Document Type

Article

Publication Date

12-6-2024

Abstract

In this research, a novel interdigitated gear-shaped, graphene-based electrochemical biosensor was developed for the detection of dopamine (DA). The sensor’s innovative design improves the active surface area by 94.52% and 57% compared to commercially available Metrohm DropSens 110 screen-printed sensors and printed circular sensors, respectively. The screen-printed electrode was fabricated using laser processing and modified with graphene polyaniline conductive ink (G-PANI) to enhance its electrochemical properties. Fourier Transform Infrared (FTIR) Spectroscopy and X-ray diffraction (XRD) were employed to characterize the physiochemical properties of the sensor. Dopamine, a neurotransmitter crucial for several body functions, was detected within a linear range of 0.1–100 µM, with a Limit of Detection (LOD) of 0.043 µM (coefficient of determination, R2 = 0.98) in phosphate-buffer saline (PBS) with ferri/ferrocyanide as the redox probe. The performance of the sensor was evaluated using cyclic voltammetry (CV) and Chronoamperometry, demonstrating high sensitivity and selectivity. The interdigitated gear-shaped design exhibited excellent repeatability, with a relative standard deviation (RSD) of 1.2% (n = 4) and reproducibility, with an RSD of 2.3% (n = 4). In addition to detecting dopamine in human serum, the sensor effectively distinguished dopamine in a ternary mixture containing uric acid (UA) and ascorbic acid (AA). Overall, this novel sensor design offers a reliable, disposable, and cost-effective solution for dopamine detection, with potential applications in medical diagnostics and neurological research.

Comments

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Creative Commons License

Creative Commons Attribution 4.0 International License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Publication Title

Journal of Sensor and Actuator Networks

DOI

10.3390/jsan13060084

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.