School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Document Type

Article

Publication Date

1-20-2021

Abstract

Processes active within buoyant hydrothermal plumes are expected to modulate the flux of elements, such as Fe, to the deep ocean; however, they are yet to be described in a comprehensive manner through observations or models. In this study, we compare observed particulate Fe (pFe) speciation with thermodynamic (equilibrium) reaction path modeling for three vent fields in the Eastern Lau Spreading Center (ELSC). At each site, particles were collected from the buoyant rising portion of hydrothermal plumes using in situ filtration with a Remotely Operated Vehicle. Filter bound particles were analyzed by synchrotron micro-probe X-ray fluorescence mapping (XRF), X-ray diffraction (XRD), XRF spectroscopy, and X-ray absorption near edge structure (XANES) spectroscopy at the Fe 1 s edge, as well as XRF-based chemical speciation mapping for Fe. For buoyant plumes of the ELSC, diversity in solid-state chemistry was high, and poorly crystalline, meta-stable phases were common. We demonstrate that to fully describe the crystalline-to-noncrystalline character of plume pFe, a multi-modal XRD-XANES analytical approach is needed. We found that an equilibrium modeling approach worked well for pyrite but performed poorly for important families of meta-stable pFe, namely Fe (oxyhydr)oxides and monosulfides. Based on our findings, we recommend future field expeditions strategically explore sites representing a diversity of site-specific conditions to better capture the full range of processes active in plumes. We also recommend development of kinetic models, as well as expansion of thermodynamic databases to better reflect the solid-state composition of plumes. These steps should allow oceanographers to understand the processes controlling Fe speciation in plumes well enough to create realistic models of hydrothermal fluxes to the ocean.

Comments

Original published version available at https://doi.org/10.1016/j.chemgeo.2020.120018

Publication Title

Chemical Geology

DOI

10.1016/j.chemgeo.2020.120018

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.