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ABSTRACT

Hossain, Md Arafat, Determination of effective index of refraction of structured materials (photonic 

crystals). Master of Science (MS), May, 2023, 89 pp., 7 tables, 45 figures, references, 35 titles.

Photonic crystals have been widely studied by researchers due to their ability to control light 

propagation in all spatial directions. For example, 2D photonic crystals can be made of dielectric 

rods arranged in a square lattice. When light propagates through 2D photonic crystals, it experiences 

multiple scatterings by the crystal centers. The superposition of all scattered waves forms the 

transmitted field largely dependent upon the effective index of refraction of the structured material. 

We propose a method to determine the effective index of refraction through such materials with the 

Finite-Difference Time-Domain (FDTD) model. We set up the interface of two media, such as air 

and photonic crystal, modeled the refraction of the EM waves at the interface, collected the data 

from FDTD and analyzed the data in MATLAB using FFT2. The proposed method promises to be 

a simple tool for determining the effective index of refraction of structured materials.
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CHAPTER I

INTRODUCTION

Photonic crystals are made of periodic dielectric structures and have attracted enormous

research interest nowadays. The propagation of light in photonic crystals has been studied for a long

time [1, 2]. The photonic crystals inhibit light propagation over a specific band of frequencies while

allowing others to propagate. This behavior gives rise to the concept of photonic band gap, which is

analogous to the electronic band gap in semiconducting materials [3, 4, 5]. The propagation of EM

waves in photonic crystals and photonic band gap have been studied extensively by several groups

[6, 7, 8]. Their studies show that the periodic dielectric structures have photonic band gap.

Recently photonic crystals have garnered outstanding research interest due to their unique

properties. The band gap of photonic crystals prohibits light propagation at certain frequencies.

Therefore, light propagation can be controlled in certain ways, which is not possible in conventional

materials. The photonic crystals have advantages over semiconductor materials due to low-loss,

high speed, and wide-bandwidth properties [9]. All these properties have importance in telecommu-

nications and optoelectronic devices. A few examples of devices based on photonic crystals are

optical filter [10], wavelength division multiplexer (WDM) [11], optical sensor [12], and logic gates

[13, 14].

The 2D photonic crystals, the counterpart of 3D, have also garnered research interest over

the few years [15, 16]. The 2D photonic crystals come in various lattices such as square [15],

triangular [17], and hexagonal [18]. This work focuses on 2D structured photonic crystals due to

computational limitations. We studied 2D photonic crystals of square lattice considering transverse

electric (TE) and transverse magnetic (TM) polarization.
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The propagation of light in photonic crystals shows interesting phenomena. The light in the

photonic crystals scattered strongly due to the high refractive index contrast. The scattered waves

make constructive or destructive interference in the structure depending upon the wavelength of

the incident light. The index of refraction of the constituent elements is different from the index

of refraction of the structured photonic crystals. The propagation of light in strongly modulated

2D photonic crystals behaves as a material having a refractive index called effective refractive

index. The photonic band gap of the photonic crystals can control the effective refractive index.

The effective index in 2D photonic crystals has been studied by many theoretical [19, 20, 21] and

experimental groups [22, 23]. It is possible to find positive and negative or zero refraction in the

same structure depending upon their band structure and direction of propagation of the incident

light in the photonic crystals [24].

The outline of this Thesis is as follows: Chapter II discusses Maxwell’s equations and the

propagation of EM waves in the homogeneous medium for TE and TM polarization. Chapter III

discusses the periodic dielectric structures using Bravais lattice, reciprocal lattice, and Brillouin

zone. This chapter also discusses the governing equation of photonic crystals, including numerical

examples. Chapter IV introduces the Finite-Difference Time-Domain method (FDTD) based on

Maxwell’s equations and Yee’s grid [25]. The discussion of a perfectly matched layer (PML) for

absorbing outgoing waves is also included in this chapter. Chapter IV describes the method for

determining the refractive index using Fast-Fourier Transformation. This chapter includes the

numerical calculation of the refractive index using FFT2 tool. Chapter V discusses the effective

index of refraction in 2D photonic crystals using the FDTD method. The relation between effective

index and polarization is also discussed in this chapter. Chapter VI summarizes the results of this

work, and the findings of this work are also discussed here.
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CHAPTER II

EM WAVES IN HOMOGENEOUS MEDIA

2.1 Maxwell’s Equations

Maxwell’s equations are based on experimental fact and named after their discoverers, such

as Faraday’s law, Gauss’ law, Ampere’s law, and magnetic monopole. The physical quantities

associated with Maxwell’s laws are electric field E, electric displacement field D, magnetic field

H, electric current density J, and charge density ρ . In linear and homogeneous media, Maxwell’s

equation in integral and differential form can be written as

Gauss’ law: The differential form of Gauss’ law is equivalent to the statement of Coulomb’s law.

∮
S

D ·ds =
∫

V
ρdv. (2.1)

The differential form can be written as

∇ ·D = ρ. (2.2)

It connects the electric charge density ρ for moving and stationary charges to the electric field E.

Here V is the volume enclosed by the surface S.

Faraday’s law: it is time-varying magnetic flux produces electromotive force.

∮
C

E ·dI =−
∫

S

∂B
∂ t
·ds. (2.3)

The differential form of Faraday’s law is

∇×E =−∂B
∂ t

. (2.4)
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where S is an arbitrary two-dimensional surface in three-dimensional space and C is its boundary.

Ampere’s law: It is the line integral of the magnetic field H around any closed loops is equal to the

total current density J enclosed by that loop.

∮
C

H ·dI =
∫

S
J ·ds+

∫
S

∂D
∂ t
·ds. (2.5)

The differential form of Ampere’s law is

∇×H = J+
∂D
∂ t

. (2.6)

where S is a surface with boundary C. The first term in the right side of Eq.2.5 is the conduction

current density and second term is the displacement current density.

Maxwell’s fourth equation-this equation states that there are no magnetic monopoles. Sometimes, it

is called Gauss’ law for magnetism. ∮
S

B ·ds = 0. (2.7)

The differential form of fourth equation is

∇ ·B = 0. (2.8)

Where S is a surface with boundary C.

2.2 Boundary Conditions

In linear, isotropic, and homogeneous media the relation between fields are

D = εrε0E, B = µrµ0H; (2.9)

where ε0 and µ0 are the permittivity and permeability of the free space, and εr and µr are the relative

permittivity and permeability of the materials, respectively. The speed of light c = 299792548m/s,

the value of µ0 is 4π×10−7H/m. The permittivity of free space, ε0 =
1

c2µ0
and the value of ε0 is

4



8.854×1−12F/m.

First Boundary Condition: The normal component of electric displacement field D is discontinuous

across the boundary.

The boundary conditions for the normal components of E and D can be found by applying

Gauss’ law, Eq.2.1, to the loop abcd. At the limit, ∆h→ 0, normal component of D yields

D1 ·n1∆s+D2 ·n2∆s = ρs∆s, (2.10)

where n1 and n2 are unit normal vector to the top and bottom surfaces of the cylinder in Fig.2.1.

But n2 =−n1, and Eq.2.10 yields

n2 · (D1−D2) = ρs, (2.11)

where D1 and D2 are the normal component of displacement fields of D1n and D2n, respectively,

and ρs is the surface charge density of the cylinder. So, Eq.2.11 can be written as

D1n−D2n = ρs. (2.12)

The normal component of electric displacement field D is discontinuous across the boundary

between two media. This is the second boundary condition for Maxwell’s equation. Similarly for

normal component of electric field, E, by applying Eq.2.9 to Eq.2.12 yields

ε1E1n− ε2E2n = ρs. (2.13)

Second Boundary Condition: Tangential component of the electric field E. Let us consider a

boundary between two media having permittivities ε1, ε2, and permeabilities µ1, µ2, respectively,

as shown in Fig.2.1 By applying Faraday’s law, Eq.2.3, to the loop abcd in Fig.2.1 we get

5



Figure 2.1: Boundary conditions at the interface of two materials having permittivites ε1,ε2, and
permeabilities µ1,µ2, respectively. The upper portion is the medium 1 of refractive index n1 and
and the lower portion represents the medium 2 of refractive index n2.

E2t∆l +E2n
∆h
2

+E1n
∆h
2

+E1t(−∆l)+E1n

(
−∆h

2

)
+E2n

(
−∆h

2

)
=−∂B⊥

∂ t
∆h∆l, (2.14)

where B⊥ is the component of magnetic field perpendicular to the loop abcd. When ∆h→ 0, Eq.2.14

reduces to

E2t∆l +E1t (−∆l) = 0. (2.15)

which gives the the continuity condition for tangential component of the electric field at the interface

between the two media.

E2t = E1t . (2.16)

The tangential component of the electric field, E is continuous across the boundary between the two

media. This is the first boundary condition for Maxwell’s equation.

Third Boundary Condition: The tangential component of the magnetic field, H is continuous

across the boundary between two media.

To find the tangential component of H, we apply Ampere’s law, Eq.2.5, to the loop abcda.

6



At ∆h→ 0, components of H around the loop gives the equation

H2t∆l +H1t(−∆l) = Js∆l

or H2t−H1t = Js (2.17)

where H1t and H2t are the tangential components of H along the long arms of the loop and Js is the

magnitude of the surface current density normal to the loop. Eq.2.17 can be written as

n2× (H1−H2) = Js. (2.18)

where n2 is the unit vector normal to the surface of the cylinder. In the absence of surface current

density Js, Eq.2.17 can be written as

H2t = H1t (2.19)

The tangential component of the magnetic field, H is continuous across the boundary between the

two media. This is the third boundary condition for Maxwell’s equation.

Fourth Boundary Condition: The normal component of magnetic flux density, B is continu-

ous across the boundary between the two media. By applying Gauss’ law, Eq.2.7, to the loop abcda

yields

n · (B1−B2) = 0,

or, B2n = B1n. (2.20)

In this case, the normal component of the magnetic field B is continuous across the boundary

between the two media.

2.3 Propagation of EM Wave in a Homogeneous Medium

We assume that a plane electromagnetic wave is incident at the interface between the two

media of refractive index n1 and n2. The permittivity and permeability of the media are ε1, ε2,

7



and µ1, µ2, respectively. In linear, homogeneous, and isotropic medium, Maxwell’s equations are

written as

∇ ·D = 0, (2.21)

∇ ·B = 0, (2.22)

∇×E = −∂B
∂ t

, (2.23)

∇×H =
∂D
∂ t

, (2.24)

where D = εE and B = µH. Here ε = ε0εr and µ = µ0µr. From Eq.2.23

−ik×E =−µiωH,

H =
1

µω
k×E. (2.25)

We assume the fields associated with the incident plane wave are

E = E0ei(ωt−k·r). (2.26a)

B = B0ei(ωt−k·r). (2.26b)

H = H0ei(ωt−k·r). (2.26c)

In the first medium, the incident plane wave is written as

E1 = Eiei(ωt−ki·r). (2.27)

Similarly, the reflected plane wave can be written as

E2 = Erei(ωt−kr·r). (2.28)
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and the transmitted wave is

E3 = Etei(ωt−kt ·r). (2.29)

The plane wave incident at the interface between the media has two type of polarization-

Transverse Electric (TE): the incident E-field is perpendicular to the plane of incidence and

Transverse Magnetic (TM): the incident H-field is perpendicular to the plane of incidence.

TE Polarization

For TE-polarization, E = Eyŷ. The component of electric field Ey is continuous across the boundary

and component of magnetic field Hx is continuous across the boundary.

In the first medium, total field

E1y = Eiyei(ωt−ki·r)+Eryei(ωt−kr·r). (2.30)

For simplicity, we will omit the subscript y from the field.

E1 = Eiei(ωt−ki·r)+Erei(ωt−kr·r). (2.31)

In the second medium, transmitted field is written as

Figure 2.2: A plane electromagnetic wave is propagating through the two media of dielectric
constant ε1 and ε2, respectively. For TE-polarization, the direction of electric field is into the page,
E = Eyŷ

9



E2 = Etei(ωt−kt ·r). (2.32)

Now, applying boundary conditions at the interface (z = 0). The tangential component of the electric

field E is continuous across the boundary

E1(z = 0) = E2(z = 0),

Eiei(ωt−kixx)+Erei(ωt−krxx) = Etei(ωt−ktxx). (2.33)

The component of k-vectors tangential to the interface of the two media are identical, that means

kix = krx = ktx. The Eq.2.33 yields

Ei +Er = Et . (2.34)

From Eq.2.25, the incident H-field

Hi =
1

µ1ω
k×Ei. (2.35)

since Ey and Hx component are continuous across the boundary, we can write the incident field as

Hi =
Eiei(ωt−k·r)

µ1ω
(kixẑ− kizx̂). (2.36)

Similarly, reflected H-field is written as

Hr =
Erei(ωt−k·r)

µ1ω
(krxẑ− krzx̂). (2.37)

and transmitted field H-field is written as

Ht =
Etei(ωt−k·r)

µ2ω
(ktxẑ− ktzx̂). (2.38)

Applying boundary condition, the tangential component of H- field is continuous. Here Hx compo-
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nents are continuous across the boundary.

