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ABSTRACT

Alanis, Joseph O., Missing Data Imputation With Longitudinal Data. Master of Science (MS),

August 2024, 60 pp., 33 tables, 11 figures, 27 references.

In the repeated measures longitudinal datasets where missing data is a relatively common

issue, we explored different imputation methods, including machine learning (ML) methods in order

to examine potential efficiencies for using traditional versus newer computational methods. In order

to accomplish said comparison, we used a Monte Carlo simulation experiment of a population of size

N=70000 to mimic a clinical trial, with different scenarios of missing at random (MAR) data in the

response variable. To compare the behavior of each method resulting from the difference between

population and sample dataset, a real dataset was used from the Boston College on "National

Longitudinal Survey" to simulate MAR. Moreover, we used both datasets to examine the effects of

different sample sizes when using Bayesian neural networks and k-Nearest Neighbors (k-NN) for

imputations and compared that to the more traditional methods of last observed carried forward,

multiple imputation, and linear regression. Additionally, the cost of computing power is evaluated

at different sample sizes for each scenario on both datasets.
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CHAPTER I

INTRODUCTION

Missing data imputation have been an interesting area of research since the 1970’s by

Donald B. Rubin and is a forever changing field as new methods are created [21]. Before the birth

of such methods researchers would discard viable data and only use complete case datasets to insure

quality of results. Unfortunately, this is still a primary method of choice to address missing data for

many research in the health profession. But why the need to impute missing data? The issue of

missingness greatly plagues longitudinal datasets due to it’s time sensitive nature. If participates in

an longitudinal experiment designed to measure the effect of blood pressure medication at different

time intervals of the treatment plan are missing one or more key treatment measures is it ethical to

remove said individuals from the dataset? This idea of imputing missing data is a foreign and or an

unethical idea for many health professionals because replacing and individuals blood pressure with

an estimated based on parameters of others measurements in the study seems absurd. Although the

answer to this question is beyond the scope of this thesis, the question we can ask and answer is

just how effective has imputing missing data evolved over the last 50 years? Additionally, how do

simple methods like last observed carried forward and linear regression compare to more advanced

methods like Bayesian Neural networks and k-NN machine learning ? Having difficulty in finding

little to no literature that compares Bayesian Networks to a large range of methods; the comparative

data analysis will consist of a Monte Carlo simulation experiment and real data analysis in a wide

range of scenarios of missing at random (MAR) in longitudinal datasets response variables.

The comparative data analysis was inspired by Md. Hamidul Hugue research that computed

12 different MI methods on both empirical and simulated study data from the six waves of the

longitudinal study of Australian Children [8]. The study used to create the simulated data examined
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the development and overall health of Australian children. The time interval is every two years

(waves) with a sample size of n = 4893 kindergartens to measure the association of obesity as a

predictor for quality of life (QoL). Specifically, they were interested in the connection between

obesity in waves (1-5) and QoL z-scores at wave 6 and cross-sectional association between Qol z-

scores and BMI z-scores across all 6 waves. At baseline, The QoL z-score at wave 6 and cumulative

burden of overweight(OverWtCat) were adjusted based on sex, language,socio-economic standing

(SEP),age, and family structure (FamStCat).

Both models were susceptible to missing data due to drop out when applied to LSAC. Data

was missing for both BMI and QoL z-scores in all six waves, as well as all other features. If the

QoL z-score was missing across all 6 waves the participate was removed, which resulted in a total

of n = 4661 participants.The QoLz was generated using the linear mixed-effects model.

The parameters for the above model were based on the LSAC data to similar proportions of

missing observations for each variable at each wave. A 1000 datasets were created with sample

sizes of 5000 to compare behavior of the regression coefficient estimators using the 12 MI methods.

Of the 12 methods used the most effective methods where the following:

(i) Fully conditional specification (FCS) imputes variables using conditional uni-variate

regression models for each incomplete variable, conditional on the time-dependent variables at

all waves. Note the repeated measurements of the time-dependent variables are imputed using

hierarchical models.

(ii) Joint Modelling - Multivariate LMM (JM-MLMM) imputes missing data using a joint

multivariate LMM and repeated measurements of time-dependent variables are imputed hierarchical

models. Also, binary variables are imputed as continuous variables.

The sampling distribution of the estimated bias and the coverage of the regression coefficients

for the analysis model was record for all models was compared for both simulated data and LSAC

data. In addition, The conclusion was FCS-standard and JM-MVN provided reliable estimates for

both models with better coverage probabilities then majority of the other methods. However, the

methods need further study to determine if they are appropriate when data is collected at irregular
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time intervals, and if a generalized linear mixed model based approach should be used instead.

In a comparative study by Ahmed Mahmoud Gad [6], the simulation study evaluated the

behavior of eight imputation methods listed below on a dataset for n subjects with five measurements.

They chose n = {10,50,100} to evaluate small to large sample sizes and assumed there were two

covariates. The first being time Time and the treatment group. Hence the simulated data followed

the model below

yi j = β0 +β1Timei +β2Grpi + εi j (1.1)

where Timei = {0,1,2,3,4} for the five time points and Grpi is dichotomous variable for placebo

and treatment group. A simple linear regression model for the mean profiles of E(yi j), as well

as, the variance-covariance structure was assumed first-order autoregressive. Additionally, the

εi’s were generated from a multivariate normal with zero and and sigma square of one. The data

was simulated to satisfy the mulit-variable normal distribution where each dataset is based on the

following assumptions:

(i) The first time point is fully observed

(ii) The missingness pattern is monotone for MAR, MCAR, and MNAR

(iii) The number of replications is fixed at 5000

The comparison between the model was recorded by the measure of both the Relative Bias

and Mean Square Error. For the MCAR simulation, the missing rates consist of 0%, 25%, 50%,

75%, and 87.5% for all timepoints.

Methods Used: The complete case Analysis Method, The Mean Substitutions Method, The

last Observation Carried forward Method, The k-NN method, the Hot Deck method, The regression

imputation method, The Expectation Maximization Algorithm, the Multiple Imputation Method.

The results were that each method handled better under certain scenarios depended on type

of missingness, missing rates (%), and sample size. For example, the k-NN is better equip to handle

large dataset for MCAR and MAR. The CCA method the overall choice for the MCAR, but trembled
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in the MAR and MNAR settings with biased estimates but MSE values.

With limited literature on Bayesian neural networks compared to non-parametric, semi-

parametric, parametric, and machine learning I used G. Frank Lui and James frost Monte-Carlo

simulation-based statistical modeling research on missing data in simulated clinical trails longitudi-

nal data. The goal of their research was to conduct sensitivity analyses under different assumptions

to assess the robustness of the analysis results from a clinical trial [4]. By creating a simulation

population of million from a monotone missing multivariate normal (MVN) data at different level

of under different missing data models allowed users to specify the expected proportion of missing

data at each longitudinal time point. Second, a "tipping-point" sensitivity analysis method to which

a delta-adjustment is applied to measure the potential difference in the estimated treatment effects

between models. Last, a Bayesian Markov chain Monte-Carlo (MCMC) method for control-based

imputation was considered to provide a higher yielding variance estimate that conventional multiple

imputation. Their conclusion was the simulation-based approach for missing data in longitudinal

study was extremely useful in design stage to calculate needed sample size and power, as well as,

the final analysis stage to conducted sensitivity analysis.

In addition, a Monte-Carlo approach for Control-Based Imputation (CBI) Analysis was

conducted as another approach for sensitivity analysis. Where the missing in the control group are

imputed under the assumption of MAR, while the treatment groups missing data was imputed with

a imputation model built from the control group. The CBI methods used for their research were

defined by specifying the mean profile after drop out in the treatment group using the profile in the

control group as follows:

1. Copy Increments in Reference(CIR): The increment mean change from the time of drop out

for a patient in the treatment group will be the same as the increment mean change for a

patient in the control group.

2. Jump to Reference (J2R): The mean profile after drop out for the test drug group will equal

the mean profile of the control group.
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3. Copy References (CR): The mean profile for a drop-out patient in test drug group will equal

the mean profile for the control group for all time points.

In comparing all their methods by p-value, confidence interval (CI), and Square Error, they

noticed that the MCMC sampling had high auto-correlations and produced similar to mixed model

analysis under MAR data. With CBI, the point estimates shrunk toward zeros but the standard

errors where very similar to the SE’s from the MAR analyses. Hence, the CBI analyses with regular

MI have large p-values compared to the primary analysis under MAR. In fact, the result of J2R,

analysis became insignificant.

Table 1.1: Literature Review

LITERATURE REVIEW
Methods Statistical

Model
Type of variable Missingness Measurement Ref.

FCS LRM/LMM Num.(Discrete) MAR Bias/MSE [2]
JM-
MLMM

LRM/LMM Num.(Discrete) MAR Bias/MSE [2]

JM-
MVN

LRM/LMM Num.(Discrete) MAR Bias/MSE [2]

CAAM LRM/LMM Cont./Dich. MCAR,MAR,
MNAR

Bias/MSE [3]

MSM LRM/LMM Cont./Dich. MCAR,MAR,
MNAR

Bias/MSE [3]

LOCF LRM/LMM Cont./Dich. MCAR,MAR,
MNAR

Bias/MSE [3]

k-NN LRM/LMM Cont./Dich. MCAR,MAR,
MNAR

Bias/MSE [3]

Hot
Deck

LRM/LMM Cont./Dich. MCAR,MAR,
MNAR

Bias/MSE [3]

Reg.
Imp.

LRM/LMM Cont./Dich. MCAR,MAR,
MNAR

Bias/MSE [3]

EMA LRM/LMM Cont./Dich. MCAR,MAR,
MNAR

Bias/MSE [2]

MCMC Monte-Carlo
Sim.

