Document Type


Publication Date



We analyze the complexity of building linear assemblies, sets of linear assemblies, and O(1)-scale general shapes in the staged tile assembly model. For systems with at most b bins and t tile types, we prove that the minimum number of stages to uniquely assemble a 1 n line is (logt n + logb n t + 1). Generalizing to O(1) n lines, we prove the minimum number of stages is O( log n tb t log t b2 + log log b log t ) and

( log n tb t log t b2 ). Next, we consider assembling sets of lines and general shapes using t = O(1) tile types. We prove that the minimum number of stages needed to assemble a set of k lines of size at most O(1) n is O( k log n b2 + k p log n b + log log n) and ( k log n b2 ). In the case that b = O( p k), the minimum number of stages is (log n). The upper bound in this special case is then used to assemble \hefty" shapes of at least logarithmic edge-length-to- edge-count ratio at O(1)-scale using O( p k) bins and optimal O(log n) stages.


© 2019, Springer Nature B.V. Original published version available at

First Page


Last Page


Publication Title

Natural Computing





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.