Document Type


Publication Date



Piezoelectric Nanogenerators (PENGs), which can convert ambient mechanical stimuli into electrical energy, are held in high regard due to their cost-effectiveness, energy harvesting applications, and potential as self-powered sensors. We report an aluminum-doped zinc stannate (ZnSnO3) PENG that can achieve high electrical outputs with respect to the external force. In order to enrich the piezoelectric mechanics, a low-temperature solution method was adopted in our work to synthesize ZnSnO3 nanocubes with an average side length of only 30 – 55 nm. Furthermore, ZnSnO3 was doped with 1 wt% to 5 wt% of aluminum nanoparticles. We report that 2 wt% of aluminum doped ZnSnO3 showed the highest electrical output in terms of open circuit voltages and short circuit current. The nanogenerator device achieved an average open-circuit voltage of 80 V to 175 V with a frequency range of 60 BPM (Beats Per Minute) to 240 BPM, an unprecedented electrical output in comparison to current ZnSnO3 -based PENGs. With the presented high output-to-size ratio taken into consideration, the device was mounted in a helmet and tested as an energy harvester and wireless human motion sensor, which can generate electric charge as well as detect human movements and transmit the corresponding signals wirelessly. Our work- is indicative of a promising smart helmet using organic-inorganic hybrid materials.


Original published version available at

Publication Title

Nano Energy





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.