Document Type


Publication Date



We present a novel automatic supervised object recognition algorithm based on a scale and rotation invariant Fourier descriptors algorithm. The algorithm is hierarchical in nature to capture the inherent intra-contour spatial relationships between the parent and child contours of an object. A set of distance metrics are introduced to go along with the hierarchical model. To test the algorithm, a diverse database of shapes is created and used to train standard classification algorithms, for shape-labeling. The implemented algorithm takes advantage of the multi-threaded architecture and GPU efficient image-processing functions present in OpenCV wherever possible, speeding up the running time and making it efficient for use in real-time applications. The technique is successfully tested on common traffic and road signs of real-world images, with excellent overall performance that is robust to moderate noise levels.


Original published version available at

First Page


Last Page


Publication Title

2019 2nd International Conference on Data Intelligence and Security (ICDIS)





To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.