Document Type

Article

Publication Date

2012

Abstract

Bacterial interactions with eukaryotic hosts are complex processes which vary from pathogenic to mutualistic. Identification of bacterial genes differentially expressed in the host, promises to unravel molecular mechanisms driving and maintaining such interactions. Several techniques have been developed in the past 20 years to investigate bacterial gene expression within their hosts. The most commonly used techniques include in-vivo expression technology, signature-tagged mutagenesis, differential fluorescence induction, and cDNA microarrays. However, the limitations of these techniques in analyzing bacterial in-vivo gene expression indicate the need to develop alternative tools. With many advantages over the other methods for analyzing bacterial in-vivo gene expression, selective capture of transcribed sequences (SCOTS) technique has the prospect of becoming an elegant tool for discovery of genes involved in the bacterium-host interaction. Here, we summarize the advances in SCOTS technique, including its current and potential applications in bacterial gene expression studies under a variety of conditions from in-vitro to in-vivo and from mammals to insects.

Creative Commons License

Creative Commons Attribution 3.0 License
This work is licensed under a Creative Commons Attribution 3.0 License.

Publication Title

Insects

DOI

10.3390/insects3010295

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.