Eiei(ωt−k·r)

µ1ω
(−kiz)+

Etei(ωt−k·r)

µ1ω
(−krz) =

Etei(ωt−k·r)

µ2ω
(−ktz). (2.39)

at z = 0

Eikiz

µ1
+

Erkrz

µ1
=

Etktz

µ2
,

Eikiz

µ1
− Erkiz

µ1
=

Etktz

µ2
. (2.40)

since krz =−kiz. From Eq.2.34 and Eq.2.40

Er

Ei
=

µ2kiz−µ1ktz

µ2kiz +µ1ktz
. (2.41)

rT E =
Er

Ei
. (2.42)

Here, rT E is called the coefficient of reflection.

Similarly, from Eq.2.34 and Eq.2.40

Et

Ei
=

2µ2kiz

µ2kiz +µ1ktz
(2.43)

tT E =
Et

Ei
. (2.44)

Here, tT E is called the coefficient of transmission of the medium.

TM Polarization

For TM-polarization, the H-field is along y-direction, H = Hyŷ. Now Hy and Ex components are

continuous across the boundary. Similarly, using the boundary condition at the interface (z = 0) we

get

Hi +Hr = Ht . (2.45)
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Figure 2.3: A plane electromagnetic wave is propagating through the two media of dielectric
constant ε1 and ε2, respectively. For TM-polarization, the direction of magnetic field is into the
page, H = Hyŷ

and
kiz

ε1
Hi +

krz

ε1
Hr =

ktz

ε2
Ht . (2.46)

From Eq.2.45 and Eq.2.46, we get

Hr

Hi
=

ε2kiz− ε1ktz

ε2kiz + ε1ktz
. (2.47)

and

rT M =
Hr

Hi
. (2.48)

Here, rT M is called the coefficient of reflection.

tT M =
2ε2kiz

ε2kiz + ε1ktz
. (2.49)

and

tT M =
Ht

Hi
. (2.50)

Here, tT M is called coefficient of transmission.
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2.4 Fresnel’s Equations

We assume that θi is the angle of incidence, θr is the angle of reflection, and θt is the angle

of transmission. From Fig.2.2, the components of k-vector yields

kix = krx = ktx,

kix = ki sinθi =
ω

c
n1 sinθi. (2.51)

kiz = ki cosθ =
ω

c
n1 cosθi. (2.52)

krz =−kiz =−
ω

c
n1 cosθi. (2.53)

The transmitted k-vector has two components, ktz and ktx.The component of k-vector ktz is found by

using Pythagorean theorem.

k2
t = k2

tz + k2
tx,

ktz =
√

k2
z − k2

tx,

=

√
(
ω

c
n2)2− (

ω

c
n1)2 sin2

θi,

=
ω

c

√
n2

2−n2
1 sin2

θi. (2.54)

From Snell’s law

n1 sinθi = n2 sinθt . (2.55)

From Eq.2.54 and Eq.2.55

ktz =
ω

c

√
n2

2−n2
2 sin2

θt ,

ktz =
ω

c
n2 cosθt . (2.56)
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By substituting the values of kix, kiz, krz, and ktz in Eq.2.41, Eq.2.43, Eq.2.47, and Eq.2.49, and

taking the the values of µ1 = µ2 = 1, and n =
√

ε yields

rT E =
n1 cosθi−

√
n2

2−n2
1 sin2

θi

n1 cosθi +
√

n2
2−n2

1 sin2
θi

. (2.57)

tT E =
2n1 cosθi

n1 cosθi +
√

n2
2−n2

1 sin2
θi

. (2.58)

rT M =
n2

2 cosθi−n1

√
n2

2−n2
1 sinθi

n2
2 cosθi +n1

√
n2

2−n2
1 sinθi

. (2.59)

tT M =
2n2

2 cosθi

n2
2 cosθi +n1

√
n2

2−n2
1 sinθi

. (2.60)

This set of equations is called Fresnel’s law. The coefficient of reflection and transmission for typical

air-glass interface are shown in Fig.2.4 and Fig.2.5. The red line represents the TE-polarization and

blue line represents the TM-polarization. For TM-polarization, the reflection becomes zero for the

particular angle of incidence. This angle is called Brewster angle,θB.

θB = arctan
(

n2

n1

)
. (2.61)

For glass of index 1.5, we have external reflection from air to glass and θB = 56.31◦. For internal

(a) (b)

Figure 2.4: The coefficient of reflection, (a) for air to glass and (b) for glass to air materials.
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(a) (b)

Figure 2.5: The coefficient of transmittance, (a) for air to glass and (b) for glass to air materials.

reflection, from glass to air, θB = 33.69◦. The Brewster angle for TM-polarization is shown in

Fig.2.4a and Fig.2.4b. The critical angle for glass to air medium is 41.81◦ as show in Fig.2.4b and

Fig.2.5b.

Total Internal Reflection

For total internal reflection, let us consider two cases- n2 ≥ n1 and n2 < n1.

In the case of n2 ≥ n1, it is called external reflection. From Eq.2.54

ktz =
ω

c

√
n2

2−n2
1 sin2

θi,

ktz > 0. (2.62)

ktz is always positive, real.

In the case of n1 ≥ n2, it is called internal reflection.

ktz is real if θi ∈ [0,θmax]

n2
2 = n2

1 sin2
θcr,

sinθmax =
n2

n1
. (2.63)
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Here, the maximum angle, θmax is called the critical angle θcr. We will find total internal reflection

if the angle of incidence is equal to or greater than the critical angle.

For θi > θcr

ktz =−iβ ,

β =
ω

c

√
n2

1 sin2
θi−n2

2. (2.64)

Here, β is real.

Now

k2
t = k2

tz + k2
tx,

k2
t = k2

ix−β
2,

β
2 = k2

i − k2
iz− k2

t ,

β =

√
ω2

c2 (n2
1−n2

2)− k2
iz. (2.65)

If µ1 = µ2 = 1, the coefficient of reflection is written as

Er

Ei
=

kiz− ktz

kiz + ktz
,

Er

Ei
=

kiz + iβ
kiz− iβ

,

Er = Eie2iφ , (2.66)

where e−2iφ is the phase factor. The phase angle is given by

tanφ =
β

kiz
. (2.67)
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Figure 2.6: Amplitude of the electric field corresponding to TE wave undergoing total internal
reflection at the a dielectric boundary.

Inserting the values of kiz from Eq.2.52 and β from Eq.2.64 in Eq.2.67 yields

tanφ =

ω

c

√
n2

1 sin2
θi−n2

2
ω

c n1 cosθi
,

=
n2

n1

√
tan2 θi

tan2 θcr
−1. (2.68)

Now, the total field in the first medium is

E1 +E2 = Eiei(ωt−ki·r)+Erei(ωt−kr·r),

= Eiei(ωt−ki·r)+Eie2iφ ei(ωt−kr·r),

=
[
eikizz + e2iφ e−ikizz

]
Eiei(ωt−kixx),

= Eiei(ωt−kixx)eiφ
[
e−iφ eikizz + eiφ e−ikizz

]
,

= Eiei(ωt−kixx+φ)2cos(kizz+φ),

E1 +E2 = 2Eieiφ cos(kizz+φ)ei(ωt−kixx). (2.69)
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The phase factor eiφ can be absorbed in the field amplitude Ei. So, the total field in the high-index

material (z≤ 0) is

Etot = 2Ei cos(kizz+φ)ei(ωt−kixx). (2.70)

In the low-index medium (z > 0) the field decays exponentially in the z-direction

E3 = 2Ei cos(φ)ei(ωt−kixx)e−β z. (2.71)

Eq.2.70 and Eq.2.71 are equation of fields for a single boundary at separation z = 0. Applying

boundary condition at the dielectric boundary at z = 0

∂Etot

∂ z
|z=0 =

∂E3

∂ z
|z=0.

2Ei(−sinφ)kzei(ωt−kixx) = 2Ei cosφ(−β )ei(ωt−kixx).

tanφ =
β

kiz
. (2.72)

The Eq.2.72 is equal to the Eq.2.67. In other words,

∂Etot

∂ z
|z=0 =

∂E1

∂ z
|z=0. (2.73)

Which means the field is continuous at the dielectric boundary.
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CHAPTER III

PHOTONIC CRYSTALS

3.1 Periodic Dielectric Structures

The fundamental concept of a periodic crystalline structure is described by the Bravais

lattice. A Bravais lattice is an infinite discrete points of array arranged periodically in space and

looks the same from whichever of the points the array is viewed. A Bravais lattice is a set of discrete

points of the array in which repeated units of crystals are arranged periodically in space [26]. The

repeated units can be single atoms, a group of atoms, molecules, ions, etc. A Bravais lattice in two

dimension can be written as

R = la1 +ma2. (3.1)

where l,m, and n are constants and a1 and a2 are primitive lattice vectors. The lattice vector R is

also called a translation vector. For any given Bravais lattice, the set of primitive vectors is not

(a) (b)

Figure 3.1: Primitive lattice vectors for (a) square and (b) oblique lattice in two dimension.

unique. Because there are infinitely many choices of pairs of primitive vectors, all of those do not

make a periodic crystal structure.
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3.2 Primitive Unit Cell

A volume of space filled up by the translation vector in a Bravais lattice without either

overlapping itself or leaving a void is called a primitive unit cell of a lattice. The unit cell is any

region of space filled up by the translation operation of every lattice vectors. A primitive unit cell is

a minimum-volume unit cell. The number of points (atoms) in a lattice is always the same for a

given crystal. A primitive cell always has one lattice point per unit cell. There is no unique way of

choosing a primitive unit cell for a given Bravais lattice. There are many ways to choose a primitive

unit cell for a given lattice.

The primitive unit cell has disadvantages since it does not show the complete symmetry of

the Bravais lattice. This problem can be solved in two ways, such as using unit cells (or conventional

unit cells) and Wigner-Seitz unit cells, Fig.3.2. A unit cell (or conventional unit cell) is a region of

space filled up without overlapping by the translation of a subset of vectors of the Bravais lattice.

Typically, the conventional unit cell is chosen to be bigger than the primitive cells and has the

(a) Triangular lattice (b) Wigner-Seitz cell

Figure 3.2: (a) Two-dimensional triangular lattice with primitive vectors a1 and a2 (b) Wigner-Seitz
primitive unit cell.

required symmetry. Another way of choosing a primitive cell with complete symmetry of the

Bravais lattice is Wigner-Seitz unit cells. Wigner-Seitz cell is a region of space translated through
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all lattice vectors without overlapping. The six sides of the cells construct the Wigner-Seitz unit cell

and bisect the lines joining the central points to its six nearest neighboring points.

3.3 Reciprocal Lattice

Let us consider a set of points R constituting a Bravais lattice and a plane wave eik·r. The

set of all wave vectors G that yield plane waves with the periodicity of a given Bravais lattice is

known as its reciprocal lattice. In three-dimensional photonic crystals, the dielectric constant can

be written as

ε(r) = ∑
G

ε(G)eiG·r. (3.2)

Where G is an infinite set of vectors in k-space that defines the frequencies contributing to the plane

wave expansion. Since the photonic crystal is periodic, Eq.3.2 must satisfy the following equation

for all r, and for all R

ε(r+R) = ∑
G

ε(G)eiG·reiG·R = ε(r). (3.3)

This implies that eiG·R = 1, and therefore G ·R = 2πn, where m is an integer. We assume the lattice

vector, R

R = n1a1 +n2a2 +n3a3. (3.4)

where n1,n2, and n3 are integers. The Eq.3.3 can be satisfied by the following relation

G = m1b1 +m2b2 +m3b3. (3.5)

where m1,m2, and m3 are integers. The fundamental vectors b and a must satisfy the relation

bi ·a j = 2πδi j. (3.6)
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where δi j is Kronecker delta

δi j = 0, i 6= j,

δi j = 1, i = j. (3.7)

The vectors b that satisfy the relation

b1 = 2π
a2×a3

a1 · (a2×a3)
,

b2 = 2π
a3×a1

a1 · (a2×a3)
, (3.8)

b3 = 2π
a1×a2

a1 · (a2×a3)
.

This set of equations of b is called the reciprocal lattice vectors in k-space. The volume of the

reciprocal lattice is 2π

V 3 . The vectors G are called the reciprocal lattice vectors in k-space that

contribute to the Fourier expansion in periodic dielectric structures.

Every lattice in real space has a corresponding lattice reciprocal space (or k-space). From

Eq.3.8, we can make the few assumptions: The reciprocal lattice of the simple cubic (SC) real-space

lattice is a simple cubic in k-space, the reciprocal of body-centered-cubic (BCC) real-space lattice

is a face-centered-cubic (FCC) lattice in k-space, and the reciprocal lattice of face-centered-cubic

real-space is a face-centered-cubic lattice in k-space.

Let us consider a square lattice of lattice vectors a1 = ax̂, a2 = aŷ, and arbitrary length in

the ẑ-direction, since the crystal is homogeneous along this direction. The corresponding reciprocal

lattice of square lattice is found by using Eq.3.8 in two-dimension as

b1 =
2π

a
x̂, (3.9)

b2 =
2π

a
ŷ. (3.10)

The reciprocal lattice is also a square lattice, but spacing 2π/a instead of a.
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(a) (b)

Figure 3.3: (a) The square lattice in real space. Here a1 and a2 are lattice vector in real space
(b) Reciprocal lattice of square lattice in reciprocal space. Here b1 and b2 are lattice vectors in
reciprocal space.

