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ABSTRACT

Kaylor, Patrick J., ENUMERATION OF LEVEL-k HYPERTRIANGULATIONS. Master of Sci-

ence (MS), August, 2024, 30 pp., 1 table, 31 figures, 5 references.

Triangulations are a classical object in discrete and computational geometry that finds it

uses in many other fields, including numerous applications. In this thesis we approach the question

of enumerating all hypertriangulations of a point set, the family of tilings introduced by Olarte

and Santos in 2022 as induced projections of hypersimplices. Unfortunately, the usual approach to

enumeration of trinagulations using flips may not work for hypertriangulations as flip-connectivity

is only conjectured for that family even in the two-dimensional case. As a result, we develop a

DFS-based algorithm and present its Python implementation that enumerates all hypertriangulations

of small point sets for all feasible levels k.
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CHAPTER I

INTRODUCTION

The concept of triangulations has been an important topic in both applied and pure mathemat-

ics since Euclid, and has been more formalized since at least the 19th century. Hypertriangulations

are a generalization of triangulations introduced by Olarte and Santos in [3]. For a given point set

of n points, a parameter k defines level of each hypetriangulation; we give formal definitions in

Chapter III. The purpose of this study is to develop a computer program to find and enumerate

level-k hypertriangulations for a particular point configuration, denoted as A. This is the first study

to find and enumerate k-level triangulations where k = 3,4 or more. To find and enumerate these

hypertriangulations, we developed a tool based on the Depth First Search (DFS) algorithm. We also

present some of our results for specific point sets.

Before we address hypertriangulations, however, we shall introduce triangulations and

discuss how triangulations are enumerated in the remainder of this chapter and the next. Then we

review hypertriangulations. Next, we discuss our algorithm. Finally, we display some of the results

from the algorithm.

Definition 1 (Triangulations). A triangulation of a point configuration A in Rd is a collection of

d-simplices. The points of these vertices are in A. The following two properties must be satisfied:

(a) The union of all the simplices must be equal conv(A), the convex hull of A.

(b) Any pair of simplices must intersect in a common face; this common face could be the

empty space.

Triangulations have several useful applications. First, they are used in computer graphics,

as most 3-Dimensional models are rendered as a mesh of triangles. Second, triangulations can
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improve numerical stability and accuracy in numerical analysis and simulations. This is because

triangulations allows us to create meshes that can capture our domain of interest. In this instance,

triangles can better conform to irregular boundaries than other shapes, providing us with greater

accuracy. Next, triangulations are useful in Geographic Information Systems (GIS), since they can

create structures such as Triangulated Irregular Networks (TINs) that represent terrain surfaces

well. This is important in spatial analyses such as contouring, slope analysis and 3-Dimensional

visualization.

Further, enumerating triangulations is a classic topic in discrete geometry, numerical analysis,

and computer science [5].
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CHAPTER II

TRIANGULATIONS

We now more fully explain a given set’s family of triangulations.

Definition 2 (Convex set). A set C is convex if any line segment joining two points in C lie entirely

in C.

Definition 3 (Convex Hull). The convex hull of a set of points A is the smallest convex set containing

A. We denote the convex hull by conv(A)

Simply put, the building blocks of every triangulation are its vertices, edges, and the

triangles themselves. For the set A = {v1, . . . ,vn}, the points vi are the triangles’ vertices within

this triangulation. Single triangles within a triangulation are spanned by three vertices, vi,v j,vk. We

also assume that the edges, ei j,e ji, are not ordered and represent the same edge between vi and v j.

A triangulation also has the following requirements [4]. First, no triangle in a triangulation

is degenerate; for any (i, j,k) in a set of triple points P△T , ai,a j, and ak cannot be collinear. Next,

the interiors of any two triangles in a triangulation cannot intersect, and their boundaries can only

intersect at a common edge or vertex. Further, triangulations must be hole-free.

For example, let A be a set of 7 points where v6 and v7 are inside the convex hull of

the other points. A valid triangulation could exclude v6, using only v1,v2,v3,v4,v5, and v7, thus

illustrating non-intersecting interiors and boundaries, and demonstrating compliance with the

hole-free requirement (Figure 1).

As a second example, consider the family of all triangulations of a convex polygon Cn. Let

Cn denote a convex polygon with n vertices. These vertices are numbered clockwise from 1 to n.

