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ABSTRACT

Santillan, Francisco D., Rabi Oscillations and Entanglement between two Rydberg Atoms in an

Optical Cavity studied by the Jaynes-Cummings Model and Quantum Circuits on Qiskit. Master

of Science (MS), August 2024, 60 pp., 2 tables, 22 figures, 9 references.

Rydberg atoms are highly excited atoms in which one electron has a large principal quantum

number. Due to their unusual atomic properties, Rydberg atoms are promising building blocks of

two-qubit gates and light-atom quantum interfaces in quantum information processing. For two

atoms at close distance (< 10 mm) the Rydberg blockade prevents the two atoms to be simultaneously

in the excited state whereas this blockade is absent for atoms far apart. Recently, this effect was

used to engineer a quantum processor based on two-dimensional arrays of neutral atoms which

are trapped and transported by optical tweezers. Motivated by these experiments, we study the

light-atom interaction and entanglement of two Rydberg atoms interacting by the Rydberg blockade

in an optical cavity using the Jaynes-Cummings model. We find a rich variety of Rabi oscillations

and entanglement as a function of initial conditions and interaction time, which may be used to

generate two-qubit gates. Furthermore, we develop and simulate a quantum circuit of this system

using Qiskit, an open-source software development kit designed to emulate the operation of a real

Quantum Computer.
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CHAPTER I

INTRODUCTION

1.1 Rydberg Atom and Jaynes Cummings Hamiltonian

Rydberg atoms are highly excited atoms with varying values of n (quantum principal

numbers) that can range from a double-digit number to a three digit one; usually the higher the value

of n, the farther away the electron is from the nucleus [5]. They have become a very interesting

phenomena to study due to their exclusive properties, i.e., the size and dipole scaling as n2 compared

to the radiative lifetime scale and polarizability counterparts, their response to exterior magnetic and

electric fields, the appearance of the well-known Rydberg Blockade [7] due to the latter property.

The Rydberg Blockade (see Figure 1.1) happens when the atom is in a high energy Rydberg state

that physically arise from an electron being in a high orbital; this one property will be the focus due

to its replicability in the state space of our Hamiltonian [4].

We consider two Rydberg atoms inside a single quasi one-dimensional cavity of length L

(See Figure 1.5). The atoms interact with each another and with one mode ω of the quantized field

in the cavity.

Figure 1.1: Rydberg Blockade and atom trap. a) describes the interaction energy as a function of
inter-atomic distance, notice how any individual atom can be excited but not both simultaneously.
b) Two atoms are trapped by an excitation laser independently. Taken from “There can only be one
[8]”.
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Figure 1.2: Linear Cavity. Cubic Volume of linear dimmensions L (Taken from Peter
Lambropoulos, David Petrosyan, Fundamentals of Quantum Optics and Quantum Information
[3])”.

The Hamiltonian of this system has the following Jaynes-Cummings form:

Ĥ = h̄ω â†â+ Ĥ2R + ĤRF (1.1)

where â†, and â are the creation and annihilation operators respectively for the field mode with

frequency ω in the cavity (See Appendix B for derivation). Ĥ2R is the Hamiltonian for 2 interacting

Rydberg atoms (2R) and ĤRF is the interaction of the Rydberg atoms with the quantized field (RF).

For a Rydberg atom we associate the ground state |g⟩ with qubit state |0⟩ and the excited

state |r⟩ with qubit state |1⟩ . The following definitions are introduced:

σ̂+ =
1
2
(σ̂x − iσ̂y) =

 0 0

1 0

 (1.2)

σ̂− =
1
2
(σ̂x + iσ̂y) =

 0 1

0 0

 (1.3)

Note that the signs in both (eq 1.2) and (eq 1.3) are inverted from those of spin raising/lowering

operators, this is due to the definition of the qubit. (see Appendix A).

Obtaining,

σ̂+ |0⟩ =

 0 0

1 0


 1

0

=

 0

1

= |1⟩ , (1.4)

2



σ̂− |1⟩ =

 0 1

0 0


 0

1

=

 1

0

= |0⟩ (1.5)

which implies, σ̂+ |g⟩ = |r⟩ and σ̂− |r⟩ = |g⟩ as desired. The Hamiltonian of a single Rydberg

atom using qubit notation,

ĤR = Eg |g⟩⟨g| + Er |r⟩⟨r|= Eg |0⟩⟨0| + Er |1⟩⟨1| = Eg

 1 0

0 0

 + Er

 0 0

0 1


=

 Eg 0

0 Er

≡

 g 0

0 r


(1.6)

where we write g := Eg and r := Er to simplify notation. Thus,

ĤR =

 g 0

0 r

 = 1
2

 g+ r 0

0 g+ r

 + 1
2

 g− r 0

0 r−g


= 1

2 (g+ r) Î + 1
2 (r−g)

 −1 0

0 1

 ≡ 1
2grÎ − 1

2 h̄ω0σ̂z

(1.7)

with gr ≡ g+ r = Eg +Er and h̄ω0 := r− g = Er −Eg > 0. The first term in the result of (1.7)

corresponds to a global shift of energy so it can be neglected, resulting in,

ĤR = −1
2

h̄ω0σ̂z (1.8)

Thus, for single atoms, transitions between |g⟩ and |r⟩ can be induced by excitation with light of

frequency ω0 including the interaction with photons results in the Jaynes–Cummings Hamiltonian

(for single atoms) as described in Appendix B.

1.2 Two Interacting Rydberg Atoms

Consider two Rydberg atoms a, b with states |a⟩⊗ |b⟩ = |ab⟩. The Hamiltonian of two

interacting atoms can be expressed as the sum of the Hamiltonians for two independent atoms plus

3



an interaction term for the state |rr⟩ in which both atoms are excited. The interaction is due to

the Rydberg blockade, and it modifies only the energy of the state |rr⟩. Thus, we obtain for two

interacting Rydberg atoms (2R),

Ĥ2R = Ĥ(a)
R ⊗ Î(b)+ Î(a)⊗ Ĥ(b)

R + ε |r⟩⟨r|(a) ⊗ |r⟩⟨r|(b)

≡ ĤR ⊗ Î + Î ⊗ ĤR + ε |rr⟩⟨rr|
(1.9)

To simplify notation, in the second line we use the convention that the left side of tensor products

⊗ always applies to atom a and the right side to atom b. Note that, |i⟩⟨ j| ⊗ |k⟩⟨l|= |ik⟩⟨ jl| (See

Appendix A1.4). For ε = 0, Equation (1.9) corresponds to two independent atoms. For ε > 0, the

energy of the state |rr⟩ is Err = 2Er +ε and is shifted by an amount ε compared to two independent

atoms. Thus, as long as both atoms are in the ground state or only one atom is excited, the two atoms

are independent. Starting from the ground state |gg⟩, each atom can be excited from its ground state

|g⟩ to its excited state |r⟩ by light with frequency ω0 . However, since Err = 2Er + ε the transition

from |gr⟩ or |rg⟩ to |rr⟩ is off-resonant and |rr⟩ cannot be reached by light excitation with frequency

ω0 , this is the Rydberg blockade. For large ε the state |rr⟩ is completely inaccessible. For small ε

the state |rr⟩ is accessible to some degree; furthermore, vε can be tuned by the distance between the

atoms.

We can write Ĥ2R in Equation (1.9) in matrix form, using Equation (1.6):

Ĥ2R = ĤR ⊗ Î + Î ⊗ ĤR + ε |rr⟩⟨rr|

=
(1

2grÎ − 1
2 h̄ω0σ̂z

)
⊗ Î + Î ⊗

(1
2grÎ − 1

2 h̄ω0σ̂z
)
+ ε |rr⟩⟨rr|

= gr Î ⊗ Î − h̄ω0



1

0

0

−1


+ ε



0

0

0

1



(1.10)

4



1 The first term gr Î ⊗ Î can again be neglected since it corresponds to a global shift in energy

gr ≡ g+ r = Eg +Er for the 2-atom system (is the average total energy for two independent atoms).

Neglecting the term, we obtain in qubit notation:

Ĥ2R =−h̄ω0



1

0

0

−1


+ ε



0

0

0

1


=



−h̄ω0

0

0

h̄(ω0 +δω)


(1.11)

where we define the frequency shift δω due to the Rydberg blockade by ε = h̄δω . Recall

that in qubit notation the top left entry corresponds to the ground state |gg⟩ and the bottom right

entry to the doubly excited state |rr⟩ . The diagonal elements in the middle correspond to |rg⟩ and

|gr⟩ , respectively. The zero point of energy is chosen as the average of the total energy for two

independent atoms.

1.3 Interaction between Rydberg Atoms and Photons

1.3.1 One Atom

For a single atom at position z in the cavity, the Rydberg atom-field (RF) interaction in the

dipole approximation is given by

HRF =−d̂ · Ê(z) =−d̂ ·Eω

(
â+ â†

)
sin(kz)≡ c(z) d̂

(
â+ â†

)
(1.12)

Here Ê(z) is the well known field operator and d̂ is the dipole operator of the atom, assumed

to be parallel to Ê.

The coupling constant is given by

c(z) =−Eω sin(kz) (1.13)

1Empty entries in matrices represent zeros

5



The dipole operator d̂ is expressed as

d̂ = |r⟩⟨r| d̂ |g⟩⟨g| + |g⟩⟨g| d̂ |r⟩⟨r|

= drg |r⟩⟨g| + dgr |g⟩⟨r|

= drg

 0 0

1 0

 + dgr

 0 1

0 0


= drgσ̂+ + dgrσ̂−

(1.14)

with the raising and lowering operators in qubit notation as

σ̂+ = |r⟩⟨g|=

 0 0

1 0

 σ̂− = |g⟩⟨r| =

 0 1

0 0

 (1.15)

Defining

d ≡ dgr = ⟨g| d̂ |r⟩ (1.16)

and assuming without loss of generality that d is real; consequently, all the complex non-diagonal

terms are real, which gives

d̂ = d (σ̂+ + σ̂−) (1.17)

Then using Equation (1.12) and Equation (1.17) the interaction Hamiltonian for a single atom

HRF = c(z)d (σ̂+ + σ̂−)
(
â+ â†)

= h̄λ (z)
(
σ̂+â + σ̂−â + σ̂+â† + σ̂−â†) (1.18)

with the coupling constant: h̄λ (z) = dc(z) =−dEω sin(kz).