3.4 Brillouin Zone

The Wigner-Seitz primitive cell in a reciprocal lattice is known as the Brillouin zone. The

Brillouin zone gives a geometrical interpretation of the diffraction condition in the crystal structure.

If k is the wave vector and G is the reciprocal lattice vector of a lattice, then the Bragg diffraction

condition is given by

2k ·G = G2,

k ·
(

1
2

G
)
=

(
1
2

G
)2

. (3.11)

The Brillouin zone is constructed in reciprocal space, the space of k’s and G’s. At first, we select a

reciprocal lattice vector G from the origin to a reciprocal lattice point. Then we construct a plane

perpendicular bisector of the reciprocal vector G. This plane gives a part of the Brillouin zone

boundary. In Fig.3.4, the reciprocal lattice vector GC connects the point OC; and GD connects the

OD. Two perpendicular planes AB and A′B′ are perpendicular bisectors of GD and GC, respectively.

Any vector from the origin of reciprocal lattice vector to the plane AB will satisfy the diffraction
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Figure 3.4: The reciprocal lattice points near the origin O of the reciprocal lattice. The reciprocal
lattice vector GC connects OC and GD connects OD. The plane AB and A′B′ are perpendicular
bisectors of the reciprocal lattice vectors OC and OD. These two planes form a part of the Brillouin
zone.

condition k2 · (1
2GD) = (1

2GD)
2. Similarly, any vector from the origin to the plane A′B′ will satisfy

the diffraction condition k1 · (1
2GD) = (1

2GD)
2.

The square reciprocal lattice with reciprocal lattice vectors is shown in the bold black lines

in Fig.3.4. We take the perpendicular bisectors of the line joining the origin of the reciprocal lattice

to the nearest reciprocal lattice points. The lines AB, BC, CD, and DA in the central square are

the perpendicular bisectors of the reciprocal lattice vectors that form a Brillouin zone. This zone is

called the first Brillouin zone in the reciprocal lattice. The first Brillouin zone is the smallest volume

entirely enclosed by planes perpendicular bisectors of the reciprocal lattice vectors drawn from the

origin, as shown in Fig.3.5.

We can construct a Wigner-Seitz unit cell in k-space. This cell has special significance, and

the Wigner-Seitz cell in reciprocal space is known as the first Brillouin zone (FBZ). Due to the

periodicity of the crystals, all points in k-space are equivalent to the points within the FBZ, which

differ by a reciprocal lattice vector. Conventionally, specific high-symmetry directions associated

with each lattice are labeled by Greek letters Γ,X ,M,K,etc., as shown in Fig.3.5. These points
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Figure 3.5: Two dimensional square reciprocal lattice with reciprocal lattice vectors. The lines
AB, BC, CD, and DA are the perpendicular bisector of the reciprocal lattice vectors and form first
Brillouin zone. Higher-symmetry directions associated with lattice in k-space is represented by Γ,
X, M, and K. Here Γ is the origin of the k-space.

represent the k-vectors corresponding to the point on the surfaces of FBZs in particular directions.

Here Γ is the center of the k-space. In Fig.3.5, the triangular gray region Γ−X−M−Γ is called

the irreducible Brillouin zone (IBZ).
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3.5 Master Equation for Photonic Crystals

Let us assume the dielectric function,εr(r) is invariant under translational symmetry and

εr(r) = εr(r+R), R is any vector. For most dielectric materials relative magnetic permeability, µr

is close to unity and µ(r) = µ0µr(r) = µ0. The propagation of electromagnetic wave through a

periodic dielectric crystals is described by Maxwell’s equations.

∇ · [εr(r)E(r, t)] = 0. (3.12a)

∇ ·H(r, t) = 0. (3.12b)

∇×E(r, t) =−µ0
∂H(r, t)

∂ t
. (3.12c)

∇×H(r, t) = ε0εr(r)
∂E(r, t)

∂ t
. (3.12d)

Let us consider the modes or state of the photonic crystals are

E(r, t) = E(r)e−iωt . (3.13a)

H(r, t) = H(r)e−iωt . (3.13b)

Inserting Eq.3.13a in Eq.3.12a and Eq.3.13b in Eq.3.12b the divergence equations gives the condi-

tions

∇ · [εr(r)E(r)] = 0. (3.14a)

∇ ·H(r) = 0. (3.14b)

Inserting Eq.3.13a in Eq.3.12c and Eq.3.13b in Eq.3.12d, two curl equations becomes

∇×E(r) = iωµ0H(r). (3.15a)

∇×H(r) =−iωε0εr(r)E(r). (3.15b)
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Taking curl in both side of Eq.3.15a and using the value of Eq.3.15b to eliminate H(r) yields

∇× [∇×E(r)] = ω
2
µ0ε(r)E(r). (3.16)

Again taking the curl in both side of Eq.3.15b and using the value of Eq.3.15a to eliminate E(r), we

get

∇×
[

1
εr(r)

∇×H(r)
]
=
(

ω

c

)2
H(r). (3.17)

This equation is called the Master equation for photonic crystals. Here c = 1√
ε0µ0

.

Using the value of H(r) in Eq.3.15b, we find the mode E(r)

E(r) =
i

ωε0εr(r)
∇×H(r). (3.18)

Eq.3.18 gives the E-mode in terms of magnetic field.

The Eq.3.17 is the eigenvalue equation and H(r) is the eigenfunction. The term ∇× 1
εr(r)∇

is an operator, called Hermitian operator which have real eigenvalues. The multiplicative term of

H(r) on the right-hand side of the Eq.3.17 is called the eigenvalue.
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CHAPTER IV

FINITE-DIFFERENCE TIME-DOMAIN MODEL

4.1 Maxwell’s Equations in Two Dimensions

In linear, isotropic, and nondispersive materials, four Maxwell’s equation from Chapter.II

can be written as

∇ ·D = 0. (4.1a)

∇ ·B = 0. (4.1b)

∇×E =−∂B
∂ t

. (4.1c)

∇×H =
∂D
∂ t

. (4.1d)

We assumed that the current density, J = 0 and charge density in free space, ρ = 0.

We assume the electric field- E and magnetic field - H are

E = E(x,y,z, t). (4.2a)

H = H(x,y,z, t). (4.2b)

The E- field and H- field is in the xy-plane and they do not depend on z- axis. From Eq.4.1c, we get,

∂H
∂ t

=− 1
µ

∇×E. (4.3)

and from Eq.4.1d
∂E
∂ t

=
1
ε

∇×H. (4.4)
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Let us consider that the wave is confined in xy- plane then the partial derivative with respect z

component is zero. Separating H-field in x, and y- components

∂Hx

∂ t
=− 1

µ

∂Ez

∂y
. (4.5a)

∂Hy

∂ t
=

1
µ

∂Ez

∂x
. (4.5b)

∂Hz

∂ t
=

1
µ

(
∂Ey

∂x
− ∂Ex

∂y

)
. (4.5c)

Similarly, separating E-field into x and y-components

∂Ex

∂ t
=

1
ε

∂Hz

∂y
. (4.6a)

∂Ey

∂ t
=−1

ε

∂Hz

∂x
. (4.6b)

∂Ez

∂ t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y

)
. (4.6c)

The electric field is in z-direction, E = Ezẑ.Then, the magnetic field, H = Hxx̂+Hyŷ. The compo-

nents of Hx, Hy, and Ez are

∂Hx

∂ t
=− 1

µ

∂Ez

∂y
. (4.7a)

∂Hy

∂ t
=

1
µ

∂Ez

∂x
. (4.7b)

∂Ez

∂ t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y

)
. (4.7c)

The three components, Hx, Hy, and Ez constitute a transverse magnetic (TM) mode with respect to

z-direction.

Now, the magnetic field H is in z-direction, H = Hzẑ. Then, the electric field, E = Exx̂+Eyŷ. The
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components of Ex, Ey, and Hz are

∂Ex

∂ t
=

1
ε

∂Hz

∂y
. (4.8a)

∂Ey

∂ t
=−1

ε

∂Hz

∂x
. (4.8b)

∂Hz

∂ t
=

1
µ

(
∂Ey

∂x
− ∂Ex

∂y

)
. (4.8c)

In this case, these three components, Ex, Ey, and Hz constitute a transverse electric (TE) mode with

respect to the z-direction.

4.2 Yee’s Grid

Solving time-dependent Maxwell’s is difficult due to the imposition of boundary conditions.

In 1966, Kane Yee proposed the finite-difference method to solve time-dependent Maxwell’s

equation [25]. Yee used the central difference expression for both space and time derivatives and

second-order accuracy in the space and time increments. Hence the method is named as finite-

difference. The Yee algorithm solves Maxwell’s curl equations for the electric and magnetic fields

Figure 4.1: The components of E field and and H field in a cubic unit cell of the Yee’s grid. Yee’s
algorithm centers its components of E-field and H -field in the cubic unit cell so that the every
components of E-field is surrounded by the four circulating H-field and vice-versa.
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in the same time and space rather than solving wave equations alone. In Yee’s cubic unit cell, one

magnetic field component H is surrounded by the four electric field components E. Similarly, one

component E-fields is surrounded by four H-field components, as shown in Fig.4.1. The Yee’s

algorithm centers its components of E-field and H-field in the three-dimensional space so that every

E component is surrounded by four circulating H components. Every H component is surrounded

by four circulating E components. This circulating E-field satisfies Faraday’s curl law, and the

circulating H-field satisfies Ampere’s curl law. Another advantage of using the Yee grid is we do

not need another set of equations for different materials. The position of E-field or H-field could

be in different unit cells. And this automatically satisfies the boundary conditions for E-field and

H-field

The two-dimensional Yee’s grid is shown in Fig.4.2. For TE polarization or Ez-mode, the

electric field is in z-direction; it has a circulating magnetic field along the xy-plane. Similarly, for

TM polarization or Hz-mode, the magnetic field is in z-direction; it has a circulating electric field in

xy-plane.

Figure 4.2: Two dimensional Yee’s grid. When E-field is in z direction, its components are
E(0,0,Ez) and H(Hx,Hy,0). This is called TE -mode. When H-field is in z-direction, its components
are H(0,0,Hz) and E(Ex,Ey,0). This is called TM-mode.
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4.3 The Finite-Difference Expression for Maxwell’s Equations

Let us consider a function u(x, tn), here x is the space point and tn is the temporal coordinates.

For fixed tn, from the point x to x+∆x, the Taylor’s series expansion of the function u(x, tn) is

written as,

u(xi +∆x)|tn = u|xi,tn +∆x.
∂u
∂x
|xi,tn +

(∆x)2

2
.
∂ 2u
∂x2 |xi,tn +

(∆x)3

6
.
∂ 3u
∂x3 |xi,tn +

(∆x)4

24
.
∂ 4u
∂x4 |ξ1,tn. (4.9)

The last term is the remainder term, and ξ1 is a space point located between xi and x+∆x.

Similarly, the Taylor’s series in the space point (xi−∆x) at fixed tn is written as

u(xi−∆x)|tn = u|xi,tn−∆x.
∂u
∂x
|xi,tn +

(∆x)2

2
.
∂ 2u
∂x2 |xi,tn−

(∆x)3

6
.
∂ 3u
∂x3 |xi,tn +

(∆x)4

24
.
∂ 4u
∂x4 |ξ2,tn. (4.10)

In the remainder term, ξ2 is a space point located between xi and x−∆x. Subtracting Eq.4.10 from

Eq.4.9 and rearranging yield

∂u
∂x
|xi,tn =

[
u(xi +∆x)|tn−u(xi−∆x)|tn

∆x

]
tn
+O[(∆x)2]. (4.11)

Where O[(∆x)2] represents the remainder term, which approaches zero as the square of the space

increment. The Eq.4.11 is called central-difference approximation to the first-order partial derivative

of u and second-order accurate in space and time increments.

Let us represent the space point in a uniform, rectangular lattice as

(i, j,k) = (i∆x, j∆y,k∆z). (4.12)

Here ∆x,∆y, and ∆z are the lattice space increments in x,y, and z directions, respectively, and i, j,

and k are integers. Further, we denote the function u(x, t) evaluated at a discrete point in the grid
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and at a discrete point in time as,

u(i∆x, j∆y,k∆z,n∆t) = un
i, j,k. (4.13)

Here, ∆t is the time increment and n is the integer. Rewriting Eq.4.11 in the x-direction, evaluated

at the fixed time, tn = n∆t,

∂u
∂x

(i∆x, j∆y,k∆z,n∆t) =
un

i+1/2, j,k−un
i−1/2, j,k

∆x
+O[(∆x)2]. (4.14)

Here we note the ±1/2 increment in the x-coordinate (i-subscript) of function u, represents the

finite-difference over ±1/2∆x. Similarly, the first-order partial derivative of y and z can be found

by taking the finite-difference ±1/2∆y, and ±1/2∆z, respectively.