Cont./Dich. MAR,
MNAR

p-value, CI,
SE

[4]

CBI Monte-Carlo
Sim.

Cont./Dich. MAR,
MNAR

p-value, CI,
SE

[4]

Mixed
Mod

Monte-Carlo
Sim.

Cont./Dich. MAR,
MNAR

p-value, CI,
SE

[4]
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CHAPTER II

LONGITUDINAL DATA

Longitudinal study is a research design with repeated measurement of variables over ex-

tended periods of time defined as longitudinal data [26]. The primary goal of a longitudinal study is

to characterize the change in response over time based on factors that affects the responses. Addi-

tionally, to determine if these within-individual changes to response are related to selected covariates.

The main objective of a longitudinal analysis is to describe trends in these within-individual changes

in the response and relate it to selected covariates. In some longitudinal studies, it may be of interest

to make predictions about how specific individuals change over time.

Let Yi j denote the response variable for the ith individual at the jth occasion where i, j =

1, · · · ,N. We represent the n observations on the N individuals as a two-dimension array i.e. n×N.

Thus for one individual, we have n×1 with n repeated measurements of response variables denoted

by

Yi = (Yi1,Yi2, · · · ,Yin)
T . (2.1)

In the analysis of data from a longitudinal study, the main interest is the mean response time

µi j = E(Yi j). (2.2)
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Also, defined as the expectation of each response Yi j.From the conditional expectation E(Yi j), the

conditional variance of Yi j is defined as

σ
2
j = E

[
Yi j−E(Yi j)

]2
= E

[
Yi j−µi j

]2 (2.3)

Thus, conditional covariance between responses at two different occasions Yi j and Yik is denoted by

σ jk = E
[(

Yi j−µi j
)
(Yik−µik)

]
(2.4)

and determines the linear dependence between the two responses. If the covariance is zero, then

there is no linear dependence between the two occasions. The magnitude of the covariance depends

on both the degree of dependence and the units of measurement between Yi j and Yik.

Next, we define the conditional correlation between Yi j and Yik by

ρ jk =
E
[(

Yi j−µi j
)
(Yik−µik)

]
σ jσk

, (2.5)

where σ j and σk are the conditional standard deviations of both response variables. The correlation

ρ jk is a measure of dependence that is unit-less.

In longitudinal data the repeated measures for an individual are predicted to be positively

correlated. Thus, we define the variance-covariance matrix for Yi = (Yi1,Yi2 , · · · ,Yin)
T to be a two-
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dimensional array of conditional variances and covariances as defined below

Cov



Yi1

Yi2

...

Yin


=



Var(Yi1) Cov(Yi1,Yi2) · · · Cov(Yi1,Yin)

Cov(Yi2,Yi1) Var(Yi2) · · · Cov(Yi2,Yin)

...
... . . . ...

Cov(Yin,Yi1) Cov(Yin,Yi2) · · · Var(Yin)



=



σ11 σ12 · · · σ1n

σ21 σ22 · · · σ2n

...
... . . . ...

σn1 σn2 · · · σnn


(2.6)

where Cov(Yik,Yik) = σ jk . Recall that the covariance of a variable with itself is a variance. Thus,

σkk = Cov(Yik,Yik) = Var(Yik) = σ
2
k (2.7)

Therefor, the variance-covaraince matrix of Yi is defined as

Cov(Yi) =



σ2
1 σ12 · · · σ1n

σ21 σ2
2 · · · σ2n

...
... . . . ...

σn1 σn2 · · · σ2
n


(2.8)

Also, we can define the correlation matrix as

Corr(Yi) =



1 ρ12 · · · ρ1n

ρ21 1 · · · ρ2n

...
... . . . ...

ρn1 ρn2 · · · 1


(2.9)
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For continuous data we define Yi as a vector of dimension ni for the N individuals. Associated with

each response, Yi j, there is a p×1 vector of covariates

Xi j =



Xi j1

Xi j2

...

Xi jp


(2.10)

Note that Xi j is a vector of covariates associated with Yi j, the response variable for the ith individual

at the jth occasion. The p rows of Xi j correspond to different covariates. There is a corresponding

vector of covraites associated with each of the ni repeated measurements on the ith subject.

Define the matrix Xi be an ordered collection of the values of the p covariates for the ith

individual at each ni occasion. Thus,

Xi =



Xi11 Xi12 · · · Xi1p

Xi21 Xi22 · · · Xi2p

...
... . . . ...

Xini1 Xini2 · · · Xini p


(2.11)

Next, we consider a linear regression model for changes in the mean response over time and for

relating the changes to the covariates,

Yi j = β1Xi j1 +β2Xi j2 + · · ·+β jXi jp + εi j (2.12)

j = 1, · · · ,ni

where β1, · · · ,βp are unknown regression coefficients relating the mean of Yi j to its corresponding

covariates and εi j are random errors, with mean zero.
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Hence, εi j represents the deviations of the responses from their corresponding predicted

means

E(Yi|Xi j) = β1Xi j1 +β1Xi j1 + · · ·+βpXi jp. (2.13)

Generally, Xi j1 = 1 for all i and j, and β1 is the intercept of the model.Thus, we can rewrite are

regression model as

Yi = Xiβ + εi (2.14)

where β and εi are both vector transposes. As noted before the mean zero of εi, implies

E(Yi|Xi) = µi = Xiβ (2.15)

where µi is a transposed vector for the ith individual. Hence,

µi j = E(Yi j|Xi) = E(Yi j|Xi j). (2.16)

This model explains how the mean response interact with the covariates. Next, Yi is assumed to have

a conditional distribution that is multivariate normal, with response vector (15) and a covariance

matrix

∑
i
= Cov(Yi|Xi) (2.17)
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2.1 Missing Data

In longitudinal studies the design and collection of data for every individual results in 

missing data as the rule. The first major implications for missing data is data sets will become 

unbalanced over time since not all individuals have the same number of repeated measurement at 

a common set of occasion. The second is loss of precision is directly proportional to the amount 

of data missing, which determines how accurate we can estimate the change in mean response 

over time. Lastly, the missing data mechanism is required to tenable for validity of any method 

of analysis used. Understanding the reason for missingness i.e. MCAR and MAR lead way to 

alternative methods for handling missingness in longitudinal studies. The data mechanism can be 

understood as a model that describes the probability that a response is missing at any observation 

[13].

Missing data can be referred to as missing completely at random (MAR) or missing at 

random (MAR). Longitudinal data are defined as MCAR when missingness in Y i does not depend 

on observed or unobserved components of Yi. MNAR means that the probability of being missing 

varies for the reasons that are unknown to us. MCAR is often unrealistic for data at hand. For 

example a weighing scale mechanism may wear out over time, producing more missing data as time 

progresses, but we may fail to note this [12].

If the data is said to be MAR means the probability of being missing is the same for all cases. 

In other words, the probability that responses are missing depends on the set of observed response, 

but in unrelated to certain missing values. Implying that the cause of missing data is unrelated to 

the data. Example is a weight scale ran out of batteries. If the probability of being missing is the 

same only within groups defined by the observed data, then the data are missing at random (MAR). 

MAR is a much broader class. If neither MCAR nor MAR holds, then we speak of missing not at 

random (MNAR).
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Let the response indicator variable be a value of 1 when the measurement is obtained and

0 otherwise, for n repeated measures of the response variable on the same individual. Thus, a

complete set of responses has n×1 response vector denoted by

Yi = (Yi1,Yi2, · · · ,Yim)
′ (2.18)

Due to missingness, some components of Yi are not observed for an individual, thus we define

these instances Ri j = 0 and observed instances as Ri j = 0. Thus, Ri is an n×1 vector of response

variables with missing and non-missing response indicators as defined below

Ri = (Ri1,Ri2, · · · ,Rim)
′ (2.19)

Missingness is not accounted for in the covariates; that is, we separate Ri into two components Y O
i

for observed and Y M
i for missing response on the ith subject. Additionally, Ri can be thought of as a

stratification variable that divides the target population into sub-populations based on missing data

patterns.

Longitudinal data are MCAR when Ri is independent of both Y O
i and Y M

i . Hence, consider

the bivariate case Yi = (Yi1,Yi2)
′, where Yi1 is fully observed and Yi2 is sometimes missing. If Yi2 is

MCAR, then

Pr(Ri2 = 1|Yi1,Yi2,Xi) = Pr(Ri2 = Xi) . (2.20)

Hence, the probability of Yi2 is missing does not depend on the observed value of Yi1 or Yi2 that

should have been obtained. Missingness in Yi2 is a chance mechanism that does not depend on Yi

observations. Longitudinal data are MAR when Ri is conditionally independent of Y M
i , give Y O

i is

Pr(Ri|Y O
i ,Y M

i ,Xi) = Pr(RO
i ,Xi) (2.21)
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Missing data is said to not missing at random (NMAR) wen the probability that missing responses

are related to certain values that should be obtained. Hence, the conditional distribution of Ri, given

Y 0
i , is related to Y M

i , and

Pr(Ri|Y O
i ,Y M

i ,Xi) (2.22)

depends on some elements of Y M
i . NMAR is often refereed to as non-ignorable due to the fact that

the missing data mechanism cannot be ignored in order to make inferences about the distribution of

the complete longitudinal response.

