Document Type

Article

Publication Date

9-15-2012

Abstract

When a plant germinates in the soil, elongation of stem-like organs is enhanced whereas leaf and root growth is inhibited. How these differential growth responses are orchestrated by light and integrated at the organismal level to shape the plant remains to be elucidated. Here, we show that light signals through the master photomorphogenesis repressor COP1 to coordinate root and shoot growth in Arabidopsis. In the shoot, COP1 regulates shoot-to-root auxin transport by controlling the transcription of the auxin efflux carrier gene PIN-FORMED1 (PIN1), thus appropriately tuning shoot-derived auxin levels in the root. This in turn directly influences root elongation and adapts auxin transport and cell proliferation in the root apical meristem by modulating PIN1 and PIN2 intracellular distribution in the root in a COP1-dependent fashion, thus permitting a rapid and precise tuning of root growth to the light environment. Our data identify auxin as a long-distance signal in developmental adaptation to light and illustrate how spatially separated control mechanisms can converge on the same signaling system to coordinate development at the whole plant level.

Comments

© 2012 the authors. Original published version available at http://doi.org/10.1242/dev.078212

First Page

3402

Last Page

3412

Publication Title

Development (Cambridge)

DOI

10.1242/dev.078212

Included in

Chemistry Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.