The first-order partial time derivative of the function u, evaluated at the fixed space (i, j,k) is written

as according the Eq.4.14 as

∂u
∂ t

(i∆x, j∆y,k∆z,n∆t) =
un+1/2

i, j,k −un−1/2
i, j,k

∆t
+O[(∆t)2]. (4.15)

Here ±1/2 increment is in the time coordinate (n-superscript) of the function u, denoting a finite-

difference in time over ±1/2∆t.

Using Finite-Difference (central-difference) Maxwell’s curl equations in one-dimension can be

written as

Hx(x,y, t + ∆t
2 )−Hx(x,y, t− ∆t

2 )

∆t
=− 1

µ

(
Ez(x,y+

∆y
2 , t)−Ez(x,y− ∆y

2 , t)
∆y

)
. (4.16a)

Hy(x,y, t + ∆t
2 )−Hy(x,y, t− ∆t

2 )

∆t
=

1
µ

(
Ez(x+ ∆x

2 ,y, t)−Ez(x− ∆x
2 ,y, t)

∆x

)
. (4.16b)

Ez(x,y, t + ∆t
2 )−Ez(x,y, t− ∆t

2 )

∆t
=

1
ε

(
Hy(x+ ∆x

2 ,y, t)−Hy(x− ∆x
2 ,y, t)

∆x

)
.

− 1
ε

(
Hx(x,y+

∆y
2 , t)−Hx(x,y− ∆y

2 , t)
∆y

)
. (4.16c)
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At space-step y→y+ ∆y
2 , Eq.4.16a can be written as

Hx

(
x,y+

∆y
2
, t +

∆t
2

)
= Hx

(
x,y+

∆y
2
, t− ∆t

2

)
− ∆t

µ∆y
[Ez(x,y+∆y, t)−Ez(x,y, t)] . (4.17)

Similarly, for y-component Eq.4.16b becomes

Hy

(
x+

∆x
2
,y, t +

∆t
2

)
= HY

(
x+

∆x
2
,y, t− ∆t

2

)
+

∆t
µ∆x

[Ez(x+∆x,y, t)−Ez(x,y, t)] . (4.18)

From Eq.4.16c

Ez(x,y, t +∆t) = Ez(x,y, t)+
∆t

ε∆x

(
Hy(x+

∆x
2
,y, t +

∆t
2
)−Hy(x−

∆x
2
,y, t− ∆t

2
)

)
− ∆t

ε∆y

(
Hx(x,y+

∆y
2
, t +

∆t
2
)−Hx(x,y−

∆y
2
, t− ∆t

2
)

)
.

(4.19)

Now, we introduce new notation

Hx(x,y+
∆y
2
, t +

∆t
2
)∼=

√
ε

µ
H̃x(x,y, t).

Hy(x+
∆x
2
,y, t +

∆t
2
)∼=

√
ε

µ
H̃y(x,y, t).

(4.20)

Using notation from Eq.4.20 in Eq.4.17, Eq.4.18, and Eq.4.19

√
ε

µ
H̃x(x,y, t) =

√
ε

µ
H̃y(x,y, t−∆t)− ∆t

µ∆y
[Ez(x,y+∆y, t)−Ez(x,y, t)] . (4.21a)√

ε

µ
H̃y(x,y, t) =

√
ε

µ
H̃y(x,y, t−∆t)+

∆t
µ∆x

[Ez(x+∆x,y, t)−Ez(x,y, t)] . (4.21b)

Ez(x,y, t +∆t) = Ez(x,y, t)+
∆t

ε∆x

√
ε

µ

[
H̃y(x,y, t)− H̃y(x−∆x,y, t)

]
− ∆t

ε∆y

√
ε

µ

[
H̃x(x,y, t)− H̃x(x,y−∆y, t)

]
. (4.21c)
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by simplifying

H̃x(x,y, t) = H̃y(x,y, t−∆t)− ∆t
√

εµ∆y
[Ez(x,y+∆y, t)−Ez(x,y, t)] . (4.22a)

H̃y(x,y, t) = H̃y(x,y, t−∆t)+
∆t

√
εµ∆x

[Ez(x+∆x,y, t)−Ez(x,y, t)] . (4.22b)

Ez(x,y, t +∆t) = Ez(x,y, t)+
∆t

√
εµ∆x

[
H̃y(x,y, t)− H̃y(x−∆x,y, t)

]
− ∆t
√

εµ∆y

[
H̃x(x,y, t)− H̃x(x,y−∆y, t)

]
. (4.22c)

Here H̃(x,y, t) = H-field at the present time and space

H̃(x−∆x,y, t) = H-field in the previous step

H̃(x,y, t−∆t) = H-field in the past time

E(x,y, t) = E-field at the present time and space

E(x,y, t +∆t) = E-field in the updated time

E(x+∆x,y, t) = E-field in the updated step or position

and ∆t√
εµ∆y = updated co-efficient.

Let us define x = i∆x, y = j∆y, and 1√
εµ

= v in Eq.4.22

H̃x(i, j) = H̃x(i, j)− v∆t
∆y

[Ez(i, j+1)−Ez(i, j)] . (4.23a)

H̃y(i, j) = H̃y(i, j)+
v∆t
∆x

[Ez(i+1, j)−Ez(i, j)] . (4.23b)

Ez(i, j) = Ez(i, j)+
v∆t
∆x

[
H̃y(i, j)− H̃y(i−1, j)

]
.

− v∆t
∆y

[
H̃x(i, j)− H̃x(i, j−1)

]
. (4.23c)

Eq.4.23a, Eq.4.23b, and Eq.4.23c are update equations in time and space. The left-hand side of

Eq.4.23a-Eq.4.23c represent the field at the next time step and the first term of the right-hand

side represent the field at previous time step, and the second term represents the other field at

intermediate time steps. Here v∆t
∆y and v∆t

∆x are the update coefficients.
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Figure 4.3: The Finite-Difference Time-Domain method flowchart. At first the algorithm is
initialized by setting the fields E, and H are equal to zero. Then, the H field is updated from E, and
vice-versa until the convergence criterion are met.

The finite-difference time-domain method is sometimes called the leapfrog algorithm.

Fig.4.3 shows a basic flowchart of the FDTD computational method. The FDTD begins by defining

a grid in the computational region and the properties such as permittivity, permeability, and

conductivity to each initial field at time step n = 0. Then the new values of electric and magnetic

fields are calculated. The magnetic field, H is calculated from the E field by using the updated

equation, and update E field from the H-field until the convergence criteria are met. The calculation

ends when the convergence criteria are fulfilled.
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4.4 The Perfectly Matched Layer (PML)

The Finite-Difference Time-Domain (FDTD) method is widely used for computing Maxwell’s

electromagnetic wave equations. One of the inconveniences of the FDTD method is wave equations

have to be solved in the discretized domain, and the domain size needs to be finite. Free-space

problems can be solved theoretically using special boundary conditions on the computational do-

main. But the difficulty arises in solving field problems when the scattering field is open, i.e., the

computational domain in which the field has to be computed is unbounded. The computer cannot

store unlimited data for open boundary calculations. It is necessary to restrain the computational

domain in which the field has to be computed. It is done by limiting the mesh grid size, but large

enough to contain all the information related to the field and by using boundary conditions outside

the mesh grid. These boundary conditions are called Absorbing Boundary Conditions.

Several methods are available for absorbing the outgoing electromagnetic waves in the

FDTD method [27, 28, 29, 30]. A new technique, Perfectly Matched Layer (PML), has been widely

used for solving free-space outgoing electromagnetic waves [31]. In PML, the layer surrounding

boundaries absorbs the outgoing waves towards the boundary without reflection.

Consider a TE electromagnetic plane wave in the xy-plane. The components of an electric

field in the x and y-directions are Ex and Ey, respectively. The component of a magnetic field in the

z-direction is Hz. Maxwell’s equations in a medium having electric conductivity σ , and magnetic

conductivity σ∗ are written as

ε0
∂Ex

∂ t
+σEx =

∂Hz

∂y
. (4.24a)

ε0
∂Ey

∂ t
+σEy =−

∂Hz

∂x
. (4.24b)

µ0
∂Hz

∂ t
+σ

∗Hz =
∂Ex

∂y
−

∂Ey

∂x
. (4.24c)

Furthermore,
σ

ε0
=

σ∗

µ0
. (4.25)
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This is the condition for impedance matching. Suppose the condition (Eq.4.25) is satisfied. In that

case, the impedance of the medium (4.24) is equal to the impedance of the vacuum. No reflection

will occur if a plane wave propagates across the vacuum-medium interface.

Let us define the PML medium in the case of TE polarization. In PML medium, the z-

component of the magnetic field Hz is decomposed into two components such as Hzx and Hzy, and

Hz = Hzx +Hzy. PML medium has four components for TE polarization: Ex,Ey Hzx, and Hzy.

ε0
∂Ex

∂ t
+σyEx =

∂ (Hzx +Hzy)

∂y
. (4.26a)

ε0
∂Ey

∂ t
+σxEy =−

∂ (Hzx +Hzy)

∂x
. (4.26b)

µ0
∂Hzx

∂ t
+σ

∗
x Hzx =−

∂Ey

∂x
. (4.26c)

µ0
∂Hzy

∂ t
+σ

∗
y Hzy =−

∂Ex

∂y
. (4.26d)

where the parameters (σx,σ
∗
x ,σy,σ

∗
y ) are homogeneous to electric and magnetic conductivities.

From the set of equations in Eq.4.26 it can be said that-

i If σ∗x = σ∗y , then Eq.4.26c and Eq.4.26d merge, and Eq.4.26 becomes a set of three equations

containing components Ex, Ey, Hzx, and Hzy only. So, the PML medium holds as particular

cases for all media.

ii If σx = σ∗x = σy = σ∗y = 0, then Eq.4.26 reduces to the Maxwell’s equations for vacuum.

iii If σx = σy and σ∗x = σ∗y = 0, then Eq.4.26 reduces to the Maxwell’s equation for conductive

medium.

iv if σx = σy and σ∗x = σ∗y , Eq.4.26 reduces to the equation for absorbing medium.

v If σy = σ∗y = 0, then the PML medium absorbs the plane wave propagating along x-direction,

but it does not absorb the waves propagating along y-direction. And if σx = σ∗x = 0, it

absorbs waves propagating along y-direction, but it does not absorb waves propagating along

x-direction.
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Let us consider a plane EM wave makes an angle φ with the y-axis and propagating in the PML

medium. The components of fields are

Ex =−E0 sinφeiω(t−αx−βy). (4.27a)

Ey = E0 cosφeiω(t−αx−βy). (4.27b)

Hzx = Hzx0eiω(t−αx−βy). (4.27c)

Hzy = Hzy0eiω(t−αx−βy). (4.27d)

where ω is the angular frequency of the wave, t is the time of propagation, α and β are complex

constants. The Eq.4.27 have four unknowns,α ,β , Hzx0, and Hzy0. These unknown can be determined

by using PML equations form Eq.4.26.

ε0E0 sinφ − i
σy

ω
E0 sinφ = β (Hzx0 +Hzy0). (4.28a)

ε0E0 cosφ − i
σx

ω
E0 cosφ = α(Hzx0 +Hzy0). (4.28b)

µ0Hzx0− i
σ∗x
ω

Hzx0 = αE0 cosφ . (4.28c)

µ0Hzy0− i
σ∗y
ω

Hzy0 = βE0 sinφ . (4.28d)

From Eq.4.28c and Eq.4.28d

Hzx0 =
αE0 cosφ

µ0− iσ∗x
ω

. (4.29a)

Hzy0 =
βE0 sinφ

µ0− i
σ∗y
ω

. (4.29b)
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Using Eq.4.29 in Eq.4.28a and Eq.4.28b, respectively, yield

ε0µ0(1− i
σy

ε0ω
)sinφ = β

 α cosφ

(1− i σ∗x
ωµ0

)
+

β sinφ

(1− i
σ∗y

ωµ0
)

 . (4.30a)

ε0µ0(1− i
σy

ε0ω
)cosφ = α

 α cosφ

(1− i σ∗x
ωµ0

)
+

β sinφ

(1− i
σ∗y

ωµ0
)

 . (4.30b)

Dividing Eq.4.30a by Eq.4.30b yields

β

α
=

sinφ

cosφ

1− i σy
ε0ω

1− i σx
ε0ω

. (4.31)

Substituting Eq.4.31 in Eq.4.30 results

α =

√
ε0µ0

G

(
1− i

σx

ε0ω

)
cosφ . (4.32a)

β =

√
ε0µ0

G

(
1− i

σy

ε0ω

)
sinφ . (4.32b)

where

G =
√

wx cos2 φ +wy sin2
φ . (4.33)

wx =
1− i σx

ε0ω

1− i σ∗x
µ0ω

. (4.34a)

wy =
1− i σy

ε0ω

1− i
σ∗y

µ0ω

. (4.34b)

Denoting Ψ as the component of field, ψ0 is the magnitude of the field, and c = 1√
ε0µ0

is the speed

of light, using the values of Eq.4.32 and Eq.4.33 in Eq.4.27 yield

Ψ = ψ0eiω(t−(xcosφ+ysinφ)/cG)e(σx cosφ/ε0cG)xe(σy sinφ/ε0cG)y. (4.35)
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Substituting Eq.4.32a in Eq.4.29a, and Eq.4.32b in Eq.4.29b yields

Hzx0 =
E0
√

ε0/µ0

G
wx cos2

φ . (4.36a)

Hzy0 =
E0
√

ε0/µ0

G
wy sin2

φ . (4.36b)

Adding Eq.4.36a and Eq.4.36b yields

H0 = E0G
√

ε0/µ0. (4.37)

Impedance is the ratio of the magnitude of electric field E0 to that of magnetic field H0,

Z =
E0

H0
=

√
(µ0/ε0)

G
. (4.38)

If (σx,σ
∗
x ) and (σy,σ

∗
y ) satisfy the condition σ

ε0
= σ∗

µ0
, then the quantities wx, wy, and G equal to

unity at any frequencies. Finally, the expression for field and impedance become

Ψ =ψ0eiω(t−(xcosφ+ysinφ)/c)e(σx cosφ/ε0c)xe(σy sinφ/ε0c)y. (4.39)

Z =
√

µ0/ε0. (4.40)

The first exponential of Eq.4.39 represents the wave phase that propagates normally to the electric

field at the speed of light c. The last two exponentials represent the wave decreasing exponentially

in the x and y-directions. And Eq.4.40 represents the impedance matching condition for the vacuum-

medium interface. From Eq.4.35, or Eq.4.39, it can be concluded that if σy = σ∗y = 0 it is not

absorbed along y-direction and if cosπ = 0 the wave propagates along y-direction. For matched

media, Eq.4.39 is the function of the x coordinate only.

