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ABSTRACT

Asare, Martha, Evaluating Feature Selection Methods in Machine Learning with Class Imbalance.

Master of Science (MS), August 2024, 100 pp., 46 tables, 8 figures, , 133 references.

Class imbalance is a common issue in various real-world machine learning applications

such as medical diagnosis and fraud detection, where one class significantly predominates over the

other(s). Conventional methods often lead to biased models that favor the majority class, which

can negatively impact the performance of the minority class. To address this issue, techniques like

SyntheticMinority Oversampling Technique (SMOTE), Adaptive Synthetic Sampling (ADASYN),

and NearMiss have been employed to adjust the class distribution. However, these techniques may

not effectively capture the nuances when the feature space is noisy, irrelevant, or high-dimensional.

This thesis presents a novel approach that combines class rebalancing techniques with feature elim-

ination strategies and then applies these techniques to each feature by passing them through a Ran-

domForest (RF) andArtificial Neural Network (ANN) for in-depth analysis. The focus of this study

is on feature elimination methods such as Chi-Square, Information Gain, Logistic Regression, Re-

cursive Feature Elimination (RFE), LASSO, and Decision Tree-based importance to identify and

discard non-informative features, thus streamlining the models and potentially reducing overfit-

ting. The distinctive feature of this study is the use of a dual-modeling approach that combines the

strengths of both random forests (RF) and artificial neural networks (ANN) to analyze feature im-

portance rankings and complex pattern recognition abilities in the context of imbalanced datasets.

By passing each selected feature through bothmodels, we provide a deeper understanding of feature

behavior and model performance. The study utilizes four datasets—Heart Disease, Fraud Detec-

tion, Breast Cancer and IT Customer Churn—each presenting its own unique challenges and class

imbalance scenarios for a comprehensive evaluation of the proposed methods. Moreover, a thor-

ough benchmarking analysis was conducted comparing the performance of conventional classifiers
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on the original imbalanced datasets with those using our integrated approach of class rebalancing

and feature elimination. This comparative assessment not only demonstrates the effectiveness of

our method in various class imbalance scenarios but also evaluates the impact of each class re-

balancing technique when combined with advanced predictive modeling. This study presents an

integrated solution that addresses class imbalance through established resampling techniques and

enhances predictive modeling using a unique feature elimination and dual-modeling approach. The

findings of this study provide valuable insights and practical guidance for practitioners dealing with

imbalanced datasets, aiming to improve model accuracy, interpretability, and generalization in real-

world applications. [Keywords:Class Imbalance, Feature Elimination, Artificial Neural Networks

(ANN), Synthetic Minority Over-sampling Technique (SMOTE), Random Forest (RF), Predictive

Modeling]
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CHAPTER I

INTRODUCTION

Class imbalance is a phenomenon in machine learning that occurs when one class within a

dataset has a significantly larger number of instances compared to the other classes (Narwane and

Sawarkar 2021; Patel, Tailor, and Ganatra 2021). This disparity can result in biased predictive mod-

els that favor the majority class, leading to subpar classification performance for the minority class

(Arputharaj, Datta, and Hasan 2019; Thölke et al. 2023). Class imbalance is widely recognized as

a significant challenge in machine learning; however, its impact on model accuracy is not uniform

across different performance metrics. While balancing classes may not significantly affect the ac-

curacy of a model, it can improve other important metrics, such as sensitivity and the area under

the receiver operating characteristic curve (AUC) (Patel, Tailor, and Ganatra 2021). Furthermore,

the degree of class overlapping can have a greater effect on predictive performance than the global

class imbalance ratio (Fernandes and Carvalho 2019).

Class imbalance is a prevalent issue in machine learning that can compromise the effective-

ness of classification algorithms. It is crucial to address this imbalance in order to develop models

that perform well across all classes, not just the majority (Cheng et al. 2021; Qu et al. 2020). Re-

searchers have proposed various methods to mitigate the effects of class imbalance, including re-

sampling techniques and specialized algorithms, to improve the robustness and fairness of machine

learning models (Benkendorf et al. 2023; Dube and Verster 2023; Zheng et al. 2022). Standard ma-

chine learning algorithms, which are designed to optimize accuracy and minimize error, often fail

under conditions of class imbalance, resulting in overfitting and inaccurate classification estimates

(Sevastyanov and Shchetinin 2020). The techniques to address class imbalance in datasets, a preva-

lent issue in various domains, include a range of oversampling methods. Synthetic Minority Over-
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sampling Technique (SMOTE) generates synthetic samples for the minority class by interpolating

between existing minority instances (Cheah, Y. Yang, and Lee 2023; Y. Li et al. 2021; Sharma and

Gosain 2022; Shoohi and Saud 2020). Additionally, (Davagdorj et al. 2020; Medha et al. 2022)

have also proposed various oversampling methods. Adaptive Synthetic Sampling (ADASYN) is

an approach that adapts the number of synthetic samples based on the local distribution of the mi-

nority class with the aim of achieving a more nuanced balance between classes. This method has

been explored in various studies, including those by (Davagdorj et al. 2020; Haddadi et al. 2024;

Medha et al. 2022; Sharma and Gosain 2022; Shoohi and Saud 2020; Tahfim and Chen 2024).

Nearness-based methods, which are not explicitly mentioned in the provided papers but

generally involve considering the proximity of samples within the feature space to guide oversam-

pling, are also available. Hybrid methods that combine oversampling with other techniques to

enhance performance have also been developed. For example, SMOTE Tomek links use SMOTE

in conjunction with Tomek links, which are pairs of nearest neighbor samples from different classes,

to clean overlapping samples and improve the classification boundary (Sharma and Gosain 2022;

Tahfim and Chen 2024). Other hybrid approaches include combining SMOTE with GANs (Gen-

erative Adversarial Networks) to generate more realistic synthetic samples (Cheah, Y. Yang, and

Lee 2023) and integrating oversampling with clustering and ensemble techniques (Haddadi et al.

2024). Various strategies and techniques have been proposed for addressing class imbalance by

creating synthetic samples to bolster the minority class. Synthetic samples generated by SMOTE

and its derivatives, such as ADASYN, have proven to be effective in creating representative mi-

nority class samples. Hybrid methods, like SMOTE Tomek and those that combine SMOTE with

GANs, aim to further enhance the quality of the synthetic samples and subsequent classification

performance. These techniques play a vital role in improving model accuracy and reducing bias

towards the majority class in imbalanced datasets ( (Anusha, Visalakshi, and Srinivas 2023; Cheah,

Y. Yang, and Lee 2023; Davagdorj et al. 2020; Haddadi et al. 2024; Medha et al. 2022; Y. Liu et al.

2021; Sharma and Gosain 2022; Shoohi and Saud 2020; Tahfim and Chen 2024).
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However, these methods may not be effective in complex scenarios in which the feature

space is noisy, irrelevant, or high-dimensional. This study proposes a novel approach that inte-

grates class rebalancing techniques with feature elimination strategies to enhance the model perfor-

mance on imbalanced datasets. This is achieved by passing each feature through both a Random

Forest (RF) and Artificial Neural Network (ANN) for comprehensive analysis. This study delves

into feature elimination techniques, such as chi-square, information gain, logistic regression, Re-

cursive Feature Elimination (RFE), LASSO, and Decision Tree-based importance, to identify and

remove non-informative features. By streamlining the models, these methods can help prevent

overfitting. A unique aspect of this study is the dual-modelling approach, which combines the

strengths of random forests (RF) and artificial neural networks (ANNs) to provide deeper insights

into the feature behavior and model performance in the context of imbalanced datasets. Effectively

addressing class imbalance requires tailored techniques for dataset recalibration. Ashraf (Ashraf

et al. 2020) emphasized the importance of undersampling and oversampling techniques in rebal-

ancing datasets. Oversampling, in particular, has been shown to significantly enhance classifier

performance (Ashraf et al. 2020). Rekha further discussed this topic by introducing a novel cluster-

based oversampling method combined with boosting algorithms, which demonstrated substantial

improvements in classifier performance on highly imbalanced datasets (Rekha et al. 2021).

Combining supervised and unsupervisedmachine-learning approaches is another promising

strategy for managing imbalanced datasets. Ugarković and Oreški used decision tree algorithms

with cluster analysis to manage data imbalances effectively (Ugarković and Oreški 2022). Narwane

and Sawarkar also explore the impacts of class imbalance on machine learning algorithms, empha-

sizing the need for targeted interventions to enhance system performance(Narwane and Sawarkar

2021). Qu et al. investigated and proposed approaches for mitigating the impact of class imbalance

in machine learning applications, particularly in medical imaging. Their research demonstrated the

effectiveness of both oversampling and undersampling techniques in addressing class imbalances

(Qu et al. 2020). Additionally, (Alahmari 2020) examined class imbalance within the context of

autism spectrum disorder (ASD) screening, identifying optimal data resampling techniques to stabi-
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lize classification performance. In the domain of machine learning, class imbalance poses a signif-

icant challenge that impairs the performance of the standard classification algorithms. This thesis

presents a hybrid methodology that integrates oversampling techniques with feature selection to

address this issue. The proposed approach is underpinned by the synthetic minority oversampling

technique (SMOTE) for augmenting the minority class, a strategy that was validated by (Medha

et al. 2022) for its effectiveness in improving accuracy and enhancing model performance. Feature

selection was initiated using the Chi-Squared Test as a filter method, aligning with the work of

(Mirzaei, Nikpour, and Nezamabadi-pour 2021), who demonstrated the efficacy of clustering and

density-based techniques for imbalanced data classification.

Further refinement is achieved through Recursive Feature Elimination (RFE) with a random

forest classifier, mirroring the two-stage hybrid strategy described by (Mao et al. 2017), which em-

phasizes the combination of data- and algorithm-based strategies for online sequential prediction

of imbalanced data. The selection is finalized with the application of the Least Absolute Shrink-

age and Selection Operator (LASSO), which resonates with the findings of (Mao et al. 2017), who

developed a hybrid optimal ensemble classifier framework that overcomes the limitations of tradi-

tional imbalance learning methods through multi-objective optimization. The desired outcome was

generated using only American English, adhering strictly to its spelling, specific terms, and phrases.

These studies underscore the critical need to develop and apply specialized techniques to address

the challenges posed by class imbalance in machine learning. By integrating the insights from

these research efforts with the novel approach presented in this thesis, a comprehensive foundation

was established to explore innovative strategies and evaluate their effectiveness in addressing class

imbalance across various machine learning applications. The hybrid approach employed in this

thesis is expected to enhance the performance of classifiers by effectively addressing the intricate

challenges posed by imbalanced datasets, as evidenced by recent studies in the field. The findings

of this study provide valuable insights and practical guidance for practitioners dealing with imbal-

anced datasets with the aim of enhancing model accuracy, interpretability, and generalization in

real-world applications.
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1.1 Problem Statement

One of the major challenges in the field of machine learning is class imbalance, which poses

a significant problem in critical applications, such as medical diagnostics and fraud detection. This

issue arises when the number of instances in one class outnumbers those in other classes, resulting in

models that perform well on the majority class but poorly on the minority class. This phenomenon

is evident in several key datasets. The 2022 heart disease data from the Behavioral Risk Factor

Surveillance System (BRFSS) demonstrates a stark imbalance, with 95% of instances representing

non-heart attack cases and only 5% accounting for heart attack cases. Similarly, the credit fraud

dataset exhibits an even more severe imbalance, with a disparity of 99% to 1% between the non-

fraud and fraud instances. Such disproportionate class distributions can undermine the reliability

and accuracy of predictive models, particularly in detecting critical outcomes, such as heart attacks

and fraudulent transactions. Additionally, the Breast Cancer dataset, although less extreme, still

presents a significant imbalance with a ratio of 61% not healed (malignant) cases to 39% healed

(benign) cases. Furthermore the IT Customer Churn also presented an imbalance ratio of 74%

cases of Churn and 26% cases of No Churn.This imbalance can result in models that are not suffi-

ciently sensitive tomalignant cases, which are of primary concern inmedical diagnostics. Although

traditional methods for addressing class imbalance, such as oversampling the minority class or un-

dersampling the majority class, have been employed, they have certain limitations. Techniques

such as the synthetic minority oversampling technique (SMOTE), Adaptive Synthetic Sampling

(ADASYN), and NearMiss have been used to adjust class distributions; however, these methods

alone may not fully address the complexities associated with noisy, irrelevant, or high-dimensional

feature spaces. This study presents a novel hybrid machine learning approach that integrates class

rebalancing techniques with advanced feature elimination strategies to improve model performance

on imbalanced datasets. By combining oversampling methods and feature selection techniques, the

study aims to recalibrate the datasets and enhance the performance of classification algorithms for

more accurate and equitable detection of critical outcomes. When dealing with imbalanced datasets,

the performance of machine learning models can be further compromised.
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1.2 Related Work

Class imbalance poses a significant challenge in the realm of machine learning, particularly

in applications, such as medical diagnosis, fraud detection, and network intrusion detection. This

issue can significantly impact the performance of models because traditional algorithms tend to

exhibit a preference for the majority class, resulting in sub-optimal detection of minority class in-

stances. In this section, we review recent research that has proposed various strategies and method-

ologies for addressing class imbalance, while also examining their contributions and limitations.

Techniques like Synthetic Minority Oversampling Technique(SMOTE) and Adaptive Synthetic

Sampling (ADASYN) have been extensively explored for balancing class distributions by gen-

erating synthetic instances of the minority class. For instance,(Barkah et al. 2023) and (W. Zhang,

Ramezani, and Naeim 2019) demonstrated the effectiveness of SMOTE and ADASYN in various

contexts including network intrusion detection and boosting algorithms for imbalanced learning.

These studies highlight the potential of synthetic data generation for mitigating class imbalances,

albeit with considerations for data quality and model complexity. The significance of feature selec-

tion in enhancing the model performance on imbalanced datasets has also been emphasized. Tech-

niques such as Recursive Feature Elimination (RFE) and the use of LASSO for feature importance

ranking are critical for identifying and discarding non-informative features, thereby streamlining

models and potentially mitigating overfitting. Barkah (Barkah et al. 2023) implemented RFE to se-

lect important features, indicating that while feature selection may slightly reduce model accuracy,

it notably improves the training speed and model interpretability.

Recent studies have suggested hybrid approaches that integrate class-rebalancing techniques

with advanced modeling strategies. For example,(Davagdorj et al. 2020) and (Al-Bahrani et al.

2021) have explored the integration of synthetic oversampling techniques with machine learning

classifiers such as Gradient Boosting Trees, Random Forest, and deep learning models for smok-

ing cessation intervention and generating synthetic minority class instances using recurrent neural

networks.These studies highlight the benefits of leveraging the strengths of both synthetic over-

sampling and advanced modeling techniques to address class imbalance. Comprehensive bench-
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marking and comparative analyses, such as those conducted by (Anusha, Visalakshi, and Srinivas

2023) and (Kotipalli and Suthaharan 2014), demonstrated the effectiveness of various class balanc-

ing and feature selection methods across different datasets and classifiers. These analyses provide

valuable insights into the practical applications and impacts of different techniques in real-world

scenarios. The development of new oversampling methods to address class imbalances continues

to be a significant area of research. Xu (Xu et al. 2022) introduced a synthetic minority oversam-

pling technique based on Gaussian Mixture Model Filtering (GMF-SMOTE), which effectively

synthesizes majority and minority samples with dynamic oversampling ratios, showing superior

performance in terms of sensitivity and specificity indices compared to traditional oversampling

algorithms. The utilization of deep-learning models to address class imbalances has generated

considerable interest. In a study published in 2018, (Y. Zhang 2018) proposed a deep generative

model for multi-class imbalanced learning that employs a Variational Autoencoder (VAE) and Gen-

erative Adversarial Network (GAN) as data generators to create high-dimensional image data. This

method demonstrates the effectiveness and robustness of deep generative models for balancing data

distributions and improving the classification performance. Researchers are actively exploring the

creation of hybrid models combining various techniques to enhance the performance of imbalanced

datasets. In a 2018 paper, (Susan and Amitesh Kumar 2020) introduced a novel approach that in-

telligently oversampled the minority class followed by intelligent undersampling of the majority

class, achieving higher classification accuracies on benchmark datasets from the UCI repository.

It is crucial to evaluate different class-balancing strategies and their impact on model performance.