Let dropout be defined as the special case where if Yik is missing, then Yik+1, · · · ,Yin is

also missing. Hence, if, Rik = 0, then Rik+1 = Rin = 0. When dropout occurs, the key issues is

identifying as MAR, MCAR, or MNAR.
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CHAPTER III

METHODOLOGY

3.1 Last Observed Carried Forward

A simple yet effective missing data imputation method in clinical trails is the Last Observed 

Carried Forward (LOCF) for longitudinal data. A previous FDA preferred method of analysis, 

LOCF is a conservative method that uses only observed data within in the variable to compute 

missingness. The LOCF simply takes the last observed non-missing value and fills in the missing 

value at a later point in the variable [15].

3.2 Regression

In regression methods for imputing longitudinal data, the monotone missing response 

values are imputed sequentially using all preceding responses as predictors [9]. Hence, a series of 

regression models Yik, given Yi1, · · · ,Yik−1 and Xi are fitted to the observed d ata. For continuous 

response variables, standard linear regression models are used to generate imputations as defined 

below

E(Yik|Yi1, · · · ,Yik−1,Xi) = γ1 + γ2Yi1 + · · ·+ γkYik−1. (3.1)

Where the linear regression model is fitted using non-dropped data on the kth occasions. However,

if there is no dependence on Xi, then it’s defined as

E(Yik|Yi1, · · · ,Yik−1,Xi) = Z′ikγ. (3.2)
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Where the model is fitted to data on the Nk subjects who have not dropped out by the kth occasion

and Zik denotes a vector created from any Yik−1 and subset of Xi. Also, γ denotes a q× 1 vector

of regression parameters relating Yik to the preceding responses and covariates. E(Yik|Yi1) can be

estimated via ordinary least squares, which produces estimates of the regression parameters γ̂ and

their associated covariance matrix,

ˆCov(γ̂) = σ̂
2

(
Nk

∑
i=1

ZikZ′ik

)−1

, (3.3)

where σ̂2 is an estimate of the residual variance and Zik is the design vector for the regression of

Yik on any Yik−1 and subset of Xi. To account bias, a random variation is needed to account for

the uncertainty of the imputations. Hence, adding the predicted value for a random draw Yik from

the residual distributions Yik for any Yik−1 and subset of Xi. This corresponds to adding a random

error. To account for additional sources of variation, each imputation should be based on a set of

estimated regression coefficients and an estimate of the residual variance σ2 where the imputation

process above treats them as fixed(known) instead of sample estimates. These values should be

drawn randomly from what is known as the posterior distribution from Bayesian statistics.

To summarize, the regression methods let Y ∗ik be the produced imputed values from the

missing Yik, γ∗ the new regression parameters, and σ∗2 be the residual variance. When all are drawn

from their posterior distribution the account of uncertainty in estimating γ and σ2, the residual

variance is randomly drawn by

σ
∗2 =

(Nk−q) σ̂2

χ2 , (3.4)

where Nk−q denotes the degrees of freedom for the residual variance, and χ2 is a random draw

from a chi-square distribution with Nk− q degrees of freedom. The regression parameters γ∗

are randomly drawn from a multivariable normal distribution with mean equal to the estimated
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regression parameters γ̂ and with covariance matrix,

ˆCov(γ̂) = σ
∗2

(
Nk

∑
i=1

ZikZ′ik

)−1

, (3.5)

where Zik is the design vector for the regression of Yik for any Yik−1 and subset of Xi.

Let missing values for Yik be Y ∗ik be imputed by the following prediction:

Y ∗ik = Z′ikγ
∗+ ε

∗, (3.6)

where, for each Yik
∗, ε∗ is randomly drawn from a normal distribution with mean zero and σ∗.

3.3 Multiple Imputation

Multiple imputation is the a simple technique of imputing plausible values for missing data. 

If the data is filled with only one plausible value, then subsequent analysis of the completed data 

is problematic[3]. Uncertainty around the surrounding imputed values are not accounted for with 

conventional methods for standard error estimation, which leads to anti-conservative where the 

nominal p-values and confidence intervals are smaller. Hence, Multiple imputation corrects this 

anti-conservative by filling the plausible values multiple times creating multiple completed data 

sets. The combined sets provide a single estimate of the parameter with standard errors that reflect 

the uncertainty inherent in the imputation data [23].

Assume m > 1 imputed data sets are created, then m different estimates of the regres-

sion parameters β , say β̂ k (for k = 1 · · · ,m) can be calculated from each individual m data sets 

[22].Additionally, the m sets produce m estimates of the covariance β̂ k. The multiple imputation 

estimate of β is simple the unweighted average of the m estimates,

β̂ = β̄ =
1
m

m

∑
k=1

β̂
k (3.7)
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The estimated covariance of β̂ is given by

ˆCov
(

β̂

)
=W +(1+m−1)B, (3.8)

where

W =
1
m

m

∑
k=1

ˆCov
(

β̂
k
)

(3.9)

and

B =
1

m−1

m

∑
k=1

(
β̂

k− β̄

)(
β̂

k− β̄

)′
. (3.10)

ˆCov
(

β̂

)
combines both the within-imputation (W ) and between imputation (B) variability’s.

The missing data is fill in m times to create m completed data sets, where they are analyzed

using statistical methods. Then, the results from m analyses of the completed data sets are combined

as mentioned above.

In the report we will cover five methods of multiple imputations for handle missing data.

In general, proper imputation is should be drawn at random from the conditional distribution of

the missing data given the observed data. Thus, Y M
i is obtained randomly from f (Y M

i |Y O
i ,Xi) by

assuming that the missingness is MAR and the predictive distribution of the missing data based on

the observed data does not depend on Ri. Hence,

f (Y M
i |Y O

i ,Xi) = f (ym
i |Y O

i ,Xi,Ri) (3.11)

When randomly sampling values from (27), they identify as either monotone missing data

pattern or non-monotone. Before describing the specific methods it’s worth noting that these

methods assume the data set is structured in a "wide" rather than "long" format.
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Longitudinal data can be coded into "long" and "wide" formats. A wide data set will have 

one record for each individual. The observations made at different time points are coded as different 

columns. In the long format there will be multiple records for each individual. Some variables that 

do not vary in time are identical in each record, whereas other variables vary across the records, and 

an "id" variable that groups the records from the same person. Note that the concepts of long and 

wide are general and apply to cross-sectional data. While wide has no redundancy or repetition, long 

format is better at handling irregular and missed visits and has an explicit time variable available 

that can be used for analysis. Long is used for ANOVA and MANOVA techniques for repeated 

measures and structural equation models for longitudinal data.

Monotone missing data patterns arise in longitudinal studies when missingness occurs 

through dropout. The first response Y 1 is observed but subsequent response are missing due to 

dropout. The missing values in the next response can be imputed with a regression model to predict 

Yi2 from Yi1 and Xi.

3.3.1 Mice Imputed 2 Level Class Predictive Mean Matching

The use of a single-level imputation methods ignore hierarchical group structure in longitu-

dinal data. An example of a single-level imputation is LOCF. Also, a typical fix for missing values 

in a level-2 predictor was to delete all records in the cluster. Disregarding the potential impact on 

the analyses, the problem of incomplete level-2 predictors received less attention than missingness 

in level-1 predictors. To address thesis issues, a more recent attempt is to create two datasets, one 

with level-1 data, and one with level-2 data and run separate imputations within each dataset while 

using the results from one in the other [7].

The mice package used in this research was the 2lonly.pmm (2LPMM) method, which 

aggregates a level-1 predictors, and imputes the level-2 variables by the normal model and by 

predictive mean matching.
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3.4 Bayesian Neural Network

Bayesian networks(BN) are statistical tools for encoding probabilistic relationships with 

direct acyclic graphs. Generally, applied to population health and social science equations [14].

3.4.1 Graph Theory

Let H = (V,γ) be an nonempty set of V of nodes and vertices and a finite set A of vertices 

where (u,v) define either an ordered pair or an unordered pair of nodes. If (u,v) are adjacent they 

are considered neighbors otherwise (u,v) are incident on an arc. Additionally, if (u,v) create an arc 

they can be represented as direct u → v where u is the head and v is the tail. Otherwise, they are 

undirected arcs or edges denoted by u − v.

Let H = (V,γ) exist where the node set V = {A,B,C,D,E} and γ is the diagrams depicted 

below in Figure 1, then H can be undirected, partially directed, or mixed graph when it contains 

undirected and/or directed arcs. In the partially directed graph from Figure 1, denoted by H = 

(V,γ,α) the set V is characterized by the edges set γ = {(A −C),(A − D),(D −C)} and arc set 

α = {(D → E),(E → B)}. In the directed graph from Figure 1, the arc set α = {(C → E),(C → 

A),(C → D),(D → B),(A → B)} creates the parent nodes (A,D) for node B, where node C is the 

ancestor.

Figure 3.1: An undirected , a directed , and a partially directed graphs [14]

3.4.2 Graph Structure

As seen in Figure 1 graphs can be represent in many different structures with the simplest 

structure presented as an empty graph or by a saturated graph where every node is connected by 

and edge. For graphs that map real-world abstractions generally are consider either sparse or dense.
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Paths are sequences of arcs or edges connecting two nodes denoted as the sequence of vertices 

vi = (v1,v2, · · · ,vn) incident on those arcs.

If the path passes each arc only once then the arcs connecting vi are assumed to be unique. 

Otherwise, if the path starts and ends at v1 = vn , then it’s defined a s a  c ycle. t hus, a  graph 

that contains no cycles or loops is defined as a cyclic. For acylic graphs each edge represents a 

direct conditional dependency and and pairs of nodes not connected are considered conditionally 

independent of each other. Each node is associated with a probability function that inputs a set of 

values from the parent nodes variables and outputs a probability or probability distribution of the 

variable represented by the node[18].

3.4.3 Statistical Introduction

Let A and B be events with probability of said event occurring defined as P(A) and P(B). 