6



1.3.2 Rotating Wave Approximation for One Atom

We now switch to the interaction picture. The photon operators with frequency ω gain the

time dependence

â(t) = âexp(−iωt) â† (t) = â† exp(iωt) (1.19)

Denoting UR (t) = exp
(
− i

h̄ĤRt
)

the free evolution operator for the atom, the transformation to the

interaction picture is given by,

U†
R (t) σ̂+UR (t) = exp

( i
h̄ĤRt

)
|r⟩⟨g| exp

(
− i

h̄ĤRt
)

= exp
( i

h̄E ′
rt
)
|r⟩⟨g| exp

(
− i

h̄Egt
)

= σ̂+ exp
[ i

h̄ (E
′
r −Eg) t

]
= σ̂+ exp(iω ′t)

(1.20)

Thus,

σ̂+ (t) = σ̂+ exp
(
iω ′t

)
(1.21)

Similarly it can be shown,

σ̂− (t) = σ̂− exp
(
−iω ′t

)
(1.22)

where h̄ω ′ = E ′
r −Eg > 0 is the energy difference between the excited state |r⟩ of the atom relative

to the ground state |g⟩ . For a single, free atom we have ω ′ = ω0 . However, for a system of 2 atoms,

ω ′ for one atom depends on the state of the other atom:

ω
′ =

 ω0 if the other atom is in state |g⟩

ω0 +δω if the other atom is in state |r⟩
(1.23)

With these preparations, the interaction Hamiltonian for a single atom with transition frequency ω ′

is the same as the standard Jaynes-Cummings Hamiltonian. Using Equations (1.18), (1.19), (1.21)
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and (1.22),

HRF = h̄λ (z) [σ̂+âexp [i(ω ′−ω) t] + σ̂−âexp [−i(ω ′+ω) t]

+ σ̂+â† exp [i(ω ′+ω) t]+ σ̂−â† exp [−i(ω ′−ω) t]
(1.24)

In the rotating wave approximation, the fast oscillating terms (ω ,ω ′ appearing with same

sign) are neglected:

HRF = h̄λ (z)
[
σ̂+âexp

[
i
(
ω

′−ω
)

t
]
+ σ̂−â† exp

[
−i

(
ω

′−ω
)

t
]]

(1.25)

Tuning the frequency of the light in the cavity so that ω = ω0 (enabling transitions between ground

state and excited state for free atoms), we obtain using (1.23),

HRF = h̄λ (z)
(

σ̂+â + σ̂−â†
)

if the other atom is in state |g⟩ (1.26)

HRF = h̄λ (z)
[
σ̂+âexp(iδω t) + σ̂−â† exp(−iδω t)

]
if the other atom is in state |r⟩ (1.27)

Equation (1.26) is the standard Jaynes-Cummings model after setting the detuning ω −ω0 = 0.

Equation (1.27) is a modified version of the JC model with oscillating terms exp(iδω t) . If δω

is large enough then the transitions in Eq. (1.27) involving the state |rr⟩ are essentially forbidden,

which corresponds to the Rydberg blockade.

1.3.3 Two Atoms

We now assume for simplicity that the Rydberg blockade is in full effect, so that transitions

|g⟩ → |r⟩ in one atom are forbidden if the other atom is in state |r⟩ . Using this constraint, we can

construct the interaction Hamiltonian for two atoms using tensor products of 1-atom states as in the

last section. To this end, we use the 1-atom Hamiltonian in (1.26) with (1.15), and the projection

operator P̂g = |g⟩⟨g| = |0⟩⟨0| on the ground state of an atom to filter out the transitions that are

forbidden by the Rydberg blockade. We also assume that atom a is at position za and atom b at

position zb in the cavity, and for simplicity we set λ (za) = λ (zb) = λ in (1.26). Then we obtain:
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ĤRF = h̄λ
(
σ̂+â + σ̂−â†)⊗ P̂g + P̂g ⊗ h̄λ

(
σ̂+â + σ̂−â†)

= h̄λ
(
|r⟩⟨g| â + |g⟩⟨r| â†) ⊗ P̂g + h̄λ P̂g ⊗

(
|r⟩⟨g| â + |g⟩⟨r| â†)

= h̄λ |r⟩⟨g|⊗ P̂gâ + h̄λ |g⟩⟨r|⊗ P̂g â† + h̄λ P̂g ⊗|r⟩⟨g| â + h̄λ P̂g ⊗ |g⟩⟨r| â†

= h̄λ
[
|r⟩⟨g|⊗ P̂g + P̂g ⊗|r⟩⟨g|

]
â + h̄λ

[
|g⟩⟨r|⊗ P̂g + P̂g ⊗ |g⟩⟨r|

]
â†

= h̄λ


 0 0

1 0

⊗

 1 0

0 0

 +

 1 0

0 0

⊗

 0 0

1 0


 â +

h̄λ


 0 1

0 0

⊗

 1 0

0 0

 +

 1 0

0 0

⊗

 0 1

0 0


 â†

= h̄λ



 1 0

0 0


+



0 0

1 0




â +

h̄λ





1 0

0 0


+



0 1

0 0




â†

= h̄λ


1

1


â + h̄λ



1 1


â†

(1.28)
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Combining Eqs. (1.1), (1.26), (1.28) we obtain the full Hamiltonian:

Ĥ = h̄ω â†â +



−h̄ω0

0

0

h̄(ω0 +δω)


+ h̄λ


1

1


â +

h̄λ



1 1


â†

(1.29)

ĤRF was derived under the condition that transitions to |rr⟩ = |11⟩ are forbidden due to the Ry-

dberg blockade. This effectively reduces the system to a 3-state system with accessible states

|gg⟩= |00⟩,|gr⟩= |01⟩,|rg⟩= |10⟩ while the state |rr⟩= |11⟩ can never be reached.

1.3.4 Towards a Quantum Circuit

For the one atom case using the free field hamiltonian h̄ω â†â, and Eqs (1.8) and (1.26) ,the

Jaynes-Cummings Hamiltonian results to

Ĥ
/

h̄ = ω â†â − 1
2

ω0σ̂z + λ

(
σ̂+â + σ̂−â†

)
(1.30)

which can be written using tensor products as,

Ĥ
/

h̄ = Î ⊗ω â†â − 1
2

ω0σ̂z ⊗ Î + λ

(
σ̂+â + σ̂−â†

)
(1.31)

For the two atoms case, the Hamiltonian in (1.29) acts on states |a⟩⊗ |b⟩⊗ |φ⟩ = |abφ⟩

where a , b are the atoms and |φ⟩ is the state of the photons. Using tensor products instead of
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matrices, the Hamiltonian in (1.1) has the form (using (1.10) and (1.28)),

Ĥ
/

h̄ = ω Î ⊗ Î ⊗ â†â − 1
2ω0 σ̂z ⊗ Î ⊗ ÎP − 1

2ω0Î ⊗ σ̂z ⊗ ÎP

+ λσ̂+⊗ P̂g ⊗ â + λσ̂−⊗ P̂g ⊗ â†

+ λ P̂g ⊗ σ̂+⊗ â + λ P̂g ⊗ σ̂−⊗ â†

. (1.32)

where ÎP is the identity operator for the photons.

Now what remains is to build their respective quantum circuits, for that we need to express the

operators in both (1.31) and (1.32) in terms of σ̂x = X , σ̂y = Y , σ̂z = Z, by no means a trivial task.

We will continue onto the next chapter.
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CHAPTER II

JAYNES CUMMINGS QUANTUM SIMULATION DERIVATION

The Hamiltonian of the Jaynes-Cummings model (JCM) for 1 atom in qubit notation is

given by:

Ĥ
/

h̄ = ω â†â − 1
2

ω0σ̂z + λ

(
σ̂+â + σ̂−â†

)
(2.1)

The Hamiltonian in (2.1) acts on 2-qubit states,

|ψ2⟩= |atom⟩⊗ |photon field⟩= |ψa⟩⊗
∣∣ψp

〉
(2.2)

where a stands for atom and p stands for photon. (Here we assume that there is only one photon in

the system; if there are more photons, we need more qubits to describe the photon field.) Both |ψa⟩

and
∣∣ψp

〉
are qubits and have the general form ,

|ψa⟩= αa |0⟩+βa |1⟩
∣∣ψp

〉
= αp |0⟩+βp |1⟩ (2.3)

where |0⟩, |1⟩ means grounds state, excited state for the atom and no photon, one photon for the

photon, respectively. Note that the 2-qubit state |ψ2⟩ may include entangled states, meaning that it

cannot be factorized into a (tensor) product of the atom qubit and the photon qubit as in (2.2). The

most general 2-qubit state is of the form,

|ψ2⟩= c00 |00⟩+ c01 |01⟩+ c10 |10⟩+ c11 |11⟩ (2.4)

with |ap⟩= |a⟩⊗ |p⟩ and complex coefficients cap.
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2.1 Holstein Primakoff Transformation (HPT)

To construct a quantum cycle we need to transform the bosonic operators, this can be done

with the help of the Holstein-Primakoff Transformation (HPT). The goal of the HPT is to map boson

creation and annihilation operators â†, â, acting on the inifite-dimensional Fock space spanned by

boson number states {|n⟩B; n = 0,1,2, . . .} to spin operators Ŝ+,Ŝ−,Ŝz acting on finite-dimensional

spaces spanned by spin states
{
|s,ms⟩ ; s = 0, 1

/
2, 1, 3

/
2, . . . ; ms =−s,−s+1, . . . , s−1, s

}
. To

this end, for given spin s the Fock space of bosons is truncated to a finite maximum number

of bosons, N = 2s . The HPT then creates an isomorphism between the truncated Fock space

{|n⟩B; n = 0,1,2, . . . ,N} and spin states
{
|s,ms⟩ ; s = N

/
2; ms =−s,−s+1, . . . , s−1, s

}
. The

precise mapping of states and operators in the HPT is described below.

2.1.1 Mapping of Spin States

Table 2.1: Map of Spin States

|s,ms⟩ spin state |n⟩B boson number state
ms = s−n n

s 0
s−1 1

:
...

...
Ŝ+
↑

â†
↓

Ŝ−
↓

â
↑

...
...

