Document Type

Article

Publication Date

2-25-2019

Abstract

In order to increase the potential kidney transplants between patients and their incompatible donors, kidney exchange programs have been created in many countries. In the programs, designing algorithms for the kidney exchange problem plays a critical role. The graph theory model of the kidney exchange problem is to find a maximum weight packing of vertex-disjoint cycles and chains for a given weighted digraph. In general, the length of cycles is not more than a given constant L (typically 2 L 5), and the objective function corresponds to maximizing the number of possible kidney transplants. In this paper, we study the parameterized complexity and randomized algorithms for the kidney exchange problem without chains from theory. We construct two different parameterized models of the kidney exchange problem for two cases L = 3 and L 3, and propose two randomized parameterized algorithms based on the random partitioning technique and the randomized algebraic technique, respectively.

Comments

Original published version available at https://doi.org/10.3390/a12020050

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Publication Title

Algorithms

DOI

10.3390/a12020050

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.