Document Type

Article

Publication Date

2020

Abstract

Cell is the fundamental structural and functional unit of complex multicellular organisms. Conventional methods which involve average analysis of cells in bulk populations can undermine physiologically significant cell populations, whereas analysis of cells at a single cell level may reveal unique biomarkers and other mechanisms that govern the genotype and phenotype in various physiological processes in presumed homogenous cell populations. Cellular abnormalities such as irregularities in cellular mechanisms have been linked to human aging and other major diseases including neurodegenerative, vascular, autoimmune, and cancer. Aging is a functional decline associated with various diseases in an organism, majorly arising from cellular abnormalities. Single cell analysis (SCA) which involves isolation and study of single cell proteomics, genomics, transcriptomics and metabolomics which enables research of cellular abnormalities with a molecular resolution, is gaining recognition in the research of human aging and disease. The advances in SCA are producing breakthrough information about cellular heterogeneity, disease progression, cellular microenvironment and its interactions, early diagnostics, improving precision medicine through high throughput drug screening and discovery of novel biomarkers; combinedly, these advances exhibit the potential of SCA to study of human aging and disease. Primarily, we review the role of SCA in understanding cellular mechanisms involved in aging and other major diseases including neurological, vascular, autoimmunity and cancer. Secondly, we also include review of SCA role in studying cell adhesion mechanisms which are involved in tissue development and maintenance and disease progression. Finally, SCA potential to empower precision medicine and its overall challenges along with future directions are discussed.

Comments

© 2020 the Author(s), licensee AIMS Press. Original published version available at http://dx.doi.org/10.3934/molsci.2020004

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

First Page

46

Last Page

69

Publication Title

AIMS Molecular Science

DOI

10.3934/molsci.2020004

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.