshold. For example, if we set the IoU threshold to 0.5, then if the model 

produces a bounding box with an IoU above the threshold, then we would consider that it 

detected the object successfully, in other words, a true positive. The main performance metrics 

are precision, recall, F1 score, and mean average precision (mAP). The F1 score and mAP are 

derived from precision and recall. We will now briefly go over these metrics.  

 Precision indicates how good the model is at getting its detections correct. A correct 

detection is known as a true positive. An incorrect detection is a false positive. A false positive 

would mean that the model indicated that there is a polyp, but there is no polyp.  This also means 

that the model outputs a bounded box but the IoU is below the threshold. In essence, precision is 

the percentage of predictions that are correct. The equation for precision is shown below: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  
𝑇𝑇𝑝𝑝𝑇𝑇𝑝𝑝 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝

𝑇𝑇𝑝𝑝𝑇𝑇𝑝𝑝 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝
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Recall tells us how good the model is at detecting all the objects of interest. If there is a 

polyp but the model does not detect it, then it is considered a false negative. In medical imaging, 

we want to reduce false negatives as much as possible because if not, they can result in dire 

consequences. In this case, not detecting an adenomatous polyp can result in the patient 

developing colorectal cancer. The equation for the recall metric is shown below: 

𝑝𝑝𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹 =  
𝑇𝑇𝑝𝑝𝑇𝑇𝑝𝑝 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝

𝑇𝑇𝑝𝑝𝑇𝑇𝑝𝑝 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝 + 𝐹𝐹𝐹𝐹𝐹𝐹𝑝𝑝𝑝𝑝 𝑁𝑁𝑝𝑝𝑁𝑁𝐹𝐹𝑃𝑃𝑝𝑝𝑃𝑃𝑝𝑝
 

The F1 score combines both precision and recall into one score. The F1 score is known as 

the harmonic mean of precision and recall. The equation for the F1 score is shown below: 

𝐹𝐹1 = 2 𝑥𝑥 
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑥𝑥 𝑅𝑅𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹
𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝑅𝑅𝑝𝑝𝑝𝑝𝐹𝐹𝐹𝐹𝐹𝐹

 

Another metric that combines precision and recall is mean average precision (mAP). I 

think this metric is very intuitive and important. To understand it, we must first understand 

precision-recall curves. The precision-recall curve captures the trade-off relationship between 

precision and recall. This trade-off relationship exists because we can modify certain parameters, 

resulting in higher precision but would cause lower recall, and vice versa. For example, we can 

make the model more careful when making predictions; this would improve precision since it 

would make fewer false positive predictions. However, since fewer predictions would be made, 

we also increase the chances of more false negatives, thus decreasing our recall score. The 

precision-recall curves show us the possible precision and recall combinations given different 

careful levels (confidence scores). As a model gets better, the precision-recall curves shift  

 outwards, providing us with better combinations of precision and recall. Therefore, to 

determine which model has better precision-recall curves, we calculate the area under that curve, 
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which gives us mAP. The mAP is usually calculated at IoU of 0.50, giving us mAP@50. 

Another important mAP calculation is the mAP@50-95, which is the average of mAPs from IoU 

at 0.5 to IoU at 0.95 in increments of 0.05. Figure 2 shows a precision-recall curve and mAP 

relationship. 

 

Figure 2: Precision-Recall Curve and mAP relationship 

Object detection algorithms can be classified into two main architectures: single-stage 

and two-stage detectors.  Single-stage detectors are the recent advances in object detection. 

Typically, two-stage detectors have more accuracy than single-stage detectors, but the downside 

is that they are slower. Therefore, choosing between single-stage or two-stage detectors depends 

on what is going to be needed. In the next section, we will briefly go over these two different 

architectures used in polyp detection.  
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2.2 Two-Stage Polyp Detectors 

 Two-stage detectors have a region proposal network that indicates areas of interest, and 

then these regions go to the second stage, which determines if there is an object of interest and 

the location, represented as a bounded box around the object. The R-CNN architecture is a good 

starting point if someone is interested in learning more about two-stage detectors. The following 

two-stage architectures are improvements over the R-CNN mentioned in order from oldest to 

newest: Fast R-CNN, Faster R-CNN, and Mask R-CNN.  