A polygon’s number of triangulations is not contingent on the vertices’ coordinates. Any n− 3
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Figure 1: Triangulation of 7 Points Excluding Vertex 6

diagonals not crossing one another will produce a triangulation. Further, for n = 2 we use triangles,

and for specific case of n points in the convex position, every triangulation can be obtained by

choosing n−3 non-intersecting diagonals.

Beyond the trivial case, where a triangle has only one triangulation, a triangulation is never

unique. This presents complications for enumeration. For example, a quadrilateral has 2 possible

triangulations, a pentagon has 5, a hexagon has 14, and a heptagon has 42. This complexity affects

the counting of distinct triangulations for larger polygons. The visualization in Figure 2 helps

illustrate these differences, where we can see the five different possible trianglulaions in a pentagon.

This leads us to the proposition that a convex n-gon has a specific number of triangulations,

denoted tn, which is the Catalan number. Catalan numbers are a sequence of natural numbers that

have applications in various combinatorial problems, one of which is counting the number of ways

to divide a polygon into triangles with non-crossing diagonals[1].

The correlation between Cn and tn substantiates the recursive strategies employed in practical

computations of polygon triangulations. This leads us to the following proposition. [1].

Proposition II.1. If we set tn = 2, then the sequence of numbers t2, t3, t4, ... satisfies the following

recurrence relation: tn = t2tn−1 + t3tn−2 + ...+ tn−1t2

4



Figure 2: Pentagon Triangulations

Theorem 2.5 is used to calculate these recurrences with triangulations.

Theorem II.2. The number tn of triangulations of a convex n-gon equals

1
n−1

(
2n−4
n−2

)

Flips are used to examine how triangulations change, and flip-connectivity provides an effi-

cient method to create algorithms to construct triangulations. Figure 2 provides a clear visualization

of what we mean by flips. In this example, we have our original triangles, ABC and BCD, within a

quadrilateral. The triangle begins at BC, flips to AD, then back to BC, and again to AD.

Figure 3: The First Two Quadrilateral Triangulations

For a convex polygon, the number of flips of a triangulation are related to Theorem 2.5 [1].

There are two types of flips. The first type of flip substitutes one diagonal of a convex quadrangle by

the other (seen in Figure 3). The second type of flip, an example is shown in Figure 4, subdivides a

5



triangle into three by adding a vertex or coarsens by removing a degree-3 vertex [2].

Figure 4: A Flip Subdividing a Triangle

A usual approach to the enumeration of triangulations of a given point set uses flips as a

technique to obtain all such triangulations. Hypertriangulations can extend triangulations’s theoreti-

cal concepts, and it is to them that we now turn. Our goal is thus to enumerate hypertriangulations

and we use DFS as flips are not guaranteed to accomplish this.
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CHAPTER III

HYPERTRIANGULATIONS

We now move to the main topic for our project: hypertriangulations. First, however, we

need to introduce several preliminary definitions. Define the index set [n] = {1,2, . . . ,n}. An integer

k, referred to as the level, is fixed between 1 and n−1. Let A = {a1,a2, . . . ,an} represent a set of

n distinct points in R2. For any subset I ⊆ [n], let aI = ∑i∈I ai denote the vector sum of the points

indexed by I.

Next, we write ∆n = conv{e1,e2, . . . ,en} ⊆ Rn for the standard (n− 1)-simplex where

e1,e2, . . . ,en are vectors of the standard basis in Rn. Then, more generally, ∆
(k)
n = conv{eI | I ⊆

[n], |I| = k} for the k-th standard (n−1)-dimensional hypersimplex. Fix a parameter k ∈ [n−1],

and define A(k) = {aI | I ⊆ [n], |I|= k} as the set of k-fold sums.

Consider all partial triangulations of A(k), defined as the decompositions of the convex hull

of A(k) into triangles, where each triangle is formed by connecting subsets of points with straight

edges. Assume temporarily that no three points in A(k) are collinear. A(k) references the set of k-fold

sums of the points in A.

The projection of ∆n on A can be extended to a projection of ∆
(k)
n that gives rise to hypertri-

angulations by considering appropriate faces of the hypersimplex. We study the hypertriangulations

of a finite set of n points in the plane that are induced by the projections of an (n−1)-dimensional

hypersimplex to the plane [2]. We shall more formally define a hypertriangulation in a simpler way

below using specific edges and triangles that are available.