Let P(A|B) is a conditional probability defined as the probability of event A occurs given that event 

B has already occurred.

Thus, Bayes’ Theorem is stated mathematically as the following equation

P(A|B) = P(B|A)P(A)
P(B)

(3.12)

|=

|=

where P(B) ̸= 0.

3.4.4 Probability Factorization

Let H be defined as graphical separation created from the absences of a particular arc and 

P define the dependencies between variables [16]. A graph H  is an independence map (I-map) of 

the probabilistic dependence structure, P of random variable X if there is a one-to-one mapping 

between X and the nodes V in H, such that for all disjoint subsets A,B,C ∈ V of

A |= P B|C⇐ A |= H B|C. (3.13)
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Similarly, H is a dependency map (D-map) of P of X defined by

A |= P B|C⇒ A |= H B|C. (3.14)

The combination of a dependence and independence maps creates a perfect map defined as

A |= P B|C⇔ A |= H B|C, (3.15)

where P is isomorphic to H.

3.4.5 D-Separation

Given a set of random variables X = {X1,X2, · · · ,Xp} and a directed acyclic graph defined 

as DAGH = (V,γ), Bayesian networks are a class of graphical models that provide a concise 

representation of the probabilistic dependencies between the X and DAGH where vi ∈ V corresponds 

to X . Let DAGH be constructed by three disjoint subsets of nodes A,B,C ∈ DAGH where C is

D-separate from the other nodes and A |= HB|C denotes a sequence of arcs between A,B and v that

satisfies the following conditions:

(i) v has converging arcs i.e. parents and none of v descendants are in C.

(ii) v is in C and does not have converging arcs.

A direct result of D-separation is the Markov property of Bayesian networks, which enables

the representation of the joint distribution in respect to X as a product of conditional probability

distribution. Hence, it’s a direct application of the chain rule [11], defined as the factorization of the

joint probability distribution PX for discrete X given by

PX(X) = Π
p
i=1Pxi (Xi|ΠXi) . (3.16)
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Note: ΠXi is the set of parent nodes of Xi. In the case of a continuous X , the factorization of the

joint density function fX is given by

fX(X) = Π
p
i=1 fXi (Xi|ΠXi) . (3.17)

Let H = (V,γi) where V = {A,B,C} and γ1 = {(A→C),(B→C)}, then the probabilistic structure

is A⊥̸⊥H B|C and the

P(A,B,C) = P(C|A,B)P(A)P(B). (3.18)

If γ2 = {(A→C),(C→ B)} or γ3 = {(C→ A),(C→ B)} with probabilistic structure A |= HB|C⇒

A |= PB|C, then

P(A,B,C) = P(B|C)P(C|A)P(A) (3.19)

= P(A|C)P(B|C)P(C) (3.20)

3.4.6 Fundamental Connections

Considering the fundamental connections seen in γi, γ1 C has parent nodes A,B meaning it’s 

not D-separate resulting in (3.14) by the Markov property in (3.16) where ΠA = { /0}, ΠB = { /0}, 

and ΠC = {A,B} [9]. Therefor, C depends on the joint distribution of A and B. Nonetheless, C is 

independent in both γ2 and γ3. Thus, for the serial connection in γ2, we have (3.19) where ΠA = { /0}, 

ΠB = {C}, and ΠC = {A} by the Markov property in (3.16). For the diverging connection in γ3, we 

have (3.20) where ΠA = {C}, ΠB = {C}, and ΠC = { /0} by the Markov property in (3.18).

3.4.7 Equivalent Structures

The serial and diverging connections result in equivalent factorization obtained by repeated 

application of Bayes’ theorem from the other. Thus, such probabilistically equivalent structures 

are defined as Markov equivalent. By definition equivalence structures is symmetric, reflexive, and
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transitive each set of Markov equivalent forms an Markov class. Generally, only arcs whose direction 

is needed to identify an Markov class belong to at least one v-structure [1].Markov classes are 

generally represented by completed partially directed acyclic graphs (CPDAGs), whose v-structures 

and arcs that path into v-structures or cycles are directed. Such arcs are called compelled because 

their direction is determined by equivalence classes. Redirecting compelled arcs results in another 

network in the same equivalence class if a new v-structure or cycle is not added.

3.4.8 Markov Blanket

The Markov blanket [27] represents the set of nodes that completely D-separates a particular 

node from the graph. By definition the Markov blanket of a node A ∈ V  is the minimal subset S of 

V such that

A |= PV −S−A|S, (3.21)

which for any Bayesian network is the parents of A, the children of A, and all other nodes sharing a

child with A.

Markov blankets facilitate the comparison of Bayesian networks with graphical models

based on undirected graphs, communally referred to as Markov networks or random fields [10].

Hence, on a related note a DAG can be transformed in the undirected graph of the corresponding

Markov networks by the following steps:

1. Connect the nonadjacent nodes in each v-structure by an undirected arc, which is equivalent

to adding an undirected arc between a node centered upon the Markov blanket.

2. Ignore the direction of other arcs by replacing said arcs with edges.

3.4.9 Inductive Causation Algorithm

1. For each pair of variables A and B in V search for the set SA,b ⊂V (including S = /0) such

that A and B are independent given SA,b and A,B /∈ SA,b. If there is no such set, place an

undirected arc between A and B.
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2. For each pair of non-adjacent variables A and B with a common neighbor C, check whether

C ∈ SA,b If this is not true, set the direction of the arcs A−C and CB to A→C and C← B.

3. Set the direction of arcs which are still undirected by applying recursively the following two

rules:

(i) If A is adjacent to B and there is a strictly directed path from A to B (a path leading

from A to B containing no undirected arcs) then set the direction of A−B to A→ B

(ii) If A and B are not adjacent but A→C and C−B, then change the latter to C→ B

4. Return the resulting completed partially directed acyclic graph.

3.4.10 Static Bayesian Network Modeling

Learning is defined as t he t ask of fitting the Bayesian ne twork [17] performed by  two 

different steps corresponding to the model selection and parameter estimation techniques in the 

classic statistical models. The first step defined as the structure learning identifies the graph structure 

of the Bayesian network, which should be the minimal I-map of the dependence structure of the 

data. If not, then it should result in a distribution as close as possible to the I-maps probability 

space. Several algorithms with a variety of theoretical backgrounds and terminology have been 

proposed in literature for structure learning, but all of them fall under three broad categories as 

follows: constraint-based, score-based, and hybrid algorithms. Alternatively, the network structure 

can be built manually from the domain knowledge of an expert and prior information available data.

The second step is called parameter learning which implements the estimation of the 

parameters of the global distribution. Parameter learning can be performed efficiently by estimating 

the parameters of the local distributions implied by the structure from the first step.

3.4.11 Constraint-Based Structure Learning Algorithms

Constraint-based structure learning algorithms are based on seminal work of Pearl on maps 

and it’s application to causal graphical models. The inductive causation (IC) algorithm [5] and 

conditional independence tests provides the framework for learning the structure of Bayesian
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networks. From the details in the IC algorithm the first step identifies the pairs of variables that will

be connected by an arc by ignoring direction. The variables can not be D-separated, which can also

be seen as a backwards selection procedure starting from the saturated model with a complete graph

and pruning based on statistical test from conditional independence. The second step identifies

the v-structures among all the pairs of nonadjacent nodes A and B with a common neighbor C.

By definition, v-structures are the only fundamental connection where two adjacent nodes are

dependent conditionally on the third node. Hence, if A,B, and C create a subset v-structure centered

on C, then A and B are D-separate. Thus verified by performing a conditional independence test

of A and B against every possible subset of their common neighbors that includes C. The last step

of the IC algorithm identifies compelled arcs and orients them recursively to obtain the completed

partially DAG (CPDAG) describing the equivalence class.

A major problem of the IC algorithm is the previous steps cannot be applied to any real-

world problem due to the exponential number of possible conditional independence relationships,

which led to the development of the following improved algorithms:

1. PC: a backward selection procedure from the saturated graph

2. Grow-Shrink (GS) a simple forward selection Markov blanket detection approach.

3. Incremental Association (IAMB): a two-phase selection scheme based on a forward selection

followed by a backward one.

4. Fact Incremental Association (FAST-IAMB): A variant of IAMB which uses speculative

stepwise forward selection to reduce the number of conditional independence test.

5. Interleaved Incremental Association (Inter-IAMB): Variant of IAMB which uses forward

stepwise selection to avoid false positives in the Markov blanket detection phase.

Majority of these methods learn the Markov blanket of each node in the network, which

greatly simplifies the identification of neighbors of each node. Hence, the number of conditional

independence tests performed and it’s complexity by the learning algorithm is reduced.
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3.4.12 Score-Based Structure Learning Algorithms

Score-based structure learning algorithms also known as search-and-score, model the appli-

cation of general heuristic optimization techniques to address the issue of learning the structure of a 

Bayesian network. Hence, a network score is given to each candidate network reflecting goodness 

of fit to which the algorithm attempts to maximize. Such examples of this class of algorithms are 

listed below:

1. Greedy search algorithms i.e. hill-climbing with random restarts or tabu search. Such

algorithms explore the search space starting from a network structure and adding, deleting, or

reversing arcs to maximize the algorithm.

2. Genetic algorithms mimic natural evolution through the iterative selection of the best fitting

models and hybridization of their characteristics. Thus, the search space is explored via the

crossover and mutation stochastic operators.

3. Simulated annealing performs a stochastic local search by accepting changes that increase

the network score and simultaneously allows changes that decrease the score by a probability

inversely proportional to said decrease score.

