Document Type

Article

Publication Date

6-2020

Abstract

This paper extends the fixed effect panel stochastic frontier models to allow group heterogeneity in the slope coefficients. We propose the first-difference penalized maximum likelihood (FDPML) and control function penalized maximum likelihood (CFPML) methods for classification and estimation of latent group structures in the frontier as well as inefficiency. Monte Carlo simulations show that the proposed approach performs well in finite samples. An empirical application is presented to show the advantages of data-determined identification of the heterogeneous group structures in practice.

Comments

Original published version available at https://doi.org/10.1007/s11123-020-00584-8

Publication Title

Journal of Productivity Analysis

DOI

10.1007/s11123-020-00584-8

Included in

Finance Commons

Share

COinS
 
 

To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.