Definition 4. A level-k hypertriangulation of A is a partial triangulation of A(k) such that:

(V) every vertex is of the form aI , where |I|= k,
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(E) every edge connects two vertices, aI and aJ , with |I ∩ J|= k−1.

From this definition, we can further define white triangles and black triangles, as the

condition on the endpoints of every edge applies to the vertices of every triangle:

Definition 5. Let ∆ = aIaJaK be a triangle whose vertices and edges satisfy conditions (V) and (E).

Then:

If |I ∩ J∩K|= k−1, ∆ is called a white triangle,

If |I ∩ J∩K|= k−2, ∆ is called a black triangle.

White triangles are possible when 1 ≤ k ≤ n− 2, and black triangles are possible when

2 ≤ k ≤ n−1. For a triangulation T , denote W (T ) and B(T ) as the sets of white and black triangles,

respectively.

As an example, for n = 4 points in R2, we analyze level-k hypertriangulations for k = 1,2,3.

In the general case, there are only two combinatorially distinct configurations of four points:

• Vertices of a convex quadrangle,

• Vertices of a triangle with the fourth point positioned internally.

We label these as the convex configuration and the non-convex configuration, respectively.

We can visualize this in Figure 5, where we have the two configurations of four points and

their hypertriangulations. This includes the convex configuration in the top row and the non-convex

configuration in the bottom row. From left to right we have the two level-1, level-2, and level-3

hypertriangulations for each configuration. Notice that the squares in the upper-middle can be more

general parallelograms so the respective central fifth vertices are not at the same geometric location.

The convex hexagons in the lower middle are not necessarily regular either, but they are centrally

symmetric [2].

Moreover, we can see the following with each level.

Level k = 1: The vertices coincide with the original points, and all triangles formed are white.
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Figure 5: Two configurations of four points in R2 and their Hypertriangulations

Level k = 2: Comprising six points, each represented as the sum of two points from the set A.

Under a convex configuration of A, the convex hull of A(2) forms a parallelogram, with the

remaining two points residing inside this parallelogram. This configuration allows only two

hypertriangulations, each selecting one of the two internal points as a vertex and partitioning

the parallelogram into two white and two black triangles. Conversely, if A is in a non-convex

configuration, the points of A(2) align as the vertices of a centrally symmetric convex hexagon,

which again permits only two hypertriangulations.

Level k = 3: This is similar to the scenario at k = 1, where all triangles are now black.

We build upon the work of Edelsbrunner, et al. [2] and build our Depth First Search

algorithm for every generic point set.
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CHAPTER IV

ALGORITHM

The aim of this project is to generate a list of triangles, and their graphic forms, from a set

of points for any input set and level k ≥ 1. The expected output consists of the total number of

hypertriangulations and triangles in each convex and non-convex hull. As previously discussed,

flip-connectivity is unresolved in higher dimensions, so we do not use flips to find all triangulations

as we do in lower dimensions.

To accomplish our task, the project used a form of a Depth First Search algorithm. Depth

First Search (DFS) is an algorithm used to traverse or search through tree or graph data structures.

Originating with the work of Charles Pierre Trémaux in the 19th century, DFS is particularly

effective in maze-solving contexts.

Depth First Search is an algorithm that explores a graph by starting at a root node and

traversing as far along each branch as possible before backtracking. This traversal method uses a

stack to keep track of discovered nodes and manage backtracking. DFS requires space proportional

to the number of vertices to maintain the stack of vertices.

We use the example shown in Figure 6 to illustrate how DFS operates on a tree. A depth-first

search starts at node A. The algorithm assumes that the left edges in the shown tree are chosen

before the right edges. The algorithm also assumes that the search remembers previously visited

nodes and will not repeat them. Therefore, it will visit the nodes in the following order: A, B, D, F,

E, C, G.

While DFS works with both graphs and trees, a tree is a special case of a graph without

cycles, and with a single unique path from the root to any other node. This allows for a more

straightforward traversal approach, as it is done in our example.
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A

B C E

D F G

Figure 6: Tree visualization of Depth First Search

In summary, Depth First Search (DFS) is used to explore the graph maximally along each

branch before backtracking. This traversal uses a stack to monitor nodes and backtracking. In our

context, DFS helps enumerate all hypertriangulations efficiently.