3.4.13 Hill-Climbing Algorithm

1. Choose a network structure H over V, generally empty.

2. Compute the score of H, denoted as SH =Score(H).

3. Set Max = SH

4. Repeat the following steps until max score is maximized:

(a) For all arc addition, deletion, and or reversal no resulting in a cyclic network:

(i) Compute the score of the modified network H ′,SH ′=Score(H ′):

(ii) If SH ′ > SH set H = H ′ and SH = SH ′ .

(iii) Update max-score with the new value of SH
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5. Return the directed acyclic graph H.

3.4.14 Hybrid Structure Learning Algorithms

Hybrid structure learning algorithms combines score and constraint based algorithms to 

offset shortcomings and create a reliable network structures. The two well known Hybrid structures 

are Sparse Candidate algorithm (SC) [25] and Max-Min Hill-Climbing (MMHC)[19] , which both 

use a restrict and maximize step. The restrictive step, the candidate set for the parents oe each node 

Xi is reduced from the entire node set V to a smaller set Ci ⊂ V of nodes whose behavior is related 

to that of Xi, which results in a smaller and regular search space. Next, the maximizing step finds 

the network that maximizes the score function subjected to constraints imposed by the Ci sets.

In the Sparse Candidate algorithms both steps are applied iterative until the network maxi-

mizes the network scores. Note, the heuristics used to perform both methods is left to the user. Also, 

while the MMHC algorithm’s restrict and maximize process is only used once, the MMPC heuristic 

is used to learn the candidate sets Ci and a hill-climbing greedy search to find the optimal network.

3.4.15 Sparse Candidate Algorithm

1. Choose a empty or non-empty network structure H over V .

2. Repeat the following steps until convergence:

(a) Restrict Step: Select a set Ci of candidate parents for each node Xi ∈V that includes

the parents of Xi in H’.

(b) Maximize Step: Find the network structure H ′ that maximizes SH ′ among the networks

where parent of each node Xi are included in the correct corresponding set Ci.

(c) Set H = H ′.

3. Return the directed acyclic graph H.

3.4.16 Bayesian Neural Network Models

The Bayesian Network (BN) increase the computation time considerable. The structural 

expectation-maximization algorithm makes BN structures learning from incomplete data by struc-
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turing over the search space not depending on the parameters. One of the method used was a BN 

that calculated the predicted values by plugging in the new values for the parent of node in the local 

probability distribution of node extracted from the fitted.

The next method called BN Monte Carlo (BNMC) the predicted values are computed by 

averaging likelihood weighting simulations performed using all the available nodes as evidence. 

The number of random samples which are average for each new observation is controlled by the 

n optional argument. Since, the simulated data was discrete the predicted level is the highest 

conditional probability. The last method call BN exact the predicted values are computed using 

exact inference (BNEI), which are maximum posterior estimates calculated from a junction trees 

and belief propagation.

The Bayesian network created in both the real and simulated dataset was over the missing in 

each response variable by creating two dataset, where one contains a set of fully observed variables 

and the other with a set of completely unobserved variables. By defining a new DAG G ∗ over the 

union of both the latent (missing) and observed variables, the network models them by adding them 

as a column of NA to the data used for learning to prevent confounding. For MAR in the response 

variables, the causal network is augment again for precision. This is done by creation of the causal 

graph (missingness graph) where the vertices in are partitioned into disjoint subsets.

3.5 k-Nearest Neighbor

In statistics, the K-nearest neighbors algorithm (k-NN) is a non-parametric supervised 

learning method. In other words, it makes minimal assumptions regarding the underlying distribution 

of the data to build a function who’s input and output values train a model. Hence, it maps new data 

on expected output values for unseen instances in a reasonable way measured by generalization 

error [20].

For the k-NN classification model, the output is a class membership from an object being 

classified by a plurality vote of its neighbors. The object being assigned to the class most common 

among it’s k nearest neighbors.
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3.5.1 Nearest Neighbor Classification

Neighbors-based classification,the m ost c ommon u sed t echnique, i s a n i nstance based 

learning algorithm that does not construct a general internal model,but instead instances of the 

training data. The optimal choice of the value k is highly data-dependent and in general suppresses 

the effects of noise. The larger the k value the less distinct the classification boundaries[2].

The basic nearest neighbors uses uniform weights where the value assigned to the query 

point is computed from simple majority voting. Distances weights can be assigned where the 

weights are proportional to the inverse of the distance from the query points or a user-defined 

functions of the distance can be used to compute the distance weights [24].

3.5.2 Nearest Neighbor Algorithms

The nearest neighbor is calculated by three different methods as seen below:

Brute Force:

The most naive neighbor search implementation involves the brute-force computation of

distances between all pairs of points in the dataset. For N samples in D dimensions, the brute force

method is very competitive for small data samples which scales as O[DN2]. However, as the number

of samples N grows, quickly becomes infeasible.

K-D Tree:

To address the computational inefficiencies of the brute-force algorithm, a variety of tree-

based data structures have been invented to reduce the required number of distances calculations by

efficiently encoding aggregate distances information for the sample. Thus, the computational cost

of a nearest neighbors can be reduced to O[DNlog(N)], which is a significant improvement.

Ball Tree:

To address the inefficiencies of a KD Trees in higher dimension, the ball tree data structure

was developed to partition data into series of nesting hyper-spheres. The nest result in a higher cost,

but very efficient with higher dimension data structures.
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The idea of the nest is to divide the data by a centroid C and radius r, such that each point in 

the node lies within the hyper-sphere defined r and C . Hence, by the triangle inequality a single 

distance between a test point and the centroid determines a lower and upper bound on the distance 

to all points within the node. Thus, by spherical geometry of the ball tree nodes it handles the higher 

dimension more efficiently than the KD tree.

3.5.3 Choice of Nearest Neighbor Algorithms

All calculations for k-NN where calculated using scikit-learn, which is a simple and efficient 

machine learning tool for predictive data analysis in Python. The optimal algorithm of a given 

dataset is automatically chosen by sklearn and is dependent on the following factors:

1. Number of N and D i.e. features.

Intrinsic dimensionality of the data and/or sparsity of data. Intrinsic dimensionality

refers to the dimension of d ≤ D manifold on which the data lies i.e. linearly or non-linearly

embedded in the parameter space. Sparsity is the degree to which the data fill the parameter

space.

Hence, the larger the N and D the quicker the Query time grows. Hence, for smaller data size

with less features, brute force is optimal. For large data size with less dimensions KD-Tree is

optimal. Otherwise, Ball Tree algorithm is optimal.

2. The number of neighbors k requested for a query point.

Brute force query time is largely unaffected by the value k. While, Ball and KD tree query

time will become slower as k increases,which his caused by two reasons. The first because

the larger k leads to necessity to search a larger portion of the parameter space. Second, using

k > 1 requires internal queuing of results as the tree is traversed. Also, as k becomes larger

compared to N, the ability to prune branches in a tree-based query is reduced.
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3. The number of query points.

Both the ball and KD tree requires a construction phase that is amortized over many

queries. Hence, the smaller the queries the less cost and vice versa. If two few queries, then

brute force is optimal.

3.5.4 Fitting and Evaluating the k-NN Model

Once, the k-NN model is created from our Nearest Neighbor Algorithm we use it to fit our 

training data. Hence, we pass both the xtrain and ytrain for the model to learn. The output is defined 

as k-NN fit model.Next, a prediction model defined as yp red is created by passing xt est though the 

k-NN fit model. Thus, to evaluate the models accuracy we compare y pred to the y test. Accuracy is 

computed from how many times ypred was able to correctly identify ytest.

Additionally, precision and F1-score are also calculated. Precision is a model evaluation 

and performance metric that corresponds to the fraction of values that actually belong to a positive 

class out of all of the values which are predicted to belong to that class. Precision is also known as 

the positive predictive value (PPV). F1-score computes the average of precision and recall, where 

the relative contribution of both of these metrics are equal to F1 score. The best value of F1 score is 

1 and the worst is 0.
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CHAPTER IV

SIMULATION STUDY

4.1 Methods and Motivation

The use of the Monte Carlo simulation is pertinent in predicting the probability of methods 

outcomes when the potential for missingness within random variables is present. The Monte Carlo 

simulations helps explain the impact of bias and uncertainty in imputing missing values at different 

sample sizes. Although the use of real data set is a crucial aspect of this imputation analysis, it 

unfortunately is only a sample. By simulating a population we can implement a range of 500-2000 

simulations to analysis both local and asymptotic behavior at varying sample sizes of said population. 

Given the extreme flexibility that simulations afford, the use of simulations is especially common in 

trials with complicating factors such as

1. interim analyses for futility or for overwhelming efficacy,

2. multiplicity approaches covering multiple time points/endpoints,

3. or adaptations built into the designs adaptations built into the designs (e.g., dropping or

adjusting the randomization ratio as a function of the accruing data).

Of course, power calculations can also be simulated for relatively straightforward clinical trial

designs.

Additionally, with a simulated population of 70,000 we explore sensitivity analysis of each

method in respect to each longitudinal time point to measure effectiveness. For example, LOCF

method with small percentages of missingness and large enough sample size is arguable a better

method than linear regression. In clinical trials it’s still the preferred method for patient dropouts
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and uses only observed data within the response variable to impute missingness. From an ethical 

standpoints, I understand why it is a FDA favorite. Similarly, k-NN uses only observed data points 

across all response variables to create instance based learning algorithms to impute values. Bayesian 

neural networks allow for the incorporation of prior knowledge into the learning process, which 

improves model performance when data is limited or noisy.

4.1.1 Real Data Settings

The data set used was provided by Boston College on the "National Longitudinal Survey" 

over the years 1968-1988 (with gaps) of about 4,711 young working woman aging from 14–26 years. 