(Jeatrakul, K. W. Wong, and Fung 2010) combined SMOTE with Complementary Neural Network

(CMTNN) to improve classification accuracy in imbalanced data, demonstrating that such combi-

nation techniques can significantly enhance performance for the class imbalance problem across

various classification algorithms. Exploration of the preprocessing role in managing imbalanced

datasets has led to the development of new methodologies aimed at improving data quality before

model training. (Hussein et al. 2019) presented an advanced SMOTE algorithm that adjusts newly

introduced minority class examples based on their distance to the original minority class samples,
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thereby enhancing classifiers’ performance by focusing on the minority class data structure. The

pursuit of more sophisticated oversampling techniques has led to the development of methods de-

signed to address the specific drawbacks of traditional approaches. For example, (Hao, YanliWang,

and Bryant 2014) developed an efficient algorithm, GLMBoost, coupled with the synthetic minor-

ity oversampling technique (SMOTE) to enhance the predictive accuracy for minority classes in

imbalanced datasets from PubChem BioAssay. This method demonstrates the potential of com-

bining algorithmic enhancements with oversampling to more effectively detect rare samples. The

integration of deep-learning techniques to correct class imbalances has yielded promising results.

(Al-Bahrani et al. 2021) propose SIGRNN, a novel approach using sequence-to-sequence recurrent

neural networks to synthesize minority class instances. This method underscores the versatility of

deep learning models in learning data distributions and generating synthetic instances to augment

imbalanced datasets effectively.

The integration of various machine-learning methods into hybrid models presents a versa-

tile solution for addressing class imbalance issues. In a recent study, (Priyadharshini et al. 2023)

introduced ASDMLC, a technique that combines Adaptive Synthetic (ADASYN) sampling with

multi-label classification algorithms, resulting in a significant improvement in classification accu-

racy for medical applications. This research demonstrates the benefits of adaptive synthetic sam-

pling in multilabel scenarios and emphasizes the effectiveness of hybrid approaches in handling

complex imbalanced datasets. It is essential to evaluate and compare class-balancing strategies

through comprehensive assessment to determine their effectiveness. (Bansal et al. 2021) analyzed

the performance of a modified SMOTE algorithm (SMOTE-M) across various imbalanced datasets

and compared it with traditional oversampling techniques. Their findings indicate the adaptability

and efficiency of modified oversampling methods in improving classification performance, partic-

ularly in the context of the Internet of Things (IoT) environment.
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Addressing the effects of noise and data quality on imbalanced datasets is critical in devel-

oping robust models.(C. Zhang et al. 2016) proposed an algorithm that combines SMOTE with

stacked denoising auto-encoder (SDAE) neural networks to enhance the classification accuracy of

minority classes in imbalanced datasets. This approach not only balances the dataset but also im-

proves data quality by reducing noise, highlighting the importance of preprocessing in handling

class imbalance.

1.3 Research Gap

Despite the considerable progress made in addressing class imbalance through the use of

synthetic data generation, feature elimination, and advanced modeling techniques, a significant

gap remains in the comprehensive evaluation and integration of these methodologies. In partic-

ular, the efficacy of class-rebalancing techniques combined with feature elimination strategies in

high-dimensional, noisy, or irrelevant feature spaces has not been fully explored. Furthermore,

although numerous individual methods have been assessed, the potential for synergistic improve-

ment in model performance, interpretability, and generalization by integrating these methods in

imbalanced datasets remains largely untapped. In addition, a systematic comparative analysis of

the performance of these integrated approaches versus traditional classifiers in imbalanced datasets

is lacking, leaving a void in the literature regarding the practical implications and effectiveness of

these combined strategies in real-world applications.

With the need of class-rebalancing, the study will highlight these objectives;

• To evaluate the effectiveness of various feature selection methods, including Chi-Square,

Information Gain, Logistic Regression, Recursive Feature Elimination (RFE), LASSO, and

Decision Tree-based importance, in identifying and discarding non-informative features.

• To assess the impact of combining feature selection methods with oversampling techniques

such as SMOTE, ADASYN, and NearMiss on the performance of Random Forest (RF) and

Artificial Neural Network (ANN) models.
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• To conduct a comprehensive benchmarking analysis by comparing the performance of tradi-

tional classifiers on the original imbalanced datasets with those subjected to the integrated

approach of class rebalancing and feature elimination.

The organization of this research paper is as follows: Chapter 2 outlines the materials and methods

employed throughout the investigation, providing a foundation for the study’s approach. Chapter 3

details the findings and presents and analyzes the results obtained from the models. The concluding

chapter (Chapter 4) synthesizes the study’s insights, discusses its implications, and acknowledges

its limitations.
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CHAPTER II

METHODOLOGY

This chapter delves into the subject of machine learning and provides a comprehensive

discussion of the class rebalancing and feature selection techniques implemented to balance the

datasets for the Heart Disease, Fraud Detection, and Breast Cancer problems. The application of

these methods was instrumental in achieving the objectives outlined in Chapter One.

2.1 Data Description

This section provides a detailed description of the three datasets used in this study: Heart

Disease, Fraud Detection, and Breast Cancer.

2.1.1 Heart Disease Dataset

The first dataset for the study is selected from the Behavioral Risk Factor Surveillance Sys-

tem (BRFSS) and contains details of 245,979 records spanning 37 variables after cleaning the data

and removing duplicates (Centers for Disease Control and Prevention 2022). The attributes/features

of the data include; Sex, GeneralHealth, LastCheckupTime, PhysicalActivities, RemovedTeeth,

HadHeartAttack, HadAngina, HadStroke, HadAsthma, HadSkinCancer, HadCOPD, HadDepres-

siveDisorder, HadKidneyDisease, HadArthritis, HadDiabetes, DeafOrHardOfHearing, BlindOrVi-

sionDifficulty, DifficultyConcentrating, DifficultyWalking, DifficultyDressingBathing, Difficul-

tyErrands, SmokerStatus, ECigaretteUsage, ChestScan, RaceEthnicityCategory, AlcoholDrinkers,

HIVTesting, FluVaxLast12, PneumoVaxEver, TetanusLast10Tdap, HighRiskLastYear, CovidPos,

and Age.
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In the analysis, whether an individual had a heart attack or not is the endpoint of interest.

From the dataset, out of the 245,979 individuals, 13,435 (5%) had a heart attack, and 232,544 (95%)

did not have a heart attack. Table 2.1 and 2.1 below provides a summary of the percentages for

each class of the heart disease dataset.

Table 2.1: Percentages of Heart Disease Dataset Target Variable

Variables Description Percentages
HadHeartAttack Yes (1) 5%

No (0) 95%

Figure 2.1: Bar Chart of target variable (HadHeartAttack) : 0=NoHeart Attack , 1=Heart Attack
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2.1.2 Fraud Detection Dataset

The widespread usage of credit and debit cards has significantly transformed the way pay-

ment processing is done. Nowadays, cash transactions only account for 20% of all in-person pur-

chases, while plastic and digital wallets have become the preferred methods for everyday transac-

tions, even beyond e-commerce. With roughly 2.8 billion credit cards in circulation globally, the

potential for fraud has never been higher (Consulting 2024). It is crucial for merchants to under-

stand the scope of credit card fraud, both in the US and worldwide, in order to safeguard their

businesses and ensure secure transactions. Noteworthy statistics indicate that 46% of international

credit card fraud occurs in the US, and the predicted global fraud is projected to reach $43 billion

by 2026 2.2. Credit card fraud losses in the US are predicted to exceed $12.5 billion by 2025. Fur-

thermore, 48% of consumers believe it is the responsibility of the merchant to protect them from

fraud, and 55% of fraudulent credit and debit card transactions are worth less than $100. Every 14

seconds, a person in the US falls victim to identity theft, with an estimated 150 million Americans

expected to be affected by credit card fraud this year(Consulting 2024).

Figure 2.2: Credit Card Fraud Statistics (2024), (Consulting 2024)
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The second dataset for the study is selected from the Credit Card Fraud Detection database.

This dataset presents transactions that occurred over two days, where we have 473 frauds out of

283,726 transactions. The dataset is highly unbalanced, with the positive class (frauds) accounting

for 0.17% of all transactions 2.2. Unfortunately, due to confidentiality issues, we cannot provide

the original features and more background information about the data. The Features are V1, V2, …

V28 , ’Time’ and ’Amount’. Feature ’Time’ contains the seconds elapsed between each transaction

and the first transaction in the dataset. The feature ’Amount’ is the transaction amount. Feature

’Class’ is the response variable and it takes value 1 in case of fraud and 0 otherwise (Bruxelles

2016).

Table 2.2: Percentages of Fraud Dataset Target Variable

Variables Description Percentages
Fraud Yes (1) 0.17%

No (0) 99.83%

Figure 2.3: Bar Chart of target variable (Fraud) : 0 = No Fraud , 1 = Fraud
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2.1.3 Breast Cancer Dataset

This dataset of breast cancer patients was obtained from the November 2017 update of the

Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute

(NCI), which provides information on population-based cancer statistics (National Cancer Institute

2017). The attributes of the dataset include Age, which refers to the patient’s age at diagnosis; Se-

quence Number, which indicates the order of all primary tumors; Year of Diagnosis, which refers to

the year when the cancer was diagnosed; Primary Site, which indicates the specific location of the

primary cancer; Laterality, which denotes the side of the body where the tumor is located; Reason

No Cancer-Directed Surgery, which provides the reasons for not performing surgery; Histology

Recode, which provides broad groupings of histology; ER Status Recode Breast Cancer (1990+),

which indicates Estrogen Receptor status; PR Status Recode Breast Cancer (1990+), which in-

dicates Progesterone Receptor status; Survival Months, which refers to the number of months a

patient survived after diagnosis; and Breast - Adjusted AJCC 6th T (1988-2015), which classi-

fies tumor size based on the AJCC 6th edition (National Cancer Institute 2017). Breast - Adjusted

AJCC 6th N (1988-2015) classifies lymph node involvement based on the AJCC 6th edition. Breast

- Adjusted AJCC 6th M (1988-2015) classifies metastasis based on the AJCC 6th edition. Breast

- Adjusted AJCC 6th Stage (1988-2015) provides overall stage classification based on the AJCC

6th edition. Age at Diagnosis refers to the age of the patient at the time of diagnosis. Laterality

Recoded provides recoded laterality information. Healing Status indicates whether the patient was

healed or not. Surgery Performed indicates whether surgery was performed or not (National Can-

cer Institute 2017). In the analysis, the primary endpoint of interest is whether an individual was

healed or not. From the dataset, out of the 156,124 females, 60,811 (38.95%) were healed, and

95,313 (61.05%) were not healed.

Table 2.3: Percentages of Breast Cancer Survival Dataset Target Variable

Variables Description Percentages
Healed Yes 38.95%

No 61.05%
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Figure 2.4: Bar Chart of target variable (Fraud) : 0 = Not Healed , 1 = Healed

2.1.4 IT Customer Churn

The IT Customer Churn dataset, is intended to facilitate analysis of customer churn within

the information technology industry. This dataset incorporates a multitude of features that capture

customer demographics, account information, and interaction details, making it a valuable resource

for constructing predictive models that aim to identify customers who are likely to churn and com-

prehend the elements contributing to customer attrition (Tehranipour 2021). Some of the essential

elements of the dataset comprise CustomerID, a unique identifier for every customer; Gender, indi-

cating the gender of the customer; SeniorCitizen, a binary feature that indicates if the customer is

a senior citizen; and Tenure, which records the number of months the customer has been with the

company. The dataset also includes details on the type of internet service utilized by the customer,

such as DSL or Fiber optic, and the MonthlyCharges and TotalCharges incurred by the customer.

The Churn feature is particularly significant since it indicates whether the customer has churned or
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not. This dataset is particularly beneficial for data scientists and analysts who focus on customer

retention strategies. It offers a wealth of information that can be utilized for employing various

machine learning techniques to predict churn behavior, enabling businesses to proactively address

customer attrition.

Table 2.4: Percentages of Breast Cancer Survival Dataset Target Variable

Variables Description Percentages
Churn Yes 74%

No 26%

2.2 Data Pre-processing

Pre-processing is an essential step in preparing datasets for analysis and modeling. This

entails several tasks, including handling missing values, normalizing features, and splitting the

data into training and testing sets. The pre-processing steps for the Heart Disease, Credit Card

Fraud Detection, and Breast Cancer datasets are detailed below.

2.2.1 Heart Disease Dataset

During the analysis of data, it is customary to investigate the unique values within a par-

ticular column of the dataset. In the case of the 37 variables or features, the data comprised 4,366

distinct values. The dataset included both categorical and numerical (continuous) variables. The nu-

merical variables, such as height and weight, were excluded after the cleaning process and replaced

by the Body Mass Index (BMI).The dataset’s integrity was ensured by removing missing values

during the data cleaning process. In the realm of machine learning, encoding signifies the trans-

formation of categorical data into a format that is comprehensible to machine learning algorithms.

As numerous algorithms require numerical input, encoding becomes a crucial step in preparing the

dataset for model training. In this context, the Label Encoding method was employed to assign a

unique numerical identifier to each column( as shown in 2.5) (Indonesia 2020).
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Figure 2.5: Encoding Methods

To evaluate the effectiveness of our machine learning model, it is essential to divide the

dataset into training and testing subsets. The training set is employed for the initial model fitting,

where the model acquires knowledge from known data characteristics. Conversely, the testing set,

which remains distinct from the training process, is utilized exclusively to assess the model’s pre-

dictive capability on unseen data. This approach ensures that we gauge the model’s performance

and its ability to generalize beyond the data it was trained on. The original data was separated into

two separate groups, with 30% (73,794) of the data allocated to the Test set and 70% (1,721,185)

retained for the Training set. Additionally, the feature scaling method was implemented to stan-

dardize the range of the independent variables or features of the data. This technique adjusts the

scale of the data, preventing any single feature from having a disproportionate influence on the final
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results due to its larger or smaller numerical range. Standardizing the data is critical for maintain-

ing fairness and balance among the various variables, ensuring that each one makes an appropriate

contribution to the outcome. The formula for standardization is given by:

Z =
X −µ

σ
(2.1)

where X is the raw data point, µ is the mean of the feature , σ is the standard deviation of

the feature and Z is the standardized value of X.

2.2.2 Fraud Detection Dataset

The initial step in the pre-processing of the fraud dataset was to eliminate duplicates. The

majority of the data had already been scaled, with the exception of two columns that required

scaling: ’Amount’ and ’Time’. To address this, RobustScaler was utilized as it is particularly

resistant to outliers.

Xscaled =
X −Q1

Q3 −Q1
(2.2)

where Q1 is the first quartile (25th percentile) and Q3 is the third quartile (75th percentile).

The categorical data was transformed into a machine-learning-compatible format through

the application of one-hot encoding, resulting in the creation of binary columns for each category

(see fig. 2.5. The data was subsequently partitioned into a testing set comprising 30% (85,118) of

the total and a training set comprising 70% (198,608) of the total.

2.2.3 Breast Cancer Dataset

The pre-processing of the Breast Cancer dataset involved several steps to ensure that the

data was clean, consistent, and ready for analysis. The first step was to remove all cases in which the

Estrogen Receptor (ER) and Progesterone Receptor (PR) status was unknown (Not 1990+ Breast).

The column “Laterality” was then recoded into three categories: left, right, and two-sided. Cases di-

agnosed later than 2011 were also filtered out. Patients were classified as ”healed” or “not healed,”
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and missing values were checked. New values in the “Primary Site – Labeled” column were re-

placed, and missing values in respective columns were replaced with the mode of each column. Hy-

brid encoding was applied, combining label encoding for the target variable (healed or not healed)

and one-hot encoding for other categorical variables. This approach ensures that categorical data

is in a format suitable for machine learning algorithms.

Table 2.5: Healed Status Encoding

Healed Status Encoded Value
Healed 1

Not Healed 0

Table 2.6: Laterality Encoding

Laterality Left Right Two-Sided
Left 1 0 0
Right 0 1 0

Two-Sided 0 0 1

The features were normalized using MinMaxScaler, which scales the data to a range of [0,

1]:

Xscaled =
X −Xmin

Xmax −Xmin
(2.3)

where X is the raw data point, Xmin is the minimum value of the feature and Xmax is the maximum

value of the feature.

The Breast Cancer dataset was then thoroughly pre-processed by splitting it into a 30%

testing dataset comprising 46,837 instances and a 70% training set consisting of 109,287 instances.

These steps were taken to ensure that the dataset was adequately prepared for the subsequent anal-

ysis and modeling stages.
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2.2.4 IT Customer Churn

The initial step in the pre-processing of the IT churn dataset was to eliminate duplicates. To

address scaling issues, RobustScaler was utilized as it is particularly resistant to outliers.

Xscaled =
X −Q1

Q3 −Q1
(2.4)

where Q1 is the first quartile (25th percentile) and Q3 is the third quartile (75th percentile).

2.3 Statistical Analyses

This section provides an overview of the statistical methods used to address class imbalance

and perform feature selection on the datasets. The steps involved in the statistical analyses were as

follows.