−s+1 N −1
−s N

The operators Ŝ+, Ŝ− create transitions ms → ms ±1 between spin states and the operators

â†, â create transitions n → n±1 between boson number states as indicated. The spin state with

maximum spin projection quantum number, ms = s, is mapped to the vacuum state, n = 0, of bosons.

The minimum (most negative) spin projection quantum number, ms =−s, is mapped to the state

with N = 2s bosons.
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2.1.2 Mapping of Operators

Ŝ+ = h̄
(

2s− â†â
)1/2

â (2.5)

Ŝ− = h̄â†
(

2s− â†â
)1/2

(2.6)

Ŝz = h̄
(

s− â†â
)

(2.7)

Ŝ+ = Ŝx + iŜy (2.8)

Ŝ− = Ŝx − iŜy (2.9)

Using the bosonic commutation relation
[
â, â†]= 1 one can verify the commutation relations

required for spin operators
[
Ŝ+, Ŝ−

]
= 2h̄Ŝz,

[
Ŝz, Ŝ+

]
= h̄Ŝ+,

[
Ŝz, Ŝ−

]
=−h̄Ŝ−.

For example, for a spin state |s,ms⟩ with state Ŝz |s,ms⟩ = h̄ms |s,ms⟩ ,the commutator relation[
Ŝz, Ŝ+

]
= h̄Ŝ+ implies ŜzŜ+ |s,ms⟩=

(
Ŝ+Ŝz + h̄Ŝ+

)
|s,ms⟩= h̄(ms +1) Ŝ+ |s,ms⟩.Thus, Ŝ+ |s,ms⟩

is also an eigenstate of Ŝz where the eigenvalue has increased by one unit of h̄.

2.2 HPT applied to the Subspaces Hn of JCH

In the HPT in the spin operators above Ŝ+, Ŝ− depend on the boson number operator

n̂ = â†â in the square root. This makes the mapping â† → Ŝ+ , â → Ŝ nonlinear, so that, in

general, approximations are necessary, such as expanding the square roots. However, for the

Jaynes-Cummings Hamiltonian (JCH) the mapping is exact, as we show below; this holds both for

the original JCH for one atom (1.31), and our extension of the JCH to two atoms (1.32). The JCH

for one atom the total Hilbert space of the system (atom, cavity field) decouples into subspaces

Hn= span{|e,n⟩ , |g,n+1⟩} for n = 0,1,2.. where n is the number of photons. Similarly, for

our extension to 2 atoms, the total Hilbert space H of the system (atom a, atom b, cavity field)

decouples into subspaces Hn = span{|e,g,n⟩ , |g,e,n⟩ , |g,g,n+1⟩}.

We now apply the HPT to the subspace H\ for given photon number n, for which the number

of photons is restricted to n and n+ 1. To this end, we set the maximum number of photons to
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N = n+1 and consider the HPT for the photon number states n = N +1 and N −1 = n (Look at

the last two lines in Table 1 above): Using (2.5),(2.6), and (2.7) with /2s = N = n+1 we find,

|s,ms⟩ spin state |n⟩boson number state
ms = s−n n

−s+1 n
−s n+1

Table 2.2: Truncated map

Ŝ+ = h̄
(

n+1− â†â
)1/2

â, Ŝ− = h̄â†
(

n+1− â†â
)1/2

, Ŝz = h̄
(

n+1
2

− â†â
)

(2.10)

These operators act on photon number states |n⟩ and in the subspace Hn and |n+1⟩ discussed

above for 1 and 2 atoms; since the state of the atoms is not affected by the application of the cavity

field operators, in the discussion below we only denote the photon number states Hn and |n+1⟩

explicitly to simplify notation. In what follows, we apply the operators in (2.10) separately to the

states Hn and |n+1⟩ (for given states of the atom(s) in the subspace Hn).

Ŝ+ |n⟩= h̄
(
n+1− â†â

)1/2â |n⟩ = h̄
(
n+1− â†â

)1/2√n |n−1⟩

= h̄(n+1− (n−1))1/2√n |n−1⟩= h̄
√

2n |n−1⟩
(2.11)

In the first line, we used â |n⟩=
√

n |n−1⟩ and in the step to the second line we used that â†â = n̂

is the number operator, thus â†â |n−1⟩= (n−1) |n−1⟩ . Accordingly, the operation Ŝ+ |n⟩ results

in a state ∝ |n−1⟩ not contained in Hn). which reflects the fact that this process cannot occur in

the system described by the JCH; for example, for the JCH with 1 atom, there is no mechanism by

which a photon is annihilated (absorbed) when the atom is in the excited state ∝ |e⟩. Similarly, the

operation,

Ŝ− |n+1⟩= h̄â†
(

n+1− â†â
)1/2

|n+1⟩= h̄â†(n+1− (n+1))1/2 |n+1⟩= 0 (2.12)
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cannot occur because there is no mechanism in the JCH by which a photon is created (emitted)

when the atom(s) is (are) in the ground state |g⟩. However, the following process is allowed:

Ŝ+ |n+1⟩= h̄
(
n+1− â†â

)1/2â |n+1⟩ = h̄
(
n+1− â†â

)1/2√n+1 |n⟩

= h̄(n+1−n)1/2√n+1 |n⟩= h̄
√

n+1 |n⟩

= h̄â |n+1⟩

(2.13)

In the first line we used â |n+1⟩=
√

n+1 |n⟩ . Thus, Ŝ+ = h̄â by the HPT when acting on the state

|n+1⟩. Similarly,

Ŝ− |n⟩= h̄â†(n+1− â†â
)1/2 |n⟩= h̄â†(n+1−n)1/2 |n⟩= h̄â† |n⟩

= h̄
√

n+1 |n+1⟩
(2.14)

In the step to the second line we used â† |n⟩ =
√

n+1 |n+1⟩. Thus,Ŝ− = h̄â† by the

HPT when acting on the state |n⟩. In summary, the relations â = Ŝ+
/

h̄ and â† = Ŝ−
/

h̄ hold

without approximation when applied to Hn for any n = 0,1,2, .... Finally, for 2s = N = n+ 1,

the operator relation, Ŝz = h̄
(n+1

2 − â†â
)

in (2.10) is equivalent to the relation ms = s− n with

Ŝz |s,ms⟩= h̄ms |s,ms⟩ and â†â |n⟩= n |n⟩ .

For each subspace Hn the quantized cavity field is spanned by the photon number states

|n⟩ and |n+1⟩ representing a qubit |φc⟩= αc |n⟩+βc |n+1⟩ with a spinor

 αc

βc

 ∈ C 2. In the

spinor representation, the basis of the qubit is given by |n⟩ ∆
=

 1

0

 and |n+1⟩ ∆
=

 0

1

.

In this basis, the operators â† , â, , and â†â = n̂ take the form:

â† =
√

n+1

 0 0

1 0

 =
√

n+1σ+ (2.15)
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â =
√

n+1

 0 1

0 0

 =
√

n+1σ− (2.16)

and

n̂ = â†â =

 n 0

0 n+1

 =
1
2

2n+1−

 1 0

0 −1


 =

1
2
(2n+1−σz) (2.17)

The qubit raising and lowering operators in (2.15), (2.16) are given in terms of Pauli matrices by

σ+ =
1
2
(σx − iσy) =

 0 0

1 0

 and σ− =
1
2
(σx + iσy) =

 0 1

0 0

 (2.18)

For the special case n = 0 corresponding to the subspace H0 there is at most one photon in the

system, so that the state |φc⟩of the cavity field is a superposition of |0⟩ with no photon and |1⟩ with

one photon:

|φc⟩= αc |0⟩+βc |1⟩
∆
=

 αc

βc

 (2.19)

In this case,

â† = σ+, â = σ−, n̂ = â†â =
1
2
(1−σz) =

 0 0

0 1

 (2.20)

Using â† |n⟩=
√

n+1 |n+1⟩ and â |n+1⟩=
√

n+1 |n⟩ one obtains:

â† |0⟩= |1⟩ , â |1⟩= |0⟩ , â |0⟩= 0, â† |1⟩=
√

2 |2⟩ (2.21)

However, the two-photon state in the last line is not accessible to the system described by the JCH

for the subspace H\ as discussed above.
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2.3 JCM for one Photon

Using (2.20) on the Jaynes Cummings Hamiltonian (2.1) becomes,

Ĥ
/

h̄ = Î ⊗ ω

2
(
Î − σ̂z

)
− ω0

2
σ̂z ⊗ Î + λ (σ̂+⊗ σ̂− + σ̂−⊗ σ̂+) (2.22)

acting on states |ψ2⟩= |atom⟩⊗ |photon field⟩= |ψa⟩⊗
∣∣ψp

〉
as in (2.2) (or on entangled states as

in (2.4)). Thus, the left term in the tensor product ⊗ corresponds to the atom and the right term to

the photon. The Hamiltonian can be simplified by disregarding a constant term Î ⊗ω
1
2 Î (first term

on the right-hand side)1 so that,

Ĥ
/

h̄ = −Î ⊗ ω

2
σ̂z −

ω0

2
σ̂z ⊗ Î + λ (σ̂+⊗ σ̂− + σ̂−⊗ σ̂+) (2.23)

Using (2.18) and (2.20), the last term of eq (2.23) becomes,

σ̂+⊗ σ̂− + σ̂−⊗ σ̂+

= 1
2 (σ̂x − iσ̂y)⊗ 1

2 (σ̂x + iσ̂y) +
1
2 (σ̂x + iσ̂y)⊗ 1

2 (σ̂x − iσ̂y)

= 1
4 (σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y − iσ̂y ⊗ σ̂x + iσ̂x ⊗ σ̂y + σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y + iσ̂y ⊗ σ̂x − iσ̂x ⊗ σ̂y)

= 1
2 (σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y)

(2.24)

The hamiltonian becomes,

Ĥ
/

h̄ = −Î ⊗ ω

2
σ̂z −

ω0

2
σ̂z ⊗ Î +

λ

2
(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y) (2.25)

The deviation δ = ω −ω0 is the detuning parameter. Setting δ = 0 , i.e., ω = ω0, then the

Hamiltonian in (2.25) in units of h̄ω becomes,

Ĥ
h̄ω

= −1
2
(
Î ⊗ σ̂z + σ̂z ⊗ Î

)
+

λ̃

2
(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y) (2.26)

1Identity matrices (I or I ⊗ I ⊗ ....) stay constant since they have no effect on the quantum circuit.
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with the dimensionless coupling constant,

λ̃ =
λ

ω
(2.27)

2.3.1 Commutators

In what follows we assume that energies are given in units of h̄ω and times in units of

ω−1 and we skip the tilde symbol for λ̃ in (2.27) (assuming that λ is given in units of ω ). The

Hamiltonian in (2.26) then has the form,

Ĥ = −1
2
(
Î ⊗ σ̂z + σ̂z ⊗ Î

)
+

λ

2
(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y) (2.28)

The only parameter is the dimensionless coupling constant λ . The Hamiltonian is a sum of terms

Ĥk :

Ĥ = ∑
k

Ĥk (2.29)

To implement a Hamiltonian of the form (2.29) in a quantum circuit we would like to express the

evolution operator

Û (t) = exp
(
−iĤt

)
(2.30)

as a product of terms exp
(
−iĤkt

)
. This requires that the terms Ĥk commute. To proceed, we use

the relation for operators (or matrices) A and B,

exp(A+B) = exp(A)exp(B) (2.31)
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which holds if and only if A and B commute. 2. We first show that the terms A =
(
Î ⊗ σ̂z + σ̂z ⊗ Î

)
and B = (σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y) in (2.28) commute.