There are 28,534 observations in total and of those 13,452 observations contained no MAR/MNAR 

data. Within the complete case subset the sample has the following defined continuous variables:

1. Age: ranging from 14-26, normally distrusted.

2. Hours: usual hours worked within the week.

3. Tenure: job tenure in years.

4. wks-work: weeks worked in the past year.

5. ttl-exp: total work experience.

6. ln-wage: ln
(

Wage
GNP deflator

)
To test the efficacy of the different methods inside of a real dataset we simulated similar scenarios

of MAR in ttl-exp. We undertook this approach because there was no missing data in total-work

experience and needy a way to compare results to that of our simulated data. Hence, to simulate

missingness, samples sizes of n= {100,200,500,1000}where created at random with the following

MAR percentages scenarios:
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I Scenario 1: 0% y1i, 10% y2i, and 20% y3i

II Scenario 2: 0% y1i, 20% y2i, and 30% y3i

III Scenario 3: 0% y1i, 30% y2i, and 50% y3i

Thus, we define yS
i j to be total-work experience with MAR created from one of the scenarios where

i = {1, · · · ,n} for n ∈ N, j = {2,3} and S = {1,2,3}. Note: baseline total-work pressure,yi1 was

not simulated with MAR.

Below is a diagram of the Bayesian Neural Network created from the real dataset

Figure 4.1: Diagram of Bayesian Neural Network of Real Data

4.1.2 Simulation Settings

In an effort to mimic a clinical trial, a simulated population of N = 70,000 was created 

to compare blood pressure at three different time intervals defined below ( 51). Define Sex and 

treatment (Trt) as dichotomous variables where treatment represents both the placebo and treatment 

patients. Also, let both age ∼ N(µ = 50,σ = 5) and error, ε ∼ N(µ = 0,σ = 2) be normally 

distributed.
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Thus,

yi j = β0 +β1Agei +β2Sexi +β3Trti + εi, (4.1)

where i= {1, · · · ,n} for n∈N and j = {1,2,3} for each number of blood pressures. Hence, Baseline

blood pressure was computed by

yi1 =
59
20

Agei +
5
2

Sexi + εi. (4.2)

The second and third measurements for blood pressure were computed by

yi2 =−2+ y1i +
1
2

Trti (4.3)

and

yi3 =−4+ y1i−
3
4

Trti. (4.4)

To simulate missingness, samples sizes of n = {100,200,500,1000} where created at random with

the following MAR percentages scenarios:

I Scenario 1: 0% y1i, 10% y2i, and 20% y3i

II Scenario 2: 0% y1i, 20% y2i, and 30% y3i

III Scenario 3: 0% y1i, 30% y2i, and 50% y3i

Thus, we define yS
i j to be blood pressure with MAR created from one of the scenarios where

i = {1, · · · ,n} for n ∈ N, j = {2,3} and S = {1,2,3}. Note: baseline blood pressure,yi1 was not

simulated with MAR.
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Below is a diagram of the Bayesian Neural Network created from the real dataset

Figure 4.2: Diagram of Bayesian Neural Network of Real Data

4.2 Results

To compare results between all six methods,the average Bias and average Root Mean Square

Error (RMSE) were computed. Let ySm
i j be the imputed baseline vector from any method where

m = {1,2,3,4,5,6}. Thus, we define average Bias as the following:

Ave Bias =
1
k

k

∑
l=1

n

∑
i=1

ySm
i j − yi j

n
, (4.5)

where i = {1, · · · ,n}, l = {1, · · · ,k} and k = 500 is the number of iteration used for each method

on n subsets with MAR. In the results table, a negative average bias is and underestimate, while a

positive is an overestimate from the imputed data compared to the actual data.

Next, we define the average RMSE as

Ave RMSE =

√√√√√1
k

k

∑
l=1

n

∑
i=1

(
yi j− ySm

i j

)2

n
(4.6)
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Let θ be a random variable (rv) and θ̂ an estimator, where the expected value of said rv and estimator

is defined as E (θ) and E
(
θ̂
)
. Next, we define the mean square error of θ̂ as the following

MSE
(
θ̂
)
= E

[(
θ̂ −θ

)2
]
. (4.7)

Hence, we define the variance of the estimator to be

var
(
θ̂
)
= E

(
θ̂
)2−E2 (

θ̂
)

(4.8)

and the bias of the estimator as

Bias
(
θ̂
)
= E

(
θ̂
)
−θ , (4.9)

where for this particular case for bias the θ is a constant.Thus, if we expand

MSE
(
θ̂
)
=E
[(

θ̂ −θ
)2
]

= E
[(

θ̂ −θ
)(

θ̂ −θ
)]

= E[θ̂ 2−2θ̂θ +θ
2]

= E
[
θ̂ 2
]
−2θE

[
θ̂
]
+θ . (4.10)

Next, if we square the bias we can rewrite it as follows

Bias2 (
θ̂
)
=
(
E
(
θ̂
)
−θ
)2

=
(
E
(
θ̂
)
−θ
)(

E
(
θ̂
)
−θ
)

= E2 [
θ̂
]
−2θE

[
θ̂
]
. (4.11)
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By combining (4.8) and (4.11), we derive

var
(
θ̂
)
+Bias2 (

θ̂
)
= E

(
θ̂
)2−E2 (

θ̂
)
+E2 [

θ̂
]
−2θE

[
θ̂
]

= E
[
θ̂ 2
]
−2θE

[
θ̂
]
+θ

= MSE
(
θ̂
)
. (4.12)

Therefore, by (4.12)

MSE
(
θ̂
)
= var

(
θ̂
)
+Bias2 (

θ̂
)
. (4.13)
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4.2.1 Result Tables

Recall the following abbreviations for the methods used as:

1. 2lonely.PMM as 2LPMM

2. Bayesian Network as BN

3. Bayesian Network Imputing with Monte Carlo Posterior Inference as BNMC.

4. Bayesian Network Imputing with Exact Inference as BNEI

5. k Nearest Neighbor as k-NN

Note: For the k-NN model the optimal nearest neighbors for both the real and simulated

data was a 3-NN.

Table 4.1: Scenario 1 Results with Real Data at n=100

Scenario 1 Results with Real Data at n=100
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -0.3960 -0.7935 1.7804 2.7430
LR -0.4576 -0.7812 1.9480 2.6130
2LPMM -0.3632 -0.8835 1.5414 2.7656
BN 0.0034 0.0070 0.0747 0.1222
BNMC 0.0066 0.0066 0.0725 0.0725
BNEI 0.0071 0.0071 0.0714 0.0714
3-NN 0.0042 0.0096 0.0784 0.1436

Table 4.2: Scenario 2 Results with Real Data at n=100

Scenario 2 Results with Real Data at n=100
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -1.0293 -1.5073 3.1740 3.6573
LR -0.9714 -1.4431 2.9193 3.6244
2LPMM -0.9540 -1.6423 3.1077 3.8101
BN 0.0021 0.0004 0.1581 0.2133
BNMC -0.0017 -0.0017 0.1217 0.1217
BNEI -0.0015 -0.0015 0.1259 0.1259
3-NN 0.0101 0.0155 0.1424 0.2057
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Table 4.3: Scenario 3 Results with Real Data at n=100

Scenario 3 Results with Real Data at n=100
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -1.6699 -3.1369 4.2097 5.6705
LR -1.3907 -2.7500 3.8422 5.3078
2LPMM -1.5373 -2.9813 3.8787 4.8603
BN 0.0179 0.0245 0.3304 0.4041
BNMC 0.0236 0.0236 0.3138 0.3138
BNEI 0.0220 0.0220 0.3141 0.3141
3-NN 0.0140 0.0386 0.1928 0.3507

Table 4.4: Simulated Scenario 1 Results with n=100

Simulated Scenario 1 Results with n=100
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -1.247 -3.049 4.494 8.659
LR -1.532 -3.151 5.204 8.665
2LPMM -0.353 -0.422 1.428 1.804
BN -0.033 -0.207 0.909 1.368
BNMC -0.033 -0.147 0.913 1.331
BNEI -0.032 -0.155 0.909 1.334
3-NN -0.7333 -0.6877 0.8177 1.2272

Table 4.5: Simulated Scenario 2 Results with n=100

Simulated Scenario 2 Results with n=100
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -2.854 -4.448 7.962 9.666
LR -3.114 -4.982 9.168 10.750
2LPMM -0.249 -1.247 1.720 2.943
BN -0.038 0.092 1.388 1.449
BNMC -0.036 0.099 1.383 1.474
BNEI -0.038 0.096 1.388 1.466
3-NN -0.6177 -0.5651 1.1853 1.5067
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Table 4.6: Simulated Scenario 3 Results with n=100

Simulated Scenario 3 Results with n=100
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -4.705 -7.89 10.354 12.781
LR -4.673 -9.466 9.652 15.083
2LPMM -1.772 -4.198 3.783 7.218
BN -0.061 -0.088 1.491 1.827
BNMC -0.061 -0.125 1.495 1.787
BNEI -0.06 -0.119 1.491 1.779
3-NN -0.9627 -0.9022 1.4714 2.1011

Sample Size of n = 100 for all scenarios and data:

Table 4.7: Scenario 1 Results with Real Data at n=200

Scenario 1 Results with Real Data at n=200
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -0.4636 -0.8273 1.9736 2.6089
LR -0.4742 -0.8025 2.1629 2.6814
2LPMM -0.5239 -1.0680 2.1678 3.0942
BN 0.0003 0.0013 0.0332 0.1044
BNMC 0.0028 0.0028 0.0641 0.0641
BNEI 0.0023 0.0023 0.0624 0.0624
3-NN 0.0014 0.0047 0.0445 0.0889