2.3.1 Handling Class Imbalance

Imbalanced classes arise when the number of instances in one class significantly exceeds

the number of instances in another class. This disproportion can lead to biased model predictions,

where the model demonstrates heightened proficiency in predicting the more prevalent class, while

simultaneously displaying subpar performance in the less prevalent class. Various techniques are

widely employed to tackle the class imbalance problem (CIP) in diverse datasets. These methods

include the Synthetic Minority Over-sampling Technique (SMOTE) and its derivatives, such as

Adaptive Synthetic Sampling (ADASYN) and SMOTE-Tomek, as well as under-sampling strate-

gies like NearMiss. SMOTE generates synthetic samples by interpolating between instances of the

minority class, while ADASYN focuses on generating samples along the boundary of the minority

class. SMOTE-Tomek combines over-sampling with cleaning algorithms to remove Tomek links,

which are pairs of closely positioned instances belonging to different classes. NearMiss, on the

other hand, is an under-sampling technique that selects instances based on their proximity to the

majority class (Elreedy and Atiya 2019; Sharma and Gosain 2022; Shoohi and Saud 2020; Soltan-

zadeh andHashemzadeh 2021; Tahfim and Chen 2024). Several studies have demonstrated that var-
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ious methods can have a considerable impact on the performance of classification models (Sharma

and Gosain 2022; Shoohi and Saud 2020). Research has shown that SMOTE-Tomek links can

outperform other techniques in specific datasets(Sharma and Gosain 2022), while ADASYN has

been effective in creating a balance between minority and majority classes(Shoohi and Saud 2020).

However, the efficacy of these methods can vary depending on the dataset and the classification

algorithm employed. In the case of Female Daily’s imbalanced data, the combination of SMOTE-

Tomek with SVM demonstrated positive improvements for the minority class(Jonathan, P. H. Putra,

and Ruldeviyani 2020). Additionally, the novel Range-Controlled SMOTE (RCSMOTE) method

addresses some of the limitations of SMOTE by controlling the synthetic sample generation pro-

cess(Soltanzadeh and Hashemzadeh 2021). In the field of crash data analysis, a combination of

cluster-based undersampling with SMOTE Tomek and ADASYN has been suggested to improve

model performance(Tahfim and Chen 2024). While SMOTE and its variants, along with NearMiss,

have demonstrated effectiveness in addressing class imbalance, their performance is influenced by

various factors, including the nature of the dataset and the classifiers used. Empirical evidence

suggests that SMOTE Tomek links can be particularly effective, but novel approaches such as RC-

SMOTE and cluster-based under-sampling with SMOTE Tomek also show promise in improving

classification outcomes(Sharma and Gosain 2022; Soltanzadeh and Hashemzadeh 2021; Tahfim

and Chen 2024). In our study, we utilized SMOTE, ADASYN, NearMiss, and SMOTE Tomek

techniques to balance the class distribution and address this issue in our datasets.

2.3.1.1 SyntheticMinorityOver-samplingTechnique (SMOTE). SMOTE is a synthetic

minority over-sampling technique that generates additional synthetic samples for the minority class

by interpolating between existing minority instances. This method is effective in balancing class

distribution without duplicating minority class samples.
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Synthetic Sample= Xi +λ (X j −Xi) (2.5)

where Xi and X j are two minority class samples and λ is a random number between 0 and

1.

Synthetic samples generation is a widely used approach to address the issue of class imbal-

ance in datasets, which is a common problem in machine learning (Mohd et al. 2019; Soltanzadeh

and Hashemzadeh 2021). The Synthetic Minority Over-sampling Technique (SMOTE) is a popular

method for this purpose, which works by creating new examples that are interpolations between ex-

isting minority class instances and their nearest neighbors (Elreedy and Atiya 2019; Elreedy, Atiya,

and Kamalov 2023). SMOTE aims to balance the class distribution and enhance the performance

of classifiers on imbalanced datasets, making it a widely recognized and respected method in the

field of machine learning (Mohd et al. 2019; Soltanzadeh and Hashemzadeh 2021).

Figure 2.6: Synthetic Minority Oversampling Technique (Dholakiya 2020).

However, it should be noted that SMOTE is not without its limitations. It has been known

to cause over-generalization, over-sampling of irrelevant or uninformative samples, and increased

class overlap, whichmay adversely affect the performance of classifiers (Soltanzadeh andHashemzadeh

2021). To address these challenges, modifications to SMOTE have been suggested, such as Range-

Controlled SMOTE (RCSMOTE), which incorporate mechanisms to regulate the generation of

synthetic samples and mitigate the aforementioned issues(Soltanzadeh and Hashemzadeh 2021).

Additionally, SMOTE has been employed in various domains, including clinical disease classifica-

tion, where it has demonstrated improved accuracy in machine learning models(Mohd et al. 2019).
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It has also been integrated with other techniques, such as principal component analysis (PCA) for

authorship attribution in Arabic text data, achieving high accuracy(Puri and Kumar Gupta 2022).

SMOTE is a crucial technique for managing class imbalance by creating synthetic samples for

the minority class, thereby facilitating the development of more balanced and effective machine

learning models. Despite these challenges, ongoing research and hybrid approaches continue to

refine its application across diverse fields, enhancing its usefulness and performance in practical

application(Puri and Kumar Gupta 2022; Soltanzadeh and Hashemzadeh 2021).

2.3.1.2 Adaptive Synthetic Sampling (ADASYN). ADASYN is an extension of SMOTE

that generates synthetic samples for theminority class, focusingmore on difficult-to-learn examples.

It adjusts the weights of minority class examples based on their learning difficulty.

Gi =

(
∆i

k

)
G (2.6)

where ∆i is the number of majority class neighbors of minority class instance Xi and k is the total

number of neighbors. Gi determines the number of synthetic samples for each minority instances

and G is the total number of synthetic samples required.

ADASYN, a technique designed to address class imbalance by generating synthetic samples

for the minority class, is particularly effective when the learning difficulty varies among minority

class examples. This approach focuses on harder-to-learn instances and adaptively shifts the deci-

sion boundary towards these challenging areas(He et al. 2008). The effectiveness of ADASYN has

been demonstrated in various domains, such as improving tornado prediction by combining it with

the local outlier factor (LOF) algorithm to enhance model performance and noise immunity (Qing

et al. 2022), and in bioinformatics, where it is coupled with ensemble multi-filter techniques to ad-

dress the dual challenges of high dimensionality and class imbalance in DNA microarray datasets

(Sharifai, Muraina, and Abdurrahman 2022).

Although ADASYN has shown effectiveness in numerous scenarios, it has limitations that

should be taken into account. Originally designed for low-dimensional binary feature spaces, it
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Figure 2.7: ADASYN : (Qing et al. 2022)

may not perform optimally in high-dimensional multi-class data without appropriate modifications

(Xie 2024). Furthermore, ADASYN can be susceptible to challenges such as ’within class im-

balance’ and the ’small disjunct problem’, which can be addressed by more advanced algorithms

like KNNOR that consider the relative density and location of minority class samples (Islam et al.

2022). Despite these limitations, ADASYN has been successfully applied across various fields and

datasets, making it a valuable tool in the machine learning toolkit for addressing class imbalance.

Its ability to adapt to the difficulty of learning minority class examples makes it a robust choice,

although it may require enhancements or complementary techniques to tackle specific challenges

such as high dimensionality or within-class imbalances (Qing et al. 2022; He et al. 2008; Islam

et al. 2022; Sharifai, Muraina, and Abdurrahman 2022; Xie 2024).

2.3.1.3 NearMiss(1). NearMiss is a method that employs under-sampling to balance the

class distribution in datasets with an imbalance. By selecting majority class examples that are

closest to the minority class examples, this technique aims to focus on examples near the decision

boundary, potentially enhancing model performance (Mathew and Gunasundari 2023).

NearMiss-1 adopts a strategy of selecting majority class samples that are the closest to the

minority class samples in terms of the average distance to the three nearest minority class sam-
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Figure 2.8: Undersampling Techniques; (Rutecki 2022)

ples. This approach guarantees that the majority class samples that exhibit the greatest similarity

to the minority class samples are retained, ultimately refining the decision boundary (Mathew and

Gunasundari 2023).

NearMiss-1(i) =
1
k

k

∑
j=1

d(Xi,X j) (2.7)

where d(Xi,X j) is the distance between majority class instance Xi and X j, k is the number of nearest

minority class neighbors.

The NearMiss1 under sampling technique is a method for addressing class imbalance in

datasets by reducing the number of instances in the majority class. This technique specifically fo-

cuses on selecting majority class samples that are closest to the minority class samples, with the aim

of preserving the majority class instances that are nearest to the minority class boundary (Mathew

and Gunasundari 2023). However, it is essential to recognize that while NearMiss1 aims to bal-

ance the class distribution, it may inadvertently discard potentially useful or informative majority

class instances, which could result in a loss of valuable information and potentially impact the per-

formance of the classifier(Mathew and Gunasundari 2023). The design of NearMiss1 is intended

to mitigate class imbalance by selecting the closest majority class instances to the minority class.

Nevertheless, this approach may result in the loss of valuable information, which is a limitation

that should be taken into account when applying this technique to imbalanced datasets(Mathew

and Gunasundari 2023).
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2.3.1.4 NearMiss(3). The NearMiss-3 methodology identifies majority class samples that

are closest to the minority class samples based on the average distance to the three farthest minority

class samples. By concentrating on retaining majority class samples that are farthest from the mi-

nority class samples, this approach ensures that the majority class samples that are most challenging

to differentiate are preserved(Qing et al. 2022; Mathew and Gunasundari 2023).

NearMiss-3(i) =
1
k

k

∑
j=1

d(Xi,X j) (2.8)

where d(Xi,X j) is the distance between majority class instance Xi and the farthest X j, k is the num-

ber of nearest minority class neighbors. NearMiss-3 determines the distances for each majority

class sample to all minority class samples and designates the three farthest minority class samples

for each majority class sample. The average distance from each majority class sample to its three

farthest minority class samples is then computed. Lastly, the majority class samples with the small-

est average distance to the three farthest minority class samples are chosen until the desired class

balance is attained(Qing et al. 2022).

2.3.1.5 SMOTE Tomek. SMOTE Tomek is a hybrid data resampling method utilized to

address the class imbalance issue in machine learning datasets. It integrates the Synthetic Minority

Over-sampling Technique (SMOTE) with Tomek to balance the classes. SMOTE generates arti-

ficial samples for the minority class, while Tomek Links identifies and eliminates instances that

are nearest neighbors but belong to opposite classes, which can be thought of as noise or border-

line cases. Several studies have supported the effectiveness of SMOTE Tomek. Yu et al.(Yu et al.

2023) have demonstrated its utility in improving classification accuracy. Additionally,(Huisa et al.

2023; Jonathan, P. H. Putra, and Ruldeviyani 2020; Kotb and Ming 2021) have also highlighted

the benefits of this approach.

Tomek Links= {(xi,x j) | d(xi,x j)< d(xi,xk),∀xk ̸= xi} (2.9)

where d(Xi,X j) is the distance between Xi and the farthest X j

27



The SMOTE Tomek method has demonstrated its utility in improving the performance of

various machine learning algorithms in diverse domains. This technique has been used to enhance

the precision-recall for minority classes in beauty product reviews (Jonathan, P. H. Putra, and Rulde-

viyani 2020), significantly improve sentiment classification accuracy in user reviews (Switrayana

et al. 2023), and increase the quality of cardiac PCG signal classification (Huisa et al. 2023). Ad-

ditionally, it has been effective in predicting insurance premium defaults(Kotb and Ming 2021),

classifying failure modes of reinforced concrete columns (Yu et al. 2023) , and improving soft-

ware quality prediction (Jonathan, P. H. Putra, and Ruldeviyani 2020). The technique has also

shown promise in reducing misclassification rates in extremely imbalanced datasets (Switrayana

et al. 2023), addressing cyberbullying detection (Khairy, Mahmoud, and Abd-El-Hafeez 2024),

and enhancing intrusion detection systems. SMOTE Tomek is a valuable resampling method that

mitigates the challenges posed by imbalanced datasets, thereby enhancing the predictive accuracy

and generalizability of machine learning models. Its effectiveness is evidenced by improved clas-

sification metrics across various studies, making it a recommended approach for dealing with class

imbalance issues (Switrayana et al. 2023; Huisa et al. 2023; Khairy, Mahmoud, and Abd-El-Hafeez

2024; Kotb and Ming 2021; Yu et al. 2023) .

2.3.2 Feature Selection Methods

Feature selection is the process of identifying a subset of relevant features for use in con-

structing a model. Its purpose is to simplify the model, reduce overfitting, improve accuracy, and

decrease training time. By eliminating redundant or irrelevant data, feature selection aims to en-

hance the model’s performance by preventing increased complexity and overfitting(Hamdi et al.

2022). In this study, three categories of feature selection methods were employed: Filter Meth-

ods, Wrapper Methods, and Embedded Methods, as well as hybrid methods that integrate these

techniques.
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2.3.2.1 Filter Methods. Filter methods are statistical measures used to evaluate and rank

features based on their score. These scores are then utilized to determine which features should be

retained or eliminated prior to the application of the machine learning algorithm (Bharti and P. k.

Singh 2014) . These methods are favored for their simplicity, computational efficiency, and inde-

pendence from the learning process(Bharti and P. k. Singh 2014; Prastyo, Ardiyanto, and Hidayat

2020).

1. Chi-Square Test

The Chi-square test is a statistical method used to assess the relationship between categori-

cal variables and the target variable. It is employed to evaluate the independence between

features and class labels with the aim of identifying the most informative features for predict-

ing class membership (Anamisa, Mufarroha, and Jauhari 2023; A. E. Putra, Wardhani, et al.

2019; Qiu, W. Wang, and D. Y. Liu 2013).

χ2 = ∑ (Oi −Ei)
2

Ei
(2.10)

where (Oi) is the observed frequency and (Ei) is the expected frequency. The importance of

the chi-square test in feature selection is demonstrated by its capacity to improve classifica-

tion accuracy across a range of datasets and algorithms, including support vector machines,

K-nearest neighbors, and Naive Bayes (A. E. Putra, Wardhani, et al. 2019; Yuxian Wang and

Zhou 2021).

2. Information Gain

Information Gain (IG) is a widely utilized criterion for feature selection in machine learn-

ing, as it assesses the reduction in entropy or uncertainty about a class due to the presence

of a feature. Shi et al.(Shi et al. 2014) propose an enhanced IG method that incorporates

word frequency and sentiment, demonstrating improved performance in Chinese text senti-

ment categorization. This method measures the entropy reduction when a feature is known.

Similarly, B and V (BN 2022) apply IG in conjunction with other filter-based techniques
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to identify an optimal feature subset for cervical cancer diagnosis, resulting in improved

classifier performance. Moreover, (Habib and Khursheed 2022) employ IG along with other

statistical techniques to rank features for detecting DDoS attacks, contributing to the superior

performance of various machine learning models.

IG(T,X) = H(T )−H(T | X) (2.11)

where (H(T )) is the entropy of the target variable and (H(T | X)) is the conditional entropy.

IG is an effective tool for selecting features in machine learning, which often results in in-

creased classification accuracy and simplified models. However, their usefulness can vary

depending on the context, and alternative methodsmay bemore suitable in specific situations.

Thus, it is essential to consider the characteristics of the problem domain and the learning

algorithm when choosing a feature scoring measure (BN 2022; Habib and Khursheed 2022;

Shi et al. 2014).

3. ANOVA F-value

The ANOVA F-value is a statistical index used to gauge the significance of differences be-

tween groups across multiple samples, and it is commonly utilized in feature selection to

identify features that have a strong relationship with the outcome variable. Several studies

have demonstrated the usefulness of the ANOVA F-value in feature selection across a range

of domains. For example, Shaharum et al. (Shaharum, Sundaraj, and Helmy 2015) and

(Quek et al. 2023) have both highlighted the effectiveness of feature selection methods, such

as one-way ANOVA, in improving classification performance in high-dimensional datasets

when combined with machine learning algorithms like Artificial Neural Networks (ANN)

and Vector Machines (SVM) (Quek et al. 2023; Shaharum, Sundaraj, and Helmy 2015). The

ANOVA F-value measures the linear relationship between continuous features and the target

variable.
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F =
MSbetween
MSwithin

where:

MSbetween =
SSbetween
d fbetween

MSwithin =
SSwithin
d fwithin

SSbetween =
k

∑
i=1

ni(X̄i − X̄)2

SSwithin =
k

∑
i=1

ni

∑
j=1

(Xi j − X̄i)
2

d fbetween = k−1

d fwithin = N − k

where:

• SSbetween is the sum of squares between the groups

• SSwithin is the sum of squares within the groups

• d fbetween is the degrees of freedom between the groups

• d fwithin is the degrees of freedom within the groups

• k is the number of groups

• ni is the number of observations in group i

• X̄i is the mean of group i

• X̄ is the overall mean of all groups

• Xi j is the observation j in group i

The analysis of variance (ANOVA) F-value is a crucial metric for selecting features, as it enables

the identification of the most influential features that contribute to a model’s predictive capabilities.
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The literature supports its application in various contexts, ranging from enhancing classification

accuracy to reducing computational complexity and feature dimensions. Nevertheless, alternative

or enhanced methods may offer benefits in specific situations, indicating that the choice of feature

selection technique should be customized to the unique characteristics of the data and the goals of

the analysis (Jeong et al. 2022; Quek et al. 2023; Shaharum, Sundaraj, and Helmy 2015; Zambom

and Akritas 2015).