[A,B] =
[
Î ⊗ σ̂z + σ̂z ⊗ Î, σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y

]
=
[
Î ⊗ σ̂z, σ̂x ⊗ σ̂x

]
+

[
Î ⊗ σ̂z, σ̂y ⊗ σ̂y

]
+

[
σ̂z ⊗ Î, σ̂x ⊗ σ̂x

]
+

[
σ̂z ⊗ Î, σ̂y ⊗ σ̂y

] (2.32)

Using (A⊗B)(C⊗D) = (AC)⊗ (BD) gives for the first term on the right-hand side of (2.32)

[
Î ⊗ σ̂z, σ̂x ⊗ σ̂x

]
=
(
Î ⊗ σ̂z

)
(σ̂x ⊗ σ̂x)− (σ̂x ⊗ σ̂x)

(
Î ⊗ σ̂z

)
= σ̂x ⊗ σ̂zσ̂x − σ̂x ⊗ σ̂xσ̂z = σ̂x ⊗ [σ̂z, σ̂x] = 2iσ̂x ⊗ σ̂y

(2.33)

And similarly for the other terms in (2.32):

[
Î ⊗ σ̂z, σ̂y ⊗ σ̂y

]
=
(
Î ⊗ σ̂z

)
(σ̂y ⊗ σ̂y)− (σ̂y ⊗ σ̂y)

(
Î ⊗ σ̂z

)
= σ̂y ⊗ σ̂zσ̂y − σ̂y ⊗ σ̂yσ̂z = σ̂y ⊗ [σ̂z, σ̂y] = −2iσ̂y ⊗ σ̂x

(2.34)

[
σ̂z ⊗ Î, σ̂x ⊗ σ̂x

]
=
(
σ̂z ⊗ Î

)
(σ̂x ⊗ σ̂x)− (σ̂x ⊗ σ̂x)

(
σ̂z ⊗ Î

)
= σ̂zσ̂x ⊗ σ̂x − σ̂xσ̂z ⊗ σ̂x = [σ̂z, σ̂x]⊗ σ̂x = 2iσ̂y ⊗ σ̂x

(2.35)

[
σ̂z ⊗ Î, σ̂y ⊗ σ̂y

]
=
(
σ̂z ⊗ Î

)
(σ̂y ⊗ σ̂y)− (σ̂y ⊗ σ̂y)

(
σ̂z ⊗ Î

)
= σ̂zσ̂y ⊗ σ̂y − σ̂yσ̂z ⊗ σ̂y = [σ̂z, σ̂y]⊗ σ̂y = −2iσ̂x ⊗ σ̂y

(2.36)

Inserting (2.33) – (2.36) in (2.32) gives

[A,B] =
[
Î ⊗ σ̂z + σ̂z ⊗ Î, σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y

]
= 2iσ̂x ⊗ σ̂y − 2iσ̂y ⊗ σ̂x + 2iσ̂y ⊗ σ̂x − 2iσ̂x ⊗ σ̂y = 0

(2.37)

This is a nontrivial cancellation of terms. Note that [A,B] = 0 only holds for the full form of the

terms A and B. Using only one of the terms in B, for example gives
[
Î ⊗ σ̂z + σ̂z ⊗ Î, σ̂x ⊗ σ̂x

]
̸= 0

2If terms do not commute, we may use Trotter decomposition, more on that later
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Using (2.31) and (2.37) we obtain for the Hamiltonian in (2.28)

Û (t) = exp
(
−iĤt

)
= exp

[
it

1
2
(
Î ⊗ σ̂z + σ̂z ⊗ Î

)]
exp

[
−it

λ

2
(σ̂x ⊗ σ̂x + σ̂y ⊗ σ̂y)

]
(2.38)

Now we can decompose the terms in (2.38) even further. To this end we show:

1.
[
Î ⊗ σ̂z, σ̂z ⊗ Î

]
= 0 :

[
Î ⊗ σ̂z, σ̂z ⊗ Î

]
=
(
Î ⊗ σ̂z

)
⊗
(
σ̂z ⊗ Î

)
−
(
σ̂z ⊗ Î

)(
Î ⊗ σ̂z

)
= σ̂z ⊗ σ̂z − σ̂z ⊗ σ̂z = 0

(2.39)

2. [σ̂x ⊗ σ̂x, σ̂y ⊗ σ̂y] = 0 (2.40)

For this we use the following definition:

[σ̂a ⊗ σ̂c, σ̂b ⊗ σ̂d] = 2iεabeδcd
(
σ̂e ⊗ Î

)
+ 2iεcd f δab

(
Î ⊗ σ̂ f

)
(2.41)

Using (2.41) with a = c = x, b = d = y gives,

[σ̂x ⊗ σ̂x, σ̂y ⊗ σ̂y] = 2iεxyeδxy
(
σ̂e ⊗ Î

)
+ 2iεxy f δxy

(
Î ⊗ σ̂ f

)
= 0 (2.42)

because δxy = 0 in both terms. Using again (2.31), but this time with (2.40), (2.42), we obtain for

(2.38),

Û (t) = exp
(
−iĤt

)
= exp

(
it

1
2

Î ⊗ σ̂z

)
exp

(
it

1
2

σ̂z ⊗ Î
)
· ...

...exp
(
−it

λ

2
σ̂x ⊗ σ̂x

)
exp

(
−it

λ

2
σ̂y ⊗ σ̂y

) (2.43)

It is interesting to note that (2.43) holds even though some of the factors in (2.43) do not commute.

For example, σ̂z ⊗ Î does not commute with σ̂x ⊗ σ̂x, thus the second and third exponential factors

in (2.43) do not commute. One needs to perform the two-step process first deriving (2.38) and then

(2.43) as shown above.
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2.4 Single Atom Quantum Circuit

To translate the evolution operator in (2.43) into a quantum circuit, we need to present some

definitions,

Rotation Operator:

Rα (θ) = exp
(
−i

θ

2
σα

)
where α = x,y,z (2.44)

We also define:

HσzH =
1
2

 1 1

1 −1


 1 0

0 −1


 1 1

1 −1

= σx (2.45)

U ′
σzU ′ =

1
2

 1 −i

i −1


 1 0

0 −1


 1 −i

i −1

= σy (2.46)

3 Where U’ is defined as:

U (θ ,φ ,λ ) =

 cos
(

θ

2

)
−exp(iλ )sin

(
θ

2

)
exp(iφ)sin

(
θ

2

)
exp(i(φ +λ ))cos

(
θ

2

)


U ′ (π

2 ,
π

2 ,
π

2

)
= 1√

2

 1 −i

i 1


(2.47)

Using [4]

exp(iAx) = cos(x)I + isin(x)A (2.48)

where A is a matrix such that A(2) = I We can conclude,

exp
(
−iδσα ⊗σβ

)
= cos(−δ ) I ⊗ I + isin(−δ )σα ⊗σβ (2.49)

3Note: The definitions stated here can vary, for example one can use the definitions stated in [9] (which are the ones
stated above) or one can use the definitions stated in [6] which are different but should portray similar results.
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which holds because, (
σα ⊗σβ

)2
= (σα)

2 ⊗
(
σβ

)2
= I ⊗ I = I4 (2.50)

Let us consider the following expression:

[U ′⊗U ′]CNOT [I ⊗RZ(2δ )]CNOT [U ′⊗U ′] (2.51)

Using Rz (2δ ) = exp(−iδσz) and the result for the first circuit in [6] we obtain the middle part in

(2.51),

CNOT [I ⊗RZ(2δ )]CNOT =CNOT [I ⊗ exp(−iδσz)]CNOT

= exp(−iδσz ⊗σz) = cos(−δ )I ⊗ I + isin(−δ )σz ⊗σz

(2.52)

Figure 2.1: exp(−iδσz ⊗σz)

Inserting (2.52) in (2.51) and multiplying out we obtain,

[U ′⊗U ′][cos(−δ )I ⊗ I + isin(−δ )σz ⊗σz][U
′⊗U ′]

= [cos(−δ )U ′⊗U ′+ isin(−δ )(U ′σz)⊗ (U ′σz)][U ′⊗U ′]

= cos(−δ )I ⊗ I + isin(−δ )(U ′σzU ′)⊗ (U ′σzU ′)

= cos(−δ )I ⊗ I + isin(−δ )σy ⊗σy

= exp(−iδσy ⊗σy)

(2.53)
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Figure 2.2: exp(−iδσy ⊗σy)

Similarly it can be shown,

exp(−iδσx ⊗σx) = [H ⊗H]CNOT [I ⊗RZ(2δ )]CNOT [H ⊗H] (2.54)

Figure 2.3: exp(−iδσx ⊗σx)

Thus, we can express Û (t) in (2.43) by using (2.52), (2.53), (2.54) and gates (2.44): 4

Û(t) =

Rz(−t)⊗Rz(−t)

[H ⊗H]CNOT[I ⊗Rz(2δ )]CNOT[H ⊗H]

[U ′⊗U ′]CNOT[I ⊗Rz(2δ )]CNOT[U ′⊗U ′]

(2.55)

where δ = t λ

2 , due to the definition of (2.43).