Let us consider a plane wave incident at an angle of θi at a PML interface. Fig.4.4 shows

the interface between two PML media. The interface is infinitely long, and the incident wave is a

plane wave. The angle θ has been taken to the y-axis. The angle of reflection and transmission to
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the PML interface is θr and θt , respectively.

Figure 4.4: Interface lying between two Perfectly matched layer media

We assume the incident, reflected, and transmitted electric fields are Ei, Er, and Et , respectively. For

any component Ψ of the incident and transmitted plane wave at point A and B of the interface can

be written as
ψt(B)
ψi(B)

=
ψt(A)
ψi(A)

. (4.41)

Let the distance between the points A and B is d, and G1 and G2 are quantities of each media, then

we can write incident and transmitted fields as

ψi(B) = ψi(A)e−iω(d sinθ1/cG1)−(σy1 sinθ1/cε0G1)d. (4.42a)

ψt(B) = ψt(A)e−iω(d sinθ2/cG2)−(σy2 sinθ2/cε0G2)d. (4.42b)

From Eq.4.41 and Eq.4.42, we get

(
1− i

σy1

ε0ω

)
sinθ1

G1
=

(
1− i

σy2

ε0ω

)
sinθ2

G2
. (4.43)
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here

Gk =
√

wxk cos2 θk +wyk sin2
θk (for k = 1, 2). (4.44)

The Eq.4.43 is the Snell-Descartes law which connects the incident and transmitted angles at an

interface normal to x, (Fig.4.4), lying between the two PML media.

Let us consider the incident, reflected, transmitted electric fields are Ei,Er,Et and magnetic fields H

are Hi,Hr,Ht , respectively.

Ei = Ei0e−iω(ysinθ1/cG1)(1−i(σy1/ε0ω))eiωt . (4.45a)

Er = Er0e−iω(ysinθ1/cG1)(1−i(σy1/ε0ω))eiωt . (4.45b)

Et = Et0e−iω(ysinθ1/cG1)(1−i(σy1/ε0ω))eiωt . (4.45c)

Hi = Ei/Z1. (4.45d)

Hr = Er/Z1. (4.45e)

Ht = Et/Z2. (4.45f)

From Eq.4.43, according to the Snell’s law, the three exponential terms of Eq.4.45a, Eq.4.45b, and

Eq.4.45c on space are equal. Using the boundary conditions, the electric fields are continuous along

the y-axis, we get

Ei cosθ1−Er cosθ1 = Et cosθ2. (4.46a)

Hi +Hr = Ht . (4.46b)

From Eq.4.45 and Eq.4.46, we get

Ei0 cosθ1−Er0 cosθ1 = Et0 cosθ2. (4.47a)

Ei0

Z1
+

Er0

Z1
=

Et0

Z2
. (4.47b)
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Solving Eq.4.47a and Eq.4.47b we get the coefficient of reflectance rp and rt ,

rp =
Z2 cosθ2−Z1 cosθ1

Z1 cosθ1 +Z2 cosθ2
. (4.48a)

rt =
2Z2 cosθ2

Z1 cosθ1 +Z2 cosθ2
. (4.48b)

Using the value of Z =
√

µ0ε0
1
G in Eq.4.48 we get

rp =
G1 cosθ2−G2 cosθ1

G1 cosθ1 +G2 cosθ2
. (4.49a)

rt =
2G2 cosθ2

G1 cosθ1 +G2 cosθ2
. (4.49b)

where G1 and G2 are functions of θ1 and θ2 through Eq.4.44. Let us consider an interface lying

between two PML media having conductivities σy and σ∗y . For conductivities (σx1,σ
∗
x1,σy,σ

∗
y ) and

(σx2,σ
∗
x2,σy,σ

x
y ), Snell’s law Eq.4.43 yields

sinθ1

G1
=

sinθ2

G2
. (4.50)

If the two media are matched ones, (σx1,σ
∗
x1), (σx2,σ

∗
x2), and (σy,σ

∗
y ) satisfy Eq.4.25 and we have

G1 = G2 = 1, and Eq.4.50 becomes

θ1 = θ2. (4.51)

and the coefficient of reflectance becomes

rp = 0. (4.52)

So, at an interface normal to x between two matched PML media having conductivities (σy,σ
∗
y ),

a plane wave is transmitted through the medium without reflection at any incident angles and fre-

quencies. This also applies if the first medium is a vacuum and the second medium has conductivity

(σx,σ
∗
x ,0,0) because the vacuum medium can be seen as a (0,0,0,0) medium.
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For unmatched medium having the same conductivities (σy,σ
∗
y ), the equation can be found

by substituting Eq.4.50 into Eq.4.48a as

rp =
sinθ1 cosθ2− sinθ2 cosθ1

sinθ1 cosθ2 + sinθ2 cosθ1
. (4.53)

Taking into account wy1 = wy2, from Eq.4.44 and Eq.4.50 we get

√
wx2 sinθ1 cosθ2 =

√
wx1 sinθ2 cosθ1. (4.54)

and from Eq.4.53 and Eq.4.54, the coefficient of reflectance becomes

rp =

√
wx1−

√
wx2√

wx1 +
√

wx2
. (4.55)

From Eq.4.55, it is seen that for unmatched media, the reflection does not depend on the incident

angles. It depends only on the frequency through the Eq.4.32. For matched media wx1 = wx2 = 1

and Eq.4.55 reduces to the Eq.4.52, i.e., rp = 0.

At an interface normal to x between to PML media whose conductivities σy and σ∗y are the

same and satisfy Eq.4.25, the coefficient of reflectance rp is null. Similarly, at an interface normal

to y having the same conductivities σx and σ∗x , the coefficient of reflectance is null.

4.5 Plane Wave Expansion Method

The Plane-Wave Expansion Method (PWEM) is a full vectorial simulation tools used to

calculate the photonic band structure [32]. The PWEM depends on the Fourier representation of

the periodic Ek and Hk fields in terms of periodic harmonic function. The reciprocal lattice vector

defines the period harmonic function.

Let us consider a two-dimensional periodic structure defined by the set of lattice vectors R.

R = ma1 +na2. (4.56)
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Here, a1 and a2 are primitive lattice vectors, m and n are integers. The reciprocal lattice is formed

by a set of vectors G is

eiG·R = 1. (4.57)

for all R. The Eq.4.57 can be written as

G ·R = 2πl. (4.58)

Here l is an integer. The reciprocal lattice vector G is generated by vectors g1 and g2 is

G = m′g1 +n′g2. (4.59)

here m′, n′ are integers, and g1 and g2 are primitive lattice vectors defined by the Kronecker delta,

δi j =


1, i = j

0, i 6= j.
(4.60)

The primitive lattice vectors can be written as, (Fig.4.5a)

a1 = ax̂,

a2 = aŷ. (4.61)

The reciprocal lattice vectors of square lattice can be found as (Fig.4.5b)

g1 =

(
2π

a

)
x̂,

g2 =

(
2π

a

)
ŷ. (4.62)

Let us consider the dielectric function εr(r) is periodic in 2D, i.e., it satisfies the relation εr(r+R) =
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(a) (b)

Figure 4.5: Square lattice (a) Real-space generated by primitive vectors a1 and a2. (b) Reciprocal-
space with primitive vectors g1 and g2; the shaded region is the first Brillouin zone and grey right
triangle4ΓXM is the irreducible Brillouin zone.

εr(r). Then, the reciprocal of the dielectric function, ε−1
r (r+R) = ε−1

r (r). The reciprocal of

dielectric function in Fourier series can be written as

ε
−1
r = ∑

G′
κ(G′)ei(G′·r). (4.63)

where κ(G′) is the Fourier coefficient, written as

κ(G) =
1
S

∫
S

ε
−1
r (r)e−iG·rds. (4.64)

here S is the area of the unit cell. If G = m1g1 +m2g2, putting this value in Eq.4.64 yields

κ(m1,m2) =
1
S

∫ a1

0

∫ a2

0

1
εr(ξ ,η)

e−i[m1g1+m2g2]
[
ξ

a1
a1
+η

a2
a2

]
sinθdξ dη

=
1
S

∫ a1

0

∫ a2

0

1
εr(ξ ,η)

e−2π

[
ξ

m1n1
N1

+η
m2n2

N2

]
sinθdξ dη

≈ 1
N1N2

∑
n1

∑
n2

1
εr(n1,n2)

e−2π

[
ξ

m1n1
N1

+η
m2n2

N2

]
. (4.65)

Here, in the last step, the integrals are approximated by discrete sums. The Fourier coefficients
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κ(m1,m2) can be obtained by using the Fast Fourier Transform (FFT).

Let us consider a circular rod of radius r and dielectric constant εa embedded in a background

of dielectric constant εb, the Fourier coefficients can be calculated as

κ(G) =


1
εa
+ 1

εb
(1− f ), |G|= 0(

1
εa
− 1

εb

)
f J1(|G|R)
|G|R , |G| 6= 0.

(4.66)

Here, f = πr2/(a2 sinθ) is the fill factor and J1(x) is the first-order Bessel function.

Let us calculate the band structure for electromagnetic waves propagating perpendicular to

a periodic dielectric structure of rods. The rods are homogeneous along z-direction, i.e., ∂

∂ z = 0.

Maxwell equations in x and y directions can be written as

∂Hz

∂x
=−iωε0εrEy. (4.67a)

∂Hz

∂y
= iωε0εrEx. (4.67b)

∂Ex

∂y
−

∂Ey

∂x
= iωµ0Hz. (4.67c)

∂Ez

∂x
= iωµ0Hy. (4.67d)

∂Ez

∂y
=−iωµ0Hx. (4.67e)

∂Hy

∂x
− ∂Hx

∂y
= iωε0εrEz. (4.67f)

This first set of equations, Eq.4.67a-Eq.4.67c is called the transverse-electric mode with respect to z

(T Ez) in two-dimensions. The second set of equations, Eq.4.67d-Eq.4.67f is called the transverse-

magnetic mode with respect to z (T Mz) in two-dimensions.

By eliminating the electric field components Ex and Ey from the Eq.4.67a-Eq.4.67c we get

the wave equation for the magnetic field Hz component for the TE mode

∂

∂x

(
1

ε(r)
∂

∂x
Hz(r)

)
+

∂

∂y

(
1

ε(r)
∂

∂y
Hz(r)

)
+
(

ω

c

)2
Hz(r) = 0. (4.68)
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Similarly, from Eq.4.67d-Eq.4.67f we get the component of electric field Ez for TMz mode

1
ε(r)

[
∂ 2

∂x2 +
∂ 2

∂y2

]
Ez(r)+

(
ω

c

)2
Ez(r) = 0. (4.69)

The solution of the Eq.4.68 and Eq.4.69 is Bloch wave, the component of magnetic field is given by

Hz(r) = u(k,r)ei(k·r). (4.70)

Here, u(k,r) is the periodic function and u(k,r+R) = u(k,r). The Fourier series of Hz is

Hz(r) = ∑
G

h(k,G)ei(k+G)·r. (4.71)

Here, k = kxx̂+ kyŷ is the wave vector in two dimension.

Substituting Eq.4.63 and Eq.4.71 in Eq.4.68 yields

∑
G,G′′

(k+G) · (k+G′′)κ(G′′−G)h(k,G)ei(k+G′′)·r =
ω2

c2 ∑
G

h(k,G)ei(k+G′′)·r. (4.72)

Here, G′′ = G+G′.