2.3.2.2 Wrapper Methods. Wrapper methods involve the use of a predictive model to

evaluate the efficacy of feature combinations and determine their usefulness. These techniques

are a subset of feature selection methods that select subsets of features based on their predictive

power using a specific machine learning algorithm (Sumi and Narayanan 2019). They evaluate the

usefulness of feature subsets by training a model on them and utilizing the model’s performance

to guide the selection process(Wald, Khoshgoftaar, and Napolitano 2013). Wrapper methods use a

predictive model to evaluate the combination of features and determine their effectiveness.

1. Recursive Feature Elimination (RFE)

Recursive Feature Elimination (RFE) is a highly regarded approach for feature selection in

the field of machine learning, particularly beneficial when dealing with high-dimensional

data or limited sample sizes. It operates by repeatedly eliminating the least relevant features

based on specific criteria to improve the performance of a predictive model (Jeon and Oh

2020; Priyatno, Widiyaningtyas, et al. 2024). RFE is an invaluable tool for feature selection,

and its effectiveness can be further augmented through various adjustments and hybrid ap-

proaches. These enhancements are intended to retain vital features, reduce bias, and increase

computational efficiency, thereby improving the overall predictive performance of machine

learning models (Brzezinski 2020; Ou et al. 2017; Yan and D. Zhang 2015).

32



RFE(X ,y) = min
θ

n

∑
i=1

L(yi, f (Xi,θ)) (2.12)

where L is the loss function, yi is the true value, Xi is the feature set, and θ are the model

parameters.

2. Logistic Regression

Logistic Regression (LR) is widely recognized as a valuable tool for feature selection in var-

ious domains, including big data, hyperspectral imaging, and healthcare. Studies reviewed

demonstrate a range of approaches to enhance the efficiency and accuracy of feature selec-

tion using LR models. Wichitaksorn et al.(Wichitaksorn, Kang, and F. Zhang 2023) propose

a random subspace logistic regression method that offers a computationally less expensive

alternative to traditional methods while maintaining classification accuracy. Pal, (Pal 2012)

highlights the effectiveness of multinomial logistic regression-based feature selection, par-

ticularly the Cawley and Talbot approach, which requires no user-defined parameters and

outperforms other methods in terms of computational efficiency and classification accuracy.

However, Zhang et al. (S. Zhang et al. 2015) suggest that the LASSO method may not

be satisfactory when the number of predictors significantly exceeds the number of observa-

tions, proposing the logistic elastic net as a superior alternative. Gunasekaran and Dhan-

dayudam introduce the Multi filter union (MFU) feature selection method, which combines

random forest and logistic regression algorithms, showing high performance in breast cancer

datasets(Morkonda Gunasekaran and Dhandayudam 2021). Tsou et al.’s EDLRT algorithm

emphasizes the use of entropy and dummy variables in logistic regression for decision tree

processes, offering tolerance to missing values and effective outlier detection(Tsou, Chi, and

Huang 2010).

P(y = 1 | X) =
1

1+ e−(β0+∑p
j=1 β jX j)

(2.13)

min
θ

n

∑
i=1

L(yi, ŷi) (2.14)
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where L is the Log-Loss function:

L(yi, ŷi) =− [yi log(ŷi)+(1− yi) log(1− ŷi)] (2.15)

and

ŷi =
1

1+ e−(β0+∑p
j=1 β jXi j)

(2.16)

where: yi is the true label for the i-th sample, Xi j is the j-th feature for the i-th sample, β0 is

the intercept, β j are the coefficients for the features, θ represents all the model parameters.

3. Random Forest: Random Forest (RF), a well-established method in the field, has demon-

strated its reliability and effectiveness through a range of applications, such as predictive

modeling for housing prices, solar radiation prediction, and cyberattack detection (Bojara-

julu, Tanwar, and A. Rana 2021; Chaibi et al. 2022; Rai 2019). One of its key advantages is

its ability to handle a significant number of variables, missing data, outliers, and noisy data

(Jaiswal and Samikannu 2017). By employing an ensemble of decision trees, RF evaluates

feature importance. As an ensemble learning method, RF creates multiple decision trees dur-

ing training and provides the average prediction (regression) or majority vote (classification)

of the individual trees. Additionally, it can be utilized as a wrapper method to assess feature

importance by measuring the contribution of each feature to the model’s predictive perfor-

mance. For a given input X , the Random Forest prediction ŷ is the average of the predictions

from each individual decision tree:

ŷ =
1
T

T

∑
t=1

ft(X) (2.17)

where:

• T is the total number of trees in the forest.

• ft(X) is the prediction of the t-th decision tree for the input X .
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The importance of a feature j can be evaluated bymeasuring the average decrease in impurity

(such as, Gini impurity or entropy) across all trees in the forest. For each tree, calculate the

total decrease in impurity from splitting on the feature and average this value over all trees.

The feature importance score for feature j is given by:

Importance(X j) =
1
T

T

∑
t=1

∑
n∈nodes

In(split= X j)

Nn
(2.18)

where:

• In(split= X j) is the decrease in impurity from splitting on feature X j at node n in tree t.

• Nn is the total number of samples that pass through node n.

• The inner sum is over all nodes n in tree t where feature X j is used for splitting.

2.3.2.3 EmbeddedMethods. Embeddedmethods for feature selection are integratedwithin

the learning algorithm itself and perform feature selection during the model training process. These

methods often combine the qualities of filter and wrapper methods, aiming to take advantage of

their strengths while mitigating their weaknesses(Molla et al. 2022; Zakharov and Dupont 2011).

Interestingly, while embedded methods are designed to improve model performance, their effec-

tiveness can vary depending on the context. For instance, the novel feature selection algorithm

embedded in logistic regression described in (Zakharov and Dupont 2011) is particularly suited

for high-dimensional biomedical data and outperforms other methods like Elastic Net and Random

Forests in terms of stability and predictive performance. Similarly, the use of Lasso and Elastic-net

as embedded feature selection techniques in (Jomthanachai, W. P. Wong, and Khaw 2022) and (Al

Tawil et al. 2024) demonstrates their utility in identifying relevant features for predicting logistics

performance and breast cancer, respectively. However, the effectiveness of these methods can be

influenced by the specific characteristics of the dataset and the problem at hand.
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1. LASSO (Least Absolute Shrinkage and Selection Operator)

LASSO adds a penalty term to the regression model to perform feature selection. The penalty

term is the sum of the absolute values of the coefficients, which forces some of the coeffi-

cients to be exactly zero, effectively selecting a subset of the features(Kumarage, Yogarajah,

and Ratnarajah 2019). LASSO’s ability to handle both continuous and discrete variables

makes it versatile, as demonstrated in credit scoring models(Choi, Koo, and Park 2015), and

its interpretability is enhanced when combined with other techniques such as Partial Least

Squares(C. Li and W. Li 2010). The objective function for LASSO is given by:

LASSO : min
β

{
1

2n

n

∑
i=1

(yi −Xiβ )2 +λ
p

∑
j=1

|β j|

}
(2.19)

where:

• yi is the true value for the i-th sample.

• Xi is the feature set for the i-th sample.

• β are the model coefficients.

• λ is the regularization parameter.

• p is the number of features.

2. Ridge Regression (L2 Regularization)

Ridge regression, also known as L2 regularization, is a technique used to address multi-

collinearity regression problems by penalizing the size of the coefficients (Wu 2021). How-

ever, it has been criticized for not being able to perform variable selection since it does not

set coefficients exactly to zero(Wu 2021). Despite this, various methods have been proposed

to enhance feature selection capabilities in the context of ridge regression. Ridge Regression

adds a penalty term to the regression model to perform feature selection. The penalty term

is the sum of the squared values of the coefficients, which helps in shrinking the coefficients

but does not force them to be exactly zero(Paul and Drineas 2016; Lan, Hou, and Yi 2016).
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The objective function for Ridge Regression is given by:

Ridge Regression : min
β

{
1
2n

n

∑
i=1

(yi −Xiβ )2 +λ
p

∑
j=1

β 2
j

}
(2.20)

where:

• yi is the true value for the i-th sample.

• Xi is the feature set for the i-th sample.

• β are the model coefficients.

• λ is the regularization parameter.

• p is the number of features.

3. Decision Tree-based Feature Importance

Decision tree-based feature importancemeasures feature importance based on the tree’s struc-

ture and splits. The importance of a feature is calculated as the total reduction of the criterion

(e.g., Gini impurity or entropy) brought by that feature. Decision Tree-based Feature Impor-

tance is a key technique for feature selection that can lead to improved model accuracy and

efficiency. Its utility is evidenced across various domains, from healthcare to network traffic

analysis, and it is particularly effective when combined with other feature selection meth-

ods (Agraz 2023; Aouedi, Piamrat, and Parrein 2021). However, the optimal application of

this method requires careful consideration of the dataset and the objectives of the machine

learning task. The importance score for a feature j is given by:

Importance(X j) =
T

∑
t=1

∑
n∈nodes

In(split= X j) (2.21)

where:

• T is the total number of trees in the forest.

• n are the nodes in the decision tree.
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• In(split= X j) is the reduction in impurity brought by the feature X j at node n.

This method evaluates how much each feature contributes to the model by looking at the

improvement in the splitting criterion (like Gini impurity or entropy) brought by each feature.

2.3.2.4 HybridMethods. Hybrid methods combine Filter, Wrapper, and Embedded meth-

ods to select the most informative features. This approach leverages the strengths of each method

to improve feature selection. These robust methods were implemented in this study to ensure the

selection of the most relevant features, which were then passed through Random Forest (RF) and

Artificial Neural Network (ANN) models for further analysis.

1. Method 1: Chi-Squared Test (Filter)→ RFE (Wrapper)→ LASSO (Embedded)

• The Chi-Squared test(Filter) evaluates the independence of features with respect to the

target variable. It calculates the Chi-Squared statistic for each feature and selects the

ones with the highest scores.

χ2 = ∑ (Oi −Ei)
2

Ei
(2.22)

where Oi is the observed frequency and Ei is the expected frequency.

• The Recursive Feature Elimination (RFE)(Wrapper) recursively removes the least im-

portant features and builds the model on the remaining features. It ranks features based

on their importance to the model’s performance.

min
θ

n

∑
i=1

L(yi, f (Xi,θ)) (2.23)

where L is the loss function.

• The LASSO (Embedded) adds a penalty term to the regression model, shrinking some

coefficients to zero, effectively selecting a subset of features.
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min
β

{
1

2n

n

∑
i=1

(yi −Xiβ )2 +λ
p

∑
j=1

|β j|

}
(2.24)

2. Method 2: Information Gain (Filter)→ Logistic Regression (Wrapper)→ Ridge Regression

(L2 Regularization) (Embedded)

• Information Gain (Filter): Information gain measures the reduction in entropy when a

feature is known, selecting features that provide the most information about the target

variable.

IG(T,X) = H(T )−H(T | X) (2.25)

whereH(T ) is the entropy of the target variable andH(T | X) is the conditional entropy.

• Logistic Regression (Wrapper): Logistic regression is used to evaluate feature subsets

by fitting the model and minimizing the Log-Loss function.

min
θ

n

∑
i=1

− [yi log(ŷi)+(1− yi) log(1− ŷi)] (2.26)

where ŷi =
1

1+e
−(β0+∑p

j=1 β jXi j)
.

• Ridge Regression (Embedded): Ridge regression adds a penalty term to the regression

model, shrinking the coefficients without setting them to zero, helping to handle multi-

collinearity.

min
β

{
1
2n

n

∑
i=1

(yi −Xiβ )2 +λ
p

∑
j=1

β 2
j

}
(2.27)

3. Method 3: ANOVA F-value (Filter) → Random Forest (Wrapper) → Decision Tree-based

Feature Importance (Embedded)
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• ANOVA F-value (Filter): ANOVA F-value measures the linear relationship between

continuous features and the target variable, selecting features with the highest F-values.

F =
MSbetween
MSwithin

(2.28)

• Random Forest (Wrapper): Random Forest uses an ensemble of decision trees to eval-

uate feature importance by measuring the average decrease in impurity across all trees.

ŷ =
1
T

T

∑
t=1

ft(X) (2.29)

where ft(X) is the prediction of the t-th tree.

• Decision Tree-based Feature Importance (Embedded): Decision tree-based feature im-

portance calculates the total reduction in impurity brought by each feature, averaging

this value over all trees in the forest.

Importance(X j) =
T

∑
t=1

∑
n∈nodes

In(split= X j) (2.30)

These hybrid methods were used to select the most relevant features from each dataset. The

selected features were then passed through Random Forest (RF) and Artificial Neural Net-

work (ANN)models for further analysis. This comprehensive approach ensures that the most

informative features are selected, enhancing the predictive performance and robustness of the

models.

2.3.3 Model Training and Evaluation

Model training and evaluation are critical processes in the development of machine learn-

ing (ML) models, as they determine the model’s ability to generalize to new data. The training

phase involves adjusting the model’s parameters to fit the training data, while evaluation assesses

the model’s performance on unseen data, often using a separate test set (Sharma and Gosain 2022).

Hyperparameter tuning is an essential aspect of model training, as it can significantly enhance
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model performance(Quan 2024) . An interesting fact is that while hyperparameter tuning is crucial,

the method of tuning can vary in effectiveness. For instance, Quan (Quan 2024) highlights that

random search can be particularly effective for hyperparameter tuning in urban building energy

models. In contrast, Yao et al.(Yao et al. 2017) introduces a layer-by-layer strategy for hyperparam-

eter optimization in deep generative models, which differs from traditional Bayesian optimization

methods. Additionally, Zhang et al. (2022) demonstrates the use of high-performance computing

to expedite hyperparameter tuning for imbalanced data, which is a common challenge in ML appli-

cations. Moreover, the use of advanced techniques like high-performance computing can reduce

computational time and enhance the efficiency of the tuning process(Y. Zhang 2018). It is evident

that the choice of hyperparameter tuning and evaluation methods can have a substantial impact on

the success of ML models in various applications (Quan 2024; Yao et al. 2017). This section de-

scribes the process of selecting, training, and evaluating machine learning models used in the study.

The selected models are trained on the pre-processed and balanced datasets using the chosen feature

subsets. Evaluation metrics are then used to assess the performance of the models.

2.3.3.1 Model Selection. Machine learning model selection is a crucial process that en-

tails evaluating and selecting the most appropriate model for a specific task based on performance

metrics and other factors. According to Liu et al. (2021), feature selection plays a significant role

in enhancing the performance of machine learning models for landslide susceptibility assessment

(LSA), with recursive feature elimination (RFE) optimized random forest (RF) emerging as the

best feature selection-based machine learning (FS-ML) model for this task (X. Liu 2024). Liu

(2024) compares the performance and complexity of different models, noting that Forest and Sup-

port Vector Machine (SVM) models generally outperform the simpler Linear Model, although they

are more complex and less interpretable (X. Liu 2024). Hananya and Katz introduce Adaptive

machine learning for Dynamic ENvironments (ADEN), a method for selecting the most suitable

machine learning model for time-series data without additional training(Hananya and Katz 2024).

Banda et al. emphasize the need for model selection based on dataset types, recommending logistic

regression for categorical datasets(Banda, Ngassam, andMnkandla 2022; Hananya and Katz 2024).

41



Ribeiro and Reynoso-Meza presented a multi-criteria decision-making process for the selection of

Pareto-optimal machine learning models, which could provide better solutions than single-criterion

optimization(Ribeiro and Reynoso-Meza 2024). Liu and Chen found that the SVMwas superior in

predicting judicial decisions, emphasizing the role of semantic information in feature selection(L.-L.