4We shall comeback for more context in the next chapter, for now we will focus on the derivation only on the final
result.
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2.5 Towards a Rydberg Blockade Hamiltonian Quantum Circuit (RBH)

With that being said, we are now ready to explore more interesting Hamiltonian, let us go

back to eq. (1.32),

Ĥ
/

h̄ = ω Î ⊗ Î ⊗ â†â − 1
2ω0 σ̂z ⊗ Î ⊗ ÎP − 1

2ω0Î ⊗ σ̂z ⊗ ÎP

+ λσ̂+⊗ P̂g ⊗ â + λσ̂−⊗ P̂g ⊗ â†

+ λ P̂g ⊗ σ̂+⊗ â + λ P̂g ⊗ σ̂−⊗ â†

. (2.56)

Where ÎP is the identity operator for the photons ( in what follows we write Î = Îp ) and λ̃ = λ

ω
.

The Hamiltonian (2.56) acts on states |a⟩⊗ |b⟩⊗ |φ⟩= |abφ⟩ where a,b are the atoms and

|φ⟩ is the state of the photons. If the Rydberg blockade is in full effect, a state in which both atoms

are excited cannot be reached: if one atom is excited, the other atom must be in the ground state. If

there is one excitation in the system, for example by using the initial condition: |φ⟩= |001⟩ (at t=0

) corresponding to “both atoms in ground state, 1 photon”, this one excitation will be conserved,

that is, the space of accessible states is confined to the subspace spanned by the 3 basis states. (In

this order)

|001⟩ , |010⟩ , |100⟩ (2.57)

A general state accessible to the system can then be expanded as

|ψ⟩= c1 |001⟩+ c2 |010⟩+ c3 |100⟩ (2.58)

using the notation: c1 = c001, c2 = c010, c3 = c100

The use of the projection operators P̂g to the ground states of the atoms in (2.56) is actually not

necessary, and can be replaced by the identity operator Î. To see this, consider for example the

term λσ̂+⊗ P̂g ⊗ â in (2.56). It describes a process where atom a absorbs a photon and thereby is

excited from the ground state to the excited state (described by σ̂+ ) while the photon is destroyed

(described by â ). This is only possible if initially atom a was in the ground state and one photon
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was present. 5 This corresponds to a transition between basis states |001⟩ → |100⟩ where atom b

(the middle entry) remains in the ground state.

Replacing in (2.56) by Î and setting ω = ω0 (zero detuning) we obtain

Ĥ
h̄ω

= Î ⊗ Î ⊗ â†â − 1
2 σ̂z ⊗ Î ⊗ Î − 1

2 Î ⊗ σ̂z ⊗ Î

+ λ̃ σ̂+⊗ Î ⊗ â + λ̃ σ̂−⊗ Î ⊗ â†

+ λ̃ Î ⊗ σ̂+⊗ â + λ̃ Î ⊗ σ̂−⊗ â†

(2.59)

with λ̃ = λ

ω
. In what follows we simplify notation by writing λ = λ̃ (omitting the tilde). Using

(2.20), and disregarding the constant term Î ⊗ Î ⊗ 1
2 Î (for fixed ω ) we find:

Ĥ
h̄ω

= −1
2

(
Î ⊗ Î ⊗ σ̂z + σ̂z ⊗ Î ⊗ Î + Î ⊗ σ̂z ⊗ Î

)
+ λ

(
σ̂+⊗ Î ⊗ â + σ̂−⊗ Î ⊗ â† + Î ⊗ σ̂+ ⊗ â + Î ⊗ σ̂−⊗ â† ) (2.60)

Note that in (2.60) we still use â, â† operators for the photon. The first two terms in the 2nd line

of (2.60) describe the interaction of the photon with atom a, and the last two terms describe the

interaction of the photon with atom b.

2.5.1 Commutator Issue

We can write eq. (2.60) as Ĥ
h̄ω

= − 1
2 Â + λ

2 B̂ with,

Â = Î ⊗ Î ⊗ σ̂z + σ̂z ⊗ Î ⊗ Î + Î ⊗ σ̂z ⊗ Î (2.61)

B̂ = σ̂+⊗ Î ⊗ â + σ̂−⊗ Î ⊗ â† + Î ⊗ σ̂+ ⊗ â + Î ⊗ σ̂−⊗ â† (2.62)

5Because σ̂+|1⟩a =

(
0 0
1 0

)(
0
1

)
= 0 and â|0⟩P = 0
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Since Â corresponds to the “total excitation number” of atoms and photons, which is conserved and

equal to 1 in the present system, and since Â conserves this number, it can be shown that

[
Â, B̂

]
= 0 (2.63)

Furthermore, it is easy to see that the three terms in Â pairwise commute among each other. For

example, [
Î ⊗ Î ⊗ σ̂z , σ̂z ⊗ Î ⊗ Î

]
=
(
Î ⊗ Î ⊗ σ̂z

)(
σ̂z ⊗ Î ⊗ Î

)
−
(
σ̂z ⊗ Î ⊗ Î

)(
Î ⊗ Î ⊗ σ̂z

)
= σ̂z ⊗ Î ⊗ σ̂z − σ̂z ⊗ Î ⊗ σ̂z = 0

(2.64)

We can therefore write,

exp
(
Â
)
= exp

(
Î ⊗ Î ⊗ σ̂z + σ̂z ⊗ Î ⊗ Î + Î ⊗ σ̂z ⊗ Î

)
= exp

(
Î ⊗ Î ⊗ σ̂z

)
exp

(
σ̂z ⊗ Î ⊗ Î

)
exp

(
σ̂z ⊗ Î ⊗ Î

) (2.65)

similar to the first two terms in (2.43).

Next we consider the operator B in (2.62). Similarly as in (2.65) we would like to write exp
(
B̂
)

as

a product of exponentials of single operators. However, this does not seem to be possible because

the operators in B̂ do not commute. Consider the commutator,

[
σ̂+⊗ Î ⊗ â + σ̂−⊗ Î ⊗ â† , Î ⊗ σ̂+ ⊗ â + Î ⊗ σ̂−⊗ â†

]
(2.66)

we want to see if the overall interaction of the photon with atom a commutes with the interaction of

the photon with atom b. To simplify notation, we temporarily omit the ⊗ symbol, keeping in mind
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that the terms are tensor product of three operators in the given order,

[
σ̂+⊗ Î ⊗ â + σ̂−⊗ Î ⊗ â† , Î ⊗ σ̂+ ⊗ â + Î ⊗ σ̂−⊗ â†]
=

[
σ̂+ Î â + σ̂− Î â† , Îσ̂+ â + Îσ̂− â†]

=
(
σ̂+ Î â + σ̂− Î â†)(Îσ̂+ â + Îσ̂− â†)− (

Îσ̂+ â + Îσ̂− â†)(σ̂+ Î â + σ̂− Î â†)

= σ̂+ σ̂+ (â â) + σ̂− σ̂−
(
â†â†) + σ̂+σ̂−

(
â â†) + σ̂− σ̂+

(
â†â

)
− σ̂+ σ̂+ (â â) − σ̂− σ̂−

(
â†â†) − σ̂− σ̂+

(
â â†)− σ̂+ σ̂−

(
â†â

)
(2.67)

The four terms on the left cancel, and using â â† = â†â+ Î (from
[
â , â†]= Î) the remaining

terms give

= σ̂+σ̂−
(
â†â+ Î

)
+ σ̂− σ̂+

(
â†â

)
− σ̂− σ̂+

(
â†â+ Î

)
− σ̂+ σ̂−

(
â†â

)
= σ̂+σ̂− Î − σ̂− σ̂+ Î

= σ̂+⊗ σ̂−⊗ Î − σ̂− ⊗ σ̂+⊗ Î ̸= 0

(2.68)

So (2.66) does not commute. We can try transform the σ̂+, σ̂− operators in B to σ̂x, σ̂y operators

and â† = σ̂+, â = σ̂− for the photon operators.

Let us try,

2B̂ = σ̂x ⊗ Î ⊗ σ̂x + σ̂y ⊗ Î ⊗ σ̂y + Î ⊗ σ̂x ⊗ σ̂x + Î ⊗ σ̂y ⊗ σ̂y

= Ĉ′ + D̂′
(2.69)

with Ĉ′ = σ̂x ⊗ Î ⊗ σ̂x + Î ⊗ σ̂y ⊗ σ̂y, D̂′ = σ̂y ⊗ Î ⊗ σ̂y + Î ⊗ σ̂x ⊗ σ̂x.
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Now we find

[
Ĉ′ , D̂′] =

[
σ̂x ⊗ Î ⊗ σ̂x + Î ⊗ σ̂y ⊗ σ̂y , σ̂y ⊗ Î ⊗ σ̂y + Î ⊗ σ̂x ⊗ σ̂x

]

=
(
σ̂x ⊗ Î ⊗ σ̂x + Î ⊗ σ̂y ⊗ σ̂y

)(
σ̂y ⊗ Î ⊗ σ̂y + Î ⊗ σ̂x ⊗ σ̂x

)
−

(
σ̂y ⊗ Î ⊗ σ̂y + Î ⊗ σ̂x ⊗ σ̂x

)(
σ̂x ⊗ Î ⊗ σ̂x + Î ⊗ σ̂y ⊗ σ̂y

)

= σ̂x σ̂y ⊗ Î ⊗ σ̂x σ̂y + Î ⊗ σ̂y σ̂x ⊗ σ̂y σ̂x + σ̂x ⊗ σ̂x ⊗ σ̂x σ̂x + σ̂y ⊗ σ̂y ⊗ σ̂y σ̂y

− σ̂y σ̂x ⊗ Î ⊗ σ̂y σ̂x − Î ⊗ σ̂x σ̂y ⊗ σ̂x σ̂y − σ̂y ⊗ σ̂y ⊗ σ̂y σ̂y − σ̂x ⊗ σ̂x ⊗ σ̂x σ̂x

= 0

(2.70)

The four terms on the left cancel again because of σ̂y σ̂x =− σ̂xσ̂y (from
{

σ̂x , σ̂y
}
= 0 ), the four

terms on the right cancel directly.