 In regards to detecting polyps, an R-CNN was used to detect images of the colon 

captured by colon capsule endoscopy (Tashk et al., 2020). The researchers mention that it is very 

time-consuming for medical professionals to analyze all colon images captured by the capsule 

endoscopy procedure, and there is a chance of missing a polyp.  Another problem in polyp 

detection is that there is a lot of similarity between polyps and their surrounding tissue. Hence, a 

group of researchers proposed to do contrast enhancement on the images as a preprocessing step 

before passing it to their faster R-CNN architecture (Chen et al., 2021).  

 There are a lot of different studies using some form or variation of R-CNN on polyp 

detection. An important mention to wrap up this section is from a research paper that used a 

Mask R-CNN for polyp detection and segmentation. The main takeaway was that deeper and 

more complex networks do not necessarily guarantee better performance (Qadir et., 2019).  

2.3 Single-Stage Polyp Detectors 

 Single-stage detectors achieve object detection in one stage. They accomplish this by 

using a unified architecture, meaning they perform both object localization and classification in 
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one pass through the network. The two most popular single-stage detectors are the Single Shot 

MultiBox Detector (SSD) and You Only Look Once (YOLO).  

 The speed of single-stage detectors makes them perfect for detecting polyps during 

colonoscopies, which must happen in real-time. A polyp detector using the SSD architecture and 

Inception V3 as a feature extractor demonstrated great speed in detection (Liu et al., 2019).  

 Currently, YOLO is more popular than SSD. One reason for its popularity is that its 

architecture is straightforward and easy to modify. A testament to its ease of customization is 

from a research paper in which the researchers customized the YOLOv4-Tiny model and got 

promising results in detecting polyps (Doniyorjon et al., 2022). Another research team working 

on polyp detection combined ResYOLO, which is another variant of YOLO, with a tracker 

named Efficient Convolution Operators (ECO) in order to incorporate temporal data (Zhang et 

al., 2018). Because of the customization capabilities of YOLO and the big community support 

due to its popularity, this project uses YOLO.  

2.4 Current Top-Performing Polyp Detectors 

 This section will mention three top-performing polyp detectors with interesting 

methodologies. They all use the YOLO architecture. Their approaches to improving polyp 

detectors are very interesting.   

 The first one I want to mention uses the YOLOv3 architecture and integrates an object 

tracker into it (Nogueira-Rodríguez et al., 2022). Their goal in using the object tracker was to 

reduce the false positives by filtering out bounding boxes. Their algorithm runs on video frames, 

and since between frames, there is very little change if a polyp is found, if suddenly a polyp 

appears near an area where there was no polyp detected, it is filtered out, thus reducing the false 
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positives. They created a dataset containing 28,576 polyp images taken from 941 polyp videos. 

Their testing dataset contained 8,658 images. Their network was trained for 50 epochs but they 

found they had the best results at the 37th epoch. When incorporating their frame-based model, 

they achieved an F1 score of 0.88 (precision = 0.89 and recall = 0.87). They also mention that 

they got lower predictive performance on flat polyps.  

 The second study used many variants of YOLOv5, but it got its best results with the large 

variant (Ghose et al., 2024). It took an interesting approach by fine-tuning the anchor boxes in 

the YOLOv5 model to capture smaller polyps. In addition, they performed the following data 

augmentations: noise invocation, flipping, rotation, brightness, and contrast adjustments. Their 

training and testing data came from the Kvasir-SEG dataset, which contains 1,000 polyp images. 

They split that dataset into 80% for training and 20% for testing images. They then further split 

the training dataset to make room for a validation set. In total, they had 640 images for training, 

160 for validation, and 200 for testing. Their best model resulted from using the largest variant of 

YOLOv5 and training with early stopping at 1,000 epochs. They reported 0.9840 precision, 

0.9861 recall, and 0.964 F1 score.  

 The third study builds upon YOLOv3 by modifying the architecture to make it anchor-

free, they named this modified model, YOLO-OB (Yang et al., 2023). Their motivation was to 

increase flexibility so polyps could be treated equally at different feature levels regardless of size 

or shape in the original image. Their total dataset consisted of 102,234 polyp images that came 

from SUN a public database and a private database named Union. They trained their model for 

150 epochs and reported the following results: precision 98.37, recall 98.23, F1 98.32, and mAP 

98.19.  