Liu, C. Yang, and X.-M. Wang 2021). Aderibigbe et al. (2023) conducted a review of the impact

of AI and ML on enhancing energy efficiency in electricity demand forecasting, highlighting the

importance of selecting appropriate models based on various criteria (Bouktif et al. 2018). The

machine learning models selected for this study are:

• Random Forest (RF)

• Artificial Neural Network (ANN)

These models are chosen for their ability to handle complex relationships in the data and

their robustness in various scenarios.

2.3.3.2 Model Training. The selected models are trained on the training dataset. The

training process involves feeding the models with input data (features) and corresponding output

data (target variable) to learn the underlying patterns and relationships.

1. Random Forest (RF)

RF is an ensemble learning method that constructs multiple decision trees during training and

outputs the average prediction (regression) or majority vote (classification) of the individual

trees. RF model training involves constructing decision trees using bagging and feature se-

lection to optimize performance. While the number of trees is a factor in model accuracy,

advancements in RF algorithms aim to balance performance with computational efficiency.

These models have been successfully applied in various domains, including evaporation pre-

diction, myoelectric control, and medical diagnosis, demonstrating their versatility and effec-

tiveness (Javeed et al. 2019; Jiang, Ma, and Nazarpour 2024; R. Wang, K. Li, and Su 2022;

A. Singh, Mittal, Amrender Kumar, et al. 2020).
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ŷ =
1
T

T

∑
t=1

ft(X) (2.31)

where T is the total number of trees in the forest and ft(X) is the prediction of the t-th decision

tree for the input X .

2. Artificial Neural Network (ANN)

ANNs is a computational model inspired by the way neural net- works in the human brain

process information. It consists of layers of interconnected nodes (neurons) that process

input data and generate predictions (Qamar and Zardari 2023). ANNs have been applied

in diverse domains, demonstrating their versatility. For instance, they have been used to

emulate the electroacoustic wave behavior in high-Q piezoelectric resonators(Almalkawi and

Caron 2021), predict chemical properties in food technology(Baykal and Yildirim 2013), and

optimize process parameters in manufacturing techniques like friction stir welding(Mubiayi

and Rao 2020). Moreover, ANNs have shown improvements in robustness under adversarial

attacks when trained using novel gradient computation methods(Patel, Tailor, and Ganatra

2021). The output of an ANN with one hidden layer can be represented as:

ŷ = σ (W2 ·σ(W1 ·X +b1)+b2) (2.32)

where:

• σ is the activation function.

• W1 andW2 are the weight matrices for the input and hidden layers, respectively.

• b1 and b2 are the bias vectors for the input and hidden layers, respectively.

• X is the input feature set.
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2.3.3.3 EvaluationMetrics. Evaluationmetrics are essential for assessing the performance

of machine learning (ML)models across various tasks, such as classification, regression, and object

detection(Rainio, Teuho, and Klén 2024). These metrics provide a quantitative basis for comparing

models and are crucial for model selection and validation. For instance, accuracy and AUC-ROC

are commonly used metrics for classification tasks, while MAPE and RMSE are employed for

evaluating time series forecasting models (Acharya and Das 2024; Nazmi et al. 2023). Interest-

ingly, while evaluation metrics are widely used in predictive analytics, their role extends beyond

mere performance measurement. In sociology, for example, ML-derived classifications and pre-

dictive performance metrics can highlight theoretical gaps and stimulate the development of new

theories(Manzo and Baldassarri 2015) ). Moreover, in healthcare analytics, evaluation metrics not

only gauge model performance but also contribute to enhancing patient care by informing clinical

decisions(Acharya and Das 2024) . The performance of a models’ is evaluated using the following

metrics:

1. Accuracy

Accuracy is a fundamental metric for classifier evaluation (Y. Liu et al. 2021; Sawadogo

et al. 2022; Shao et al. 2019). Accuracy measures the proportion of true results among the

total number of cases examined, it does not differentiate between the types of errors by the

classifier. This can lead to misleading conclusions, particularly when the class distribution is

skewed(Sawadogo et al. 2022). Proportion of correctly predicted instances can be measured

by:

Accuracy=
T P+T N

T P+T N +FP+FN
(2.33)

where:

• T P is the number of true positives.

• T N is the number of true negatives.

• FP is the number of false positives.
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• FN is the number of false negatives.

For imbalanced classes problems, accuracy is usually not a reliable performance metric, and

therefore precision, recall, f1 score, and the Area under the curve (AUC) must be taken into

consideration for this study(Sawadogo et al. 2022).

2. Precision

Precision evaluation metrics are crucial for assessing the effectiveness of various systems,

from context-aware recommender systems to clinical analyses. Champiri et al. (2019) un-

derscores the importance of precision, among other metrics, in evaluating context-aware

scholarly recommender systems, noting that these metrics are grouped and applied differ-

ently depending on the evaluationmethod (Dehghani Champiri, Asemi, and Siti Salwah Binti

2019). That is, it is the proportion of true positive instances among the instances predicted

as positive.

Precision=
T P

T P+FP
(2.34)

3. Recall

Recall, also known as the true positive rate or sensitivity, measures the proportion of actual

positives that are correctly identified by the classifier (Khan and Z. A. Rana 2019).

Recall=
T P

T P+FN
(2.35)

4. F1 Score

The F1 score is the harmonic mean of precision and recall, providing a balance between the

two by considering both false positives and false negatives (Movahedi, Padman, and Antaki

2023).

F1 = 2× Precision×Recall
Precision+Recall

(2.36)
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5. ROC-AUC

The ROC-AUC (Receiver Operating Characteristic - Area Under Curve) is a performance

measurement for classification problems at various threshold settings. The ROC is a proba-

bility curve, and AUC represents the degree or measure of separability, indicating how well

the model is capable distinguishing between classes(Khan and Z. A. Rana 2019; Smithson

2023) .

These metrics provide a comprehensive evaluation of the model’s performance, considering

both the accuracy of predictions and the balance between precision and recall. The models’

performances are compared usingF1 Score and ROC-AUCmetrics to identify the best feature

selection method and class imbalance handling technique.
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CHAPTER III

RESULTS OF FEATURE SELECTION METHODS

AND MACHINE LEARNING TECHNIQUES

In this section, the analysis of the benchmark results across the four datasets—Heart Disease,

Fraud Detection, Breast Cancer, and Churn—reveals informative trends and variations in model

performance. These results were obtained from 5 iterations of random states (123, 3030, 500, 126,

and 2021).

3.1 Benchmark Analysis

Table 3.1: Benchmark Results for Heart Disease Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 0.93 ± 0.00 0.83 ± 0.00 0.93 ± 0.00 0.87 ± 0.00 10
Information Gain 0.94 ± 0.00 0.84 ± 0.01 0.94 ± 0.01 0.88 ± 0.00 10
ANOVA F-value 0.93 ± 0.00 0.83 ± 0.00 0.93 ± 0.01 0.88 ± 0.00 10
Wrapper Methods
RFE 0.94 ± 0.00 0.88 ± 0.00 0.92 ± 0.00 0.83 ± 0.00 10
Logistic Regression 0.94 ± 0.00 0.84 ± 0.00 0.94 ± 0.00 0.88 ± 0.00 10
Random Forest 0.93 ± 0.00 0.87 ± 0.00 0.94 ± 0.00 0.88 ± 0.00 10
Embedded Methods
LASSO Regression 0.93 ± 0.00 0.87 ± 0.00 0.93 ± 0.01 0.83 ± 0.12 10
Ridge Regression 0.93 ± 0.00 0.84 ± 0.00 0.93 ± 0.00 0.85 ± 0.01 10
Decision Tree 0.93 ± 0.00 0.81 ± 0.00 0.93 ± 0.00 0.85 ± 0.00 10

Heart Attack: 13,435; No Heart Attack: 232,544; Shape (245,979, 37)

Table 3.1 illustrates that RFE exhibits exceptional performance, with F1 scores with respect

to the ROC-AUC while Logistic Regression and RF also performed well with values 0.94 for both

methods. This indicates strong predictive capabilities. For the Fraud Detection dataset, Logistic

Regression achieves noteworthy results, attaining perfect scores with ANN.
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However, the fluctuation in standard deviations, particularly in LASSO Regression for ANN, sug-

gests potential overfitting or model instability.

Table 3.2: Benchmark Results for Fraud Detection Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 0.99 ± 0.02 0.94 ± 0.03 0.99 ± 0.01 0.98 ± 0.01 10
Information Gain 0.99 ± 0.02 0.94 ± 0.03 0.99 ± 0.01 0.96 ± 0.05 10
ANOVA F-value 0.99 ± 0.02 0.94 ± 0.03 0.99 ± 0.01 0.98 ± 0.01 10
Wrapper Methods
RFE 0.99 ± 0.01 0.97 ± 0.02 0.95 ± 0.10 0.83 ± 0.10 10
Logistic Regression 0.99 ± 0.02 0.95 ± 0.03 1.00 ± 0.01 0.98 ± 0.01 10
Random Forest 0.98 ± 0.02 0.96 ± 0.04 0.99 ± 0.01 0.97 ± 0.02 10
Embedded Methods
LASSO Regression 0.99 ± 0.10 0.93 ± 0.04 0.99 ± 0.32 0.82 ± 0.34 10
Ridge Regression 0.99 ± 0.03 0.94 ± 0.04 0.97 ± 0.02 0.97 ± 0.02 10
Decision Tree 0.99 ± 0.04 0.94 ± 0.03 0.99 ± 0.01 0.96 ± 0.02 10

Fraud: 473; No Fraud: 283,253; Shape (283726, 30)

Table 3.2 of the fraud dataset demonstrates a noteworthy pattern, displaying a high F1-

Score of 0.99 under the Random Forest (RF) algorithm with a feature selection rate of 0.97 and

a receiver operating characteristic-area under the curve (ROC-AUC) of 0.99. Additionally, the

ANOVA F-value exhibited strong performance under the artificial neural network (ANN) model,

with an F1-Score of 0.99 and a ROC-AUC of 0.98.

Table 3.3 below demonstrates a remarkable trend, as almost all methods achieve high scores,

with the exception of LASSO Regression in ANN, which significantly underperforms with an F1

score of 0.61 and ROC-AUC of 0.66. This outlier suggests possible inefficiencies in LASSO’s

ability to conduct feature selection for this specific type of data. Conversely, the Churn dataset

exhibits greater variability among techniques, with Random Forest slightly outperforming the rest

with an F1 score of 0.80 and ROC-AUC of 0.81, indicating a more complex relationship between

model features and techniques.
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Table 3.3: Benchmark Results for Breast Cancer Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 10
Information Gain 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 10
ANOVA F-value 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 10
Wrapper Methods
RFE 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 10
Logistic Regression 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 10
Random Forest 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 10
Embedded Methods
LASSO Regression 1.00 ± 0.00 1.00 ± 0.00 0.61 ± 0.01 0.66 ± 0.01 10
Ridge Regression 0.60 ± 0.01 0.66 ± 0.01 0.99 ± 0.00 0.99 ± 0.00 10
Decision Tree 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 10

Healed: 60,811; Not Healed: 95,313; Shape (156124, 19)

Table 3.4: Benchmark Results for Churn Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 0.76 ± 0.01 0.79 ± 0.02 0.79 ± 0.01 0.84 ± 0.01 10
Information Gain 0.76 ± 0.01 0.80 ± 0.01 0.79 ± 0.01 0.85 ± 0.01 10
ANOVA F-value 0.76 ± 0.02 0.81 ± 0.01 0.80 ± 0.01 0.85 ± 0.01 10
Wrapper Methods
RFE 0.78 ± 0.02 0.83 ± 0.01 0.78 ± 0.02 0.83 ± 0.01 10
Logistic Regression 0.76 ± 0.02 0.79 ± 0.01 0.79 ± 0.02 0.84 ± 0.01 10
Random Forest 0.80 ± 0.02 0.81 ± 0.03 0.79 ± 0.01 0.84 ± 0.01 10
Embedded Methods
LASSO Regression 0.76 ± 0.02 0.79 ± 0.01 0.79 ± 0.01 0.84 ± 0.01 10
Ridge Regression 0.69 ± 0.07 0.68 ± 0.15 0.73 ± 0.10 0.71 ± 0.23 10
Decision Tree 0.73 ± 0.02 0.71 ± 0.01 0.73 ± 0.01 0.73 ± 0.01 10

Churn: 5,164; No Churn:1,857; Shape (7021, 20)

The findings presented in table 3.4, however, did not prove to be satisfactory. These dispari-

ties underscore the varying resilience and responsiveness of machine learning techniques to data set

characteristics. Notably, Random Forest and Logistic Regression generally offer promising results,

suggesting their value as dependable starting points for preliminary model training.
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Nevertheless, the detected variances, particularly the potential overfitting in data sets with

considerable imbalance, such as Breast Cancer, necessitate meticulous model validation and fine-

tuning to guarantee reliability and precision.

3.2 SMOTE Analysis

The Synthetic Minority Over-sampling Technique (SMOTE) analysis conducted on the

Heart Attack, Fraud Detection, Breast Cancer, and Churn datasets demonstrates notable progress

in addressing imbalanced data. However, the efficacy of this approach varies depending on the

specific models and techniques employed.

Table 3.5: SMOTE Results for Heart Attack Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

textbfFilter Methods
Chi-Squared Test 0.94 ± 0.00 0.81 ± 0.00 0.92 ± 0.01 0.86 ± 0.02 10
Information Gain 0.93 ± 0.00 0.82 ± 0.00 0.91 ± 0.02 0.84 ± 0.03 10
ANOVA F-value 0.94 ± 0.00 0.81 ± 0.00 0.92 ± 0.03 0.85 ± 0.01 10
Wrapper Methods
RFE 0.94 ± 0.01 0.82 ± 0.01 0.92 ± 0.02 0.86 ± 0.02 10
Logistic Regression 0.93 ± 0.01 0.80 ± 0.00 0.92 ± 0.01 0.86 ± 0.02 10
Random Forest 0.94 ± 0.00 0.87 ± 0.00 0.89 ± 0.01 0.83 ± 0.02 10
Embedded Methods
LASSO Regression 0.83 ± 0.00 0.78 ± 0.01 0.84 ± 0.02 0.79 ± 0.02 10
Ridge Regression 0.85 ± 0.01 0.77 ± 0.01 0.85 ± 0.01 0.79 ± 0.02 10
Decision Tree 0.88 ± 0.00 0.80 ± 0.00 0.87 ± 0.02 0.82 ± 0.01 10

Heart Attack: 162,778; No Heart Attack: 162,778

For the Heart Attack dataset (3.5), various techniques, including the Chi-Squared Test, In-

formation Gain, and ANOVA F-value, demonstrate exceptional effectiveness, achieving F1 scores

approximately 0.94 and ROC-AUC values in the low 0.80 range for both Random Forest (RF)

and Artificial Neural Networks (ANN). The results indicate that key features in this dataset are

highly predictive. However, LASSO and Ridge Regression show subpar performance, particularly

in terms of ROC-AUC, suggesting potential limitations in these models’ compatibility with the

dataset or the SMOTE application itself.
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Table 3.6: SMOTE Results for Fraud Detection Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 0.99 ± 0.01 0.96 ± 0.02 0.99 ± 0.35 0.94 ± 0.06 10
Information Gain 1.00 ± 0.00 0.97 ± 0.01 1.00 ± 0.07 0.95 ± 0.01 10
ANOVA F-value 1.00 ± 0.00 0.97 ± 0.01 1.00 ± 0.13 0.96 ± 0.01 10
Wrapper Methods
RFE 1.00 ± 0.00 0.97 ± 0.01 0.99 ± 0.03 0.94 ± 0.02 10
Logistic Regression 1.00 ± 0.00 0.97 ± 0.01 0.99 ± 0.13 0.97 ± 0.02 10
Random Forest 1.00 ± 0.00 0.97 ± 0.01 1.00 ± 0.05 0.96 ± 0.01 10
Embedded Methods
LASSO Regression 1.00 ± 0.02 0.97 ± 0.01 1.00 ± 0.09 0.96 ± 0.02 10
Ridge Regression 1.00 ± 0.01 0.96 ± 0.02 1.00 ± 0.11 0.96 ± 0.02 10
Decision Tree 1.00 ± 0.02 0.93 ± 0.02 1.00 ± 0.07 0.96 ± 0.02 10

Fraud: 198,274; No Fraud: 198,274

In the Fraud Detection dataset(3.6), there is a remarkable consistency in high performance,

with many techniques achieving perfect or nearly perfect scores. This suggests a well-defined fea-

ture set that responds exceptionally well to SMOTE. Notably, there is some variability in the ANN

model’s performance, as seen in the standard deviations, particularly with the RFE and Logistic

Regression methods, indicating possible overfitting.