Therefore we derive the following expression by substituting back,

Ĥ
h̄ω

= −1
2

(
Î ⊗ Î ⊗ σ̂z + σ̂z ⊗ Î ⊗ Î + Î ⊗ σ̂z ⊗ Î

)
+

λ

4

(
σ̂x ⊗ Î ⊗ σ̂x + I ⊗ σ̂y ⊗ σ̂y + I ⊗ σ̂x ⊗ σ̂x + σ̂y ⊗ Î ⊗ σ̂y

) (2.71)

Using (2.30),

exp(−iĤt) = exp
(
it 1

2 Î ⊗ Î ⊗ σ̂z
)

exp
(
it 1

2 Î ⊗ σ̂z ⊗ I
)

exp
(
it 1

2 σ̂z ⊗ I ⊗ I
)

exp
(
−it λ

4

(
σ̂x ⊗ Î ⊗ σ̂x + I ⊗ σ̂y ⊗ σ̂y

))
exp

(
−it λ

4

(
I ⊗ σ̂x ⊗ σ̂x + σ̂y ⊗ Î ⊗ σ̂y

)) (2.72)

The last two terms of eq. (2.72) have terms that do not commute each other, and for this we make

use of Trotter decomposition 6.

6See Appendix C
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2.5.2 Trotter and Final Result

Trotter Formula of the first order:

exp(Â+ B̂) = lim
n→∞

(
exp

(
Â
n

)
exp

(
B̂
n

))n

where

exp(δ (Â+ B̂)) = exp(δ Â)exp(δ B̂)+O(δ 2)

(2.73)

applying (2.73) to the last two terms of (2.72) yields,

exp(−it λ

4 (σ̂x ⊗ Î ⊗ σ̂x + I ⊗ σ̂y ⊗ σ̂y )) =

lim
n→∞

(
exp

(
−iλ t

4n

)(
σ̂x ⊗ Î ⊗ σ̂x

)
exp

(
−iλ t

4n

)
( I ⊗ σ̂y ⊗ σ̂y)

)n (2.74)

exp(−it λ

4 (I ⊗ σ̂x ⊗ σ̂x + σ̂y ⊗ Î ⊗ σ̂y )) =

lim
n→∞

(
exp

(
−iλ t

4n

)
(I ⊗ σ̂x ⊗ σ̂x)exp

(
−iλ t

4n

)(
σ̂y ⊗ Î ⊗ σ̂y

))n (2.75)

Applying both (2.74) and (2.75) into (2.72),

exp(−iĤt) = exp(it 1
2 Î ⊗ Î ⊗ σ̂z) exp(it 1

2 Î ⊗ σ̂z ⊗ I) exp(it 1
2 σ̂z ⊗ I ⊗ I)

lim
n→∞

(
exp

(
−iλ t

4n

)(
σ̂x ⊗ Î ⊗ σ̂x

)
exp

(
−iλ t

4n

)
( I ⊗ σ̂y ⊗ σ̂y)

)n

lim
n→∞

(
exp

(
−iλ t

4n

)
(I ⊗ σ̂x ⊗ σ̂x)exp

(
−iλ t

4n

)(
σ̂y ⊗ Î ⊗ σ̂y

))n

(2.76)

Equation (2.76) is the operator for RBH. Following the same process as with the single atom circuit,

we proceed to convert everything to quantum gates, using (2.45) and (2.46),

Û(t) = Rz(−t)⊗Rz(−t)⊗Rz(−t) (H ⊗ I ⊗H)(CNOT1,3)
(

I ⊗ I ⊗Rz

(
2δ

n

))
(CNOT1,3)(H ⊗ I ⊗H)

(I ⊗U ′⊗U ′)(I ⊗CNOT2,3)
(

I ⊗ I ⊗Rz

(
2δ

n

))
(I ⊗CNOT2,3)(I ⊗U ′⊗U ′)


n

 (I ⊗H ⊗H)(I ⊗CNOT2,3)
(

I ⊗ I ⊗Rz

(
2δ

n

))
(I ⊗CNOT2,3)(I ⊗H ⊗H)

(U ′⊗ I ⊗U ′)(CNOT1,3)
(

I ⊗ I ⊗Rz

(
2δ

n

))
(CNOT1,3)(U ′⊗ I ⊗U ′)


n

(2.77)
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CHAPTER III

QISKIT’S QUANTUM CIRCUITS AND PLOTS

We will be using Qiskit to build and run Quantum Circuits, Qiskit is an open-source software

development kit for working with quantum computers.

Figure 3.1: IBM login page. Taken from IBM Quantum Lab

By the time I was working on the circuit, the IBM quantum lab was available, but at the time

of writing since it has been deprecated, the best bet is to download Qiskit locally, for this follow

https://www.ibm.com/quantum/qiskit. [2]

3.0.1 JCH Circuit and Plot

Now it is turn to analyze the equations previously derived, for this we go back to equation

(2.55),

Û(t) =

Rz(−t)⊗Rz(−t)

[H ⊗H]CNOT[I ⊗Rz(2δ )]CNOT[H ⊗H]

[U ′⊗U ′]CNOT[I ⊗Rz(2δ )]CNOT[U ′⊗U ′]

(3.1)
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Equation (3.1) gives the time evolution operator Û (t) = exp
(
−iĤt

)
in quantum circuit form. Using

Qiskit and drawing the circuit,

Figure 3.2: Jaynes Cummings Quantum Circuit

The circuit in Figure 3.2 effectively runs Equation (3.1). To this end, we need to introduce

the concept of Rabi Oscillations. Rabi Oscillations are the consequence of an external light

field interacting with a two-level quantum system, when the Hamiltonian is known, we apply the

previously mentioned time evolution operator. To effectively extract Rabi Oscillations, first, we

need to initialize it (to 01, or 10) (01 for atom excited, no photon, and 10 for atom in ground state

and photon is present) and then, we need to run the circuit in the simulator for each data point t, on

a chosen interval of time.

For Figure (3.3), there are a few key points to mention: time is t ∈ 0,5 and its mutually exclusive

value from the Hamiltonian, meaning that time can be chosen at any interval, as long as a whole

complete period is shown, the time interval must be sliced equally between points for a symmetric

plot, otherwise the data will not make sense (other than by extrapolating). Second, the dashed lines

in the figure represent simulation of the circuit using Aer Simulator, and the squares represent real

jobs ran in ibmq_lima available at the time of the job. Third, observe how the real measurement

follows the pattern of the simulated photon/atom, but as time progresses, the real measurement loses

number of counts yet still follows the pattern, this is due to decoherence of the quantum device.
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Figure 3.3: Rabi Oscillations Plot for JCH

This is the behavior expected for a single atom JCH, implementing the evolution operator

(2.43) directly yields,

Û =



exp(it)

cos(λ t) −isin(λ t)

−isin(λ t) cos(λ t)

exp(−it)


(3.2)

In what follows we focus on superpositions of states |01⟩ = “atom in ground state, 1 photon” and

|01⟩ = “atom in excited state, no photon”:

|ψ2⟩= c01 |01⟩+ c10 |10⟩ (3.3)
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That is, we omit the states |00⟩ and |11⟩ because they cannot be reached if the system is prepared in

a state of the form (48). In this case, we can consider the truncated evolution operator,

Û (t) =

 cos(λ t) −isin(λ t)

−isin(λ t) cos(λ t)

 (3.4)

acting on states,

|ψ (t)⟩=

 c01 (t)

c10 (t)

 (3.5)

Where λ is the frequency of the Rabi Oscillations for the case in which the detuning δ = ω −ω0 is

zero. Physically, the atom and the photon both oscillate as two-level quantum system, either the

atom absorbs the photon and is in an excited state, or the atom is in ground state and the photon is

non-absorbed and around.

3.0.2 RBH Circuit and Plot

For the next Hamiltonian let us go back to Equation (2.77):

Û(t) = Rz(−t)⊗Rz(−t)⊗Rz(−t) (H ⊗ I ⊗H)(CNOT1,3)
(

I ⊗ I ⊗Rz

(
2δ

n

))
(CNOT1,3)(H ⊗ I ⊗H)

(I ⊗U ′⊗U ′)(I ⊗CNOT2,3)
(

I ⊗ I ⊗Rz

(
2δ

n

))
(I ⊗CNOT2,3)(I ⊗U ′⊗U ′)


n

 (I ⊗H ⊗H)(I ⊗CNOT2,3)
(

I ⊗ I ⊗Rz

(
2δ

n

))
(I ⊗CNOT2,3)(I ⊗H ⊗H)

(U ′⊗ I ⊗U ′)(CNOT1,3)
(

I ⊗ I ⊗Rz

(
2δ

n

))
(CNOT1,3)(U ′⊗ I ⊗U ′)


n

(3.6)

Before doing an analysis on the results, let us fold back and analyze (3.6). First, notice how we

have CNOT1,3 and CNOT2,3 , you may recognize that for the underscripts the first number is the

control qubit and the other is the target qubit; nonetheless analyzing closely one can see that both

are 8x8 and 4x4 matrix respectively, that is because, CNOT1,3 not only works with the first and third

qubit, but passes through the second qubit, and this happens exclusively in this gate, i.e if we had

CNOT2,5 then we would have a 16x16 matrix.
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Second, notice n exponent on the top, this is the trotter formula applied to the circuit, where n is

the trotter number, it can be chosen depending on the result that is needed and/or the resources

available.

For the RBH circuit, and similar to JCH, by drawing (3.6),

Figure 3.4: RBH Quantum Circuit

Figure (3.4) shows the quantum circuit for (3.6) in a much simplified manner. Reading from right to

left (because these are matrices 1) We can see the two blocks as First Trotter and Second Trotter

respectively.

Figure 3.5: First Trotter Circuit

1See Appendix A
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Figure 3.6: Second Trotter Circuit

Both Figures 3.5 and 3.6 constitute the blocks in Figure 3.4; furthermore, these blocks are

ran on the circuit n amount of times depending on the trotter number i.e. if n = 2 for First Trotter

and n = 5 for Second Trotter then, First Trotter is repeated two times in Figure 3.4 followed by a

Second Trotter being repeated five times.
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The following are plots of Rabi Oscillations for RBH with different trotter numbers n:

Figure 3.7: Rabi Oscillations for n=1

Figure 3.8: Rabi Oscillations for n=3
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Figure 3.9: Rabi Oscillations for n=5

Figure 3.10: Rabi Oscillations for n=10
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These plots provide the "same" oscillations for different n values yet we have different

results for each one of them. For n = 1, the pattern real device measurements follow is quite similar

yet physically it does not mean anything. For n = 3, you can start to see more decoherence effects

and the real device measurements still keeping the shape but slowly losing it; all the way to n = 10,

where we have an almost perfect simulation, yet the real device measurements are almost lost. The

RBH circuit has an initial depth of 13 for n = 1, yet the depth value is increased exponentially as n

is increased, allowing for decoherence effects to measure forbidden states other than |001⟩, |010⟩,

|100⟩.