Let us consider the testing function is the same as the expansion basis function, and taking

the dot product of each sides of the testing function yields

∑
G,G′′

(k+G) · (k+G′′)κ(G′′−G)h(k,G)
∫

S
ei(G′′−G′)·rds =

ω2

c2 ∑
G

h(k,G)
∫

S
ei(G−G′)·rds. (4.73)

The integral over unit cell can be carried out as

∫
S

ei(G′′−G′)·rds =


S, G′′ = G′

0, G′′ 6= G′.
(4.74)
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The Eq.4.74 leads the standard eigenvalue problem,

∑
G
(k+G) · (k+G′)κ(G′−G)h(k,G) =

ω2

c2 h(k,G′). (4.75)

or standard eigenvalue equation

Ah = λh. (4.76)

Comparing Eq.4.75 and Eq.4.76, we get the eigenvalue, λ = ω2

c2 . Here the matrix A is self-adjoint,

that means the eigenvalues of the Eq.4.76 are real.

Similarly, the component of electric field Ez(r) in TM mode is given by

Ez(r) = ∑
G

η(k,G)ei(k+G)·r. (4.77)

Substituting the value of Eq.4.77 in Eq.4.69 yields

∑
G
|k+G′|κ(G′−G)|k+G|b(k,G) =

ω2

c2 b(k,G′). (4.78)

The Eq.4.78 can also be written in matrix form,

Ab = λb. (4.79)

here, the eigenvalue is again, λ = ω2

c2 .

In both equations Eq.4.75 and Eq.4.78, the reciprocal lattice sum is truncated to obtain

a numerical solution to the eigenvalue problem. These two equations have been solved for both

the eigenvalues λ = ω2

c2 and the eigenvalues h(k,G) and b(k,G′), respectively. The electric and

magnetic field that corresponds to a given eigenfrequency ω(k) can be found by solving Eq.4.75

and Eq.4.78.
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4.6 Photonic Band Structure

The most commonly used method is the plane-wave expansion method [32], which expands

the magnetic and dielectric function on the basis of a plane wave. The Eq.4.75 and Eq.4.78 can be

reduced to a matrix equation which gives a series of solutions in the form of a function ωn(k), n = 1,

2, 3,.., . These series of functions form a band called photonic bands. This band structure gives all

frequencies in which the optical modes are allowed for a given wave vector k. A photonic bandgap

is a range of frequencies, ω , for no eigenolutions for any wavevector k.

A two-dimensional photonic crystal made of a square lattice of circular dielectric rods

(ε = 13) embedded in air background is shown in Fig.4.6a. The radius of the circular rod is

r = 0.3a; here a is the lattice parameter. The Brillouin zone of the square lattice is shown in

Fig.4.6b. The band structure calculation for this 2D photonic crystals has been done in RSoft CAD

using the BandSOLVE package with PWE method [32] provided by the synopsis photonic solutions

group [33]. The band structures for TE and TM polarization are shown in Fig.4.7 and Fig.4.8,

respectively. The horizontal axis represents the higher symmetry points in the k-space. The vertical

(a) 2D Square lattice (b) Brillouin zone

Figure 4.6: (a) A 2D photonic crystal made of square lattice of dielectric rods (ε = 13) in air
background (RSof CAD interface). (b) The first Brillouin zone. Here Γ,X and M represent the
higher symmetry points. Γ is the center of the BZ, X is the center of the edge, and M is the corner
point.
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Figure 4.7: Band structure of 2D photonic crystals for TE polarization

Figure 4.8: Band structure of 2D photonic crystals for TM polarization.

axis represents the dimensionless normalized frequency, ωa/2πc = a/λ . We have calculated the

first five band structures for both TE and TM polarization. For TE polarization, the photonic crystals

shows two band gaps, as shown in the shaded region of Fig.4.7. On the other hand, the photonic

crystals does not have band gap for TM polarization, Fig.4.8. The photonic crystals have partial

band gap near X point.
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CHAPTER V

APPLICATION OF 2D FAST FOURIER TRANSFORM

5.1 Single Boundary Interface between Two Materials

A homogeneous dielectric medium of the air-dielectric system in an air background has been

considered to determine the angle of refraction in PhC. The refractive index of the dielectric medium

is n2 = 1.52. Fig.5.1 shows the 2D homogeneous dielectric material in an air background (n1 = 1.0)

in RSoft CAD [34] interface. The lower rectangle (gray color) represents the air medium, and the

upper rectangle (magenta color) represents the second dielectric medium. The FDTD method [27]

with FullWave [34] package has been used to model the propagation of a plane EM wave through

the dielectric material. A plane EM wave was sent from the air to the 2D homogeneous dielectric

material at various angles of incidence.

Figure 5.1: Two dimensional homogeneous dielectric medium. The lower rectangle (gray color)
is the first dielectric medium, n1 = 1.0 and upper rectangle (magenta color) represents the second
dielectric medium, n2 = 1.52.
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The plane EM wave at various angles of incidence such as 10◦, 15◦, 20◦, 25◦, 30◦, 35◦,

and 40◦ as shown in Fig.5.2 and Fig.5.3. The propagation of EM waves through the homogeneous

medium can be separated into two possible polarizations: TE and TM polarization. Since it is

a homogeneous dielectric material, we considered TE polarization only. The electric field is

perpendicular to the plane of incidence for TE polarization. The direction of the electric field is

perpendicular to the xz- plane, along the y-direction (into the page). The EM wave propagation

through the dielectric medium at normal incidence is shown in Fig.5.2a. The lower region shows

the amplitude of the incident and reflected EM wave, and the upper part shows the amplitude of the

transmitted wave.

(a) Angle 0◦ (b) Angle 10◦

(c) Angle 15◦ (d) Angle 20◦

Figure 5.2: The color map of electric field for TE polarization. A plane EM wave passing through
the first medium to the second medium making an angle of (a) 0◦ (b) 10◦ (c) 15◦ and (d) 20◦ with
the normal of the boundary.
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(a) Angle 25◦ (b) Angle 30◦

(c) Angle 35◦ (d) Angle 40◦

Figure 5.3: The color map of electric field for TE polarization. A plane EM wave passing through
the first medium to the second medium making an angle of (a) 25◦ (b) 30◦ (c)35◦ (d) 40◦ with the
normal of the boundary.

In the lower region, the incident and reflected EM wave make superposition constructively

or destructively. The constructive superposition increases the intensity of the electric field (the

white color in the red background). In contrast, destructive superposition decreases the intensity

of the electric field (blue region) in the lower part of the air-dielectric system. In the upper

region, the amplitude of the transmitted wave passes through the dielectric medium without making

superposition since it is a single transmitted wave only.
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5.2 Determination of Wave Vectors

5.2.1 Wave Vectors of E-Field in Fourier Domain

The output results of the FDTD method have been imported from the FullWave to MATLAB

to determine the angle of incident and the angle of refraction in the air-dielectric system. In

MATLAB, the propagation vector k has been separated from the plane wave by using the two-

dimensional Fast-Fourier Transformation (FFT2). The coordinates of the wave vector k in the

Fourier domain give the angle of incident or the angle of refraction in the air-dielectric system. The

Figure 5.4: The color map of E-field reproduced in MATLAB (left) and the Fast-Fourier Transfor-
mation of E-field (right).

imported results from the FullWave have been reproduced in MATLAB. This output result contains

the amplitude of the incident, reflected, and transmitted wave, Fig.5.4 (left). This whole region of

the electric field is transformed into the Fourier domain by using FFT2 tool, as shown in Fig.5.4

(right). The output of the Fast-Fourier Transformation gives the magnitude of the E-field in Fourier

domain. The magnitude of the E-field in the Fourier domain is symmetric. So, we took only the

lower part (Fig.5.5a) and ignored the upper part (Fig.5.5b).

In the Fourier domain, we found two bright peaks surrounded by secondary bright peaks

in the first quadrants. The first bright peak represents the wave vector k for the incident field, and

the second bright peak represents the wave vector k for the refracted field. The Fourier domain of

the E -field contains wave vector k of the incident and refracted waves. To determine the angle of
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(a) (b)

Figure 5.5: The magnitude of the E-field in Fourier domain. The images (a) and (b) are symmetric.

incident and the angle of refraction separately, we divided the output of the electric field into two

parts: one is for the incident field, and another is for the refracted field. Then we determined their

corresponding wave vector k.

We set up a boundary for incident waves in the region containing both the incident, reflected,

and refracted waves as shown in Fig.5.1. Then, we cut a region containing the incident wave only,

Fig.5.6a. To find the wave vector k of the incident plane wave, we used the FFT2 tool. The FFT2

tool gives the wave vector k of the incident electric field in the Fourier domain. The corresponding

(a) (b)

Figure 5.6: (a) A region of the incident wave reproduced in MATLAB. (b) The wave vector k in the
Fourier domain of the incident field.
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(a) (b)

Figure 5.7: The magnitude of the E-field in Fourier domain. The image (a) and (b) are symmetric.

Fourier domain of the incident wave is shown in Fig.5.6b. The Fast-Fourier Transformation gives

symmetric images of the E-field, as shown in Fig.5.7. These symmetric images can be found by

zooming Fig.5.6b. Since the images are symmetric, we took only one image, the lower one, as

shown in Fig.5.7a. There are several bright peaks can be found in the Fourier domain. Among those

bright peaks, only one point has the maximum magnitude of the E-field.

We separated the symmetric images in the Fourier domain and kept only the lower part for

calculation. In the lower part of the Fourier domain (Fig.5.8a), we searched for the maximum value

of the E- field. This brightest peak in the Fourier domain is visible after zooming in on the lower

part, as shown in Fig.5.8b. We selected the brightest peaks in the Fourier domain. A few secondary

bright peaks surround this brightest peak in the Fourier domain. We ignored the secondary bright

peaks in the Fourier domain. The brightest peak represents the maximum magnitude of the plane

EM wave in the Fourier domain. The coordinates of this brightest peak give the desired angle.

5.2.2 Determination of the Angle from Wave Vector

The brightest peak in the Fourier domain represents the wave vector k of the plane EM wave.

This brightest peak has two components: x-component of wave vector k along the interface between

air-dielectric; and z-component of wave vector k along the z-axis (perpendicular to the air-dielectric
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(a) (b)

Figure 5.8: (a) The maximum magnitude of E-field in the lower part of Fourier domain. (b) The
maximum magnitude of E -value after zooming in. The red star represents the position of the wave
vector k in Fourier domain.

Figure 5.9: Wave vector representation for determining the angle of incidence or the angle of
refraction. The yellow area represents the brightest k-point.

interface). The wave vector k representation is shown in Fig.5.9.

The x-component of the wave vector k is kx0 and the z-component of the wave vector k is
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kz0. The tangent between kx0 and kz0 is

tanθ =
kz0

kx0
. (5.1)

But the wave vector k makes an angle θi with the normal of the boundary. The angle of incidence,

θi is given by

θi =
π

2
−θ . (5.2)

Using Eq.5.2, we calculated the angle of incidence in first dielectric (air) medium. The data for

different angle of incidence is reported in the Table.5.1.

Table 5.1: The data for the angle of incident in homogeneous air (n1 = 1.0) and dielectric (n2 = 1.52)
media. The angle of incident, θi is in degree.

No. θi
(Theoretical) (Numerical)

1. 10 9.73
2. 15 15.13
3. 20 19.98
4. 25 25.21
5. 30 30.01
6. 35 34.87
7. 40 40.00

Following a similar approach, as we did for the incident wave, we separated the refracted

part from the incident part, as shown in Fig.5.10. Then, we used FFT2 tool in the refracted region

to transform the components of the electric field into the Fourier domain. Again, we divided the

symmetric image and kept only the lower part of the Fourier domain in a similar way we did for

the incident wave. In the real part, we searched for the brightest k-point. the corresponding x and

y-component of the k-vector have used in Eq.5.3, to determine the angle of refraction. The angle of

refraction, θr is given by

θr =
π

2
− arctan

(
kz0

kx0

)
. (5.3)

The data for the angle of refraction for different angle of incidence is reported in the Table.5.2.
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Figure 5.10: The electric field of a separated portion of the refracted wave.

Table 5.2: The data for the angle of refraction in homogeneous air-dielectric medium. The angle of
incidence,θi and the angle of refraction, θr are in degrees.

No. θi θr
1. 10 6.52
2. 15 10.21
3. 20 12.71
4. 25 16.39
5. 30 19.12
6. 35 22.22
7. 40 24.60

5.3 Determination of Index of Refraction

We determined the angle of incidence and the angle of refraction from the k-vector using

Snell’s law. For air-dielectric system, the index of refraction of the dielectric medium can be found

by Snell’s law,

n2 =
n1 sinθi

sinθr
. (5.4)

The index of refraction of air is n = 1.0. Using the values of the angle of incidence and the angle of

refraction from Table.5.1 and Table.5.2, we have determined the index of refraction of the dielectric

material. The theoretical value of the index of refraction for the dielectric material is n2 = 1.52.

The numerical calculation is shown in Table.5.3. The comparison between the index of refraction
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and angle of incidence is given in Fig.5.10.

Table 5.3: The data for refractive index and angle of incident in homogeneous air (n1 = 1.0) and
dielectric (n2) media. The angle of incident, θi and refracted angle, θr are in degree and refractive
index, n2 is dimensionless. The theoretical value of index of refraction is 1.52.