Table 3.7: SMOTE Results for Breast Cancer Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 10
Information Gain 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
ANOVA F-value 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Wrapper Methods
RFE 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Logistic Regression 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Random Forest 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Embedded Methods
LASSO Regression 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Ridge Regression 0.43 ± 0.00 0.56 ± 0.00 0.46 ± 0.04 0.57 ± 0.02 10
Decision Tree 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10

Healed: 66,693; Not Healed: 66,693
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The Breast Cancer dataset(3.7) stands out with nearly universal perfect scores across all

methods and both models, except for Ridge Regression, which notably dips in performance. This

outlier highlights a potential mismatch between the method and the dataset characteristics or the

SMOTEmethodology. The general high performance across other methods suggests strong feature

relationships and an effective application of SMOTE in balancing class distribution.

Table 3.8: SMOTE Results for Churn Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Square 0.75 ± 0.00 0.78 ± 0.01 0.76 ± 0.01 0.83 ± 0.01 10
Info-Gain 0.75 ± 0.01 0.80 ± 0.01 0.76 ± 0.02 0.83 ± 0.01 10
ANOVA 0.74 ± 0.01 0.79 ± 0.01 0.75 ± 0.01 0.83 ± 0.01 10
Wrapper Methods
RFE 0.77 ± 0.01 0.83 ± 0.01 0.76 ± 0.01 0.83 ± 0.01 10
Logistic 0.75 ± 0.01 0.80 ± 0.01 0.75 ± 0.01 0.83 ± 0.01 10
Random Forest 0.76 ± 0.00 0.80 ± 0.00 0.75 ± 0.01 0.83 ± 0.01 10
Embedded Methods
Decision Tree 0.77 ± 0.01 0.81 ± 0.01 0.79 ± 0.01 0.83 ± 0.01 10
Ridge Regression 0.71 ± 0.00 0.74 ± 0.01 0.73 ± 0.01 0.81 ± 0.01 10
Lasso 0.76 ± 0.02 0.79 ± 0.01 0.79 ± 0.01 0.84 ± 0.01 10

Churn: 4,122; No Churn: 4122

The Churn dataset(3.8) above presents a more intricate picture of the influence of SMOTE,

with generally good but not outstanding performance across various techniques. While Lasso in

the ANN model achieves the best F1 and ROC-AUC scores, the overall results do not reach the

exceptional levels observed in other datasets. This suggests a potentially more complex or noisy

dataset where the impact of SMOTE is discernible but more restrained. These findings emphasize

the utility of SMOTE in enhancing model performance across a variety of datasets, particularly in

those with strong predictive features. However, the technique’s effectiveness can be influenced by

the specific characteristics of the dataset and the compatibility with the chosen analytical methods.
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3.3 ADASYN Analysis

The ADASYN (Adaptive Synthetic Sampling Approach) analysis across the four datasets—

Heart Attack, FraudDetection, Breast Cancer, and Churn—reveals distinct patterns in effectiveness,

demonstrating how this technique influences model performance in varied contexts.

Table 3.9: ADASYN Results for Heart Attack Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 0.84 ± 0.00 0.76 ± 0.01 0.83 ± 0.01 0.81 ± 0.01 10
Information Gain 0.86 ± 0.00 0.78 ± 0.00 0.84 ± 0.00 0.84 ± 0.00 10
ANOVA F-value 0.85 ± 0.00 0.77 ± 0.00 0.84 ± 0.01 0.82 ± 0.01 10
Wrapper Methods
RFE 0.85 ± 0.00 0.83 ± 0.00 0.85 ± 0.01 0.82 ± 0.01 10
Logistic Regression 0.80 ± 0.00 0.75 ± 0.00 0.80 ± 0.01 0.74 ± 0.01 10
Random Forest 0.92 ± 0.00 0.83 ± 0.00 0.87 ± 0.02 0.79 ± 0.01 10
Embedded Methods
LASSO Regression 0.83 ± 0.00 0.77 ± 0.00 0.83 ± 0.02 0.79 ± 0.01 10
Ridge Regression 0.92 ± 0.00 0.83 ± 0.00 0.87 ± 0.01 0.79 ± 0.01 10
Decision Tree 0.88 ± 0.00 0.79 ± 0.00 0.83 ± 0.02 0.82 ± 0.01 10

Heart Attack: 164,902; No Heart Attack: 162,778

The performance of the heart attack dataset (3.9) displays moderate results with F1 scores

ranging from 0.80 to 0.92 and ROC-AUCs ranging from 0.75 to 0.87, across Random Forest (RF)

and artificial neural network (ANN) models. Notably, the Random Forest model achieves a high F1

score of 0.92, indicating strong compatibility with the oversampling method. However, methods

like Logistic Regression and LASSO Regression exhibit lower metrics, suggesting variability in

how different models leverage the synthetic data generated by ADASYN.

The Fraud Detection Dataset (3.10) above demonstrates nearly perfect metrics across most

methods, showcasing ADASYN’s effectiveness in balancing highly skewed datasets. The excep-

tion is the Random Forest model in the RF configuration, which exhibits significant variability

(SD=0.30), possibly indicating model overfitting or instability due to synthetic sample integration.
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Table 3.10: ADASYN Results for Fraud Detection Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 1.00 ± 0.00 0.94 ± 0.03 1.00 ± 0.00 0.94 ± 0.05 10
Information Gain 1.00 ± 0.00 0.96 ± 0.01 1.00 ± 0.00 0.92 ± 0.06 10
ANOVA F-value 1.00 ± 0.00 0.96 ± 0.01 1.00 ± 0.00 0.94 ± 0.05 10
Wrapper Methods
RFE 0.99 ± 0.01 0.98 ± 0.01 1.00 ± 0.00 0.90 ± 0.08 10
Logistic Regression 1.00 ± 0.00 0.96 ± 0.01 1.00 ± 0.00 0.95 ± 0.05 10
Random Forest 0.86 ± 0.30 0.97 ± 0.01 1.00 ± 0.00 0.91 ± 0.09 10
Embedded Methods
LASSO Regression 1.00 ± 0.00 0.96 ± 0.01 0.97 ± 0.06 0.90 ± 0.08 10
Ridge Regression 1.00 ± 0.00 0.96 ± 0.02 0.98 ± 0.03 0.96 ± 0.01 10
Decision Tree 1.00 ± 0.00 0.96 ± 0.01 1.00 ± 0.00 0.92 ± 0.10 10

Fraud: 198,330; No Fraud: 198,274

Table 3.11: ADASYN Results for Breast Cancer Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 0.99 ± 0.00 10
Information Gain 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
ANOVA F-value 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Wrapper Methods
RFE 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Logistic Regression 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Random Forest 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Embedded Methods
LASSO Regression 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Ridge Regression 0.47 ± 0.05 0.56 ± 0.01 0.47 ± 0.05 0.56 ± 0.01 10
Decision Tree 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10

Healed: 66,692; Not Healed: 66,698

The breast cancer dataset (3.11) displays near-perfect or perfect performance for the ma-

jority of techniques, highlighting the dataset’s clear, discriminative features that remain effective

after the application of ADASYN. The exception is Ridge Regression, which significantly under-

performs, suggesting a potential misalignment with the dataset’s characteristics or the synthetic

sampling method.
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Table 3.12: ADASYN Results for Churn Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 0.78 ± 0.01 0.75 ± 0.00 0.83 ± 0.01 0.74 ± 0.02 10
Information Gain 0.79 ± 0.01 0.74 ± 0.01 0.83 ± 0.01 0.74 ± 0.02 10
ANOVA F-value 0.77 ± 0.01 0.73 ± 0.00 0.82 ± 0.01 0.74 ± 0.02 10
Wrapper Methods
RFE 0.83 ± 0.01 0.76 ± 0.01 0.83 ± 0.01 0.74 ± 0.03 10
Logistic Regression 0.78 ± 0.01 0.74 ± 0.01 0.83 ± 0.01 0.74 ± 0.01 10
Random Forest 0.79 ± 0.01 0.75 ± 0.01 0.83 ± 0.01 0.74 ± 0.02 10
Embedded Methods
LASSO Regression 0.79 ± 0.01 0.74 ± 0.01 0.84 ± 0.01 0.75 ± 0.01 10
Ridge Regression 0.75 ± 0.02 0.71 ± 0.02 0.81 ± 0.01 0.71 ± 0.02 10
Decision Tree 0.79 ± 0.00 0.74 ± 0.00 0.83 ± 0.01 0.74 ± 0.01 10
Churn: 4,003; No Churn: 4,122

The churn dataset (3.12) exhibits relatively subdued performance compared to the other

datasets, with F1 scores and ROC-AUCs typically ranging between 0.73 and 0.83. This moderate

effectiveness implies that while ADASYN helps alleviate class imbalance for churn prediction, the

intricate complexities or less discernible patterns in customer churn data may restrict the improve-

ment of predictive performance.

These assessment highlights ADASYN’s diverse impact across various datasets, demonstrating sig-

nificant enhancements in datasets such as Fraud Detection and Breast Cancer, but a less pronounced

influence in Heart Attack and Churn datasets. These disparities emphasize the necessity of em-

ploying dataset-specific strategies when utilizing synthetic oversampling techniques. ADASYN’s

performance emphasizes the importance of selecting tailored models and conducting rigorous val-

idation processes to optimize outcomes in the presence of class imbalance. The method’s effec-

tiveness and the resulting model stability are evidently influenced by the interaction between the

dataset features, the model employed, and the characteristics of the synthetic samples generated by

ADASYN.
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3.4 Nearmiss-1 Analysis

The analysis of Nearmiss-1 across four distinct datasets, namely Heart Attack, Fraud Detec-

tion, Breast Cancer, and Churn, unveils the intricate influence of this undersampling technique on

the performance of predictive models. It is noteworthy that each dataset exhibits a unique response

to Nearmiss-1, highlighting the inherent complexities and specificities of each dataset.

For the Heart Attack dataset (3.13) below, performance is moderate to low, evidencing

lower F1 scores and ROC-AUC values than observed in other datasets. Notably, LASSO and Ridge

Regression attain the highest scores, suggesting that some models can still effectively capture es-

sential patterns despite significant undersampling. However, the overall lower performance across

most techniques may indicate the loss of crucial information, which can be particularly detrimental

in datasets where minor class signals are indispensable for accurate predictions.

Table 3.13: Nearmiss-1 Results for Heart Attack Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 0.56 ± 0.00 0.64 ± 0.00 0.56 ± 0.03 0.66 ± 0.01 10
Information Gain 0.45 ± 0.01 0.66 ± 0.01 0.49 ± 0.04 0.64 ± 0.01 10
ANOVA F-value 0.53 ± 0.01 0.65 ± 0.01 0.54 ± 0.02 0.66 ± 0.00 10
Wrapper Methods
RFE 0.43 ± 0.02 0.64 ± 0.01 0.44 ± 0.02 0.64 ± 0.01 10
Logistic Regression 0.61 ± 0.03 0.63 ± 0.01 0.63 ± 0.03 0.62 ± 0.04 10
Random Forest 0.38 ± 0.01 0.68 ± 0.01 0.40 ± 0.12 0.56 ± 0.13 10
Embedded Methods
LASSO Regression 0.67 ± 0.01 0.75 ± 0.01 0.67 ± 0.02 0.75 ± 0.01 10
Ridge Regression 0.67 ± 0.02 0.74 ± 0.02 0.36 ± 0.02 0.62 ± 0.01 10
Decision Tree 0.40 ± 0.01 0.64 ± 0.01 0.43 ± 0.01 0.63 ± 0.01 10

Heart Attack: 9,407; No Heart Attack: 9,407

The Fraud Detection dataset (3.14) presents an interesting contrast to the previous datasets.

In this case, certain techniques have achieved remarkable results, particularly in ANN models,

which have achieved perfect or near-perfect scores. This suggests a high degree of class separability,

even after the aggressive reduction of classes. However, the substantial variability in performance,

particularly in standard deviations, suggests that some models may be unstable or overfitting. This
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Table 3.14: Nearmiss-1 Results for Fraud Detection Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 0.68 ± 0.09 0.92 ± 0.01 1.00 ± 0.11 0.96 ± 0.01 10
Information Gain 0.16 ± 0.17 0.87 ± 0.05 0.86 ± 0.08 0.93 ± 0.01 10
ANOVA F-value 0.15 ± 0.13 0.72 ± 0.36 0.61 ± 0.29 0.87 ± 0.11 10
Wrapper Methods
RFE 0.17 ± 0.15 0.89 ± 0.04 0.42 ± 0.31 0.85 ± 0.04 10
Logistic Regression 0.26 ± 0.22 0.89 ± 0.04 0.73 ± 0.09 0.88 ± 0.05 10
Random Forest 0.26 ± 0.22 0.89 ± 0.04 0.71 ± 0.11 0.83 ± 0.11 10
Embedded Methods
LASSO Regression 0.26 ± 0.22 0.89 ± 0.04 0.70 ± 0.13 0.87 ± 0.05 10
Ridge Regression 0.48 ± 0.34 0.93 ± 0.04 0.60 ± 0.34 0.93 ± 0.05 10
Decision Tree 0.41 ± 0.34 0.89 ± 0.05 0.78 ± 0.18 0.91 ± 0.06 10

Fraud: 324; No Fraud: 324

may be due to the dramatic reduction in majority class examples, which could create an unstable

training environment for some models.

Table 3.15: Nearmiss-1 Results for Breast Cancer Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 10
Information Gain 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
ANOVA F-value 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Wrapper Methods
RFE 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Logistic Regression 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Random Forest 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Embedded Methods
LASSO Regression 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Ridge Regression 0.54 ± 0.00 0.64 ± 0.02 0.54 ± 0.00 0.64 ± 0.02 10
Decision Tree 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10

Healed:42,588; Not Healed: 42,588

The Breast Cancer dataset (3.15)has demonstrated exceptional performance metrics across

all methods, with the majority of techniques achieving perfect or near-perfect scores. This indicates

that the dataset’s features are sufficiently robust, as even significant undersampling does not impair

the models’ ability to classify effectively.
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Hence, this consistent high performance may potentially conceal overfitting issues, particularly in

real-world applications where class distributions may not be as optimal.

Table 3.16: Nearmiss-1 Results for Churn Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 0.56 ± 0.01 0.54 ± 0.01 0.64 ± 0.04 0.57 ± 0.03 10
Information Gain 0.61 ± 0.02 0.57 ± 0.01 0.66 ± 0.03 0.61 ± 0.03 10
ANOVA F-value 0.56 ± 0.01 0.55 ± 0.01 0.59 ± 0.03 0.55 ± 0.03 10
Wrapper Methods
RFE 0.63 ± 0.02 0.59 ± 0.02 0.63 ± 0.02 0.59 ± 0.03 10
Logistic Regression 0.62 ± 0.01 0.58 ± 0.01 0.69 ± 0.02 0.64 ± 0.03 10
Random Forest 0.67 ± 0.02 0.62 ± 0.01 0.73 ± 0.02 0.67 ± 0.03 10
Embedded Methods
LASSO Regression 0.62 ± 0.01 0.57 ± 0.00 0.67 ± 0.02 0.62 ± 0.01 10
Ridge Regression 0.62 ± 0.01 0.59 ± 0.01 0.69 ± 0.02 0.63 ± 0.02 10
Decision Tree 0.67 ± 0.01 0.62 ± 0.01 0.73 ± 0.02 0.65 ± 0.03 10

Churn: 1,300; No Churn: 1,300

The Churn dataset (3.16)has achieved moderate outcomes, with the Random Forest model

demonstrating the most exceptional performance. This indicates that certain algorithms might be

more resistant to the data loss caused by Nearmiss-1. Nevertheless, the overall performance re-

mains modest, highlighting the difficulties in employing Nearmiss-1 in datasets where intricate or

delicate feature interactions are essential for precise forecasts. The results indicate that Nearmiss-1

can effectively identify important features in datasets with distinct class distinctions, but its effec-

tiveness varies significantly across various scenarios. The technique’s impact is heavily influenced

by specific dataset characteristics, such as the number of features, the nature of the imbalance, and

the complexity of feature relationships. Additionally, the performance variability across differ-

ent models within the same dataset suggests that some models may be more sensitive to training

data reduction, leading to potential issues of overfitting or underfitting. Thus, applying Nearmiss-

1 requires careful consideration of both dataset characteristics and model selection to optimize

performance in handling imbalanced datasets, ensuring that the reduction in sample size does not

compromise the model’s ability to generalize to new data.
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3.5 Nearmiss-3 Analysis

The analysis of Nearmiss-3 across the four datasets—Heart Attack, Fraud Detection, Breast

Cancer, and Churn—reveals the intricate nature and varying effectiveness of this undersampling

technique in various analytical contexts. Each dataset exhibits unique responses to Nearmiss-3,

which emphasizes the impact of data characteristics on the performance of undersampling tech-

niques.