Our algorithm’s task is to create, analyze, and check the relationships between generated

triangles based on a set of input points, while considering specific “hypertriangulation rules” (see

Table 4.1). These rules determine acceptable geometric arrangements for the triangles relative

to one another. We next review the code’s key components and how the hypertriangulation rules

are incorporated. For this project, the programming language python was used. Moreover, our

hypertriangulation rules work as conditions for DFS, which checks which triangles can be added.

Table 4.1: Hypertriangulation Rules

Rule 1: Two Coinciding Vertices – The labels of these vertices coincide,
and the third vertices are on different sides of the common line.
Rule 2: One Common Vertex – The labels are the same, and the triangles
do not intersect.
Rule 3: The triangles do not intersect.

First, standard python libraries were used for the project: numpy for numerical operations,

itertools for combinatorics, shapely to address geometric operations, and matplotlib for plotting.

In addition, the time function is used to track performance. Next, specific functions were created.

A determinant function computes the determinant to determine the orientation of three points and

if they are collinear. A function calculates the area of a triangle using the shoelace theorem. The
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Shoelace Theorem, also known as Gauss’s area formula for polygons, calculates the area of a

simple polygon whose vertices are defined in the Cartesian coordinate plane. It is useful as it

easily determines the area from the coordinates of the vertices without needing to perform more

complex integration or decomposition. To compute the area A of a simple polygon with vertices

(x1,y1),(x2,y2), . . . ,(xn,yn) using the Shoelace Theorem we have:

A =
1
2

∣∣∣∣∣ n

∑
i=1

(xiyi+1 − yixi+1)

∣∣∣∣∣
where xn+1 = x1 and yn+1 = y1 to ensure that the polygon is closed by connecting the last vertex

back to the first.

After we import our libraries, we generate our triangles from our point configuration A.

Triangles are generated based on subsets of points. The code creates ’white’ and ’black’ triangles

based on different criteria of subset selection and point summation. Then a hypertriangulation matrix

is created to track valid relationships between all pairs of triangles based on the aforementioned

hypertriangulation rules. A recursive function solve then fits triangles together to cover the area of

the convex hull without violating hypertriangulation rules. This function uses the hypertriangulation

matrix to keep adding triangles that comply with the rules until the area of the convex hull is

matched or candidates are exhausted.

Next, a find subset function generates all combinations of a given set of elements taken n at

a time. The convex hull area function computes the area of the convex hull formed by n-fold sums

of subsets of points.

helper functions determine if hypertriangulations exist within a set of points. A function

was generated to calculate and store each triangle’s area. Then the convex hull area function is

computed, which calculates the convex hull of k-fold sums.

We next implement our hypertriangulation rules function; the centerpiece for implementing

the specified triangulation rules. Each rule is addressed in the following way. First, we look for two

coinciding vertices. When two triangles share two vertices, their third vertices must be on opposite

sides of the line segment joining these shared vertices. This is checked using the determinant to
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ensure they lie on opposite sides (cross-product signs will differ). Next, we check for one common

vertex. If triangles share only one vertex, they must not intersect beyond this shared vertex. This is

checked by ensuring the intersection of the two triangles is exactly the shared point, using geometric

intersection functions from Shapely. Finally, we check for no common vertices. Triangles that do

not share any vertices should not intersect. This rule is checked using the intersection method to

confirm that there is no overlapping area between the triangles. Additionally, each vertex of A(k)

has a label, which must be considered during these checks.

Finally, the time taken for the entire operation is measured, to assess the algorithm’s

efficiency. See Figure 7 for visualization of our algorithm.

Figure 7: Algorithm Flowchart

The code aims to address problems related to the enumeration of hypertriangulations. This

is relevant in theoretical studies of geometric structures and their properties.
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CHAPTER V

RESULTS

The computational results verify our theoretical expectations when k = 1 and k = 2. In our

first example, we look at points in convex position for n = 5,6,7 and k = 1,2. For k = 1 we get

Catalan numbers, as expected, and for k = 2 we verify the numbers from Olarte and Santos[3]. Both

results confirm previously known data. See Figures 8, 9, 10, 11, 12, and 13 below. Note that not all

sums are included in a specific hypertriangulation. For Figures 7, 11 and 13, we display the actual

sum points, and not just a point. We only do this for these three Figures, as graphically it is less

appealing. Moreover, in these three Figures, P = points and S = sums.