12 
 

2.5 Challenges of Detecting Polyps 

 Many challenges exist when attempting to detect polyps, such as polyps being too small 

or too flat, occluded by colon folds, endoscope blind spots, inadequate light conditions during 

image acquisition, and white light specular reflections. Researchers have attempted various 

things to combat these challenges. A research team attempted to tackle the inadequate light 

condition challenge by making their colonoscopy images go through a preprocessing stage in 

which the images get image enhanced by converting from RGB to HSV color space(Nisha et al., 

2022). 

 This thesis aims to find a possible solution to one of the challenges mentioned above, the 

white light specular reflection problem. In the next section, the proposed method will be 

discussed.  
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CHAPTER III 

METHODOLOGY 

 This chapter will go over in detail the proposed data augmentation and the experiments 

performed.   

3.1 Data 

There are not that many publicly available polyp images. The lack of a sufficient amount 

of polyp images is one of the reasons that polyp detectors struggle.  

The data used for this research comes from the Harvard Dataverse. This dataset 

comprises polyp images sourced from MICCAI 2017, CVC Colon DB, GLRC, KUMC, and the 

University of Kansas Medical Center, each accompanied by XML annotations. The XML 

annotations describe important details such as coordinates of where the polyp is located in an 

image. This data contains 3 main folders: train 2019, validation 2019, and test 2019. 

3.2 Object Detector Model: YOLOv5 

 YOLO is single stage object detector model that is used for object detection. The first 

version through third version of YOLO were made by Joseph Redmon and his collaborators 

(Redmon et al., 2016). The YOLO model became very popular because of its speed, and it is 

used in many areas, including polyp detection. This popularity resulted in more versions of 

YOLO being produced by different research teams such as YOLOv4, which added mosaic 

augmentation and other improvements (Bochkovskiy et al., 2020). The same authors of YOLOv4 

created YOLOv7 (Wang et al,. 2022). YOLOv6 was made by Meituan, a Chinese technology 
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company (Li et al,. 2022). YOLOv5 and YOLOv8 were developed by Glenn Jocher and his team 

at Ultralytics. Currently, more versions of the YOLO model are being created.  

 This research utilized YOLOv5 because there are currently more resources available for 

this version. In addition, this version of YOLO is easier to customize and modify its code if 

needed. Furthermore, YOLOv5 has 4 different models that are pre-trained on the COCO dataset. 

YOLOv5s, the small model was used for this research because polyp detectors must be fast 

enough to work in real-time and this model accomplishes that goal.  

3.3 Annotation Conversions 

 When training using a YOLO model, for every image there must be an annotation file in 

form of a text (.txt) format that contains the bounding box coordinates for each object in the 

image. The dataset for this project contains the annotation files in XML format.  

The coordinates of a bounding box in XML format are given by the top left corner and 

bottom right corner of the bounding box, in other words, x-min, y-min, x-max, and y-max. The 

coordinates of a bounding box in YOLO format are given by center of the box, the width of the 

box, and the height of the box. In addition, these values are normalized by dividing by the width 

and height of the image, thus each value for a bounding box range from 0 to 1.  

Two different codes were made to do the conversion from XML to YOLO format. One 

was to convert the annotations for the training images folder. The second one was for converting 

the annotations for the test and validation folder, since these two folders had subfolders inside 

them. Furthermore, when an annotation did not have a corresponding image then that annotation 

was not used. In addition, when an annotation did not specify bounding box coordinates for 

polyps then it was also not used, and neither was its corresponding image. This resulted in 

trimming our dataset a bit. Further trimming was done a bit more if it didn’t meet a certain 
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condition during the WLSR data augmentation pipeline, which will be discussed soon. At the 

end, our dataset consisted of 26,942 training images, 4,214 validation images, and 4,685 test 

images.  

3.4 WLSR Data Augmentation Design 

 This section will now dive into the high-level view of the WLSR data augmentation.  

3.4.1 Bank of Lights 

 The artificial lights for this data augmentation had to look like real white light specular 

reflections that occur during colonoscopies. Simply placing white circles or ovals was not going 

to be beneficial for training since we needed to mimic the real thing. Therefore, the solution was 

to meticulously pick and choose 300 lights from real polyp images.  

