Document Type

Article

Publication Date

4-19-2002

Abstract

DNA replication in bacteria is performed by a specialized multicomponent replicase, the DNA polymerase III holoenzyme, that consist of three essential components: a polymerase, the β sliding clamp processivity factor, and the DnaX complex clamp-loader. We report here the assembly of the minimal functional holoenzyme from Thermus thermophilus (Tth), an extreme thermophile. The minimal holoenzyme consists of α (pol III catalytic subunit), β (sliding clamp processivity factor), and the essential DnaX (τ/γ), δ and δ′ components of the DnaX complex. We show with purified recombinant proteins that these five components are required for rapid and processive DNA synthesis on long single-stranded DNA templates. Subunit interactions known to occur in DNA polymerase III holoenzyme from mesophilic bacteria including δ-δ′ interaction, δδ′-τ/γ complex formation, and α-τ interaction, also occur within the Tth enzyme. As in mesophilic holoenzymes, in the presence of a primed DNA template, these subunits assemble into a stable initiation complex in an ATP-dependent manner. However, in contrast to replicative polymerases from mesophilic bacteria, Tth holoenzyme is efficient only at temperatures above 50 °C, both with regard to initiation complex formation and processive DNA synthesis. The minimalTth DNA polymerase III holoenzyme displays an elongation rate of 350 bp/s at 72 °C and a processivity of greater than 8.6 kilobases, the length of the template that is fully replicated after a single association event.

Comments

© 2002 American Society for Biochemistry and Molecular Biology Inc. Original published version available at http://doi.org/10.1074/jbc.M110833200.

Bullard, J., Williams, J., Acker, R., et al. DNA Polymerase III Holoenzyme From Thermus Thermophilus Identification Expression Purification of Components and use to Reconstitute a Processive Replicase. Journal of Biological Chemistry 2002, vol. 277, 13401-13408.

First Page

13401

Last Page

13408

Publication Title

Journal of Biological Chemistry

DOI

10.1074/jbc.M110833200

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.