Document Type


Publication Date



We show how to design a universal shape replicator in a self- assembly system with both attractive and repulsive forces. More precisely, we show that there is a universal set of constant-size objects that, when added to any unknown holefree polyomino shape, produces an unbounded number of copies of that shape (plus constant-size garbage objects). The constant-size objects can be easily constructed from a constant number of individual tile types using a constant number of preprocessing self-assembly steps. Our construction uses the well-studied 2-Handed Assembly Model (2HAM) of tile self-assembly, in the simple model where glues interact only with identical glues, allowing glue strengths that are either positive (attractive) or negative (repulsive), and constant temperature (required glue strength for parts to hold together). We also require that the given shape has specified glue types on its surface, and that the feature size (smallest distance between nonincident edges) is bounded below by a constant. Shape replication necessarily requires a self-assembly model where parts can both attach and detach, and this construction is the first to do so using the natural model of negative/repulsive glues (also studied before for other problems such as fuel-efficient computation); previous replication constructions require more powerful global operations such as an “enzyme” that destroys a subset of the tile types.


Copyright © by SIAM Unauthorized reproduction of this article is prohibited.

Publication Title

Proceedings of the 2017 Annual ACM-SIAM Symposium on Discrete Algorithms





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.