 First, color segmentation was done on all polyp images so we could target the shades of 

white light that occur during colonoscopies. Any color outside that shape was turned black so it 

could be easier to paste our desired lights onto an image later. Figure 3 shows a before and after 

picture of an image after color segmentation was applied to it with our desired shades of white 

light.  
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Figure 3: Before and After White Light Shade Color Segmentation 

After segmenting our desired regions for all images, then the cropping phase began. 

Images were carefully analyzed first, then regions that would provide a great variety of white 

lights were cropped. Overall, 300 regions were cropped. Figure 4 shows some of the cropped 

images that were selected. 

 

Figure 4: Examples of Selected Cropped Lights 

Transformations were done to create more light images from our cropped lights. Eleven 

different transformations were performed to increase the lights in our Light Bank. Table 1 shows 
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the transformation performed. Parenthesis indicates the input of a given transformation. Figure 5 

shows examples of some of the transformations performed. 

Table 1: Transformations to Create the Bank of Lights. 

 

- Random rotation range: -30 to 30 degrees 

- Random scaling between 0.8 to 1.2 

- Lights less than 1347 pixels can be scaled from 1 to 1.2. Else, the scale ranges from 0.8 to 1. 

 

 

 

 

Figure 5: Examples of Transformations Performed 

All the transformations listed above on our 300 selected cropped lights make up all the 

possible artificial lights for the WLSR data augmentation. Therefore, in total the WLSR data 

augmentation has 3,600 different artificial lights that it can use. Figure 6, shows a sample of the 

artificial lights that make up the Bank of Lights.  
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Figure 6: Sample of Bank of Lights 

3.4.2 Orange Areas 

 There are three things to consider when placing our artificial lights in our images.  

1) It must not overlap current lights because it could deform them and create the shapes of 

lights that don’t exist during colonoscopies.  

2) To avoid possible total occlusions of polyps, we will not let the artificial lights overlap at 

all with polyps.  

3) Since the images in the dataset contain black borders of different sizes and shapes, we 

will ensure that the artificial lights land on colon areas and not on the black borders.  

The solution to meet the conditions above is to convert the prohibited areas to a color that 

does not appear during colonoscopy procedures. In this case, orange is chosen.  

First, we converted the borders to orange. Since the images have black borders of different 

sizes and shapes, a good enough range to encapsulate the borders was chosen: 20 percent for the 

top, left, down, and right sides of the images. Any pixel that is inside the border range mentioned 
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above and within a defined range of black gets turned orange. Figure 7 shows the orange border 

conversion.  

 

 

 

 

 

 

Figure 7: Orange Borders 

Next, we must get bounding boxes for the current white lights to avoid overlapping them. 

We use the color-segmented images that we generated when doing the bank of white lights. We 

iterate through each segmented image and find the contour of each segmented object in an image 

in order to get the bounding boxes. Then bounded boxes get filtered with non-max suppression 

and lastly, they get converted to YOLO annotation format and saved.  

 To avoid passing two different annotation text files per image (annotation for polyps and 

annotation for white lights), a code was written to combine them into one annotation text file.  

Figure 8 shows the bounding boxes and orange boxes of an image. 

 

 

 

 

 

 

Figure 8: Bounding Boxes to Orange Boxes 
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Finally, to get all the desired areas we are trying to avoid, we combine both orange 

borders and orange boxes. To do this, we first do the orange border conversion and then we pass 

that image to the orange box converter. Figure 9 shows the orange area process.  

 

 

 

 

Figure 9: Orange Area Flow 

3.4.3 Areas that Fit 

After obtaining the areas where we cannot add an artificial light, we then proceed to find 

the areas that fit. We accomplish this via a sliding window approach. We first generate a random 

artificial light from the bank of lights and then starting from the top left corner it moves in 

sliding window fashion. From the left to right until it reaches the end of the image and then it 

steps down and follows the same pattern from left to right until all areas of an image have been 

covered. The step size to move horizontally is the width of the cropped light image plus one. The 

step size to move vertically is the height of the cropped light image plus one.  

If at any point during the sliding window process there is no orange pixel in the whole 

area that the cropped light image is covering, then the top left coordinate of that location gets 

stored in an array. The array of top left coordinates provides us with all the areas that fit. Lastly, 

from that array it randomly picks one top left coordinate where we are going to place the 

artificial light. I decided to do only one additional artificial light to see if it results in at least a 

minimal improvement to the model. In the future, I plan to test it with more than one artificial 

light added to images. Figure 10 illustrates the areas that fit and the random selection of an 

artificial light. 
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Figure 10: Random Selection from Areas that Fit 

If no areas fit, the algorithm tries again n number of times with different cropped light 

images. After n tries, that image and its respective annotation are not used for training.  