39



CHAPTER IV

ENTANGLEMENT AND CONCLUSION

4.1 Entangled or not?

Consider a composite AB system consisting of 2 subsystems A (Alice) and B (Bob). Each

subsystem is a 2-state system with states |0⟩, |1⟩.

A product state in the composite system is for example the tensor product,

|Φ⟩AB = |0⟩A ⊗|1⟩B = |01⟩ (4.1)

We use the convention that the left entry refers to subsystem A and the right entry to B. |Φ⟩AB

is a tensor product, thus the two subsystems are separated (not entangled). Another state in the

composite system is the Bell state

∣∣Ψ+
〉

AB =
1√
2
(|00⟩+ |11⟩) (4.2)

This state cannot be written as a single tensor product |a⟩A ⊗|b⟩B and is thus entangled. Given an

arbitrary state |Ω⟩ABin the composite system AB, how can we tell if |Ω⟩AB is entangled?

Note that both |Φ⟩AB and |Ψ+⟩AB are pure states in the composite system AB. Thus we will

find for both density matrices ρ̂AB (Φ) = |Φ⟩⟨Φ| and ρ̂AB (Ψ
+) = |Ψ+⟩⟨Ψ+| that ρ̂ 2

AB = ρ̂AB. Thus

calculating ρ̂ 2
AB and comparing it with ρ̂AB does not tell us if the state in the composite system is

entangled.
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However, let’s consider the reduced density matrix ρ̂B = tr
A
(ρ̂AB) of one subsystem (say B) af-

ter tracing out the other subsystem (say A). If the original state |Ω⟩AB is a product state such

|Φ⟩AB = |0⟩A ⊗|1⟩B = |01⟩ in (4.1), then the reduced density matrix ρ̂B describes a pure state in

subsystem B, and we obtain ρ̂2
B = ρ̂B:

ρ̂B = tr
A
(ρ̂AB) = tr

A
(|01⟩⟨01|) = tr

A
[(|0⟩⊗ |1⟩)(⟨0|⊗ ⟨1|)]

= (⟨0 | 0⟩⊗ |1⟩)(⟨0 | 0⟩⊗⟨1|) + (⟨1 | 0⟩⊗ |1⟩)(⟨0 | 1⟩⊗⟨1|)

= (|1⟩⟨1|)B

(4.3)

As expected, subsystem B ends up in the pure state |1⟩, and ρ̂2
B = |1⟩⟨1 | 1⟩⟨1|= |1⟩⟨1|=

ρ̂B. This is expected since the two subsystems are separated and independent, thus Bob just keeps

his pure state |1⟩ independent of what Alice is doing.

However, if the original state |Ω⟩AB is an entangled state such as |Ψ+⟩AB = 1√
2
(|00⟩+ |11⟩) in (4.2)

then the reduced density matrix ρ̂B actually describes a mixed state in subsystem B, ρ̂2
B ̸= ρ̂B: and

we obtain ρ̂2
B ̸= ρ̂B:

ρ̂B = tr
A
(ρ̂AB) = tr

A

(
1√
2
(|00⟩+ |11⟩) 1√

2
(⟨00|+ ⟨11|)

)
= tr

A

(1
2 (|0⟩⊗ |0⟩+ |1⟩⊗ |1⟩)(⟨0|⊗ ⟨0|+ ⟨1|⊗ ⟨1|)

)
= 1

2 (⟨0 | 0⟩⊗ |0⟩+ ⟨0 | 1⟩⊗ |1⟩)(⟨0 | 0⟩⊗⟨0|+ ⟨1 | 0⟩⊗⟨1|)

+ 1
2 (⟨1 | 0⟩⊗ |0⟩+ ⟨1 | 1⟩⊗ |1⟩)(⟨0 | 1⟩⊗⟨0|+ ⟨1 | 1⟩⊗⟨1|)

= 1
2 (|0⟩⟨0|)+

1
2(|1⟩⟨1|)B

= 1
2(|0⟩⟨0|+ |1⟩⟨1|)B

(4.4)

It is easy to see that tr
B
(ρ̂B) = 1, showing that tr

AB
(ρ̂AB) = 1 for the pure state |Ψ+⟩AB in the

composite system AB. However, ρ̂B in subsystem B is a density matrix describing a mixture of
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states |0⟩ and |1⟩, each with probability 1/2. We obtain:

ρ̂2
B = 1

2 (|0⟩⟨0|+ |1⟩⟨1|) 1
2 (|0⟩⟨0|+ |1⟩⟨1|)

= 1
4 (|0⟩⟨0 | 0⟩⟨0|+ |0⟩⟨0 | 1⟩⟨1|+ |1⟩⟨1 | 0⟩⟨0|+ |1⟩⟨1 | 1⟩⟨1|)

= 1
4 (|0⟩⟨0|+ |1⟩⟨1|)

= 1
2 ρ̂B

(4.5)

Thus ρ̂2
B ̸= ρ̂B.

The interpretation is as follows: If ρ̂2
B ̸= ρ̂B, Bob cannot tell from his density matrix ρ̂B for his state

|b⟩B if it is a mixed state because of uncertainty, or if it is entangled with another state |a⟩A . If

he could do this, then this would make possible instantaneous communication between Alice and

Bob even if they are far away from each other, because he could then use his density matrix ρ̂B to

determine immediately if Alice performed a measurement on her subsystem A or not.

4.2 Time Evolution Entanglement

Figure 4.1: Photon spectral norm (using Qiskit)

We should be able to calculate an entanglement value as our circuit evolves in time (3.6) by
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calculating the spectral norm (L2) ,
∥∥p̂2

i − p̂i,
∥∥ where i is either Atom 1, Atom 2, or the photon,

(See Figure 4.1) for L2 plot with respect of time for the photon (i = p).

In Figure 4.2, we plot the L2 of all the differences for all three initial states (all i’s) as time

progresses, opening the door for the generation of two-qubit gates as proposed in [5].

Figure 4.2: Spectral norm for all i values. Where photon, Atom 1, Atom 2
.

4.3 Conclusion

We were able to derive a Quantum Circuit for the Jaynes Cummings Hamiltonian success-

fully along with a new circuit that is able to model the Rydberg Blockade, allowing for a further

examination of the latter.

We were also able to run the circuits both in simulation and in a real device, showing the real time

limitation of the computer on the still on going NISQ era. Usually the problem is truncated to be an

engineering one, yet there are several fields of research such as Quantum Error Correction trying to

tackle the issue of decoherence from different angles theoretically. Lastly, we were able to show the

existence of entanglement as time evolves for all initial states, which is crucial for the generation of

Rydberg atom Multi-qubit gates which is an undergoing research in QuEra and research institutions

like Harvard and MIT [1].
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Figure 4.3: Rydberg Atoms in a Cavity Model. Two Rydberg atoms in a cavity, depicting the light
as the red waves.

"Nature isn’t classical, dammit, and if you want to make a simulation of nature, you’d better

make it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t look so

easy." - Richard P. Feynman

44



REFERENCES

[1] D. BLUVSTEIN, H. LEVINE, G. SEMEGHINI, T. T. WANG, S. EBADI, M. KALINOWSKI,
A. KEESLING, N. MASKARA, H. PICHLER, M. GREINER, ET AL., A quantum processor
based on coherent transport of entangled atom arrays, Nature, 604 (2022), pp. 451–456.

[2] A. JAVADI-ABHARI, M. TREINISH, K. KRSULICH, C. J. WOOD, J. LISHMAN, J. GACON,
S. MARTIEL, P. D. NATION, L. S. BISHOP, A. W. CROSS, B. R. JOHNSON, AND J. M.
GAMBETTA, Quantum computing with Qiskit, 2024.

[3] P. LAMBROPOULOS AND D. PETROSYAN, Fundamentals of Quantum Information, Springer,
2007.

[4] M. A. NIELSEN AND I. L. CHUANG, Quantum Computation and Quantum Information: 10th
Anniversary Edition, Cambridge University Press, USA, 10th ed., 2011.

[5] M. SAFFMAN, T. G. WALKER, AND K. MØLMER, Quantum information with rydberg atoms,
Rev. Mod. Phys., 82 (2010), pp. 2313–2363.

[6] F. TACCHINO, A. CHIESA, S. CARRETTA, AND D. GERACE, Quantum computers as universal
quantum simulators: state-of-the-art and perspectives, Advanced Quantum Technologies, 3
(2020), p. 1900052.

[7] E. URBAN, T. A. JOHNSON, T. HENAGE, L. ISENHOWER, D. YAVUZ, T. WALKER, AND

M. SAFFMAN, Observation of rydberg blockade between two atoms, Nature Physics, 5 (2009),
pp. 110–114.

[8] M. WEIDEMÜLLER, There can be only one, Nature Physics, 5 (2009), pp. 91–92.

[9] J. D. WHITFIELD, J. BIAMONTE, AND A. ASPURU-GUZIK, Simulation of electronic structure
hamiltonians using quantum computers, Molecular Physics, 109 (2011), pp. 735–750.

45



APPENDIX A

46



APPENDIX A

INTRODUCTION TO QUANTUM COMPUTING

Quantum Computing (QC) has been a developing field since the 1980s. Richard Feynman

first mentioned the idea in a keynote speech in Caltech in 1981. Since then, the field has been

evolving from Shor’s Algorithm, Simon’s algorithm all the way to Quantum Simulation schemes

and Quantum error correction codes. Generally speaking we are still far away from using Quantum

Computers (QCrs) in a practical application if there even exists such use, and for that fault tolerant

QCrs are needed; researchers and the private industry call this the fault tolerant era, an era in which

the coherence of quantum devices will be fully controlled allowing for the usage of these devices

effectively. We are still far away from that time; nevertheless, we encounter ourselves today in the

NISQ era (Noisy Intermidiate Scale Quantum), an era in which we do not yet have noiseless devices

but instead noisy devices that are still capable of being of use combined with classical devices, a

hybrid approach if you will; variational algorithms are an example of an application of this. And

so how do we measure the coherence then you may be asking? By using the value of Quantum

Volume. Quantum Volume is a metric that takes into account the number of qubits, capabilities

and error rates; for simplicity, usually the road to coherence is measured by the amount of physical

qubits that the Quantum Computer (QCr) has.