Table 3.17: Nearmiss-3 Results for Heart Attack Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 0.68 ± 0.03 0.73 ± 0.01 0.72 ± 0.04 0.77 ± 0.02 10
Information Gain 0.67 ± 0.01 0.68 ± 0.01 0.68 ± 0.05 0.74 ± 0.02 10
ANOVA F-value 0.67 ± 0.01 0.73 ± 0.01 0.69 ± 0.04 0.75 ± 0.02 10
Wrapper Methods
RFE 0.65 ± 0.01 0.68 ± 0.01 0.65 ± 0.04 0.71 ± 0.02 10
Logistic Regression 0.86 ± 0.03 0.86 ± 0.01 0.87 ± 0.03 0.85 ± 0.03 10
Random Forest 0.63 ± 0.01 0.69 ± 0.01 0.61 ± 0.04 0.66 ± 0.02 10
Embedded Methods
LASSO Regression 0.83 ± 0.03 0.82 ± 0.01 0.84 ± 0.04 0.84 ± 0.03 10
Ridge Regression 0.86 ± 0.01 0.84 ± 0.01 0.63 ± 0.03 0.67 ± 0.01 10
Decision Tree 0.58 ± 0.01 0.61 ± 0.01 0.60 ± 0.02 0.63 ± 0.02 10

Heart Attack: 9,407; No Heart Attack: 9,407

Nearmiss-3 produces moderate results in the Heart Attack dataset (3.17), with F1 scores

ranging from 0.58 to 0.86 and ROC-AUC scores ranging from 0.61 to 0.86. Notably, Logistic Re-

gression and Ridge Regression demonstrate greater resilience, achieving the highest scores, which

indicates their robustness in the face of reduced majority class instances. This implies that while

Nearmiss-3 simplifies the class structure, certain models are better equipped to utilize the remaining

information for accurate predictions.
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Table 3.18: Nearmiss-3 Results for Fraud Detection Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 0.99 ± 0.00 0.92 ± 0.01 1.00 ± 0.00 0.96 ± 0.02 10
Information Gain 1.00 ± 0.00 0.93 ± 0.01 1.00 ± 0.00 0.95 ± 0.02 10
ANOVA F-value 1.00 ± 0.00 0.93 ± 0.01 1.00 ± 0.00 0.95 ± 0.01 10
Wrapper Methods
RFE 1.00 ± 0.00 0.93 ± 0.02 1.00 ± 0.00 0.94 ± 0.02 10
Logistic Regression 0.99 ± 0.00 0.94 ± 0.01 0.99 ± 0.01 0.94 ± 0.01 10
Random Forest 0.99 ± 0.00 0.94 ± 0.01 0.99 ± 0.00 0.94 ± 0.01 10
Embedded Methods
LASSO Regression 0.99 ± 0.01 0.93 ± 0.02 0.99 ± 0.00 0.94 ± 0.01 10
Ridge Regression 0.98 ± 0.00 0.92 ± 0.02 0.99 ± 0.01 0.93 ± 0.00 10
Decision Tree 0.86 ± 0.30 0.92 ± 0.02 0.95 ± 0.07 0.93 ± 0.03 10

Fraud: 324; No Fraud: 291

In contrast, the Fraud Detection dataset(3.18) exhibits exceptional performance across all

techniques, with F1 scores and ROC-AUCs approaching or achieving perfect scores. This suggests

that the Fraud Detection dataset possesses intrinsic properties, such as clear separability and mini-

mal noise, which enable even a reduced sample set to effectively represent the underlying patterns

necessary for high model accuracy.

Table 3.19: Nearmiss-3 Results for Breast Cancer Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
Chi-Squared Test 1.00 ± 0.00 1.00 ± 0.00 0.98 ± 0.02 1.00 ± 0.00 10
Information Gain 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 10
ANOVA F-value 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 10
Wrapper Methods
RFE 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Logistic Regression 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10
Random Forest 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 10
Embedded Methods
LASSO Regression 0.69 ± 0.24 0.84 ± 0.22 0.69 ± 0.24 0.84 ± 0.22 10
Ridge Regression 0.22 ± 0.00 0.60 ± 0.01 0.22 ± 0.00 0.60 ± 0.01 10
Decision Tree 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 10

Healed:42,588; Not Healed: 1,483
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The Breast Cancer dataset (3.19)displays impressive results with Nearmiss-3, achieving

high scores across various methods. The consistency in outstanding performance suggests that

critical classification information is preserved despite aggressive undersampling. However, Ridge

Regression stands out as a notable exception, underperforming significantly, which may indicate

suboptimal interactions between this method and the data processing technique.

Table 3.20: Nearmiss-3 Results for Churn Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Filter Methods
0.72 ± 0.01 0.72 ± 0.01 0.79 ± 0.02 0.76 ± 0.01 10
Information Gain 0.72 ± 0.01 0.72 ± 0.01 0.80 ± 0.02 0.76 ± 0.02 10
ANOVA F-value 0.56 ± 0.01 0.55 ± 0.01 0.60 ± 0.03 0.56 ± 0.02 10
Wrapper Methods
RFE 0.63 ± 0.02 0.59 ± 0.02 0.62 ± 0.02 0.60 ± 0.03 10
Logistic Regression 0.62 ± 0.01 0.58 ± 0.01 0.68 ± 0.02 0.61 ± 0.01 10
Random Forest 0.67 ± 0.02 0.62 ± 0.01 0.72 ± 0.03 0.64 ± 0.03 10
Embedded Methods
LASSO Regression 0.62 ± 0.01 0.57 ± 0.00 0.68 ± 0.03 0.62 ± 0.02 10
Ridge Regression 0.62 ± 0.01 0.59 ± 0.01 0.69 ± 0.02 0.63 ± 0.01 10
Decision Tree 0.67 ± 0.01 0.62 ± 0.01 0.73 ± 0.01 0.66 ± 0.02 10

Churn: 1,300; No Churn: 1,300

In contrast, the Churn dataset (3.20)showsmore modest outcomes, with F1 scores and ROC-

AUCs mostly falling between 0.60 and 0.73. This dataset likely contains intricate patterns that are

somewhat disrupted by the substantial data reduction caused by Nearmiss-3. As a result, models do

not perform as well here as in other datasets, indicating heightened sensitivity to reduced training

instances. Across the datasets, Nearmiss-3 tends to excel in situations where class boundaries are

clear and the necessary information for classification is resilient to data point loss. In datasets

like Heart Attack and Churn, where subtle nuances and intricate relationships define the predictive

patterns, the reduction in data can lead to a substantial decline in model performance.
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This underscores the essential balance required in choosing undersampling techniques like

Nearmiss-3, which must be tailored to the dataset’s characteristics to prevent the loss of crucial

information while still effectively addressing class imbalance.

3.6 Hybrid - SMOTE Analysis

The Hybrid-SMOTE technique, which integrates SMOTE with various feature selection

methods, has been evaluated across four datasets—Heart Attack, Fraud Detection, Breast Cancer,

and Churn. This approach aims to enhance model performance by addressing class imbalance and

optimizing the feature space to improve prediction accuracy.

Table 3.21: Hybrid-SMOTE Results for Heart Attack Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE+ 0.82 ± 0.00 0.83 ± 0.00 0.82 ± 0.00 0.84 ± 0.00 5
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.67 ± 0.00 0.78 ± 0.01 0.67 ± 0.00 0.78 ± 0.01 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.85 ± 0.01 0.82 ± 0.01 0.85 ± 0.01 0.83 ± 0.01 5
Decision Tree

Heart Attack: 162,778; No Heart Attack: 162,778

The hybrid-SMOTE outcomes for the heart attack dataset (??)display varying performance

based on the employed techniques. The approach that incorporates Chi-Squared Test, RFE, and

LASSO Regression attains an F1 score and ROC-AUC of approximately 0.82, demonstrating a rea-

sonable level of effectiveness. Conversely, the method that merges ANOVA F-value with Random

Forest and Decision Tree achieves an F1 score and ROC-AUC of roughly 0.85, slightly surpassing

the other techniques. In contrast, the combination of Information Gain with Logistic Regression

and Ridge Regression exhibits reduced effectiveness, with scores around 0.67.
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Table 3.22: Hybrid-SMOTE Results for Fraud Detection Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.99 ± 0.00 0.96 ± 0.02 0.99 ± 0.39 0.95 ± 0.02 5
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.97 ± 0.01 0.97 ± 0.02 0.97 ± 0.44 0.98 ± 0.01 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 5
Decision Tree

Fraud: 198,274; No Fraud: 198,274

The Fraud Detection Dataset (Table 3.22) demonstrates an extraordinary responsiveness

to Hybrid-SMOTE, particularly when it combines the Chi-Squared Test with RFE and LASSO

Regression. This combination achieves an impressive level of accuracy with an F1 score of 0.99.

Similarly, the method involving ANOVA F-value, Random Forest, and Decision Tree exhibits com-

parable high performance. The Information Gain, when combined with Logistic Regression and

Ridge Regression, also performs well, although the performance of ANN is somewhat more vari-

able. The performance of the Hybrid-SMOTE technique on the Breast Cancer Dataset in table 3.24

below is impressive, as it achieves high scores in most combinations due to the dataset’s clear class

separability. The Chi-Squared Test combined with RFE and LASSO Regression, and ANOVA F-

value with Random Forest and Decision Tree achieve perfect scores across both models. However,

the Information Gain with Logistic Regression and Ridge Regression method shows a significant

drop in performance, suggesting a misalignment of the method with the dataset’s characteristics.
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Table 3.23: Hybrid-SMOTE Results for Breast Cancer Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 1 ± 0.00 1 ± 0.00 1 ± 0.00 1 ± 0.00 1
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.52 ± 0.09 0.61 ± 0.03 0.52 ± 0.09 0.61 ± 0.03 3
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 1 ± 0.00 1 ± 0.00 0.99 ± 0.00 1 ± 0.00 5
Decision Tree

Healed: 66,693; Not Healed: 66,693

Table 3.24: Hybrid-SMOTE Results for Churn Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.76 ± 0.01 0.79 ± 0.01 0.75 ± 0.01 0.83 ± 0.01 5
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.73 ± 0.00 0.77 ± 0.01 0.76 ± 0.01 0.83 ± 0.01 5
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.73 ± 0.00 0.77 ± 0.01 0.76 ± 0.01 0.83 ± 0.01 5
Decision Tree

Churn: 4,122; No Churn: 4122

In the Churn dataset, the Hybrid-SMOTE method demonstrates moderate performance im-

provements, with F1 scores and ROC-AUC ranging from 0.73 to 0.76. Among the techniques used,

the combination of the Chi-Squared Test with RFE and LASSORegression slightly outperforms the

others, indicating better synergy between these techniques in handling the dataset’s complexities.

The Hybrid-SMOTE method highlights the significance of selecting the appropriate combination

of feature selection and oversampling techniques. It is apparent that specific combinations, such as

64



Chi-Squared Test with RFE and LASSO Regression, consistently perform well on various datasets.

Each dataset demonstrates a unique response to different hybrid combinations, indicating that the

effectiveness of Hybrid-SMOTE heavily relies on the nature of the dataset and the compatibility

of the feature selection method with the oversampling technique. There is a noticeable variabil-

ity in model performance, particularly in ANN models, suggesting that while Hybrid-SMOTE can

enhance performance, it may also introduce instability depending on the dataset and the specific

models used. Overall, Hybrid-SMOTE presents a promising approach to addressing class imbal-

ance by integrating robust feature selection with SMOTE, designed to significantly improve model

performance across diverse datasets. However, careful consideration should be given to the choice

of feature selection and oversampling methods to ensure optimal outcomes.

3.7 Hybrid - ADASYN Analysis

The Hybrid-ADASYN technique, which involves integrating ADASYN with different fea-

ture selection methods, has been evaluated across four datasets—Heart Attack, Fraud Detection,

Breast Cancer, and Churn. This combined approach aims to not only correct class imbalances but

also to refine the feature set in order to improve predictive accuracy.

Table 3.25: Hybrid-ADASYN Results for Heart Attack Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.82 ± 0.00 0.83 ± 0.00 0.82 ± 0.00 0.84 ± 0.00 5
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.67 ± 0.00 0.77 ± 0.00 0.67 ± 0.00 0.78 ± 0.00 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.84 ± 0.01 0.81 ± 0.01 0.83 ± 0.02 0.81 ± 0.01 5
Decision Tree
Heart Attack: 164,902; No Heart Attack: 162,778
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In the Heart Attack dataset(3.25), the hybrid approach demonstrates a noteworthy level of

effectiveness, as evidenced by the Chi-Squared Test combined with RFE and LASSO Regression,

which achieves F1 scores and ROC-AUC values in the range of 0.82 to 0.84. On the other hand,

the combination of Information Gain, Logistic Regression, and Ridge Regression exhibits some-

what reduced performance, potentially due to mismatches between feature selection methods and

modeling techniques. The integration of ANOVA F-value with Random Forest and Decision Tree

yields competitive results, marginally surpassing the second method.

Table 3.26: Hybrid-ADASYN Results for Fraud Detection Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.98 ± 0.02 0.96 ± 0.02 0.96 ± 0.04 0.96 ± 0.01 5
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.94 ± 0.06 0.94 ± 0.03 0.95 ± 0.01 0.96 ± 0.02 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.99 ± 0.00 0.99 ± 0.00 0.98 ± 0.00 0.99 ± 0.00 5
Decision Tree

Fraud: 198,330; No Fraud: 198,274

In the Fraud Detection Dataset, the Hybrid-ADASYN approach demonstrates exceptional

performance, particularly when the Chi-Squared Test is combined with RFE and LASSO Regres-

sion, achieving near-perfect scores. The robustness of the dataset to ADASYN is evident, as even

the less effective combinations still achieve high metrics. The method that combines ANOVA

F-value with Random Forest and Decision Tree exhibits the highest stability and effectiveness.

TheBreast CancerDataset exhibits exceptional performance, with the highest scores achieved

by methods that combine Chi-Squared Test and ANOVA F-value with Random Forest. In contrast,

the method combining Information Gain with Logistic Regression and Ridge Regression signifi-

cantly underperforms other methods, which may indicate a particular sensitivity of this dataset to
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Table 3.27: Hybrid-ADASYN Results for Breast Cancer Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0 1.00 ± 0.00 2
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.47 ± 0.01 0.59 ± 0.01 0.47 ± 0.02 0.59 ± 0.02 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 1.00 ± 0.00 1.00 ± 0 1.00 ± 0.00 1.00 ± 0.00 5
Decision Tree
Healed: 66,692; Not Healed: 66,698

the selected features and synthetic sampling applied.

Table 3.28: Hybrid-ADASYN Results for Churn Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.76 ± 0.01 0.79 ± 0.01 0.75 ± 0.01 0.83 ± 0.01 5
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.73 ± 0.01 0.77 ± 0.01 0.73 ± 0.01 0.82 ± 0.01 5
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.74 ± 0.02 0.77 ± 0.01 0.72 ± 0.01 0.83 ± 0.01 5
Decision Tree

Churn: 4,003; No Churn: 4,122

In the Churn dataset, performance is moderate, with the best results obtained from the

method that combines Chi-Squared Test with RFE and LASSO Regression. Although improve-

ments are observed, they are not as substantial as in other datasets, suggesting that the churn dataset

may have more intricate or less distinct classes that are less responsive to hybrid methods.

The success of the Hybrid-ADASYN method in these datasets emphasizes the importance of se-
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lecting appropriate feature selection techniques and effective oversampling strategies. The per-

formance depends significantly on how well these methods align with the characteristics of each

dataset. The variation in method effectiveness across datasets highlights that the nature of the

dataset, including the type of features and the degree of class imbalance, heavily influences the use-

fulness of hybrid techniques. Datasets with clearer class definitions and less noise, such as Breast

Cancer and Fraud Detection, respond better to these methods. The results also underscore the

susceptibility of different models to the changes in feature space and class distribution introduced

by Hybrid-ADASYN. Some combinations lead to high variability in performance, especially in

datasets with more intricate relationships.