No. θi θr n2
Theoretical Numerical

1. 10 9.73 6.52 1.49
2. 15 15.13 10.21 1.47
3. 20 19.98 12.71 1.55
4. 25 25.21 16.39 1.51
5. 30 30.01 19.12 1.53
6. 35 34.87 22.22 1.51
7. 40 40.00 24.60 1.54

Figure 5.11: The index of refraction for various angle of incidence in homogeneous air-dielectric
media. Here the refractive index for air is n1 = 1.0 and for dielectric, n2 = 1.52. The red line
represents the theoretical value and blue line represents the numerical value of refractive index of
the dielectric material.

5.4 Analysis of Resolution of FFT

The propagation vector k of the plane EM wave has a finite size in the Fourier domain. The

number of pixels primarily affects the measurement of the angle of incidence or refraction. In the

calculation, we selected a corner point of the k-point grid as a reference point, as shown in Fig.

5.12. The coordinate of the corner point A is kx0 and kz0. Taking this point as a reference point, the
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Figure 5.12: The pixel grid in Fourier domain. The size of the grid is dK.

angle of incidence can be written as, Eq.5.1

θ0 = arctan
(

kz0

kx0

)
. (5.5)

But the angle of incidence with the normal of the boundary is

θ =
π

2
−θ0. (5.6)

We assume u = kz0
kx0

. From Eq.5.5

d
du

arctan(u) =
(

1
1+u2

)
. (5.7)

Let us take the derivative of arctan(u) in the x and z-directions, respectively.

d
dkx0

arctan(u) =− 1
1+u2

u
k2

x0
. (5.8)

d
dkz0

arctan(u) =
1

1+u2
u

kz0
. (5.9)
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The Eq.5.8 gives the analytical error in x-direction and Eq.5.9 gives the analytical error in z-

directions.

Let us consider the size of the pixel is dK. The size of the wave vector k pixel in x-direction

is dkx. and the size of the wave vector k pixel in the z-direction is dkz.

But the numerical errors in finite differences for left and right side of point A are

x1 = arctan
(

kz0

kx0 +dKx

)
− arctan

(
kz0

kx0

)
. (5.10)

x2 = arctan
(

kz0

kx0−dKx

)
− arctan

(
kz0

kx0

)
. (5.11)

The numerical errors in up and down of the reference point A are

y1 = arctan
(

kz0 +dKz

kx0

)
− arctan

(
kz0

kx0

)
. (5.12)

y2 = arctan
(

kz0−dKz

kx0

)
− arctan

(
kz0

kx0

)
. (5.13)

(a) (b)

Figure 5.13: Comparison between analytical error and numerical error. (a) Error to left and right
side of the reference point and (b) Error to the up and down of the reference point with increasing
length of the dielectric material.
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Fig.5.13 shows the variation of errors with increasing the length of the dielectric material.

The errors in the left and right side of the reference point A are decreasing with the increasing of

the length of the dielectric medium, Fig.5.13a. The red line represents the analytical error, the blue

line represents the error on the right side of the reference point A, and the green line represents

the error on the left side of the reference point A. The analytical and numerical error converges

after 40µm. The variation of the error on the upper and lower ends of the reference point A are

shown in Fig.5.13b. The red line represents the analytical error, and the blue line represents the

error one step below the reference point A, and the green line represents the error one step above

the reference point A. The analytical and numerical errors follow the same trendline, and a longer

dielectric medium is needed for convergence.
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CHAPTER VI

NUMERICAL ANALYSIS OF 2D PHOTONIC CRYSTALS

6.1 Design of Photonic Crystals

A 2D photonic crystals is made of a square lattice of circular dielectric rods in air. The

permittivity of the circular rods is ε = 8.9, and the radius of the rods is r = 0.35a; here a is the lattice

parameter. We considered the permeability of the dielectric rods µ = 1.0. The PhC is extended on

the xz-plane, as shown in Fig.6.1. The dark blue dielectric circles represent the dielectric materials.

The structure has been drawn in RSoft CAD [34]. The Fig.6.1 shows the square dielectric crystals

in the RSoft CAD interface.

Figure 6.1: (a) Two-dimensional photonic crystals made from a square lattice of dielectric rods
of ε = 8.9 embedded in air background. The radius of the rods, r = 0.35a, where a is the lattice
parameter.
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6.2 Reflection and Refraction in Photonic Crystals

The Finite-Difference Time-Domain (FDTD) [27] method included in FullWave package

[34] is used to model the propagation of a plane electromagnetic (EM) wave through the 2D PhC.

The simulation has been done in Yee’s mesh grid [25] to compute the E and H field components

at a point on the grid. The size of grid points is 0.01 in x and z-directions, and 10 grid points-per-

wavelength (PPW) was taken for the calculation. To absorb the outgoing energy without reflections,

the perfectly matched layer (PML) [31] boundary condition was used in x and z− directions. The

time step is selected as the Courant condition, which relates temporal and spatial step size, to obtain

a stable simulation. The Courant condition is given by

c∆t <
1√

1/∆x2 +1/∆y2 +1/∆z2
. (6.1)

A plane EM wave has been sent from medium 1 (air) to medium 2 (2D PhC) at an angle with the

normal incidence. The schematic diagram of the numerical simulation is shown in Fig.6.2. There

are two types of polarizations are considered - Transverse Electric (TE) and Transverse Magnetic

(TM). In the case of TE, the electric field (E) of the incident wave is perpendicular to the plane of

incidence. For TM, the magnetic field (H) of the incident wave is perpendicular to the plane of

incidence.

Figure 6.2: Two-dimensional photonic crystals made of square lattice of dielectric rods having
dielectric ε = 8.9 in air background (RSoft CAD interface). The radius of the rods is r = 0.35a.
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Depending upon the frequency of the incident wave, periodicity and band structure, a finite

number of phenomena such as reflection, refraction, or Bragg-diffraction could happen in the

photonic crystals [35]. With these phenomena, additional diffractive reflection and refraction could

have occurred. All these phenomena can be explained with the help of wave vector k.

Suppose that the periodicity parallel to the interface is a, and the components of incident

wave vectors k‖,k⊥, and frequency ω . For any integer m,

n2
i ω2

c2 = k2
⊥+

(
m

2π

a

)2

. (6.2)

Here, ni is the index of refraction of the incident medium, k‖ and k⊥ are the components of wave

vector k parallel and perpendicular to the interface, respectively. And a is the periodicity of the

crystals. For m=0, Eq.6.2 yields
n2

i ω2

c2 = k2
i = k2

‖+ k2
⊥. (6.3)

For reflected wave

k2
r = k2

‖+(k′⊥)
2. (6.4)

Applying the law of reflection, Eq.6.2 and Eq.6.3 yields

k′⊥ =±k⊥. (6.5)

But the reflected wave must be propagate away from the interface. So, the refracted wave vector k

will be, k′⊥ =−k⊥.

k′⊥ =−k⊥.

or,k′⊥ =−

√
n2

i ω2

c2 − k2
‖. (6.6)

68



Figure 6.3: Reflection, refraction, and diffraction phenomena in photonic crystals.

For the diffractive reflection, m 6= 0. From Eq.6.2 and Eq.6.6 we can write,

k′⊥ =−

√
n2

i ω2

c2 −
(

k‖+m
2π

a

)2

. (6.7)

When ω is too small, or if m is too large, then Eq.6.7 will be imaginary, corresponding to an

evanescent field that decays exponentially away from the interface.

The non-evanescent diffractive reflection will occur at m, when

ω >
c
ni

∣∣∣∣k‖+ 2πm
a

∣∣∣∣. (6.8)

If θi is the angle of incidence, then

ki =
ω

c
sinθi. (6.9)

Here θi ≥ 0. The first diffractive reflection will occur at m =−1, and

ωa
2πc

=
a
λ
>

1
ni(1+ sinθi)

. (6.10)

Here ω is the angular frequency, λ is the free space wavelength, ni is the refractive index of the
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incident medium, and θi is the angle of incidence.

The reflection of light in PhC can explain the refraction phenomenon. In the case of

refraction, the information of the waves propagating in the crystals, the component of k vector

parallel to the interface, k‖+2πm/a, and the direction of the group velocity, vg = ∇kω are required.

The EFS contour gives the available state of ω(k). The group velocity vg = ∇kω is perpendicular

to the ω contour and points toward increasing ω for the positive index of refraction materials.

According to the conservation law, the wave vectors k parallel to the interface between two

media (air-PhC) are conserved.

ki = k‖+
2πm

a
. (6.11)

For refraction, using m = 0 in Eq.6.11 and the conservation of wave vector k gives,

ki = k‖. (6.12)

Now, putting the components of ki and kr in Eq.6.12 yields

niω

c
sinθi =

neffω

c
sinθr. (6.13)

From Eq.6.13, the effective index of refraction of the photonic crystals is given by

neff =
ni sinθi

sinθr
. (6.14)

Here ni is the refractive index of the incident medium, θi is the angle of incidence, θr is the angle of

refraction, and ne f f is the effective index of refraction of the PhC.

6.3 Band Structure of Photonic Crystals

We need band structures to study the propagation of EM waves in the PhC. We used Plane

Wave Expansion Method (PWEM) [32] embedded in the BandSOLVE package [33] to obtain the

band structure of 2D PhC. We calculated the first 4 bands of both TE and TM polarization. The
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eigenvalue tolerance was set to 1.0×10−8 for the best optimal resolution and accuracy of the results.

The first Brillouin (FBZ) zone of the 2D photonic crystals is shown in Fig.6.4. The FBZ is the

region in a reciprocal space consisting of all points closer to the origin than any other reciprocal

lattice vectors. The symbols Γ,X , and M represent the higher symmetry directions of the square

lattice, which represent the wave vectors k that correspond to the point on the FBZ surface along

that particular direction. In the FBZ, Γ represents the center of the FBZ, X is the center of the edge,

and M is the corner point. The region Γ−X−M−Γ is called the irreducible Brillouin zone (IBZ).

All points within the FBZ can be mapped to on points within the IBZ by symmetry operations. The

Figure 6.4: The first Brillouin zone, a region in a reciprocal space consisting of all points closer to
the origin than to any other reciprocal lattice vector. Here, Γ represents the center of the FBZ, X is
the center of the edge, and M is the corner point. The region Γ−X−M−Γ is called the irreducible
Brillouin zone.

first four band structure of TE and TM polarization is shown in Fig.6.5. The vertical axis of the

band structure represents the normalized frequency ωa/2πc = a/λ which is dimensionless. The

horizontal axis represents the higher symmetry points in the FBZ. In this case of TE, the band gap

was found in the range normalized frequencies Ω = 0.42−0.49 and Ω = 0.24−0.29. On the other

hand, the band gap was not found in TM polarization, Fig.6.5b. The iso-surface for the TE and TM

polarization is shown in Fig.6.6.
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(a) (b)

Figure 6.5: Band structure for (a) TE and (b) TM polarization in the PhC. The dielectric constant
of the square lattice is 8.9 embedded in air background. The radius of the rods is r = 0.35a. The
vertical axis is the dimensionless normalized frequency (ωa/2πc = a/λ ) and horizontal axis is the
higher symmetry point in the first Brillouin zone.

6.4 Equifrequency Surfaces and their Cross-Sections

To study the refraction properties of the light through PhC, the proposed structure’s EFS

diagram is obtained using the PWE method. The dispersion diagram of 2D PhC is show in Fig.6.6,

Fig.6.7a, and Fig.6.8. Each diagram consists of several surfaces stacked vertically in the ω direction.

That means the dispersion diagram for 2D PhC consists of a family of surfaces that represent the

multivalued function ω = ω(k), where the intersections of a constant k-line with different surfaces

corresponds to particular modes at different frequencies within the lattice. The dispersion diagram

of the first four bands of a square lattice is shown in Fig.6.6. For comparison, we have calculated

the first four bands of the PhC and the first four EFS diagrams of TE and TM polarization are shown

in Fig.6.7 and Fig.6.8. The EFS contours give the allowed frequency for light propagation through

the photonic crystals. From the band diagram (Fig.6.5a) and EFS plots (Fig.6.7), it is clear that

the range of frequencies 0.24−0.29, and 0.42−0.49 in 2D PhC give the forbidden mode for light

propagation.

We can determine the direction of propagation of the incident wave in the PhC using contour

maps. The direction of propagation of the incident wave coincides with the direction of the group
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(a)
(b)

Figure 6.6: The dispersion surface diagram for (a) TE and (b) TM polarization in the PhC. The
dielectric constant of the square lattice is 8.9 embedded in air background. The radius of the rods
is r = 0.35a. The vertical axis is the dimensionless normalized frequency (ωa/2πc = a/λ ) and
horizontal axis is the higher symmetry point in the first Brillouin zone. The dispersion surfaces
show the relation ω = ω(k) in the 2D PhC.

velocity, vg. The group velocity, vg = ∇ωk, for a given Bloch mode is characterized by wave vector

k is parallel to the EFS normal at this k point. So, with increasing outward frequency, vg ·k > 0

and the direction of vg is outward along ΓX direction, corresponding to the positive index for 2D

PhC. For the rest of the bands of TE (Fig.6.7b-Fig.6.7d) and TM (Fig.6.8b-Fig.6.8d) polarization,

the EFS contour lines are moving outward with increasing normalized frequencies. In that case,

vg ·k < 0, the group velocity, vg is anti-parallel to wave vector k, corresponding to the negative

index of refraction.