 Lastly, only the non-black portions are pasted onto the image. Figures 11 and 12 show a 

few of the results of the WLSR data augmentation, along with an extra image that circles where 

the new light is located. Finally, Figure 13 shows a high-level view of the WLSR data 

augmentation algorithm.  
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Figure 11: WLSR Data Augmentation Results Part 1 
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Figure 12: WLSR Data Augmentation Results Part 2 
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Figure 13: High-Level View of the WLSR Data Augmentation Algorithm 

3.5 Experiments 

 The following experiments aim to test the WLSR data augmentation under various 

conditions. All the models that were trained utilized the pre-trained COCO model as a starting 

point. This was done to speed up training, and because the data size for polyps is small, it is 

highly recommended to start training on a pre-trained model. Default training parameters, test 

parameters, and hyperparameters were used in these experiments. We kept them consistent 

across all experiments to clearly see if models with WLSR data augmentation included offered 

an increase in performance metrics. The default data augmentations were also disabled to make it 

clearer if WLSR is benefiting the model. Stochastic gradient descent was used as the default 

optimizer. Consistent parameters and hyperparameters are shown in the tables below. 

Table 2: Consistent Training Parameters Across Experiments 
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Table 3: Consistent Test Parameters Across Experiments 

 

Table 4: Consistent Hyperparameters Across Experiments 

 

 We will now describe the experiments done to determine whether WLSR benefits polyp 

detector models. 

3.5.1 Replacing 100% of Data 

 First, I wanted to understand how WLSR performs by just replacing the whole training 

dataset with its augmentation to see how it performed. This would give me a good starting point 

to understand how this augmentation fundamentally affects the images and the training.  

 In addition, to better understand a specific data augmentation, we must test it under 

various conditions, such as the number of training images and the number of epochs.   
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 The effects of data augmentations may vary with the quantity of epochs. An epoch 

represents one full cycle through the whole training dataset. When creating an object detection 

model, more isn’t always better. Too many epochs may cause the model to overfit, which means 

that it becomes too good at predicting patterns in its own training dataset, in a way becoming too 

rigid and losing flexibility when it comes to predicting patterns on unseen data. Some data 

augmentations may help in making the model more flexible and thus mitigating overfitting 

effects. Thus, it is vital to understand how data augmentations affect the performance of a model 

with different quantities of epochs. Table 5 shows different combinations of data size and epoch 

numbers used for the 100% replacement test.  

Table 5: Different Combinations of Data Size and Epoch Numbers 

 

 Most of the time, a number is useful when we can compare it. Therefore, to better gauge 

the results of the 100% replacement test on WLSR, the same tests and training were performed 

on the unaltered training images (Baseline) and on five other popular data augmentations: 

Random Flip, Color Jitter, Cut Out, Gaussian Blur, and Brightness Adjustment. Figures 14 and 

15 show before-and-after pictures of these data augmentations. 
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Figure 14: Other Data Augmentations: Before and After 

Lastly, all these data augmentations, including the WLSR, were performed before the 

training. This was done to better compare with the WLSR since it cannot yet perform on-the-fly 

data augmentation.  

 

 



28 

 

3.5.2 Adding 30% Augmentation to Data 

 Data augmentations are often done to increase the training dataset size, not to replace it 

completely. Therefore, we must see how a model with WLSR performs as a data augmentation 

addition to the normal dataset.  We chose a 30% data augmentation addition to the dataset and to 

train the model for 30 epochs. We selected 30 epochs because of the results from the last 

experiment, which we will show in the next chapter. Lastly, this test was also done on the other 

data augmentations to better compare and interpret.  

3.5.3 False Positives from Specular Reflections 

 I wondered if the WLSR data augmentation would make the model more robust against 

specular reflections. Therefore, for this experiment, I first used the baseline model to detect all 

images in the training folder. This gave an output of images with bounding box detections made 

by the model. The images were then analyzed and compared to the images that have ground truth 

boxes. If there is a false positive as a result of a specular reflection, then we see if the model that 

includes 30% of WLSR from the last experiment made the same detection mistake.  