Next, we examined cases where n = 4 and k = 1,2,3. This time, however, we look at points

that are in a convex position and points that are not in a convex position. For the convex position, see

Figures 14, 15 and 16. For those points that are not in a convex position, see Figures 17, 18 and 19.

These hypertriangulations are from Edelsbrunner, et al [2], and are therefore known, demonstrating

that the algorithm works in these cases.

In our next example we use n = 6, and k = 2,3,4. We look at a variety of cases with different

point locations to more fully examine how our tool works with n=6. In the previous cases, the

results would be the same regardless of what the coordinates happen to be. In the following cases,

however, the results are contingent upon the coordinates provided.

In our first case, we look at a convex hexagon, with initial coordinate points ([0, 0], [1,

0], [2, 1], [2, 2], [1, 3], [0, 2]).Where k = 2, we have 60 white triangles, 20 black triangles, and

70 hypertriangulations (Figure 20). Where k = 3, we have 60 white and black triangles, and 148

hypertriangulations (Figure 21). Finally, when k = 4, we have 20 white triangles, and 60 black

triangles, and 70 hypertriangulations (Figure 22).
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Figure 8: Hypertriangulations where n = 5 and k = 1. The point set has 10 White Triangles,
0 Black Triangles, and 5 Hypertriangulations, one of which is displayed. This Figure shows a
hypertriangulation and the original points.

Our next case is of a convex pentagon with a point inside. Our initial coordinates are ([0, 0],

[2, 0], [3, 1], [2, 3], [1, 2], [1, 1]). Here, [1, 1] is inside. When k = 2, we have 60 white triangles, 20

black triangles, and 106 hypertriangulations (Figure 23). Where k = 3, we have 60 black and white

triangles, with a total of 240 hypertriangulations, and when k = 4 we have 20 black triangles, 60

white triangles and 106 hypertriangulations ((Figure 24 and Figure 25, respectively).

Next, we look at a quadrilateral with two points inside the polygon. The initial coordinates

are ([0, 0], [4, 0], [4, 4], [0, 4], [2, 1], [2, 3]), where [2, 1], and [2, 3] are inside the polygon. When

k = 2, we have 60 white triangles and 20 black triangles, and 130 hypertriangulations (Figure 26).

When k = 3, we have 60 white triangles and 60 black triangles, and 320 hypertriangulations (Figure

27). When k = 4, we have 20 white triangles and 60 black triangles, and 130 hypertriangulations

(Figure 28).
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Figure 9: Hypertriangulations where n = 5 and k = 2. The point set has 20 White Triangles, 10
Black Triangles, and 5 Hypertriangulations, one of which is displayed. Notice that not all sums
are included in the hypertriangulations, and some are included at the same point; this will not be
mentioned in later figures.

Our final case involves a triangle with three points inside. Our initial coordinates are ([0, 0],

[4, 0], [2, 7], [2, 1], [1, 3], [3, 3]), where [2, 1], [1, 3], and [3, 3] are inside the triangle. When k = 2,

we have 60 white triangles and 20 black triangles, and 220 hypertriangulations (Figure 29). When

k = 3, we have 60 white triangles and 60 black triangles, and 416 hypertriangulations (Figure 30).

When k = 4, we have 20 white triangles and 60 black triangles, and 220 hypertriangulations (Figure

31).

These results show that our model works beyond the previously proven cases where k = 1,2,

to include results where k = 3,4.
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Figure 10: Hypertriangulations where n = 6 and k = 1. The point set has 20 White Triangles,
0 Black Triangles, and 14 Hypertriangulations, one of which is displayed. This Figure shows a
hypertriangulation and the original points.

Figure 11: Hypertriangulations where n = 6 and k = 2. The point set has 60 White Triangles, 20
Black Triangles, and 70 Hypertriangulations, one of which is displayed.
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Figure 12: Hypertriangulations where n = 7 and k = 1. The point set has 35 White Triangles,
0 Black Triangles, and 42 Hypertriangulations, one of which is displayed. This Figure shows a
hypertriangulation and the original points.

Figure 13: Hypertriangulations where n = 7 and k = 2. The point set has 140 White Triangles, 45
Black Triangles, and 574 Hypertriangulations, one of which is displayed.