The EFS contours are centered around ΓX line in the FBZ. In the case of TE (Fig.6.7a)

and TM (Fig.6.8a) polarization for band 0, all the EFS contour lines are circular and moving

outward from the center with increasing normalized frequencies. In this case, the PhC behaves

like a homogeneous one, and its effective index is positive. Beyond the first band, the PhC is not

homogeneous, and light scatters for the allowed frequency bands.

6.5 Modeling of EM Waves in Photonic Crystals

We have used the FDTD method [27] to model the propagation of a plane EM wave through

the PhC with a Perfectly Matched Layer (PML) [29] to absorb the outgoing waves. We chose
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(a) (b)

(c) (d)

Figure 6.7: The first four EFS contours of TE polarization. The EFS contours can be found by
intersecting constant frequency plane with the dispersion surface.

the normalized frequency (wavelength) of the plane EM wave from the cross-sections of the EFS

contours. The plane EM wave was sent at an angle of 10◦, 15◦, 20◦, 25◦, 30◦, 35◦, 40◦, and 45◦

degrees with respect to the normal of incidence of the air-PhC. We took the same values of angle of

incidence for both TE and TM polarization.

At first, we studied the diffractive reflection in air-PhC for both TE and TM polarization

using the Eq.6.10. The index of refraction for air, ni = 1.0. For angle of incidence θi = 10, a/λ is

a
λ
=

1
ni(1+ sin10◦)

= 0.85 (6.15)

But the normalized frequency ωa
2πc = 0.16. From Eq.6.15, normalized frequency< 0.85. Similarly,
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(a) (b)

(c) (d)

Figure 6.8: The first four EFS contours of TM polarization. The contours can be found by
intersecting constant frequency plane with the dispersion surface. (c) Band 2 and (d) Band 3.

for the angle of incidence of 45◦, normalized frequency < 0.58. In this calculation, the angle of

incidence between 10◦ to 45◦ Eq.6.10 is not satisfied. Therefore, the diffractive reflection from the

PhC interface is not possible. Therefore, the non-evanescent diffractive reflection is not possible for

an air-PhC single boundary. The plane EM only reflected away from the air-PhC interface.

TE polarization:

For TE polarization, the components of E-field is E = E(x,0,z). The direction of E-field is in y-

direction. According to the boundary conditions and Maxwell’s equation, the tangential components

of the H-field, Hx is continuous at the interface of two media. The color map of TE mode for the

first band at normalized frequency 0.16 is shown in Fig.6.9 at a different angle of incidence. The

amplitude of the incident wave splits into two parts at the boundary of the air-PhC interface- one
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Figure 6.9: Band 0: TE Color map at (a) 0◦ (b) 10◦ (c) 15◦ (d) 20◦ (e) 25◦ (f) 30◦ (g) 35◦, and (h)
40◦. The normalized frequency of the incident wave is Ω = 0.1642.
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part is reflected from the interface, and another is refracted through the PhC. In Fig.6.9, the lower

part of the color map shows the sum of the incident amplitude and reflected E-field, and the upper

region represents the refracted field. The color bar represents the strength of E-field. The red color

represents the positive E-field, the blue color represents the negative E-field, and the green color

represents the neutral region.

In the lower region of the air-PhC interface, the incident and reflected waves superimpose

each other constructively or destructively. During the constructive superposition, the resultant

E-field for TE polarization increases. The white region in the red line on the contour map shows

the constructive superposition of the incident and reflected waves. In contrast, the dark blue color

indicates the destructive superposition in the lower region of the air-PhC system. On the other hand,

inside the PhC, the plane EM wave refracted after crossing the air-PhC interface.

To determine the effective index of 2D PhC, we need the angle of refraction of the prop-

agating plane EM wave in that medium. The angle of incidence and index of refraction of the

first medium (air) is known. We need to determine the angle of refraction in the PhC. We have

determined the angle of refraction in 2D PhC using the method described in ChapterV. The wave

vector k of the refracted wave is parallel to the air-PhC interface. The angle of the wave vector k

is calculated in the FBZ of the PhC. Snell’s law is applicable in the FBZ. The effective index of

refraction of the PhC has been calculated using Eq.6.11. The values of incidence angle, angle of

refraction, and the effective index of refraction for Band 0 and TE polarization have been reported

in Table.6.1. The 2D PhC has an average effective index of 2.0 in Band 0. We found the positive

refraction in 2D PhC, which acts as a homogeneous material.

In Band 1, we used a plane EM wave of normalized frequency 0.3489 (2.87µm) to model

light propagation through the PhC using the FDTD method. We found the positive refraction in

PhC for the range of frequencies of Band 1. The color map of the electric field for TE polarization

in Band 1 is shown in Fig.6.11. For Band 1 of TE polarization, we determined the effective index

of the 2D PhC using the similar method described in Chapter.V. In Band 1, the PhC has average

effective index in the range of 2.0, as shown in Fig.6.13b.
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Table 6.1: Band 0: TE-mode. Data for effective index of refraction, neff for different angle of
incidence in 2D PhC at normalized frequency Ω = 0.1642 (λ = 6.09µm). The angle of incidence,
θi and angle of refraction, θr are in degree. The effective refractive index of refraction, neff is
dimensionless parameter.

No. θi θr neff
Theoretical Numerical

1. 10 10.01 5.04 1.98
2. 15 15.31 7.80 1.95
3. 20 19.97 8.27 2.37
4. 25 25.05 13.15 1.86
5. 30 30.03 13.91 2.08
6. 35 34.97 15.63 2.13
7. 40 39.97 19.76 1.90
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Figure 6.10: Band 1: TE. Contour map of electric field at (a) 0◦ (b) 10◦ (c) 15◦ (d) 20◦ (e) 
25◦ (f) 30◦ (g) 35◦, and (h) 40◦. The normalized frequency of the incident wave is Ω = 
0.3489.



For Band 1 of TE polarization, the data for angle of refraction and effective index of 2D

PhC for different angle of incidence is shown in Table.6.2.

Table 6.2: Band 1: TE-mode. Data for effective index of refraction, neff for various angle of 
incidence in 2D photonic crystals at normalized frequency, Ω = 0.3489 (λ = 2.87µm). The angle 
of incidence θi and angle of refraction, θr are in degree units. The effective index of refraction, neff is 
dimensionless.

No. θi θr neff
Theoretical Numerical

1. 10 9.83 5.94 1.65
2. 15 15.17 7.72 1.95
3. 20 19.98 9.71 2.03
4. 25 25.23 12.50 1.97
5. 30 29.72 14.27 2.01
6. 35 35.23 16.21 2.07
7. 40 40.24 18.69 2.01
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TM Polarization

For TM polarization, the direction of the magnetic field is along y-direction. The component of 

the magnetic field H is H(x,0,z). According to Maxwell’s boundary condition, the electric field 

is continuous along the interface between air-PhC. For Band 0 of TM polarization, we used the 

normalized frequency 0.3318 (λ = 3.01 micron) to model the propagation of a plane EM wave 

through 2D PhC using the FDTD method. The color map of the magnetic field for TM polarization 

for different angles of incidence is shown in Fig.6.11. In the lower region of the colormap contains 

the incident and reflected waves, and their superposition gives constructive and destructive 

interference. The upper region of the colormap shows the refracted wave in the PhC. The 

magnetic field intensity is maximum for constructive interference and minimum for destructive 

interference. The white circles in the red background represent the higher intense magnetic field 

region, and the black circles in the blue background represent the lower intense magnetic field 

region. The angle of refraction of the
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Figure 6.11: Band 0: TM. Contour map of electric field for TM polarization in the PhC (a) 0◦ (b) 
10◦ (c) 15◦ (d) 20◦ (e) 25◦ (f) 30◦ (g) 35◦, and (h) 40◦. The normalized frequency of the incident 
plane wave is 0.3318.

2D PhC for TM polarization has been determined using a similar method as for TE polarization.



The effective index of the 2D PhC for Band 0 of TM polarization has been determined using Eq.6.11.

The data for the angle of refraction and effective index of 2D PhC for different angles of incidence

are shown in Table.6.3.

Table 6.3: Band 0: TM-mode. Data for effective index of refraction, neff for various angle of 
incidence in 2D photonic crystals at normalized frequency, Ω = 0.3319 (λ = 3.01µm). The angle 
of incidence θi and angle of refraction, θr are in degree. The effective index of refraction, neff is 
dimensionless parameter.

No. θi θr neff
Theoretical Numerical

1. 10 10.01 6.20 1.61
2. 15 14.36 8.73 1.63
3. 20 20.07 13.09 1.51
4. 25 24.90 15.15 1.61
5. 30 30.03 13.91 2.08
6. 35 34.97 15.63 2.12
7. 40 39.99 17.46 2.14
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In Band 0, we found the positive refraction in 2D PhC. In the case of TM polarization, the

effective index of refraction varies with the angle of incidence, as shown in Fig.6.13a. In the FDTD

calculation for Band 0, we found the positive refraction of the incident plane EM wave in the PhC.

The PhC has an average index of refraction in the range of 1.8 for TM polarization.

In Band 1 of TM polarization, we set the normalized frequency 0.3618 (2.76µm) for the

plane EM wave and sent it through the PhC for different angles of incidence, as shown in Fig.6.12.

For this wavelength in FDTD calculation, we also found positive refraction in the PhC, Fig.6.12.

We have calculated the effective index of refraction 2D PhC for TM polarization in Band 1. The

data for the angle of refraction for different angles of incidence and the effective index of refraction

of the PhC are shown in Table.6.4. The average effective index of refraction is in the range of 1.65

for the TM polarization of Band 1.
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Figure 6.12: Band 1: TM. Contour map of electric field for TM polarization in the PhC at (a) 0 ◦ (b) 
10◦ (c) 15◦ (d) 20◦ (e) 25◦ (f) 30◦ (g) 35◦, and (h) 40◦. The normalized frequency for the incident 
wave is Ω = 0.3618.



Table 6.4: Band 1: TM-mode. Data for effective index of refraction, ne f f for various angle of 
incidence in 2D photonic crystals at normalized frequency, Ω = 0.3618 (λ = 2.76µm). The angle 
of incidence θi and angle of refraction, θr are in degree. The effective index of refraction, neff is 
dimensionless parameter.

No. θi θr neff
Theoretical Numerical

1. 10 10.02 5.66 1.76
2. 15 15.45 9.42 1.63
3. 20 19.98 11.74 1.68
4. 25 25.23 15.07 1.64
5. 30 29.77 16.97 1.70
6. 35 35.23 20.82 1.62
7. 40 40.16 24.71 1.54
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The comparison between the effective index of refraction for TE and TM polarization is

shown in Fig.6.13. The effective index of refraction in Band 0 for TE and TM polarization is shown

in Fig.6.13a. The In Fig.6.13, we can see that the effective index of 2D PhC varies with the angle of

(a) (b)

Figure 6.13: The effective index of refraction, ne f f for various angle of incidence in 2D PhC.
The blue and red line represents the effective index of refraction for TE and TM polarization,
respectively, for (a) Band 0 and (b) Band 1.

incidence of the plane EM waves. In band 0 of TE polarization, the effective index scatters around

the value 2.0. for TM polarization, the effective index remains nearly constant up to the angle of

incidence of 25 degrees. After that, the effective index starts increasing with increasing the value of

the angle of incidence. On the other hand, for band 1 of TE polarization, the PhC has an average

effective index in the range of 2.0. For TM polarization of band 1, the average effective index of

PhC is in the range of 1.65.

The reason for variation in the effective index is the number of pixels present in the incident

and refracted fields. We used the finite-difference method to determine the angle of incidence and

refraction in the 2D PhC. In this method, the number of pixels in the fields affects the angles, which

affects measurements for the effective index of refraction. When the number of pixels increases, the

errors in calculating angles become less; therefore, the error can be minimized for a larger number

of pixels.
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CHAPTER VII

CONCLUSION

Photonic crystals are interesting structured materials that are currently available for research.

In this research, we focused on 2D photonic crystals. We used FDTD, PWE, fft2, and MATLAB

to determine the effective index of refraction. A plane EM waves have been used to model the

propagation of light in the photonic crystals using the FDTD method. The frequency of the incident

plane EM waves has been taken from the first two bands of photonic crystals for both polarization.

We studied the refraction phenomenon near Γ symmetry points for TE and TM polarization. A part

of the incident field is reflected from the boundary of the air-Photonic crystals, and another part is

refracted through the photonic crystals. The incidence and the refraction angle have been calculated

in the Fourier domain. The effective index of refraction has been calculated by using Snell’s law.

In this work, we applied a new method to determine the effective index of refraction of

2D photonic crystals. We studied the effective index of refraction as a function of the angle of

incidence of the incident field for TE and TM polarization. In the case of the first band of TE and

TM polarization, we found that the effective index varies with the angle of incidence. On the other

hand, the effective index of refraction remains constant with the angle of incidence in the second

band for TE and TM polarization. The 2D photonic crystals behave as a homogeneous material

in the first band. Furthermore, the effective index of refraction depends on the polarization of the

incident field. The effective index of refraction is different for TE and TM polarization. We also

found that the effective index depends on the band structure of 2D polarization.
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