3.5.4 Ensemble Augmentation 

 A model usually benefits more by providing it with a mix of data augmentations rather 

than just one. In this next experiment, we test if adding WLSR to a mix of data augmentations 

results in greater metric performance gains than not adding it to the mix. Since different data 

sizes and different sizes of data augmentations may mislead our interpretations, I compared two 

different ensemble models, one with the same data size as the ensemble model with WLSR and 

the other with the same data augmentation sizes. This relationship is better described in the tables 

below.  
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Table 6: Data Augmentation Ensemble Model with WLSR 

 

Table 7: Model with the Same Data Size as Model with WLSR 

 

Table 8: Model with the Same Data Augmentation Size as Model with WLSR 

 

The ensemble data augmentations were added to the normal dataset to increase the data 

size. Thus, the ‘Num of Images’ you see in the last column of tables 6 to 7 represents the 

additional images for the training dataset. So, the models represented by tables 6 and 7 had their 

data size multiplied by 2. Lastly, these models were each trained for 30 epochs.  
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3.5.5 Ensemble On-the-Fly Augmentation 

 So far, all data augmentations have been done before training. However, data 

augmentations tend to be more powerful when they can be created during training. This is called 

“On-the-Fly” augmentation. One reason why on-the-fly augmentation is better is that it can 

generate completely new augmentations on images per epoch, thus greatly reducing the chances 

of overfitting.  

 The WLSR data augmentation cannot do on-the-fly augmentation yet. But I wanted to 

test how it performs with the same concept of an ensemble of data augmentations, but now those 

data augmentations are performed during training as opposed to before.  

 Two models were created for this experiment, one without WLSR and one with WLSR, 

they were both trained for 30 epochs each. Both had the same ensemble of data augmentations 

with the same values. Table 9 shows the data augmentations used for this experiment.  

Table 9: Data Augmentations Used for On-the-Fly Ensemble  
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CHAPTER IV 

EXPERIMENTAL RESULTS 

 This chapter will discuss the experiment results. I mainly focus on mean average 

precision since I think it is an excellent metric for encapsulating the model's performance at 

different levels. However, for the sake of a more complete analysis, I will also add the F1 metric 

when needed.   

 An important calculation that I use to compare metrics of different models is percentage 

gain/ loss, also known as percentage change.  If the value is positive, then it is a percentage gain. 

Otherwise, it is a percentage loss. 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 =  
(𝑁𝑒𝑤 − 𝑂𝑙𝑑)

𝑂𝑙𝑑
 𝑥 100 

 In the tables, I abbreviate percentage gain/loss as %G/L. 

4.1 Replacing 100% of Data Results 

 In the following percentage gain/loss tables, I also add the mean average percentage 

gain/loss for every dataset size. That number will be used to analyze the performance trend 

across dataset sizes.
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Table 10: WLSR Percentage Gain/Loss for 100% Replacement 

 

Table 11: Flip Percentage Gain/Loss for 100% Replacement 

 

Table 12: Color Jitter Percentage Gain/Loss for 100% Replacement 
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Table 13: Cut Out Percentage Gain/Loss for 100% Replacement 

 

Table 14: Gaussian Blur Percentage Gain/Loss for 100% Replacement 

 

Table 15: Brightness Adjustment Percentage Gain/Loss for 100% Replacement 
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First, I want to point out that I know some data augmentations got percentage losses. This 

does not mean that those data augmentations are not useful. What this test indicates is how much 

the data augmentation changes the integrity of the polyp. For example, gaussian blur makes all 

polyps blurred in this experiment, then when it gets tested with the test dataset is having trouble 

making correct predictions because now it thinks all polyps are supposed to be blurry.  

 On the other hand, the WLSR is getting percentage gains even though it replaces the 

whole data. This is because this data augmentation does not change the integrity of the existing 

polyps. It adds new artificial lights, but it ensures that the new artificial lights do not overlap the 

polyps.  

 Now, analyzing these tables of the 100% replacement test, I noticed two different trends. 

These trends are visualized in the next two figures.  

 

Figure 15: Mean Percentage Gain/Loss across Data Sizes 

The first thing I noticed was that no matter the data augmentation, the mean percentage 

change was improving as the data size grew. This further emphasizes the importance of having 

more data to improve polyp detector metrics.   
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The next trend observation is visible across all different data sizes, but since we have 

witnessed that 100% data size gave the best results, the next trend will be visualized when the 

data size is 100%.  