3.8 Hybrid - Nearmiss-1 Analysis

The Hybrid-NearMiss-1 method, which combines NearMiss-1 undersampling with a range

of feature selection strategies, has been assessed on four datasets—Heart Attack, Fraud Detection,

Breast Cancer, and Churn—providing insights into its effectiveness in various contexts. The Heart

Table 3.29: Hybrid-NearMiss-1 Results for Heart Attack Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.55 ± 0.01 0.62 ± 0.00 0.55 ± 0.02 0.63 ± 0.00 5
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.84 ± 0.05 0.77 ± 0.01 0.84 ± 0.05 0.77 ± 0.01 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.53 ± 0.02 0.63 ± 0.00 0.55 ± 0.02 0.64 ± 0.01 5
Decision Tree

Heart Attack: 9,407; No Heart Attack: 9,407

Attack Dataset exhibits a combination of outcomes with the hybrid approach. The most effective

configuration features Information Gain in conjunction with Logistic Regression and Ridge Re-

gression, achieving F1 and ROC-AUC scores of approximately 0.84, which attests to its efficacy
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in selecting the most predictive features even with a limited amount of data. This configuration em-

ploys only 2 features, emphasizing the method’s capacity to distill the most pertinent information

from a potentially complex dataset.

Table 3.30: Hybrid-NearMiss-1 Results for Fraud Detection Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.28 ± 0.24 0.86 ± 0.07 0.77 ± 0.32 0.87 ± 0.10 4
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.73 ± 0.29 0.93 ± 0.05 0.92 ± 0.04 0.94 ± 0.01 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.96 ± 0.01 0.99 ± 0.00 0.94 ± 0.02 0.97 ± 0.00 5
Decision Tree

Fraud: 324; No Fraud: 324

In the case of the Fraud Detection Dataset, the performance varies considerably, ranging

from low to exceptional scores. The most notable method combines ANOVAF-value with Random

Forest and Decision Tree, yielding nearly perfect scores. This suggests that even with a reduced

sample size, the selected features are sufficient to capture the essential characteristics of the data.

The models generally incorporate 4 to 5 features, indicating a balanced approach to preserving

essential information while addressing class imbalance.

The Breast Cancer Dataset has shown exceptional responsiveness to all hybrid configura-

tions, with various methods achieving perfect scores in multiple areas. These methods often utilize

a minimal number of features, as few as one, which highlights the dataset’s strong predictive signals

and the effectiveness of isolating them even with a significant reduction in data volume.

The Churn Dataset’s performance is generally moderate, with the best results coming from

a configuration that incorporates Information Gain with Logistic Regression and Ridge Regression.

This method outperforms others slightly, indicating that it more effectively aligns feature selection
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Table 3.31: Hybrid-NearMiss-1 Results for Breast Cancer Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.63 ± 0.02 0.67 ± 0.02 0.63 ± 0.02 0.67 ± 0.02 3
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 5
Decision Tree

Healed:42,588; Not Healed: 42588

Table 3.32: Hybrid-NearMiss-1 Results for Churn Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.60 ± 0.04 0.60 ± 0.04 0.58 ± 0.06 0.62 ± 0.02 4
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.61 ± 0.01 0.65 ± 0.01 0.69 ± 0.03 0.76 ± 0.02 5
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.57 ± 0.02 0.56 ± 0.02 0.54 ± 0.04 0.63 ± 0.05 5
Decision Tree
Churn: 1,300; No Churn: 1,300

with the challenges of predicting churn. Typically, 4 to 5 features are used, suggesting the need to

capture a broader range of data characteristics to manage the inherent complexity and variability

of churn predictors.

The Hybrid-NearMiss-1 technique emphasizes the crucial importance of matching the appropriate

feature selection methods with suitable undersampling techniques to optimize predictive perfor-

mance. The success of these hybrid methods varies significantly depending on the dataset’s charac-
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teristics, which highlights the need for a nuanced, tailored approach when dealing with imbalanced

data across different domains. The number of features selected plays a pivotal role, with the opti-

mal count varying depending on the dataset and the specific interaction of features and response

variables.

3.9 Hybrid - Nearmiss-3 Analysis

The Hybrid-NearMiss-3 method, which integrates NearMiss-3 undersampling and selective

feature selection, exhibits varying levels of efficacy across datasets like Heart Attack, Fraud De-

tection, Breast Cancer, and Churn. The distinctive characteristics of each dataset contribute to the

outcomes, highlighting the importance of customized hybrid approaches.

The Heart Attack Dataset below (3.33) demonstrates superior results with Information Gain, Logis-

tic Regression, and Ridge Regression, achieving an F1 score and ROC-AUC of 0.94. This approach

effectively utilizes only one feature, showcasing its ability to identify crucial predictive attributes

while significantly reducing data. Other methods display moderate performance, with F1 scores

and ROC-AUCs ranging from 0.62 to 0.65, indicating a variable compatibility between the under-

sampling method and the remaining features.

Table 3.33: Hybrid-NearMiss-3 Results for Heart Attack Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.63 ± 0.00 0.65 ± 0.00 0.64 ± 0.01 0.70 ± 0.01 5
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.94 ± 0.00 0.74 ± 0.00 0.94 ± 0.00 0.74 ± 0.00 1
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.62 ± 0.02 0.71 ± 0.01 0.62 ± 0.02 0.71 ± 0.01 5
Decision Tree

Heart Attack: 9,407; No Heart Attack: 9,407
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Table 3.34: Hybrid-NearMiss-3 Results for Fraud Detection Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.98 ± 0.01 0.92 ± 0.01 0.99 ± 0.01 0.93 ± 0.02 4
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.76 ± 0.19 0.78 ± 0.15 0.59 ± 0.34 0.69 ± 0.205 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.85 ± 0.02 0.88 ± 0.02 0.80 ± 0.03 0.85 ± 0.02 5
Decision Tree

Fraud: 324; No Fraud: 291

The FraudDetectionDataset exhibits considerable performance variability. TheChi-Squared

Test combined with RFE and LASSO Regression yields nearly perfect scores, while other meth-

ods, particularly Information Gain with Logistic Regression and Ridge Regression, demonstrate

more inconsistent results. This suggests that while some feature combinations maintain predictive

strength after undersampling, others may lack sufficient complexity, leading to unreliable perfor-

mances.

Table 3.35: Hybrid-NearMiss-3 Results for Breast Cancer Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 3
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.22 ± 0.00 0.59 ± 0.05 0.22 ± 0.00 0.59 ± 0.05 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 1
Decision Tree

Healed:42,588; Not Healed: 1,483
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The Breast Cancer Dataset shows that almost all methods perform exceptionally well, with

many achieving perfect or nearly perfect metrics. However, the combination of Information Gain

with Logistic Regression and Ridge Regression significantly underperforms, highlighting potential

issues with overly simplistic feature selection in complex datasets.

Table 3.36: Hybrid-NearMiss-3 Results Churn Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.68 ± 0.01 0.69 ± 0.01 0.76 ± 0.01 0.80 ± 0.01 5
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.69 ± 0.01 0.71 ± 0.01 0.76 ± 0.01 0.80 ± 0.01 5
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.69 ± 0.01 0.69 ± 0.01 0.76 ± 0.02 0.80 ± 0.02 5
Decision Tree

Churn: 1,300; No Churn: 1,300

According to the Churn Dataset, the hybrid methods demonstrate fairly uniform perfor-

mance, with F1 scores and ROC-AUCs typically falling within the range of 0.68 to 0.76. This

uniformity suggests that while NearMiss-3 may provide valuable insights into churn behaviors, it

does not significantly improve predictive accuracy due to the intricate nature of churn patterns. The

Hybrid-NearMiss-3 method highlights the importance of selecting the appropriate feature selection

and undersampling techniques for each dataset. It demonstrates that while some datasets can be

effectively modeled with a reduced feature set, others require a more nuanced approach to maintain

predictive accuracy.
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The chosen number of features, ranging from 1 to 5 in these studies, plays a crucial role in

balancing the reduction in data volume with the need to capture essential information for accurate

model predictions. This methodological approach offers a strategic way to address class imbalances

and refine input data, although its success varies significantly depending on the specific character-

istics and complexities of each dataset.

3.10 SMOTE-TOMEK Analysis

The SMOTE-TOMEK hybrid approach, which seeks to address the challenges of imbal-

anced datasets by integrating Synthetic Minority Over-sampling Technique (SMOTE) with Tomek

links for the purpose of cleaning overlapping samples, has been employed on datasets pertaining

to Heart Attack, Fraud Detection, Breast Cancer, and Churn. The application of this approach to

these datasets has yielded varying levels of improvement, demonstrating the nuanced impact of this

method on disparate types of data.

Table 3.37: SMOTE-TOMEK Results for Heart Attack Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.82 ± 0.00 0.83 ± 0.01 0.83 ± 0.00 0.84 ± 0.00 5
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.67 ± 0.00 0.77 ± 0.00 0.67 ± 0.00 0.77 ± 0.00 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.86 ± 0.01 0.83 ± 0.00 0.85 ± 0.01 0.83 ± 0.00 5
Decision Tree

Heart Attack: 162,808; No Heart Attack: 162,808

For the Heart Attack Dataset, the SMOTE-TOMEKmethod demonstrates considerable suc-

cess, particularly when combined with ANOVA F-value and Random Forest, achieving an F1 score

of 0.86 and an ROC-AUC of 0.83. This suggests strong compatibility between the selected features

and the model’s ability to generalize from the oversampled and cleaned data. Additionally, Method
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1, which utilizes Chi-Squared Test combined with RFE and LASSORegression, also performs well,

indicating robustness across different feature selection techniques.

Table 3.38: SMOTE-TOMEK Results for Fraud Detection Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.99 ± 0.00 0.96 ± 0.02 0.99 ± 0.00 0.96 ± 0.02 4
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.97 ± 0.01 0.97 ± 0.02 0.96 ± 0.05 0.98 ± 0.01 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.99 ± 0.02 0.99 ± 0.01 0.97 ± 0.02 0.99 ± 0.02 5
Decision Tree

Fraud: 198,284; No Fraud: 198,284

For the Fraud Detection Dataset, almost all configurations achieve near-perfect scores, with

the standout configuration involving ANOVA F-value and Random Forest, highlighting the effec-

tiveness of SMOTE-TOMEK in handling highly imbalanced fraud data when combined with pow-

erful feature selection and ensemble methods.

Table 3.39: SMOTE-TOMEK Results for Breast Cancer Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 4
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.63 ± 0.02 0.66 ± 0.02 0.63 ± 0.02 0.67 ± 0.01 2
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00 1.00 ± 0.00 5
Decision Tree

Healed:66,637; Not Healed: 66,637
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For the Breast Cancer Dataset, methods integrating Chi-Squared Test with RFE and LASSO

Regression, and ANOVA F-value with Random Forest, achieve a perfect score. This reflects the

dataset’s responsiveness to oversampling in conjunction with effective noise reduction through

Tomek links. However, the Information Gain with Logistic Regression and Ridge Regression

method underperforms compared to others, possibly indicating an oversimplification or loss of

crucial information despite the hybrid technique.

Table 3.40: SMOTE-TOMEK Results for Churn Dataset

RF ANN

Technique Overall F1 Score ROC-AUC Overall F1 Score ROC-AUC Features

Method 1
Chi-Squared Test +
RFE + 0.79 ± 0.01 0.76 ± 0.01 0.83 ± 0.01 0.76 ± 0.02 5
LASSO Regression
Method 2
Information Gain +
Logistic Regression + 0.78 ± 0.01 0.74 ± 0.01 0.83 ± 0.01 0.76 ± 0.01 5
Ridge Regression
Method 3
ANOVA F-value +
Random Forest + 0.78 ± 0.01 0.74 ± 0.01 0.83 ± 0.01 0.75 ± 0.02 5
Decision Tree

Churn: 3,429; No Churn: 3,429

The results achieved on the Churn Dataset can be considered moderately successful, with

F1 and ROC-AUC scores hovering around 0.78 to 0.83. The SMOTE-TOMEK method proves to

be particularly effective in enhancing the classifier’s ability to predict churn when the class dis-

tribution is skewed. In this case, five features are consistently used, striking a balance between

maintaining sufficient information for prediction accuracy and managing the increased data vol-

ume resulting from SMOTE.

Across various datasets, SMOTE-TOMEK emerges as a valuable strategy for improving classifi-

cation performance in imbalanced situations. The selection of features, ranging from one to five,

plays a crucial role in determining the efficacy of the approach, highlighting the importance of in-

tegrating feature selection with oversampling and cleaning techniques. This approach underscores

76



the significance of customized solutions in data science, where the choice and configuration of

methods must closely align with the specific data characteristics and desired outcomes.
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CHAPTER IV

CONCLUSION AND DISCUSSION

The study examines in depth the relationship between various feature selection techniques

and class rebalancing strategies, with an aim to enhance the performance of Random Forest (RF)

and Artificial Neural Network (ANN) models. This examination directly supports the research’s

goals, yielding vital insights into how these methods affect model accuracy and dependability

across different datasets. The study’s results indicate that the effectiveness of combining feature

selection methods like Chi-Squared Test, Information Gain, and ANOVA F-value with class rebal-

ance techniques such as SMOTE, ADASYN, and NearMiss varies considerably across different

datasets. For instance, the NearMiss technique typically performed poorly due to potential data

loss, while methods like SMOTE-TOMEK and Hybrid-ADASYN frequently improved both ac-

curacy and ROC-AUC scores. This variability highlights the importance of selecting feature se-

lection and rebalancing methods based on the dataset’s specific characteristics and the severity of

its class imbalance. The study’s analysis suggests that there is no single combination of feature

selection and class rebalancing methods that consistently perform best across all datasets or predic-

tion scenarios. For instance, the Breast Cancer dataset showed strong performance with nearly all

combinations, indicating robust underlying predictive signals that withstand various data manipula-

tions. In contrast, the more complex pattern recognition required for the Churn dataset necessitated

more nuanced method configurations, demonstrating moderate performance improvements. The

study’s results emphasize the importance of selectively choosing feature selection and rebalancing

techniques based on the dataset’s specific features and the severity of its class imbalance. The find-

ings indicate that no single approach is suitable for all situations, and practitioners must carefully

evaluate and configure these methods to achieve optimal results. This study proposes innovative
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hybrid approaches that combine multiple feature selection and class-rebalancing techniques. These

methods aim to enhance the quality of the dataset by utilizing the strengths of each technique. For

example, Hybrid-SMOTE methods improve data balance and reduce noise through Tomek links,

thereby enhancing the quality of the training set and, subsequently, the performance of the model.

This approach is particularly effective, demonstrating how strategic combinations can overcome

the limitations of individual methods. The varied impacts on RF and ANN models highlight that

while RF may respond acutely to feature selection due to its mechanism of random subspace se-

lection, ANNs often benefit more significantly from balanced datasets provided by sophisticated

oversampling methods. The differential responses underscore the need for tailored strategies in

predictive modeling, contingent upon the model type and specific data dynamics at play. This

study achieves its objectives by emphasizing how the strategic integration of feature selection with

class rebalancing can profoundly affect machine learning outcomes. The findings advocate for a

context-driven approach in method selection, promoting the use of hybrid techniques as a forward-

thinking solution for addressing class imbalance in predictive modeling. These insights encourage

practitioners to consider both the intrinsic data characteristics and the specific requirements of their

applications to maximize the efficacy and performance of their models.

4.1 Study Limitations and Further Research

This groundbreaking research, which demonstrates the intricate use of various data-driven

techniques for feature selection and class rebalancing, has limitations that warrant further explo-

ration in future studies:

• The study was hindered by the restricted size of the GPU, which may have confined the in-

tricacy and scalability of the models. Although the study managed to complete a significant

number of iterations (4,000), the utilization of more potent computational tools such as a su-

percomputer could potentially improve the model’s capacity to learn from a more extensive

and intricate characteristic set.

This could facilitate more robust training, particularly when applying computationally de-
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manding techniques like deep learning in ANNs or extensive hyperparameter adjustment in

RF models.

• The constraint of 4,000 iterations might have limited the extent of learning, especially in

situations involving artificial neural networks or intricate ensemble techniques that profit

from lengthier training sessions. Elongated iterations may aid in attaining a more robust

convergence of learning algorithms, particularly in hybrid models that incorporate multiple

layers of data manipulation, such as SMOTE-TOMEK and Hybrid-ADASYN.

• Although the study used F1 Score and ROC-AUC to assess themodel’s performance, it would

be beneficial for future studies to evaluate the precision and recall for each feature in greater

detail. This approachwould enable researchers to determine not only the overall performance

of the model, but also how well it performs for each class specifically. This is especially

important in imbalanced datasets, where the minority class may be of greater interest, and

precision and recall can provide valuable insights into the model’s performance regarding

false positives and false negatives.

• Additional research could investigate the individual influence of each feature when combined

with various class rebalancing strategies. This would entail extensive statistical analyses

or machine learning feature importance assessments to determine which features are most

predictive and how their representation affects overall model accuracy. This approach could

be particularly beneficial in refining feature engineering techniques and enhancing model

interpretability and performance.
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