Table 4.8: Scenario 2 Results with Real Data at n=200

Scenario 2 Results with Real Data at n=200
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -1.0606 -1.5703 3.2220 3.8954
LR -0.9347 -1.4951 3.0007 3.8743
2LPMM -0.8658 -1.2628 2.6839 3.1675
BN 0.0043 0.0142 0.1763 0.2918
BNMC 0.0068 0.0068 0.1954 0.1954
BNEI 0.0069 0.0069 0.1916 0.1916
3-NN 0.0046 0.0067 0.0892 0.1188
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Table 4.9: Scenario 3 Results with Real Data at n=200

Scenario 3 Results with Real Data at n=200
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -1.3047 -2.1139 3.2969 4.4581
LR -1.5674 -2.3041 4.0256 4.7113
2LPMM -1.7700 -2.9637 4.4482 5.4211
BN -0.0013 0.0276 0.2998 0.5920
BNMC -0.0002 -0.0002 0.3010 0.3010
BNEI -0.0005 -0.0005 0.3033 0.3033
3-NN 0.0070 0.0172 0.1215 0.2185

Table 4.10: Simulated Scenario 1 Results with n=200

Simulated Scenario 1 Results with n=200
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -1.650 -3.568 6.262 9.369
LR -1.680 -3.082 6.114 8.178
2LPMM -0.120 -0.575 0.858 1.976
BN 0.036 -0.119 0.955 1.314
BNMC 0.035 -0.093 0.958 1.224
BNEI 0.036 -0.091 0.955 1.218
3-NN -0.5971 -0.8089 0.781 1.1341

Table 4.11: Simulated Scenario 2 Results with n=200

Simulated Scenario 2 Results with n=200
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -3.275 -4.978 9.002 10.731
LR -3.274 -3.971 9.335 8.596
2LPMM -0.432 -1.043 2.022 2.559
BN -0.006 -0.053 1.276 1.513
BNMC -0.006 -0.067 1.275 1.494
BNEI -0.006 -0.062 1.276 1.486
3-NN -0.4402 -0.5364 1.1212 1.4099
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Table 4.12: Simulated Scenario 3 Results with n=200

Simulated Scenario 3 Results with n=200
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -4.853 -7.809 10.529 12.972
LR -4.351 -8.688 9.576 14.161
2LPMM -0.860 -3.446 2.400 5.849
BN 0 -0.181 1.459 1.819
BNMC 0.003 -0.19 1.47 1.803
BNEI 0 -0.178 1.459 1.8
3-NN -0.9623 -0.9101 1.3844 1.864

Sample Size of n = 200 for all scenarios and data:

Table 4.13: Scenario 1 Results with Real Data at n=500

Scenario 1 Results with Real Data at n=500
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -0.3618 -0.8716 1.6624 2.7246
LR -0.4711 -0.8652 1.9906 2.8555
2LPMM -0.3870 -1.2484 1.5587 3.6562
BN 0.0140 -0.0050 0.3448 0.4189
BNMC 0.0156 0.0156 0.3805 0.3805
BNEI 0.0155 0.0155 0.3726 0.3726
3-NN 0.0008 0.0014 0.0274 0.0414

Table 4.14: Scenario 2 Results with Real Data at n=500

Scenario 2 Results with Real Data at n=500
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -0.9311 -1.4602 3.0329 3.8451
LR -0.9383 -1.3587 2.9620 3.6188
2LPMM -1.2975 -1.5524 3.9471 3.7114
BN -0.0028 -0.0080 0.2073 0.2394
BNMC -0.0028 -0.0028 0.2355 0.2355
BNEI -0.0026 -0.0026 0.2298 0.2298
3-NN 0.0019 0.0032 0.0493 0.0710
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Table 4.15: Scenario 3 Results with Real Data at n=500

Scenario 3 Results with Real Data at n=500
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -1.4767 -2.6720 3.7525 5.2803
LR -1.5517 -2.6962 3.9744 5.4556
2LPMM -1.0963 -3.2080 2.9361 6.2430
BN -0.0036 -0.0118 0.2561 0.4489
BNMC -0.0051 -0.0051 0.2761 0.2761
BNEI -0.0047 -0.0047 0.2788 0.2788
3-NN 0.0031 0.0069 0.0724 0.1270

Table 4.16: Simulated Scenario 1 Results with n=500

Simulated Scenario 1 Results with n=500
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -1.633 -3.282 6.278 8.881
LR -1.676 -3.068 6.411 8.160
2LPMM -0.082 -0.582 1.008 1.875
BN 0.025 -0.055 0.992 1.111
BNMC 0.023 -0.04 0.991 1.083
BNEI 0.025 -0.039 0.992 1.079
3-NN -0.7032 -0.9421 0.7684 1.102

Table 4.17: Simulated Scenario 2 Results with n=500

Simulated Scenario 2 Results with n=500
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -3.188 -4.928 8.245 10.200
LR -3.407 -5.196 8.917 10.875
2LPMM -0.557 -0.890 1.810 2.619
BN 0.01 -0.128 1.283 1.448
BNMC 0.009 -0.105 1.281 1.414
BNEI 0.01 -0.108 1.283 1.414
3-NN -1.1326 -1.2793 1.0833 1.3494
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Table 4.18: Simulated Scenario 3 Results with n=500

Scenario 3 Results with n=500
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -4.833 -8.262 10.280 13.292
LR -4.646 -8.655 9.958 13.905
2LPMM -1.325 -2.941 3.129 5.400
BN 0.09 -0.036 1.403 1.744
BNMC 0.086 -0.042 1.404 1.645
BNEI 0.09 -0.042 1.402 1.643
3-NN -0.5112 -0.5889 1.3355 1.7548

Sample Size of n = 500 For All Scenarios and Data:

Table 4.19: Scenario 1 Results with Real Data at n=1000

Scenario 1 Results with Real Data at n=1000
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -0.4776 -0.9191 2.1420 2.9676
LR -0.4440 -0.9296 2.0245 2.9880
2LPMM -0.3915 -1.0693 1.7886 3.1476
BN 0.0034 0.0029 0.1322 0.2033
BNMC 0.0045 0.0045 0.1495 0.1495
BNEI 0.0043 0.0043 0.1510 0.1510
3-NN 0.0004 0.0008 0.0175 0.0304

Table 4.20: Scenario 2 Results with Real Data at n=1000

Scenario 2 Results with Real Data at n=1000
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -0.9481 -1.4406 2.9550 3.7013
LR -0.8929 -1.4459 2.8910 3.7067
2LPMM -0.9508 -1.3081 2.7704 3.1298
BN 0.0048 0.0035 0.2634 0.3408
BNMC 0.0041 0.0041 0.2809 0.2809
BNEI 0.0044 0.0044 0.2777 0.2777
3-NN 0.0008 0.0017 0.0324 0.0507
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Table 4.21: Scenario 3 Results with Real Data at n=1000

Scenario 3 Results with Real Data at n=1000
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -1.4151 -2.4260 3.5591 4.8788
LR -1.4631 -2.4335 3.6603 4.9197
2LPMM -1.6174 -2.1180 3.3598 3.5118
BN -0.0133 -0.0417 0.2602 0.4205
BNMC -0.0131 -0.0131 0.3011 0.3011
BNEI -0.0131 -0.0131 0.3016 0.3016
3-NN 0.0015 0.0034 0.0471 0.0828

Table 4.22: Simulated Scenario 1 Results with n=1000

Simulated Scenario 1 Results with n=1000
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -1.607 -3.216 5.995 8.512
LR -1.736 -3.255 6.715 8.452
2LPMM -0.124 -0.846 0.911 2.370
BN -0.045 -0.07 1.097 1.204
BNMC -0.045 -0.065 1.103 1.206
BNEI -0.045 -0.062 1.097 1.203
3-NN -0.098 -0.175 0.7584 1.0816

Table 4.23: Simulated Scenario 2 Results with n=1000

Simulated Scenario 2 Results with n=1000
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -3.277 -5.063 8.697 10.859
LR -3.225 -5.136 8.532 10.966
2LPMM -0.818 -1.296 2.343 3.012
BN -0.005 -0.042 1.277 1.436
BNMC -0.005 -0.038 1.281 1.43
BNEI -0.005 -0.039 1.277 1.43
3-NN -0.0382 -0.0422 1.0702 1.3248
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Table 4.24: Simulated Scenario 3 Results with n=1000

Simulated Scenario 3 Results with n=1000
Methods y2i Bias y3i Bias y2i RMSE y3i RMSE
LOCF -4.853 -8.613 10.334 13.916
LR -4.851 -8.730 10.271 14.065
2LPMM -1.524 -3.740 3.415 6.307
BN 0.038 -0.031 1.47 1.743
BNMC 0.037 -0.011 1.477 1.7
BNEI 0.038 -0.01 1.47 1.694
3-NN 0.0636 -0.0677 1.3161 1.7215

Sample Size of n = 1000 For All Scenarios and Data:

Average Summary Tables Over All Scenarios For n: Define µ to be the average of the

average calculated from all three scenarios for each individual method on both dataset as seen in the

average summary tables below:

Table 4.25: Summary table for n = 100 with all scenarios for real data

Summary table for n = 100 with all scenarios for real data
Methods µy2i Bias µy3i Bias µ y2i RMSE µy3i RMSE
LOCF -1.032 -1.813 3.055 4.024
LR -0.940 -1.550 2.903 3.848
2LPMM -0.316 0.152 2.843 3.812
BN 0.008 0.011 0.086 0.247
BNMC 0.010 0.011 0.169 0.169
BNEI 0.009 0.009 0.170 0.170
3-NN 0.009 0.021 0.138 0.233