 

Figure 16: Mean Percentage Gain/Loss Across Various Epoch Values 

We can observe from Figure 16 that the best percentage change results when epoch 

number is 30. This indicates that the model is overfitting when it is at epoch 50. Because of this 

reason, the next of the experiments are performed at 30 epochs.  

4.2 Adding 30% Augmentation Results 

Table 16: Metric Results of Adding 30% Data Augmentation 
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The table above ranks the augmentations after the baseline based on their mAP50. All 

these models were trained for 30 epochs, including the baseline model. We can observe that the 

model that included 30% of Gaussian Blur resulted in the highest mAP50 and also the highest F1 

score. However, it is important to observe that the model that added 30% WLSR resulted in the 

highest mAP50-95. This indicates that this model is better at detecting the hardest examples.  

4.3 False Positives from Specular Reflections Results 

 The models used for this experiment were the baseline model and the WLSR model from 

the test above, which are trained for 30 epochs each.  

 I expected the baseline model to make more false positives from specular reflections than 

it did.  Maybe the test dataset did not contain as many hard specular reflections. Nonetheless, 

when a false positive did occur due to the specular reflections, the WLSR model did not make 

that mistake. Figure 17 shows some of the results of this experiment.  
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Figure 17: False Positives from Specular Reflections Comparison  

This experiment indicates that training with WLSR data augmentation will make the 

model more robust against specular reflections.  
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4.4 Ensemble Augmentation Results 

 Here, we can see that combining data augmentations is better than just using a single one. 

Table 17 shows the performance metric results of this experiment. The models were abbreviated 

as follows:  

 WLRS_E = Data Augmentation Ensemble method with WLSR included 

 DA_E = Data Augmentation Ensemble method with the same Data Augmentation Sizes 

as WLRS_E 

 DS_E = Data Augmentation Ensemble method with the same Data Size as WLRS_E 

Table 17: Metric Results of Ensemble Data Augmentation Models 

 

Something  I noticed in this section is that model DA_E added the least of data 

augmented images and got the second best score in mAP50 and the best score in mAP50-95. 

I can speculate that maybe there is data augmentation or many data augmentations in the 

ensemble that may be hindering the growth or causing some sort a diminishing marginal 

returns.  

 Lastly, since these data augmentations are done before training, there is still a risk that 

the model may overfit the augmented training data. Furthermore, that is where on-the-fly 

data augmentation comes in. On-the-fly means that data augmentations are performed during 
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training. This means that the any data augmentation we have chosen will be able to generate 

new training images at every epoch, thus reducing the chances of overfitting greatly. In the 

next section, we will show the superior results accomplished using on-the-fly data 

augmentation.  

4.5 Ensemble On-the-Fly Augmentation Results 

 This method resulted in the best model. The abbreviations for the following table are as 

follows:  

 OTF = Model done with data augmentations performed on-the-fly but without WLSR.  

 WLSR_OTF = Model was done with 30% of WLSR added to the training dataset and 

other data augmentations that were performed on the fly. Important reminder: WLSR was 

not performed on the fly; it does not have that capability yet. Only the data augmentations 

that were mentioned in Table 9 were performed on-the-fly.  

Table 18: Metric Results of On-the-Fly Data Augmentation Models 

 

The best model acquired in this study is when combining on-the-fly data augmentation 

with WLSR.  This model resulted in better performance metrics in F1score, mAP50, and 

mAP50-95 than the other models in this study. 
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CHAPTER V 

DISCUSSION 

5.1 Interpretation of Results 

5.1.1 Intuition Behind WLSR 

 It never ceases to amaze me the powerful object detectors that humans are naturally born 

with. I think by understanding how that mechanism works in our brain, we can create better 

object detectors.  

 Recently, I had the opportunity to witness how powerful our innate object detector is. I 

have two black cats, and there are a bunch more black cats in my neighborhood. Initially, I 

thought it would be hard to recognize my own black cats from the neighborhood cats, but I 

noticed something surprising. In the beginning, I learned some physical attributes to tell my cats 

apart. However, as I encountered more black cats, or the environment got more challenging, like 

turning dark outside, my mind would find new physical traits for me to continue telling the cats 

apart.  