18



Figure 14: Hypertriangulations in the convex position where n=4 and k = 1. The point set has 4
White Triangles, 0 Black Triangles, and 2 Hypertriangulations, one of which is displayed.

l[ht]

Figure 15: Hypertriangulations in the convex position where n=4 and k = 2. The point set has 4
White Triangles, 4 Black Triangles, and 2 Hypertriangulations, one of which is displayed.
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Figure 16: Hypertriangulations in the convex position where n=4 and k = 3. The point set has 4
White Triangles, 2 Black Triangles, and 2 Hypertriangulations, one of which is displayed. This
shows the hypertriangulation and the original points.

Figure 17: Points not in the convex position where n=4 and k = 1. The point set has 4 White
Triangles, 0 Black Triangles, and 2 Hypertriangulations, one of which is displayed.
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Figure 18: Points not in the convex position where n=4 and k = 2. The point set has 4 White
Triangles, 8 Black Triangles, and 2 Hypertriangulations, one of which is displayed.

Figure 19: Points not in the convex position where n=4 and k = 3. The point set has 0 White
Triangles, 4 Black Triangles, and 2 Hypertriangulations, one of which is displayed.
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Figure 20: Hypertriangulations of a Convex Hexagon with n = 6 and k = 2. The point set has 60
White Triangles, 20 Black Triangles, and 70 Hypertriangulations, one of which is displayed.

Figure 21: Hypertriangulations of a Convex Hexagon with n = 6 and k = 3. The point set has 60
White Triangles, 60 Black Triangles, and 148 Hypertriangulations, one of which is displayed. In
this graph, and for future graphs, we only display the selected hypertriangulations and their points
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Figure 22: Hypertriangulations of a Convex Hexagon with n = 6 and k = 4. The point set has 60
White Triangles, 20 Black Triangles, and 70 Hypertriangulations, one of which is displayed.

Figure 23: Hypertriangulations of a Convex Pentagon with n = 6 and k = 2. The point set has 60
White Triangles, 20 Black Triangles, and 106 Hypertriangulations, one of which is displayed.
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Figure 24: Hypertriangulations of a Convex Pentagon with n = 6 and k = 3. The point set has 60
White Triangles, 60 Black Triangles, and 240 Hypertriangulations, one of which is displayed.

Figure 25: Hypertriangulations of a Convex Pentagon with n = 6 and k = 4. The point set has 20
White Triangles, 60 Black Triangles, and 106 Hypertriangulations, one of which is displayed.
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Figure 26: Hypertriangulations of a Quadrilateral with two points inside and n = 6 and k = 2. The
point set has 60 White Triangles, 20 Black Triangles, and 130 Hypertriangulations, one of which is
displayed.

Figure 27: Hypertriangulations of a Quadrilateral with two points inside and n = 6 and k = 3. The
point set has 60 White Triangles, 60 Black Triangles, and 320 Hypertriangulations, one of which is
displayed.
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Figure 28: Hypertriangulations of a Quadrilateral with two points inside and n = 6 and k = 4. The
point set has 20 White Triangles, 60 Black Triangles, and 130 Hypertriangulations, one of which is
displayed.

Figure 29: Hypertriangulations of a Triangle with 3 points inside and n = 6 and k = 2. The point set
has 60 White Triangles, 20 Black Triangles, and 220 Hypertriangulations, one of which is displayed.
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Figure 30: Hypertriangulations of a Triangle with 3 points inside and n = 6 and k = 3. The point set
has 60 White Triangles, 60 Black Triangles, and 416 Hypertriangulations, one of which is displayed.

Figure 31: Hypertriangulations of a Triangle with 3 points inside and n = 6 and k = 4. The point set
has 20 White Triangles, 60 Black Triangles, and 220 Hypertriangulations, one of which is displayed.
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CHAPTER VI

FUTURE RESEARCH

We have shown that our algorithm works where k is equal to 3 or 4. Future research should

first look to better optimize our DFS algorithm. Indeed, in several instances when k was 3, and n

was greater than 6 the code took much longer to run. These algorithms are slow and computational

expensive, and it would be beneficial to improve upon this. In addition, as we pointed out flip-

connectivity has not been shown to work beyond k=2. Future research should also examine methods

to improve upon flips to see if there is a way to incorporate them into algorithms. Finally, effort

should be put into creating a substitute for the python program shapely so that the algorithm can

work with non-integers.
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