Table 4.26: Summary table for n = 100 with all scenarios for simulated data

Summary table for n = 100 with all scenarios for simulated data
Methods µy2i Bias µy3i Bias µ y2i RMSE µy3i RMSE
LOCF -2.935 -5.129 7.603 10.369
LR -3.106 -5.866 8.008 11.499
2LPMM -0.791 -1.956 2.310 3.988
BN -0.044 -0.068 1.263 1.548
BNMC -0.043 -0.058 1.264 1.531
BNEI -0.043 -0.059 1.263 1.526
3-NN -0.771 -0.718 1.158 1.612
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As seen from individual tables for n = 100, the Bayesian Neural network methods and 3-NN

did very well across all scenarios for average bias and average RMSE on both y2i and y3i through

all scenarios with real data. As seen in the µ summary table for n = 100 of the real data for all

scenarios, the BN method µy2iBias = 0.008 and µy3iBias = 0.011. The BNEI method had the lowest

average for all three scenarios for simulated µy3iBias =−0.043. For the simulated data the BNEI

method had the lowest average for all three scenarios for simulated µy2iBias =−0.043 and BNMC

had the smallest µy3iBias = −0.058,but 3-NN had the smallest µy2iRMSE = 1.158. The BN had

the smallest µy3iRMSE = 1.526. Unfortunately, the linear regression had the largest values for all

categories for both simulated and real data as seen in the summery tables for n = 100.

Table 4.27: Summary table for n = 200 with all scenarios for real data

Summary table for n = 200 with all scenarios for real data
Methods µy2i Bias µy3i Bias µ y2i RMSE µy3i RMSE
LOCF -0.9430 -1.5038 2.8308 3.6541
LR -0.9921 -1.5339 3.0631 3.7557
2LPMM -1.0532 -1.7648 3.1000 3.8943
BN 0.0011 0.0144 0.1698 0.3294
BNMC 0.0031 0.0031 0.1868 0.1868
BNEI 0.0029 0.0029 0.1858 0.1858
3-NN 0.0043 0.0095 0.0851 0.1421

Table 4.28: Summary table for n = 200 with all scenarios for simulated data

Summary table for n = 200 with all scenarios for simulated data
Methods µy2i Bias µy3i Bias µ y2i RMSE µy3i RMSE
LOCF -2.935 -5.129 7.603 10.369
LR -3.106 -5.866 8.008 11.499
2LPMM -0.791 -1.956 2.310 3.988
BN 0.010 -0.118 1.230 1.549
BNMC 0.011 -0.117 1.234 1.507
BNEI 0.010 -0.110 1.230 1.501
3-NN -0.667 -0.752 1.096 1.469

As seen from individual tables for n = 200, the Bayesian Neural network methods and 3-NN

yet again did very well across all scenarios for average bias and average RMSE on both y2i and y3i

through all scenarios with real data. As seen in the µ summary table for n = 200 of the real data
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for all scenarios, the BN method had the smallest µy2iBias = 0.0011 and µy3iBias = 0.00144, while

3-NN had the smallest µy2iRMSE = 0.0851 and µy3iRMSE = 0.1421. For the simulated data the

same holds true for the smallest µy2iBias = 0.01, but the BNEI has the smallest µy3iBias =−0.110.

The 3-NN had the smallest µy2iRMSE = 1.096 and the smallest µy3iRMSE = 1.469. Unfortunately,

the linear regression had the largest values for all categories for both simulated and real data as seen

in the summery tables for n = 200.

Table 4.29: Summary table for n = 500 with all scenarios for real data

Summary table for n = 500 with all scenarios for real data
Methods µy2i Bias µy3i Bias µ y2i RMSE µy3i RMSE
LOCF -0.923 -1.668 2.816 3.950
LR -0.987 -1.640 2.976 3.977
2LPMM -0.927 -2.003 2.814 4.537
BN 0.003 -0.008 0.269 0.369
BNMC 0.003 0.003 0.297 0.297
BNEI 0.003 0.003 0.294 0.294
3-NN 0.002 0.004 0.050 0.080

Table 4.30: Summary table for n = 500 with all scenarios for simulated data

Summary table for n = 500 with all scenarios for simulated data
Methods µy2i Bias µy3i Bias µ y2i RMSE µy3i RMSE
LOCF -2.414 -4.118 6.201 8.093
LR -2.432 -4.230 6.322 8.235
2LPMM -0.491 -1.103 1.487 2.474
BN 0.0313 -0.0548 0.9195 1.0758
BNMC 0.0295 -0.0468 0.9190 1.0355
BNEI 0.0313 -0.0473 0.9193 1.0340
3-NN -0.5868 -0.7026 0.7968 1.0516

As seen from individual tables for n = 500, the Bayesian Neural network methods and 3-NN

improved performance across all scenarios for average bias and average RMSE on both y2i and y3i

through all scenarios with real data. As seen in the µ summary table for n = 500 of the real data

for all scenarios, the 3-NN method had the smallest µy2iBias = 0.002 and BNMC had the smallest

µy3iBias = 0.003, while k-NN had the smallest µy2iRMSE = 0.05 and µy3iRMSE = 0.08. For the

simulated data, the BNMC had the smallest µy2iBias = 0.0313 and the smallest µy3iBias =−0.0468,
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while 3-NN had the smallest µy2iRMSE = 0.7968 and BNEI had the smallest µy3iRMSE = 1.0340.

Unfortunately, the linear regression had the largest values for all categories for both simulated and

real data as seen in the summery tables for n = 500.

Table 4.31: Summary table for n = 1000 with all scenarios for real data

Summary table for n = 1000 with all scenarios for real data
Methods µy2i Bias µy3i Bias µ y2i RMSE µy3i RMSE
LOCF -0.947 -1.595 2.885 3.849
LR -0.933 -1.603 2.859 3.871
2LPMM -0.987 -1.498 2.640 3.263
BN -0.002 -0.012 0.219 0.322
BNMC -0.002 -0.002 0.244 0.244
BNEI -0.001 -0.001 0.243 0.243
3-NN 0.001 0.002 0.032 0.055

Table 4.32: Summary table for n = 1000 with all scenarios for simulated data

Summary table for n = 1000 with all scenarios for simulated data
Methods µy2i Bias µy3i Bias µ y2i RMSE µy3i RMSE
LOCF -3.246 -5.631 8.342 11.096
LR -3.271 -5.707 8.506 11.161
2LPMM -0.822 -1.961 2.223 3.896
BN -0.004 -0.048 1.281 1.461
BNMC -0.004 -0.038 1.287 1.445
BNEI -0.004 -0.037 1.281 1.442
3-NN -0.024 -0.095 1.048 1.376

As seen from individual tables for n= 1000, the Bayesian Neural network methods and 3-NN

improved performance yet again across all scenarios for average bias and average RMSE on both y2i

and y3i through all scenarios with real data. As seen in the µ summary table for n = 1000 of the real

data for all scenarios, the 3-NN method and BNEI had the smallest µy2iBias=±0.001 and BNEI had

the smallest µy3iBias =−0.001, while 3-NN had the smallest µy2iRMSE = 0.032 and µy3iRMSE =

0.055. For the simulated data, all the Bayesian methods had the smallest µy2iBias =−0.004 and

BNEI had the smallest µy2iBias = −0.037. The 3-NN had the smallest µy2iRMSE = 1.048, and

smallest µy3iRMSE = 1.376. Unfortunately, the linear regression had the largest values for all

categories for both simulated and real data as seen in the summery tables for n = 1000.
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4.2.2 Average Summary Tables Comparison Graphs

Figure 4.3: µy2i Bias for Real Data

Figure 4.4: µy2i Bias for Simulated Data
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Figure 4.5: µy3i Bias for Real Data

Figure 4.6: µy3i Bias for Simulated Data
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Figure 4.7: µy2i RMSE for Real Data

Figure 4.8: µy2i RMSE for Simulated Data
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Figure 4.9: µy3i RMSE for Real Data

Figure 4.10: µy3i RMSE for Simulated Data
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CHAPTER V

CONCLUSION AND DISCUSSION

In this thesis, we addressed data missingness in the response variable of both simulated and

real longitudinal datasets. Although the absence of data is usually considered a hindrance, I believe

methods such as Bayesian Neural network and k-NN, as well as, LOCF at appropriate times are

effective methods to imputed data. Thus, imputed data provides the researcher a complete case

dataset to draw accurate conclusions upon. In addition, with little literature on comparative data

analysis which includes Bayesian Neural network , I believe we can conclude how precise and

accurate with little cost of computing power is need to effectively impute missing data. As seen in

all average summary tables comparison graphs, all Bayesian Neural Networks outperformed all

methods besides for k-NN at particular n-sized samples. As noted by Md. Hamidul Hugue the

k-NN method is better equipped to handle large dataset for MAR.

One issue with simulation-based methods is the random variation from the simulations,

which is critical to assess the potential variation and/or monitor the convergence. In simulation-

based method for analysis of clinical trials, the analysis plan should predetermine all the algorithms,

software packages, and random seeds for the computation. Generally, the analysis should use a

sufficient number of imputations and/or simulations to reduce the random variation.The methods

presented are only a few applications of simulation methods for missing data issues. Of course,

many other simulation-based methods are available that can be used for missing data. For example,

we considered only a linear mixed model for the real and imputed data to compare coefficients.
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APPENDIX A

Thesis code can be found in Github with the following URL:

https://github.com/josephalanis/thesis_longitudinal_data.git
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