 Therefore, when I realized that many polyp detectors confuse white light specular 

reflections with polyps, I saw an opportunity to increase the performance metrics of polyp 

detectors. My intuition is that by adding more artificial lights, the model will be pushed to find 

new attributes (features) that will help it distinguish the polyps from the specular reflections.  

 I think that is one of the reasons why the data augmentation I proposed, provided great 

results.
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5.1.2 Generative Adversarial Network (GAN) a Possible Approach 

 Since I obtained good results with my data augmentation, I think using a generative 

adversarial network (GAN) could provide even more challenging examples for polyp detectors. 

GANs are composed of two different neural networks. The main goal is to generate new data. 

This is accomplished by having the two neural networks compete with each other. One tries to 

generate new data, while the other tries to discriminate the generated data as real or fake. They 

go back and forth, with the objective of improving. Eventually, both get really good at their 

roles, and the results are new data that can be used for training purposes. I think using GAN to 

generate hard examples for polyp detector training can result in the models learning better 

features and thus improving our main goal of reducing missed polyps as much as possible. 

5.2 Future Work 

 I would like to create version 2 of the WLSR data augmentation to see how much more it 

can improve a polyp detector.  

 The first thing I would like to see is if there are more improvements with more than one 

artificial light added to the images. In this paper, the WLSR only added one artificial light to the 

image. I am sure there is an optimal value to the number of artificial lights that can be added to 

produce the best results.  

 The second thing would be to expand the areas in which the artificial lights can be 

placed. In this paper, I used bounding boxes around prohibited objects to ensure the artificial 

lights would not be added there. I think doing segmentation instead of bounding boxes could 

help in expanding the available area to place the artificial lights. In addition, this version of 
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WLSR avoided any overlap of artificial lights with polyps. I think controlling to allow some 

partial overlap but not total overlap can provide further benefits to a polyp detector model.  

 The third and crucial improvement to WLSR would be to make it work during training 

instead of before training. The results section shows that on-the-fly data augmentation benefits 

object detector models greatly. To accomplish this I would need to modify the WLSR 

architecture to make it more efficient and fast.  The orange border converter is what currently 

takes the longest time in the WLSR pipeline.  

 Lastly, incorporating GAN into WLSR  for generating new and challenging artificial 

lights would provide great benefits to polyp detectors.  
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CHAPTER VI 

CONCLUSION 

Colorectal cancer is a world threat, and its incidence rate keeps rising. This type of cancer 

can be prevented by successfully detecting and removing bad polyps. Human error exists at any 

level of expertise, and missing a polyp can mean death. Artificial intelligence can be integrated 

into the goal of reducing missed polyp rates, which is done via object detectors. Object detectors 

that focus on detecting polyps are called polyp detectors.  

Currently, many researchers are working on polyp detectors and attempting to improve 

their performance metrics. The important performance metrics are precision, recall, F1 score, and 

mean average precision (mAP). The goal is to increase those numbers as much as possible. With 

those metrics, more is better.  

There are many challenges that polyp detectors face when trying to detect polyps. These 

challenges include polyps being too small, too flat, hidden in colon folds, and white light 

specular reflections caused by the endoscope.  

This paper created a new data augmentation technique based on the knowledge that 

specular reflections are troublesome to polyp detectors. This technique, called WLSR, generates 

new artificial lights and randomly places them onto the images to provide a challenging 

environment, with the main goal of improving the polyp detector model.
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The WLSR data augmentation method was tested under various conditions to determine 

its benefit to polyp detectors. With the 100% replacement test, the model with the WLSR data 

augmentation gave a mean percentage gain of 2.981% over the baseline model when the whole 

dataset was used with the following epochs: 10, 30, and 50. When only 30% of the training data 

was augmented by WLSR and the model trained for 30 epochs, it resulted in an 8.29% gain on 

the mAP50 metric over the baseline model. It ranked number 2 on that test among the other 5 

data augmentations tested with the same conditions. In the ensemble comparison test, the model 

with WLSR resulted in the highest mAP50, reaching an 11.14% gain over the baseline model. In 

the On-the-Fly augmentation test, the model with WLSR was the best model in this paper. It 

reached an F1 score of 0.797 and mAP50 of 0.831. Lastly, it resulted in fewer false positives 

from white light specular reflections. Therefore, we can conclude that the WLSR data 

augmentation created for this thesis positively benefits the performance metrics of polyp 

detectors.  
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