Document Type


Publication Date



In this paper, we apply a measure, exemplar adjacency number, which complements and extends the well-studied breakpoint distance between two permutations, to measure the similarity between two genomes (or in general, between any two sequences drawn from the same alphabet). For two genomes and drawn from the same set of n gene families and containing gene repetitions, we consider the corresponding Exemplar Adjacency Number problem (EAN), in which we delete duplicated genes from and such that the resultant exemplar genomes (permutations) G and H have the maximum adjacency number. We obtain the following results. First, we prove that the one-sided 2-repetitive EAN problem, i.e., when one of and is given exemplar and each gene occurs in the other genome at most twice, can be linearly reduced from the Maximum Independent Set problem. This implies that EAN does not admit any -approximation algorithm, for any , unless P = NP. This hardness result also implies that EAN, parameterized by the optimal solution value, is W[1]-hard. Secondly, we show that the two-sided 2-repetitive EAN problem has an -approximation algorithm, which is tight up to a constant factor.


© 2014 Elsevier B.V. Original published version available at

First Page


Last Page


Publication Title

Theoretical Computer Science





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.