The qubit is a fundamental unit in a QCr, think of it as analogous to the bit, except that

its Quantum Mechanical and instead of being fixed on a single state its state is represented by the

Bloch sphere. As of today that I am writing this, 1180 physical qubits are the maximum amount

that has been achieved, done by the company Atom Computing, but the curve is exponentially

increasing. An important fact is that, there is a big distinction between physical qubits and logical

qubits. Logical qubits are used for application in the circuits, as we will we see, we will focus on
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Figure A.1: IBM Quantum Computer. Credits to IBM

these; physical qubits on the other hand, are those qubits that are used to build on logical qubits,

coherence and other applications (for more read... ). For now I will be referring logical qubits as

just qubits keeping in mind that important distinction.

A quantum bit or better known as qubit, is the most fundamental part of a QCr. Experimentally

speaking, qubits can take a lot of shapes and forms depending on the implementation of the QCr. For

example, in the SQUID implementation (Superconducting Quantum Interference Device) (Check

Figure A.1) a superconducting loop in Josephson Junctions can perform as flux qubits; in neutral

atoms, qubits are coded in the energy levels of atoms; in photonics, photons are used to encode

qubits, and so forth. Ideally speaking, I will work with qubits in the most general way possible. In

other words, I will not care about the implementation, but the most general interpretation which can

be used for any of the implementations, at the end of the day, logical qubits are the ones that work

with the algorithms.

The qubit is better represented in literature as a vector pointing in the surface of a Bloch

Sphere. In Figure A.2, every point in the surface of the sphere has a value, whether its 0 and 1 in

the north and south pole respectively or any value in between when pointing in any other direction.

For example, if the arrow where to point in the equator, it would have an equal superposition of

both 1 and 0. This only works when qubits are not measured though, when quantum information is

measured then it becomes classical information, qubits become bits and the qubit will collapse to
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either the south or north pole respectively. The probability of collapsing to either one depends on

the direction of the vector pointing to the surface.

Figure A.2: Bloch Sphere. Taken from ResearchGate

It is important to know that the computational basis of qubits can be represented by col-

umn vectors. Generally speaking, a qubit can be represented by a linear superposition of both

computational basis, such that:

|q⟩= α |0⟩+β |1⟩= α

 1

0

+β

 0

1

=

 α

β

 (1.1)

Here α and β represent the complex amplitudes of the given states, note that as in Quantum

Mechanics, |α|2 + |β |2 = 1 meaning that each complex amplitude squared gives the probability of

collapsing to its appropriate state,

Furthermore,

|0⟩=

 1

0

 (1.2)
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|1⟩=

 0

1

 (1.3)

The general 1 qubit operator is represented by,

Â = ∑
i, j

Ai j |i⟩⟨ j| with i, j = 0,1 → A =

 A00 A01

A10 A11

 (1.4)

For 2 qubit basis elements,

|00⟩=



1

0

0

0


, |01⟩=



0

1

0

0


, |10⟩=



0

0

1

0


, |11⟩=



0

0

0

1


(1.5)

1

Given two 1-qubit operators:

Â = ∑
i, j

Ai j |i⟩⟨ j| (1.6)

B̂ = ∑
k, l

Bk l |k⟩⟨l| (1.7)

Then

Â⊗ B̂ = ∑
i, j,k, l

Ai jBk l |ik⟩⟨ jl| →

 A00B A01B

A10B A11B

 (1.8)

Equation (1.8) provides the tensor product of two operators in Matrix form.

1As the number of qubits increases so does the column matrix, allowing for
2n scaling, where n is the number of qubits
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The tensor product ⊗ not only provides necessary machinery for operator resolution, but a means to

represent the different composition of qubits (more on that later).

To manipulate the arrow in the Bloch Sphere, it is necessary to introduce Quantum Logic Gates

(See Figure 1.3) each one of them moves the arrow of the qubit and introduces a matrix definition.

Figure A.3: List of Quantum Logic Gates. Taken from Wikipedia

The Hadamard Gate (H) for example, takes the qubit into the state of superposition. Pauli Z

Gate rotates the qubit around the z-axis.

Quantum Gates can also be written as matrices as well, hence when applied to a state, the Matrix is

multiplied to a column matrix representing the initial state such as (1.2), (1.3), and (1.5).
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Figure A.4: Bell State Example

Quantum Circuits start from left to right and the number of qubits goes from top to bottom.

In the case of Figure A.4 we have two qubits, the Hadamard (H) Gate applied to the first qubit

followed by a CNOT Gate taking the first qubit as control and the second one as target. This circuit

is the well known Bell state, better known as an entangled state, and its written like this,

|Φ+⟩= 1√
2
(|00⟩+ |11⟩) (1.9)

Lets walk through the process, first we an initial state

|00⟩ (1.10)

we apply the Hadamard Gate to the first qubit resulting in

1√
2
(|00⟩+ |01⟩) (1.11)

The CNOT gate acts as on the first qubit as control and so for state |0⟩ the target does not switch,

yet for state |1⟩ the target switches yielding,

1√
2
(|00⟩+ |11⟩) (1.12)

which is equation (1.9)
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The state |00⟩ can also be written as |0⟩⊗ |0⟩, the tensor product in quantum circuits is used to

compose independent qubits, so if we go back to the basis states in (1.5), |000⟩ can also be written

as |0⟩⊗ |0⟩⊗ |0⟩ now not all states can be decomposed to tensor products, one such example is the

bell state and that is because its entangled, (Look up Chapter 4). Another way to work with the

circuits is by doing matrix multiplication, you need to be really careful though, because Matrix

Multiplication starts from right to left, in other words CNOT multiplies H and I, this is shown here:

CNOT · (H ⊗ I) · |00⟩=

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





1√
2

1√
2

0 0

1√
2

− 1√
2

0 0

0 0 1 1

0 0 1 −1





1

0

0

0



=
1√
2



1

1

0

0


=

1√
2
(|00⟩+ |11⟩)

(1.13)

Notice how the identity matrix only applies when qubits have no gates, and so if there is no

gate it acts as an invisible gate that does nothing just like the identity matrix multiplies times one.
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APPENDIX B

FREE FIELD HAMILTONIAN DERIVATION

The following are Maxwell Equations with no sources of radiation:

∇ ·E = 0 (2.1)

∇ ·B = 0 (2.2)

∇×E =−∂B
∂ t

(2.3)

∇×B = µ0ε0
∂E
∂ t

(2.4)

By having a one dimensional cavity such as in Figure (1.2), and the boundaries at z = 0 and z= L,

we have an Electric Field assumed to be polarized along the x-direction,

∂ 2Ex

∂ z2 − 1
c2

∂ 2Ex

∂ t2 = 0 (2.5)

We solve the following wave equation with separation of variables to get:

Ex(z, t) =
(

2ω2

V ε0

)1/2

q(t)sin(kz) (2.6)

where if E0 =
(

2ω2

V ε0

)1/2

Ex(z, t) = Z(z) ·q(t) = E0q(t)sin(kz) (2.7)

If we now focus our attention into the magnetic field, we can use Ampere’s law (2.4):
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∇×B =
1
c2

∂E
∂ t

(2.8)

By =− 1
c2

∫
∂Ex

∂ t
dz =

µ0ε0

k
E0q̇(t)cos(kz) (2.9)

Converting classical operators to quantum operators, (q(t)→ q̂ and q̇(t)→ p̂), we will follow by

using the well-known formula for the hamiltonian:

Ĥ =
1
2

∫
dV

[
ε0E2

x (z, t)+
1
µ0

B2
y(z, t)

]
. (2.10)

which results in,

Ĥ =
1
2
(p2 +ω

2q2), (2.11)

By applying the well known non-hermitian bosonic operators,

â =
1√
2h̄ω

(ω q̂+ ip̂) (2.12)

â† =
1√
2h̄ω

(ω q̂− ip̂) (2.13)

By solving for p̂ and q̂ by adding and subtracting the operators we get Eq (2.6) and (2.9) in terms of

these operators, plugging everything into (2.11) yields,

Ĥ = h̄ω

(
â†â+

1
2

)
. (2.14)

where â†â represents the number operator and the term 1
2 represents the zero point energy of the

system. For now we neglect the former and approximate to get us the Free Field Hamiltonian:

Ĥ = h̄ω â†â (2.15)
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APPENDIX C

TROTTER DECOMPOSITION

Let us consider two commuting operators A and B (Pauli terms are Hermitian Operators). If

we have H =A+B ei(A+B)t = eiAteiBt , then the Taylor series expansion of eiAt is given by:

eiAt =
∞

∑
n=0

(iAt)n

n!
(3.1)

Expanding this, we get:

eiAt ≈ 1+ iAt − (At)2

2!
− i

(At)3

3!
+ · · · (3.2)

Where:

1 =
(iAt)0

0!
, iAt =

(iAt)1

1!
, −A2t2

2
=

(iAt)2

2!
, and − i

A3t3

6
=

(iAt)3

3!
.

Similarly for:

eiBt =
∞

∑
n=0

(iBt)n

n!
(3.3)

and

eiBt ≈ 1+ iBt − (Bt)2

2!
− i

(Bt)3

3!
+ · · · (3.4)

The Taylor series expansion of ei(A+B)t is:

ei(A+B)t =
∞

∑
n=0

(i(A+B)t)n

n!
(3.5)

Expanding this, we get:
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ei(A+B)t ≈ 1+ i(A+B)t +
(i(A+B)t)2

2!
+

(i(A+B)t)3

3!
+ · · ·

= 1+ i(A+B)t − (A+B)2t2

2
− i

(A+B)3t3

6
+ · · ·

(3.6)

This only works if A = B or AB = BA.

Otherwise, the exponential of the sum of matrices A and B can be expressed as:

exp(Â+ B̂) = lim
n→∞

(
exp

(
Â
n

)
exp

(
B̂
n

))n

(3.7)

where

exp(δ (Â+ B̂)) = exp(δ Â)exp(δ B̂)+O(δ 2) (3.8)

and n is the trotter number, which as it approaches infinity makes δ go to zero.
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